
Performance Estimation of Multis treamed, Superscalar Processors 

Wayne Yamamoto Mauricio J. Serrano Adam R. Talcott Roger C. Wood Mario Nemirovsky 
wayne@mimd.ucsb.edu mauriao@mkd.ucsb.edu tnlcott@Pmimd.u&.edu wood@hub.ucsb.edu mPrio@misduab.edu 

Department of Electrical and Computer Engineering 
University of California, Santa Barbara 

Santa Barbara, CA 93106-5130 

Abstract 
Multistreamed processors can significantly improve 
processor throughput by allowing interleaved execution of 
instructions from multiple instruction streams. In this 
paper, we present an analytical modeling technique to 
evaluate the effect of dynamically interleaving additional 
instruction streams within superscalar architectures. 
Using this technique, estimates of the instructions 
executed per cycle (IPC) for a processor architecture are 
quickly calculated given simple descriptions of the 
workload and hardware characteristics. To validate this 
technique, estimates of the SPEC89 benchmark suite 
obtainedfrom the model are compared to results from a 
hardware simulator. Our results show the technique 
produces accurate estimates with an average deviation of 
-4% from the simulation results. Finally, we 
demonstrate that as the number of functional units 
increases, multistreaming is an effective technique to 
expbir these additional resources. 

1 Introduction 
Today's processors employ multiple functional unit 

designs capable of dispatching several instructions every 
cycle. Two factors limiting the number of instructions 
dispatched per cycle are: 1) the number of functional units 
available (hardware) and 2) the amount of parallelism in 
the workload (software). While the peak throughput of a 
processor is determined by the number of functional units, 
the actual performance obtained is limited by the amount 
of instruction level parallelism. Data dependencies and 
control breaks constrain instruction level parallelism 
resulting in a sustained system performance that is well 
below the peak. Combining hardware and compiler 
techniques can increase the level of parallelism. Register 
renaming, out-of-order execution, branch prediction, and 
speculative execution are some of the hardware techniques 
that have been used. On the compiler side, loop 
unfolding, software pipelining, and instruction reordering 
are some of the techniques employed. However, as the 
number of functional units increases within processors, it 
is unlikely that enough parallelism can be extracted from a 
single stream to effectively utilize the additional resources. 

1060-3425/94 $3.00 0 1994 IEEE 

The ability to simultaneously execute multiple 
instruction streams, referred to as multistreaming, 
significantly increases the number of independent 
instructions capable of being issued per cycle. A 
multistreamed, superscalar processor can dispatch 
instructions from multiple streams simultaneously (i.e.. 
within the same cycle). By storing each stream context 
internally, the scheduler can select independent 
instnictions from all active streams and dispatch the 
maximum number of instructions on every cycle. A 
dynamically interleaved processor adjusts the scheduling 
policy as the workload changes to maximize throughput. 
If the active streams are independent then the total number 
of instructions that can be dispatched per cycle will 
i m s e  as the number of active streams increases. 

A simulation study demonstrating performance benefits 
of milltistreamed, superscalar processors was perfmed by 
emulating a multistreamed version of the IBM RS/6000 
[lo]. Due to the cost of the simulations in this study, 
both in complexity and execution time, we developed a 
simple analytical model to estimate the overall 
performance of these architectures. The model produces 
instnictions executed per cycle (PC) estimates for an 
architecture as the number of streams is varied. As input 
parameters, the model uses simple workload and 
architectural descriptions that are easily estimated or 
obtained using commonly available tools. We compare 
the n:sults from the model using the SPEC89 benchmark 
characteristics as workloads with results from a hardware 
simulator executing the real SPEC89 benchmarks. Our 
results show that the model produces estimations that 
differ from the simulation results by just over 4% on 
average. In addition, the execution time required for the 
analytic model is negligible compared to the time required 
for simulation. 
2 History 

Even though the CDC 6600 made use of a multiple 
functional unit design, the idea of multiple instruction 
issue was not pursued until many years after its 
introduction in 1964 [12]. 'Ibis was due to several studies 
in the: early 70's that concluded the amount of parallelism 
at the: instruction level was very small [3]. However, by 

