
PIPP: Promotion/Insertion Pseudo-Partitioning of
Multi-Core Shared Caches

Yuejian Xie, Gabriel H. Loh
College of Computing

Georgia Institute of Technology
Atlanta, GA, USA

{corvarx,loh}@cc.gatech.edu

ABSTRACT

Many multi-core processors employ a large last-level cache (LLC)
shared among the multiple cores. Past research has demonstrated
that sharing-oblivious cache management policies (e.g., LRU) can
lead to poor performance and fairness when the multiple cores com-
pete for the limited LLC capacity. Different memory access pat-
terns can cause cache contention in different ways, and various
techniques have been proposed to target some of these behaviors.
In this work, we propose a new cache management approach that
combines dynamic insertion and promotion policies to provide the
benefits of cache partitioning, adaptive insertion, and capacity steal-
ing all with a single mechanism. By handling multiple types of
memory behaviors, our proposed technique outperforms techniques
that target only either capacity partitioning or adaptive insertion.

Categories and Subject Descriptors

C.1.2 [Processor Architectures]: Multiple Data Stream Architec-
tures

General Terms
Design, Performance

Keywords
Multi-core, cache, contention, sharing, insertion, promotion

1. INTRODUCTION
Modern multi-core processors employ large last-level caches (LLC)
shared between all of the cores. An unmanaged shared multi-core
cache leads to an inefficient and under-utilized system. As a result,
many researchers have proposed a variety of techniques to manage
the LLC to provide better performance and fairness [6, 7, 15, 19,
23, 28, 36, 34, 37, 38, 39, 40]. Most of these schemes follow a
pattern of observation, policy selection, and enforcement. The ob-
servation part tracks the memory reference behaviors of individual
cores in an attempt to deduce the per-core behaviors. The policy se-
lection decides how each core should behave, and the enforcement
mechanism makes it happen.

In this work, we propose a new cache management policy called
Promotion/Insertion Pseudo-Partitioning (PIPP). Instead of explic-
itly partitioning the cache by ways, sets or total occupancy, PIPP

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

implicitly partitions (or pseudo-partitions) the cache by simply man-
aging the insertion and promotion policies of the cache. The inser-
tion policy determines where in the eviction priority (e.g., LRU
stack) a line should initially be installed [19, 35]. The promotion

policy determines how the eviction priority should be changed on a
cache hit [25]. We show that targeted insertion and promotion can
provide effects similar to explicit cache partitioning. Our mech-
anism’s ability to not always insert cache lines at the top of the
recency stack also provides benefits similar to adaptive insertion
schemes. Furthermore, by not strictly enforcing hard partitions
in the cache, our approach allows cores to “steal” cache capacity
from other cores, thereby making better use of the total available
resources.

2. MOTIVATION
The academic and industrial research communities have already
made many efforts to manage shared caches in multi-core proces-
sors. We now discuss several of the most related prior works so
that our contributions can be properly put into context. Additional
related work is discussed in Section 7.

2.1 Capacity Management
Different programs, or different threads from the same program,
executing on a multi-core processor can have different memory ca-
pacity requirements (i.e., working set sizes). Given limited cache
capacity, the question is how should these resources be divided
among the competing cores? One approach is to provide fixed al-
locations for each core. The amount of space allocated or per-core
priority levels can be determined at the software level, for example
by the operating system [8, 12, 17, 18, 37, 40], or it could be dy-
namically determined based on run-time observations of program
requirements [7, 23, 36, 38]. Most of the prior works employ some
form of way-partitioning where each way or column of a w-way
set-associative cache is assigned to one of the cores. This allocation
could be structurally enforced by physically constraining all cache
lines belonging to a core to reside in a fixed subset of columns, or
the allocation can be logically enforced by ensuring that corei oc-
cupies no more than πi lines per set (although those πi lines may
physically reside in any of the actual columns of the cache).