195 Proceedings of the Twenty-Seventh Annual Hawaii 
International Conference on System Sciences, 1994 

mailto:wayne@mimd.ucsb.edu
mailto:mauriao@mkd.ucsb.edu
mailto:tnlcott@Pmimd.u&.edu
mailto:wood@hub.ucsb.edu
mailto:mPrio@misduab.edu


the mid 80's, new work showed that there was significant 
parallelism available. By the late 80's, several papers 
proposed techniques for multiple issue and gave them the 
name superscalar. As compilers got snarter, they were 
able to extract higher levels of parallelism than was 
originally thought. Several compiler techniques are used 
to increase the amount of parallelism, for example loop 
unfolding, software pipelining, and instruction reordering 
[5]. At the hardware level, techniques such as speculative 
execution and register renaming 151 are employed. 

Another technique used to increase throughput has been 
instruction interleaving. Interleaving is a way to share the 
processor tesources between multiple streams. A pipeline 
is interleaved if an instruction from a different instruction 
stream enters the pipe at every cycle, and there are at least 
as many instruction streams as pipe stages. Instruction 
interleaving was introduced in the peripheral processor of 
the CDC6600[12]. The main feature of an interleaving 
architecture is its ability to hide high latency operations. 
For instance, the CDC6600 used interleaving because the 
memory latency was large. It interleaved ten processes in 
a cyclic way and the cycle time for the ten processes was 
equal to the memory access time. Other examples of 
interleaved architectures include the multiple instruction 
stream processor of Kaminsky and Davidson[7], the 
Denelcor HEP computer [8], the UCSB CCMP computer 
[ll], MASA [4], and APRTL [l]. Dynamic instruction 
interleaving [9] has been proposed as a way to increase 
throughput in real time system. In this technique, the 
interleaving between the processes is controlled by a 
scheduler and dynamic reallocation takes place when a 
process is blocked. 

In this paper, we study multistreamed, superscalar 
processors. These processors combine the multiple 
instruction issue per cycle concept (superscalar) with the 
ability to dynamically interleave the execution of multiple 
sh.eeams. 

3 Multistreamed, Superscalar Processors 
A multistreamed, superscalar processor is organized to 

support the simultaneous execution of several instruction 
streams. Software threads are assigned to hardware 
streams that can be viewed as logical superscalar 
processors. Each stream has an associated program 
counter, register set, and instruction prefetch buffer. The 
multistreamed fetch unit brings instructions from the 
instruction cache to the various prefetch buffers. Within 
these buffers, instructions are checked for dependencies on 
previously issued instructions that have not yet 
completed. The scheduler dispatches instructions that are 
free of dependencies to the appropriate functional unit 
provided structural hazards do not exist. Functional units 
are shared by all streams and return results to the 
corresponding register file based upon a stream 
identification tag appended to each instruction. Figure 1 
shows a functional block diagram of a multistreamed, 
superscalar processor. 

t 
scheduler 

I tpsue Network I 

Ir 

Figure 1. Functional block diagram of a multistreamed. 
superscalar processor. 

Our model of a multistreamed, superscalar processor, is 
partitioned into 3 major parts: the instruction streams, the 
scheduler, and the functional units. An instruction stream 
consists of the context of a process and a buffer containing 
the next instructions to be executed. The section of the 
buffer considered by the scheduler for dispatch is called the 
sfream issue window. Instructions within the stream 
issue window can be dispatched out-of-sequence provided 
no dependencies exist. The scheduler checks, in round- 
robin fashion, the instructions in each stream's issue 
window for data and control hazards and then moves the 
unblocked instructions into the global issue window. The 
global issue window contains all the instructions in the 
stream issue windows that are ready to execute, i.e., that 
have no data or control dependencies. From the global 
issue window, instructions are dispatched to the 
appropriate functional units provided no structural hazards 
are present. All functional units are considered to be fully 
pipelined and are capable of accepting a new instruction on 
every cycle. However, different instruction types have 
different execution times, i.e., an integer divide instruction 
takes 17 cycles to complete. Figure 2 shows the basic 
structure of a multistreamed, superscalar processor model. 
The processor has the capacity to execute N instruction 
streams simultaneously. The functional units are shared 
between the streams and multiple copies of certain 
functional unit can improve overall performance as the 
number of streams is increased. 