One common approach for adaptive cache partitioning is to use
hardware to monitor the benefit or utility of allocating different
numbers of ways to each core, and then to choose a partition-
ing to optimize some performance metric, such as minimizing the
global number of cache misses. Figure 1 shows the number of ad-
ditional hits that could be achieved for different cache allocations
for two example programs. Based on this information, an alloca-
tion of three ways for core0 and five ways for core1 would result
in the maximum number of misses avoided. While several past

174

7
2
6

3
5

4
4

5
3

6
2

7
1

Total Hits

1
Core 1

Ways Allocated to each Core

Core 0

60

40

20

180

120

60

T
o

ta
l
H

its

H
it

s
p

e
r

W
a
y

Figure 1: Example utility curves showing the number of ad-

ditional hits provided for each additional way allocated to an

LRU cache, and the total number of hits between the two cores

for different partitionings of the cache.

techniques are similar in spirit, in this work we compare against
the recently proposed utility-based cache partitioning (UCP) ap-
proach [36]. UCP uses a set of shadow tags to track what the con-
tents of the cache would be if each core had sole ownership of the
entire cache. A hit in the ith most recent position in the LRU stack
indicates that an i-way set-associative cache would have provided a
hit, but a lower-associativity cache would not have. By counting the
number of hits corresponding to each recency position, UCP can
easily approximate associativity-benefit curves like those shown in
Figure 1. Using this information, UCP then chooses an allocation
to minimize global misses.

A potential limitation of strict way-partitioning of caches is that
some cache capacity may be unutilized. If, for example, one cache
set is not ever accessed by corei, then the πi cache lines allocated
in that set go to waste. Another corej that does access that set with
some regularity will still be trapped in its own partition of πj lines,
unable to ever make use of those wasted resources. Some previous
approaches include some facilities for recouping these otherwise
unused cache lines [12, 37].

2.2 Dead-Time Management
In a way-partitioned cache, the inefficient use of the unused cache
lines discussed above are a direct artifact of the partitioning mech-
anism. Caches (whether for single- or multi-core processors) are
not always efficiently used due to dead lines. Some cache lines
are inserted into the cache, reused only a few times (perhaps never
reused at all), and then eventually get evicted. There is an opportu-
nity cost that from the time of a line’s last access until it is evicted,
the line consumes cache capacity without providing any benefit. In
an LRU-managed cache, this “dead time” may last for hundreds or
thousands of cycles as several other lines may need to be evicted
before this dead line becomes the least recently used line.

In a way-partitioned cache, the opportunity loss can be magnified
because dead lines may belong to other cores, but the partitioning
mechanism prevents one core from stealing lines from other cores.
Consider an example where two cores share a cache, and core0
has one dead line. Under conventional way-partitioned cache man-
agement, when core1 must make a replacement, it simply chooses
a victim from among its own lines. In this example, however, if
core1 could choose core0’s dead line, then core1 could potentially
improve its hit rate while having no adverse impact on core0, since
core0 would have eventually evicted its dead line without having
derived any more hits from it anyway.

One particularly important and common case of dead lines are
those lines that are dead on arrival. The recently proposed Dy-

namic Insertion Policy (DIP) technique can insert lines directly into
the least-recently-used position to minimize the residency time of
such dead-on-arrival lines [35]. The thread-aware dynamic inser-
tion policy (TADIP) uses dynamic monitoring of the policies com-
bined with awareness of how these policy decisions interact in a

A B C D E F G I A B C D E F G H

Access to J

(b)

evict I

New line inserted at lowest priority

New line inserted at lowest priority

A B C D E F G H

Access to I

I A B C D E F G

evict H

(to evict)(to keep)

8: Highest Priority

A B C D E FG H

A B C D E HG F

(c)

Promote
to

MRU

Access to Line G

Single-increment

(a)

A B C D E F G J

New line inserted at highest priority

1: Lowest Priority

Figure 2: Example of (a) conventional insertion at the highest

priority (“MRU”) position and (b) insertion at the lowest pri-

ority (“LRU”) position, and (c) different promotion policies.

multi-core context to reduce the amount of time dead lines take up
the valuable shared cache resources [19].

3. INSERTION AND PROMOTION FOR

CONTROLLING CACHE OCCUPANCY
In this section, we first review cache insertion policies, introduce
the concept of promotion policies, and then detail how we combine
these to manage a shared cache.