196 



Global issue window 

V= [wl vz .. vT] Runtime instruction mix vector. v i  is the 
probability of an instruction requiring 
execution in a functional unit of type i. 

N Total number of streams. 

A Datdcontrol dependency degradation factor 

Functional Units 

Figure 2. Basic structure of a multistreamed, superscalar 
processor model. 

4 The Analytic Model 
The analytic model is a simple probabilistic technique 

based upon a Markov model. Given a high-level 
description of the processor hardware and the 
characteristics of the workload to be executed, the model 
calculates the expected overall performance. Performance 
is measured by the o v d  number of instructions that can 
be executed per cycle (IPC) by the processor. The 
performance of individual streams is not calculated by the 
model since we are attempting to calculate the best 
possible overall system performance independent of 
individual stream performance. 

We compute the overall performance in IPC using the 
following formula: 

r: 

IPC = P ,  . IPC, 
w r l  

where Pw is the probability of having w instructions in 
the global window and IPC, is the expected IPC measured 
for a global issue window of size w. The technique is 
separated into two major parts: one modeling structural 
hazards and the other modeling the control and data 
hazards. IPC, models the effect of structural hazards 
while Pw is a scaling facta used to model the performance 
degradation due to the data and control hazards. The 
rationale behind this division is that the modeling of 
structural hazards is primarily dependent on the 
architectural (hardware) configuration while the modeling 
of control and data hazards is primarily dependent on the 
workload. In addition, since we employ a Markov chain 
in our technique, combining the structural hazards as well 
as dependencies into a single chain results in an extremely 
large number of states. Our division dramatically 
simplifies the chain and makes the problem tractable. 

The model requires both an architectural description and 
the workload characteristics as input. The goal in 
selecting these parameters was to provide a high level of 
abstraction in describing the processor architecture and 

Stream issue window size. 

Number of distinct functional unit t 

Functional unit configuration vector. C= [cl c2 .. CT] 
Table 2. Architectural specification parameters. 

4.3 Structural Hazard Modeling 
In the modeling of structural hazards, we calculate the 

expected IPC (ZPCw) of a workload for a given processor 

197 



configuration as a function of the global issue window 
size. The global issue window contains all the 
instructions that are ready to be dispatched to a functional 
unit, i.e., that have no data or control dependencies. 
Thus, only the effects of s t ruc td  hazards are calculatd, 
data and control dependencies are not taken into account. 

The state of the global issue window of size w can be 
represented by a vector M where each element mi 
contains the number of instructions of type i in the 
window. Therefore, the sum of all the elements of M is 
equal to w: 

T 

M, = [ m l q  ...+I, w = C m i .  
i=l  

Given a global issue window of size w and T functional 
unit types, the total number of states for the window is 
calculated as the combination of w+T-I objects taken T-I 

atatimeor ( T - l  ). 
For a global window state M w ,  the number of 

instructions that can be dispatched in a cycle is determined 
by the number and type of functional units available. For 
example, consider a machine with 1 floating point unit, 2 
integer units (C=[1,2]), and global window size of 3 as 
shown in Figure 3. If no floating point and 3 integer 
instructions are in the global window (M=[0,3]), then 
only 2 integer instructions can be dispatched in that cycle. 
In general, for a given functional unit configuration and 
global window state, the number of instructions of type x 
dispatched, referred to as ix, is the smaller of the number 
of functional units of type x and the number of 
instructions of type x within the window. We define IM, 
the total number of instructions that can be dispatched 
given the global issue window is in state M, as the sum 
of ix over all functional unit types: 

w + T - 1  

,=I 

Scheduler 
Global issue window m l  

Functional Units 

Figure 3. An example of a global window of size 3 
containing three integer instructions (M=[0,3]) and a 
configuration with a floating point unit and two integer units 
(C=11,21). 

The expected IPC given a window of w instructions is 
calculated as the sum of the instructions issued, IM, times 
the probability of being in state M, defined as QM, for al l  
possible M: 

We obtain QM by calculating the steady state 
probabilities of a Markov chain involving the stab of the 
global issue window, M. For a given processor 
configuration and global window state, all possible next 
states are determined by the number of instructions that 
can be executed. For example in Figure 3, two integer 
instructions are dispatched and one remains. Therefore, 
the next state must contain at least 1 integer instruction 
([2,1], [1,2], and [0,3]). Table 3 lists all states, the 
possible next states, and the number of instructions 
dispatched in each state for the example in Figure 3. In 
general, the next state is dependent on both the current 
state of the global issue window (M) and the functional 
unit configuration (C). 

I CurnntState I Possible Next States I Iu I 
I I in I 

1 IO, 31 I [2, 11 [l, 21 [0, 31 1 2 1  

Table 3. State table for the example in Figure 3. IM is the 
total number of instructions dispatched for the current state. 

The state transition probabilities are based upon the 
runtime instruction mix for the workload (V). We 
assume that instructions of different types are uniformly 
distributed throughout the execution of the workload. For 
instance, in the example in Figure 3, since 2 instructions 
are executed in state [0,3] (0 floating point and 3 integer 
instructions) the probability of a transition to state [2, 11 
(2 floating point and 1 integer instruction) is equal to the 
probability of filling the global issue window with 2 
floating point instructions. This probability, obtained 
from the runtime instruction mix (V=[v, V I ] ) ,  is just the 
square of the floating point probability, YO. Figure 4 
shows the Markov chain model and the state transition 
matrix STM for the example in Figure 3. 

After solving for the steady state probabilities ( Q ~ ~ y ~ ) ,  
we calculate the expected IPC for a window of size w, 
IPCw, using equation (1). For the example in Figure 3, 
the expected IPC for a window size of 3 is calculated as 
follows: 

Ipc3 = * q 3 . 0 1  + * q 2 . 1 1  + 3' q1 .21  + ' e[0.3] * 

198 



10 v; 2vov, v:] 
Figure 4. Markov chain and the state transition matrix 
(STM) for the example in Figure 3. 

4.4 Data and Control Hazard Modeling 

In modeling the effects of data and control hazards, an 
estimated degradation factor is used to scale the 
performance obtained by the structural hazard models. We 
assume that the probability of a stream being affected by a 
data or control hazard is independent of other st.” and 
is represented by a constant, A. To obtain A, the single 
stream performance, IPCsim, for the benchmark is 
measured using the actual machine or, in our case, a 
simulator. Then we take the ratio of ZPCsim divided by 
the ZPC,y. from the structural hazard model where S is the 
stream issue window size, as the value for A. 

We assume that when a stream is ready-to-run (i.e., free 
of any dependencies) it can issue every instruction in its 
window (S) and, when the stream is blocked, it cannot 
issue any instructions. For a workload of N streams, the 
probability that x streams are ready-to-run is assumed to 
be binomial with probability A. Since each ready-to-run 
stream dispatches a total of S instructions, the probability 
of having w instructions ready within the global issue 
window, Pw, is given by: 

where i is the number of ready-to-run streams and S is the 
stream window size. 

This information is combined with the structural 
performance estimates (ZPCw) to provide an overall 
performance estimate as follows: 

IPC= C P W .  IPC,. 
waS.2S. ..,m 

For instance, in the configuration with three instruction 
streams (N=3) and a stream window size of 1 (S=l) as in 
Figure 3, Pw is calculated as: 

p0 = (1 - 

P2 =3A2(1-A) P3 = A3 

Pl = 3A(1- A)’ 

and the overall IPC is: 
IPC = PI * IPC, + P2 - IPC2 + P3 . ZPC,. 