3.1 Cache Insertion and Promotion Policies
Traditional cache management has focused on cache replacement

policies. When a new line must be installed, the replacement pol-
icy chooses a victim or evictee. Most conventional systems make
use of a Least-Recently Used (LRU) replacement policy or an ap-
proximation thereof [11]. Figure 2(a) illustrates an example cache
set with eight lines, logically organized left-to-right from highest
priority (8: keep in the cache) to lowest priority (1: to be evicted).1

For LRU replacement, the priority ordering is equal to the access
recency (the least recently used line has the lowest priority for re-
tention). An access to line I causes line H (in the lowest priority) to
be chosen as the evictee. In a conventional LRU-managed cache,
the newly installed line is inserted in the highest priority (MRU)
position. It has been observed that there are cache lines that are
accessed only once and then never accessed again [21, 35]. By in-
stalling these lines in the highest priority positions, LRU actually
maximizes the amount of time that these lines occupy the cache.
Qureshi et al. introduced the concept of separating a cache replace-
ment policy into independent victim selection and insertion poli-
cies [35]. As shown in Figure 2(b), for no-reuse lines, insertion of
this particular line into the lowest priority position is actually much
better as this minimizes the amount of time that the line spends in
the cache.

Independent of the victim selection and insertion policies, the
conventional LRU-based policies all behave the same on a cache
hit. That is, on any cache hit, the line is automatically moved or
promoted to the highest priority position. We decompose cache
management policies into three components: the victim selection
and insertion decisions, as described earlier, and now the promo-

tion policy. The promotion policy decides for a line that provides
a cache hit how to update that line’s position in the replacement
priority order. Figure 2(c) illustrates both a traditional “promote-
to-MRU” policy and a simple “single-increment” promotion policy.

1We use the terms lowest priority and highest priority instead of
LRU and MRU, respectively, because once the insertion and pro-
motion policies are modified, the ordering of the lines no longer
strictly follows true “recency” and so calling a line “least recently
used” when it is in fact not the least recently used line is inaccurate
and can be confusing. Although the lines are shown left-to-right
in priority order for illustration, the physical order in a cache may
differ.

175

3.2 Basic PIPP
We now explain our algorithm for Promotion/Insertion Pseudo-
Partitioning (PIPP) of shared caches. For n cores, we will assume
that we are given a target partitioning Π={π1, π2, ..., πn} such that
Pn

i=1 πi=w, where w is the total set associativity of the cache.
In this work, we make use of UCP’s utility monitors to compute
the target partitions, but they could potentially be specified by the
operating system [37] or from many other approaches. The three
policy decisions for insertion, promotion and eviction are described
in turn. On insertion, corei simply installs all new incoming lines at
priority position πi. That is, a core’s partitioning allocation deter-
mines its insertion position. On a cache hit, the promotion policy
for PIPP promotes the line by a single priority position with a prob-
ability of pprom, and the priority is unchanged with a probability
of 1-pprom. Finally, the victim selection always chooses the line
in the lowest-priority position; this logic remains unchanged com-
pared to conventional LRU.

PIPP does not strictly enforce the target partitioning, but the
combination of targeted insertion and incremental promotion cre-
ates results similar to explicit partition enforcement, hence pseudo-
partitioning. For systems with more than two cores, each corei

still installs its lines into the priority position determined by πi.
While this insertion policy tends to cluster cache lines near the
low-priority end of the ordering (for example, a quad-core system
with a 16-way cache and Π={6, 4, 4, 2} results in no lines ever be-
ing inserted with a priority higher than 6), this approach can still
produce the desired target partitioning. Core0’s lines experience
less promotion/demotion competition than the other cores, and so
its lines tend to stay in the cache and are more likely to get pro-
moted into higher priority positions. Core1 and core2 get inserted
at the same position; while they will directly compete for cache re-
sources, neither has a distinct advantage over the other, and both
have a disadvantage compared to core0 by being inserted at a lower
priority position, so statistically both end up occupying fewer lines
than core0 but about the same lines as each other. Finally, core3
must “swim upstream” against all of the traffic from the three other
cores, and ends up occupying the fewest lines. Again, PIPP does
not explicitly enforce the partitioning, but this example illustrates
how partitioning-like behavior can be induced.

3.3 Example
Figure 3 illustrates a simple example for an eight-way cache shared
between two cores with Π={5, 3}. Core0’s cache lines are repre-
sented by numerals in squares, and core1 by letters in black circles.
The figure also includes the insertion positions for each core as de-
termined by the partitioning. Core1 makes a request for line D,
which misses and is inserted at position 3. Similarly, core0’s re-
quest for lines 6 and 7 both miss and are in turn inserted at posi-
tion 5. The next access is for core1’s D, which hits in the cache.
In a normal promote-to-MRU scheme, line D would be promoted
to the highest priority position, but in our PIPP scheme, we pro-
mote the line by only a single position (for this example, we simply
assume that pprom=1). The example continues with several more
misses (insertions) and hits (promotions).

The example contains a few interesting sections. Note that for
most of the time, the actual cache occupancy for each of the two
cores matches that of the target allocation Π={5, 3}. There are
intervals, however, where the instantaneous occupancy does devi-
ate from the target partitioning, thus highlighting the fact that our
scheme does not explicitly enforce partitions. To understand how
the insertions and promotions can control capacity, consider a core
with a marginal utility curve where most of the core’s hits can be
achieved with three ways, and that adding a fourth way does not

1 4 532

1 4 5
6

32

1 6 4
7

32

1 7 6 432

41 7 6 32

671 32
2

1 6 3
3

72

6 31 2 7

8
6 31 2 7

8 6 31 2 7A

A

A

A

A

A

A

A

A

A B

D

C

B

D

D B

D
D

D
E

E D

E D

E D

E D

A

E

Highest Priority
(to keep)

Lowest Priority
(to evict)

Insertion Positions

Requests Actions

Insert at Pos. 3

Insert at Pos. 5

Insert at Pos. 5

Promote by +1

Insert at Pos. 3

A
llo

c
a
ti
o
n

D
e
v
ia

ti
o
n

Promote by +1

Promote by +1

Promote by +1

Insert at Pos. 5

Core 1Core 0

Figure 3: Example operation of PIPP for a variety of cache

misses (insertions) and hits (promotions). Evictions always

choose the lowest-priority cache line.

provide many additional hits. If this core manages to grab a fourth
way under PIPP, this cache line will not provide many additional
hits (by assumption of the utility curve), the other more useful lines
will continue to provide hits and get promoted above the extra line
and therefore push the low-utility fourth line down the priority or-
dering where it will be quickly evicted, at which point the cache
occupancy reconverges to that of the target allocation.

In addition to capacity management, the example in Figure 3
also illustrates some similarities and differences between PIPP and
TADIP. Consider line E and assume that it does not exhibit any
reuses. Inserting E in priority position 3 reduces the amount of time
this dead line occupies cache space compared to conventional MRU
insertion. Note that for line E, PIPP’s approach is not as effective
at eliminating dead time as TADIP, which would have inserted E
directly into the lowest-priority position, thereby minimizing the
amount of time the dead line spends in the cache. Consider line D
which exhibits one reuse before becoming dead. On reuse, TADIP
would promote the line directly to the highest priority position, but
at this point the line is now dead and so this approach actually max-
imizes the residency time of the dead line. On the other hand, PIPP
only promotes line D by a single position, thereby keeping D in a
lower priority position which allows it to be evicted that much more
quickly.

3.4 Stream-Sensitive PIPP
Poor cache performance due to inter-core interference is often caused
by one or more programs that exhibit memory access patterns with
very poor locality. Many of these situations have stream-like be-
haviors characterized by both a high access frequency as well as
a large number of cache misses. These “low-utility” applications
insert a large number of lines in the cache, often at a very high rate
relative to the access frequencies of the other cores, and as a re-
sult they quickly flush out the cache lines used by the other cores.
The worst part of it is that the useful lines evicted are replaced by
useless lines that do not get reused.

176

Dual-Core Workloads Quad-Core Workloads

Workload Application Suites, Workload Application Suites,
Name Names and Inputs Name Names and Inputs

UCP2-0 f00:art, FP:ebgm.l UCP4-0 i06:hmmer.r, f00:art, f00:equake, f06:soplex.r

UCP2-1 PB:continuous, f00:equake UCP4-1 f00:art, Mi:dijkstra, FP:ebgm.l, f06:lbm

UCP2-2 i00:eon.k, md:mpeg4.d UCP4-2 i00:crafty, i06:hmmer.r, f00:art, i06:omnetpp

UCP2-3 i06:h264ref.f, i06:gcc.g UCP4-3 i06:hmmer.r, i00:bzip2.g, i06:astar.r, f06:bwaves