5 Validation 
We validated the analytic technique by comparing its 

estimations to the results of a multistreamed hardware 
simulator. We begin this section by describing our 
simulation environment and benchmark suite. Next, we 
present the results from both the analytical technique and 
the hardware simulator. Finally, we quantify the 
differences between the model and the simulator and 
discuss the discrepancies. 
5.1 The Simulation Environment 

Our hardware simulator emulates a multistreamed 
version of the IBM RS/6000 instruction set architecture 
[6].  Three. different configurations of the machine are 
studied. Table 4 shows the functional unit count, types, 
and latencies for the various configurations. The 
functional units are independent and perfectly pipelined 
(i.e., capable of accepting an instruction on every cycle). 
The integer unit executes a l l  integer arithmetic and logic 
instructions except multiply and divide which have a 
longtr latency and are executed in the multiply and divide 
units, respectively. Memory instructions execute in the 
lodstore unit where perfect cache hit ratio is assumed. 
All branch outcomes are predicted correctly and no branch 
delays exist. The CR (conditional register logic) unit 
executes the conditional register instructions of the 
RS/6000 instruction set. 

Table 4. Configurations Evaluated 

199 



In the simulations, the scheduler may dispatch 
instructions within the stream issue window out-of- 
sequence in the absence of data hazards. An instruction is 
removed from the stream issue window as soon as the 
scheduler dispatches it to a functional unit. The window 
is then compacted and refilled with new instructions. A 
stream issue window of 4 instructions is used in the 
simulations. 

The scheduler employs a fair scheduling algorithm. In 
this algorithm, priority is altemated among the streams on 
every cycle in a round-robin fashion. The scheduler 
dispatches as many instructions from the high priority 
stream’s window as possible in the current cycle. Iffree 
slots in functional units still exist, the scheduler attempts 
to dispatch instructions from the other streams to fill the 
slots. 

To reduce the simulation time, the benchmarks were not 
run to completion in al l  cases. In addition, a statistical 
sampling method was employed to was used further reduce 
the time of the simulations [2]. However, the time given 
to each benchmark to run was based on observations of 
program behavior and in all cases is not less than one 
hundred million (100 M) simulated cycles. 
5.2 Benchmarks 

A set of common benchmark programs was used as the 
workload. The benchmarks include most of the SPEC89 
benchmark suite and the Dhrystone and Whetstone 

integer 

46.5 

16.6 

39.3 

51.5 

36.4 

17.3 

3.8 

1.4 

43.5 

6.1 

Program 

dhrV 

whet 

doduc 

eqnton 

float multipi) 

0 0.9 

24.1 1.7 

0 0 

0 0.1 

0 0 

27.8 0.2 

35.3 o 
16.2 0.1 

1.9 0.3 

45.1 0 

benchmarks. Table 5 shows the runtime instruction 
mixes obtained by the simulator for all the benchmarks. 

I c 2  

predicted slm difference 

2.41 2.41 0.0% 

3.49 3.45 +1.2% 

3.96 4.00 -0.6% 

4.10 4.20 -0.5% 

1 .a3 1.63 0.0% 

2.94 2.70 4.6% 

3.56 3.39 +5.7% 

3.95 3.63 +am 
2.01 2.01 0.0% 

3.26 3.44 -5s 
3.99 4.16 4.1% 

4.40 4.50 -2.3% 

2.37 2.37 0.0% 

2.75 2.93 -6.0% 

2.01 3.01 -6.6% 

2.02 3.05 -7.6% 

benchmark 

dhryslone 

whetstone 

eqnlOIl  

espresso 

ii 

doduc 

fpppp 
matdx300 

spke2g6 

tomcatv 

c3 

sim 
2.65 

4.99 

6.25 

7.66 

1.93 

3.62 
4.44 

5.12 

2.17 

4.05 

5.53 

6.41 

2.75 

4.91 

5.72 

5.87 

difference 

0.0% 

-0.4% 

+10.7% 

+6.Q% 

0.0% 

-3.0% 

4.6% 

4 . 5 %  

0.0% 

-2.1% 

-5.1% 

-5.1% 

0.0% 

-10.0% 

-9.6% 

-6.e% 

Table 5. Runtime instruction mixes (percentage). 

5.3 Comparison to the Simulation Results 
Using the analytic technique, we predicted the overall 

performance of the benchmarks executing on each 
configuration and compared the estimates to the 
simulation results. Table 6 shows the results of the 
analytic technique, the hardware simulator, and the 
difference between the two. Graphs of the overall 
performance (IPC) versus number of active streams for 
each benchmark and mx@pation are shown in Figure 5. 

stre;l 

2.05 2.06 

2.13 2.13 

2.13 

2.32 

2.27 2.24 

2.44 2.39 

2.50 2.46 

dnference 

0.0% 

-05% 

-0.0% 

0.0% 

0.0% 

+3.2% 
+ 10.0% 

+11.5% 

0.0% 

+0.0% 

+1 .0% 

+1.4% 

0.0% 

+1.4% 

+1 .Q% 

+1.5% 

predicted 

2.65 

4.97 

6.92 

6.19 

1.93 

3.40 

4.60 

5.35 

2.17 

3.97 

5.25 

6.09 

2.75 

4.42 

5.17 

5.47 

Table 6. Comparison of the analytic model @redicted) and the simulation results (sim). 

200 



program 
espresso 

mw 

II 

Mtrbt300 

L 

streams 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

3 

4 

1 

2 

spice 

tomcat!! 

3 

predicted 

2.06 

3.03 

3.48 

3.70 

1.93 

2.78 

3.15 

3.31 

2.32 

3.46 

4.02 

4.34 

1.58 

2.34 

2.71 

2.89 

2.10 

3.24 

3.89 

4.24 

1.91 

3.03 

3.66 

4.02 

c2 

rim 

2.08 

3.14 

3.45 

3.53 

1.94 

3.16 

3.44 

3.48 

2.32 

3.44 

3.90 

4.06 

1.58 

2.96 

2.99 

3.02 

2.10 

3.38 

3.80 

4.10 

1.01 

3.14 

3.53 

3.53 - 

predicted 

1.59 

1.88 

1.93 

1.04 

1.44 

1.67 

1.71 

1.71 

1.68 

2.18 

2.34 

2.40 

1.23 

1.47 

1.51 

1.52 

1.66 

2.12 

2.25 

2.28 

1.47 

1.96 

2.13 

2.19 

dfference 

0.0% 

-3.5% 

+1 .o% 
44.7% 

-0.3% 

-12.0% 

-8.5% 

-5.0% 

0.0% 

+0.6% 

4.1% 

+6.0% 

0.0% 

-20.8% 

-9.3% 

4.3% 

0.0% 

4.0% 

0.0% 

4.4% 

0.0% 

-3.6% 

+3.8% 

+13.8% 

c1  

rim difference 

1 .sB 0.0% 

1 .ge -5.1% 

2.05 -5.9% 

2.09 -72% 

1.45 -05% 

1.73 -3.5% 

1.74 -2.0% 

1.74 -.7% 

1.68 0.0% 

2.08 +5.7% 

2.19 4 .8% 

2.26 4.1% 

1.23 0.0% 

1.50 -2.1% 

1.51 +0.3% 

1.51 +0.9% 

1.66 0.0% 

2.02 4.8% 

2.15 4 . 5 %  

2.19 4.2% 

1.47 0.0% 

1.74 +12.6% 

1.78 +19.5% 

1.78 +22.8% 

predicted 

2.23 

4.23 

5.82 

6.98 

2.05 

3.36 

4.14 

4.59 

2.67 

4.74 

6.00 

6.68 

1.64 

2.72 

3.41 

3.85 

2.19 

4.13 

5.72 

6.80 

2.09 

3.71 

4.83 

5.56 

difference 

0.0% 

-1.8% 

-1 A% 

4.7% 
9.1% 

-13.7% 

-15.4% 

-11.0% 

0.0% 

-2.8% 

-3.0% 

-1.6% 

0.0% 

-12.0% 

-17.6% 

-13.8% 

0.0% 

-2.4% 

-32% 

-3.6% 

0.0% 

-B.6% 

-2.8% 

+5.8% 

c3 

slm 

2.23 

4.31 

5.90 

6.73 

2.05 

3.89 

4.90 

5.16 

2.67 

4.88 

6.19 

6.70 

1.64 

3.09 

4.14 

4.47 

2.19 

4.23 

5.B1 

7.15 

2.09 

4.10 

4.97 

5.26 

Table 6. (cont) Comparison of the analytic model (predicted) and the simulation results (sim). 