UCP2-4 i06:perl.s, i06:hmmer.n UCP4-4 FP:ebgm.e, i06:h264ref.f, md:jpg2000.d, f00:art

UCP2-5 md:mpeg2.d, f06:sphinx3 UCP4-5 i06:hmmer.n, i06:bzip2.p, f06:soplex.p, f06:bwaves

UCP2-6 i06:perl.s, f06:sphinx3 UCP4-6 i06:h264ref.f, i06:gcc.g, md:pegwit.e, i06:hmmer.r

DIP2-0 i00:eon.k, FP:ebgm.e DIP4-0 FP:ebgm.l, md:jpg2000.d, i00:eon.c, md:jpeg.d

DIP2-1 FP.ebgm.e, BP:clustalw.c DIP4-1 BP:clustalw.c, Mi:adpcm.d, MN:bayes, FP:ebgm.e

DIP2-2 md:h264.e, FP:ebgm.l DIP4-2 i06:h264ref.s, i00:gcc.s, f00:equake, i00:mcf

DIP2-3 FP:ebgm.l, md:jpg2000.d DIP4-3 md:pegwit.d, FP:ebgm.e, i00:eon.k, md:pegwit.k

DIP2-4 i00:eon.k, i00:mcf DIP4-4 i00:eon.k, i00:mcf, md:pegwit.d, md:adpcm.d

DIP2-5 i06:mcf, md:jpg2000.d DIP4-5 i06:sjeng, i00:eon.r, FP:ebgm.e, i00:eon.k

DIP2-6 f00:art, md:jpg2000.d DIP4-6 i06:mcf, md:h264.e, md:jpg2000.d, Mi:adpcm.d

The prefix before the colon identifies the benchmark suite; f00/f06/00/i06 are SPECcpu fp2000, fp2006, int2000 and int2006, respectively; BP is BioPerf [3]; FP is

FacePerf [5]; md is MediaBench [27]; and Mi is MiBench [13]; MN is MineBench [32]; PB is PhysicsBench [41].

Table 1: Dual-core and quad-core workloads used in our evaluation. In the UCPx workloads, UCP performs better than TADIP, and

visa-versa for the DIPx workloads.

Fortunately, such cache-unfriendly behaviors are often easy to
detect. We propose a simple modification to PIPP that accounts for
applications that exhibit stream-like behaviors. For each corei, we
make use of the Utility Monitor shadow tags to track (1) Ai the total
number of accesses by corei, and (2) mi the number of misses the
core would experience if it had access to the entire cache for itself.
If the total number of misses exceeds a certain threshold mi ≥ θm

or if the miss rate mi

Ai
≥ θmr , then PIPP assumes the core is run-

ning a stream-like application. The intuition is that a large number
of absolute misses will likely cause significant thrashing and inter-
ference with other cores, and a high relative miss rate means that
even if more lines could be obtained, there would be very little re-
turn on the investment.

When PIPP detects that a core is running a stream-like applica-
tion, it modifies its behavior as follows. First, all insertions for the
streaming cores are made at priority position πstream, independent
of the target partition πs. We set this insertion position to equal
the current number of stream-like applications, effectively “allo-
cating” a single way to each such program. The idea is that since
the streaming accesses are very unlikely to exhibit reuse, there
is no point in inserting them with priority greater than πstream.
Next, promotion for hits due to cores only occur with a reduced
probability of pstream ≪ pprom. The greatly reduced promotion
probability ensures that only those cache lines that can demonstrate
significant reuse will have a reasonable probability of getting pro-
moted to higher priorities where they have a better chance of stay-
ing in the cache. This has similar properties to statistical filtering of
caches [4]. For the corner case where all programs simultaneously
exhibit streaming behavior, PIPP reverts to inserting all lines at the
highest-priority position since there are no non-streaming applica-
tions to hurt.

4. EXPERIMENTAL EVALUATION
This section first briefly explains our simulation methodology, and
then presents our main performance results.