T dhlystone Tdoduc 

1 

0 

-- P d w  AI +lH- 1 
simulated A I 0 1  o 
I I 
I 0 0 I I 

Figure 5. Graphs of IF'C versus number of active streams. 

201 



6 

5 

4 

E 3  

2 

1 

0 

7 

6 

5 

2 

1 

0 

1 2 3 4 1  2 3 4 1  2 3 4 

c1 c2 c3 

1 2 3 4 1 
S t M S  

0 

2F- c1 c2 c3 

0 

1 2 3 4 
streams 

3 

2 

0 
2 3 4 1  2 3 4 

streams StreamS 

Figure 5. (cont.) Graphs of IPC versus number of active 
streams. 

5.4 Discussion 

Our results show that the analytical technique produces 
estimates very close to those of the simulation results. 
Over the 120 total estimates, the average deviation from 
the simulation results was 4.2%. Figure 6a plots the 
average difference far each benchmark. The average error 
was below 8% for all benchmarks and below 5% for 6 of 
the 10. 

Figure 6b plots the distribution of the deviation 
between the analytic model and the hardware simulator. 
The plots show that 68% of the estimates deviated by less 
than 5% from the simulation result and just under 90% of 
the estimates deviated by less than 10%. While the 
maximum deviation from the simulation was 22.88, an 
e m r  over 2096 oocurred only twice. 

202 



8.0% T 
7.0% 

6 -0% 
8 5.0% 

5 4.0% 
3.0% 
2.0% 
1 .ox 
0.0% 

5.0% 

4.5% 

g 4.0% 

d e 
3.5% 

3.0% 
c1 c2 c3 

configuration 

(c) 

On average, the analytic technique produced fairly even 
results across the various configurations and number of 
streams employed within a workload. Figure 6c plots the 
average difference versus the processor configuration and 
Figure 6d charts the average difference versus the number 
of active streams. 

While the model makes many generalizations about the 
architecture and workload that may not seem to be 
representative of most programs, our results show the 
contrary. A closer examination of the results for each 
benchmark shows the predicted performance to be very 
close to the simulation results for all configurations in six 
of the ten benchmarks (dhrystone, whetstone, doduc, 
espresso, li, and spice). The others exhibited larger 
differences ftom the model estimates for only particular 
configurations. Tomcatv is an example of a benchmark 
that the model predicts well for configurations C2 and C3 
but over estimates the performance on configuration C1. 
In contrast, the model under estimates the performance of 

6.0% 

5.0% 

E 4.0% 

3.0% 
e 
'B 

2.0% 

1 .o% 
0.0% 

-t 

Emr Distribution 

+ 4 

Ill, 
1 2 3 4 

streams 

((3 
Flgure 6. Comparison to the simulation results. (a) chart of the average difference versus program; (b) difference distribution; 
(c) chart of the average difference versus configuration; (d) chart of the average difference versus number of active streams 

203 

matrix300, eqntott, and fpppp on configuration C2 and C3 
but is very close on configuration C1. 

Although the results were collected by running a 
homogeneous workload (i.e., all streams executing the 
same benchmark), the model can be extended to model 
heterogeneous workloads. This is accomplished by using 
an averaging technique over the heterogeneous workload to 
obtain average homogenous workload characteristics 
(Vme and b e ) .  'Ibese characteristics are entered into the 
analytical model to obtain performance estimates of 
heterogeneous workloads. 

An examination of the IPC versus the number of 
streams graphs (Figure 5 )  reveals the overall performance 
gain levels out the number of streams increases. In our 
simulations, this is due to the contention for functional 
unit resources. The phenomenon is most obvious in 
configuration C1 where saturation occurs when executing 
as few as two streams. For the larger configurations (C2 
and C3), saturation occurs when executing a larger number 
of streams. The graphs show that the gain from 



multistreaming is largest in configuration C3 where the 
largest number of functional units is present. In contrast, 
when the numkr of functional units is not huge enough 
to support the execution of multiple streams, the gain 
from multistreaming is minimal. Figure 10 summarizes 
the performance improvements as the number of s t r m s  
is in- 

1 2 3 4 
Streams 

Figure 10. Average Percentage Improvement from 
Multistreaming, compared to Configuration C1, single- 
stream. 

6 Conclusions 
We have presented an analytic technique for evaluating 

the performance of multistreamed, superscalar processors. 
Our results demonstrate that the technique produces 
accurate instructions-per-cycle (IPC) estimates of the 
overall performance through comparison with a 
multistreamed, RS/6000 simulator. We found an average 
deviation from the simulation results was just above 4% 
when predicting the performance of a benchmark suite that 
included most of the SPEC89 programs. 

The analytical technique provides a quick way to 
examine the many variations of an architecture at a high 
level of abstraction. The technique only requires simple 
descriptions of the workload and architectural 
configuration as input parameters. These parameters are 
easily measured or estimated using tools that are 
commonly available. In addition, the simplicity of the 
model makes it easy to implement and much faster to 
execute than a hardware simulator. 
As the trend moves towards integrating more functional 

units within the processor, designers face the challenge of 
utilizing these additional resources effectively. 
Superscalar processors are not capable of exploiting the 
additional functional units due to the inherent limit of 
instruction-level parallelism within a single instruction 
stream. Multistreaming provides a technique to overcome 
the superscalar limitations. Integrating multistreaming 
within superscalar architectures is an effective method for 
maximally exploiting the additional functional units 

emerging in new processors. Our results show that a 
multistreamed, superscalar processor executing 4 streams 
can improve the overall machine throughput by factor of 3 
over an equivalent single stream machine (Figure 10). 

References 

[l] A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz, 
"APRIL A Processor Architecture for Multiprocessing," 
Proc. of the 17th Symposium on Computer 
Architecture, May 1990, pp. 104-114. 

[2] T. M. Conte, "Systematic Computer Architecture 
Prototyping." PhD Thesis, Electrical Engineering, 

[3] M. J. Flynn, A. Podvin, and K. Shimizu, "A Multiple 
Instruction Stream Processor with Shared Resources," 
Parallel Processor System, C. Hobbs. Washington 
D.C.. Spartan, 1970. 

R. H. Halstead and T. Fujita, "MASA A Multithreaded 
Processor Architecture for Parallel Symbolic 
Computing," Proc. of the 15th Symposium on 
Computer Architecture, June 1988. pp. 443-451. 

[5] J. L. Hennessy and D. A. Patterson, C o m p u t e r  
Architecture, A Quantitative Approach, Morgan 
Kaufmann Publishers, 1990. 

IBM AIX Version 3.2 for RISC System16OOO Assembler 
Language Reference. International Business Machines 
Corp., Austin, Texas, Jan. 1992. 

W. J. Kaminsky and E. S. Davidson, "Developing a 
Multiple-Instruction-Stream Single-Chip Processor," 
IEEE Computer Magazine, Dec. 1979. 

J. S. Kowalik, ed., Parallel MIMD Computation: HEP 
Supercomputer and its Applications, IUIT Press, 1985. 

M. D. Nemirovsky, "DISC, A Dynamic Instruction 
Stream Computer," Ph.D. Dissertation, University of 
California. Santa Barbara, September 1990. 

[lo] M. Serrano, M. D. Nemirovsky, and R. C. Wood, "A 
Study on Multistreamed Superscalar Processors," 
Technical Report W3-05, Department of Electrical and 
Computer Engineering, University of California, Santa 
Barbara, March 1993. 

1111 C. A. Staley, "Design and Analysis of the CCMP: A 
Highly Expandable Shared Memory Parallel Computer," 
Ph.D. Dissertation, University of California, Santa 
Barbara, August 1986. 

[I21 J. E. Thomton, "Parallel Operation in the Control Data 
6600," Proceedings-Spring Joint Computer 
Conference, 1964. 

[4] 

[6] 

[7] 

[8] 

[9] 

204 