4.1 Simulation Methodology
Our cycle-level model is built on top of the SimpleScalar toolset
for x86 [2, 30]. We base our processor configuration on the Intel
Core 2 processor clocked at 3.2GHz [9]. The pipeline has a mini-
mum branch mispredict penalty of 14 cycles, the in-order portions
(decode/commit) are four-wide, and the out-of-order core can issue
up to six µops per cycle. We use a 96-entry ROB, 32-entry RS,

32-entry LDQ and a 20-entry STQ. Each core has 32KB, 8-way,
3-cycle level one instruction and data caches, and all cores share
a 4MB, 16-way, 11-cycle LLC. All caches have 64-byte lines, and
all are equipped with hardware prefetchers. We model a SDRAM
memory with 9-9-9 timing on a 800MHz front-side bus (effective
1.6GHz with DDR2).

We use multi-programmed workloads created from a mix of ap-
plications including SPECcpu with the reference input sets as well
as a wide variety of other suites. We used SimPoint 3.2 to choose
representative samples [14]. The workloads are classified into two
groups: those for which UCP performs better than TADIP, and
those for which TADIP works better than UCP. Table 1 lists all
of the dual- and quad-core workloads.

We also evaluated many additional workloads with less interest-
ing behaviors (e.g., working sets mostly fit in the LLC, high DL1
hit rates resulting in low LLC activity) to verify that the techniques
do not inadvertently cause any significant performance slowdowns;
for brevity, these results are omitted since they do not show any un-
expected results.

For each workload, we warm the caches and branch predictors
for 500 million instructions, and then perform detailed simulation
for 250 million instructions per benchmark. When an applica-
tion reaches its instruction limit, it continues executing to compete
for cache resources, but the statistics that we report only corre-
spond to the original 250M instruction sample; this methodology
is consistent with prior studies [19, 36]. Since one benchmark may
take a lot longer to reach its instruction limit than others, the to-
tal number of simulated cycles is typically much larger than what
might be expected for 250 million instructions per core. On av-
erage, each experiment simulated over one billion cycles (not in-
cluding warm-up activities) with a maximum of about 9.5 billion
cycles for one of the quad-core workloads with substantial mem-
ory accesses. For all experiments, we report weighted speedup
(i.e., SMT speedup)

Pc
i=1 IPC[i]/IPCsa[i], where IPCsa is the

stand-alone IPC when the core has exclusive access to the entire
processor [31], IPC throughput

Pc
i=1 IPC[i], and the harmonic

mean of weighted speedups c
P

c
i=1

(IPCsa[i]/IPC[i])
which accounts

for both fairness and performance [7]. Unless otherwise specified,
“performance” will refer to weighted speedup.

4.2 Results
For all performance comparisons, we use a conventional unman-
aged, shared cache with LRU replacement as the baseline. We com-

177

Weighted IPC Speedup (Normalized to LRU)

D
u

a
l-

C
o

re
W

o
rk

lo
a

d
s

���

���

���

���

���

���

���

��	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�

�
�
�
�
�

��

�����

����

Q
u

a
d

-C
o

re
W

o
rk

lo
a

d
s

���

���

���

���

���

���

���

��	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�

�
�
�
�
�

��

�����

����

Figure 4: Performance as measured by the weighted speedups of IPC for UCP, TADIP and PIPP normalized to an LRU-managed

cache for dual-core and quad-core workloads.

pare against UCP, TADIP (specifically TADIP-F) and PIPP. Both
UCP and PIPP make use of shadow tags with dynamic set sam-
pling to track per-core utility curves (32 sets per shadow tag) [33];
both UCP and PIPP use this information to feed to the same par-
titioning algorithm (optimal for dual-core, and Lookahead [36] for
quad-core) to select the target partition [36]. All PIPP results here
make use of the stream-sensitive version of PIPP with probabil-
ities pprom= 3

4
and pstream= 1

128
. The probability pprom simply

requires generating a two-bit pseudo-random number and testing
that the result is not equal to zero, and pstream requires generat-
ing a seven-bit pseudo-random number and testing that it is equal
to zero. The stream-detection thresholds were likewise chosen for
easy implementation. We use θm ≥ 4095, which simply requires
testing that a 12-bit saturating counter has reached its maximum
value. Similarly, θmr can be selected for easy computation; we
used the value 12.5%: mi

Ai
≥ 1

8
is equal to mi ≥ Ai

8
(right-shift

Ai by three and compare with mi).
Figure 4 shows the performance impact of the different cache

management techniques for the weighted IPC speedup. For the
dual-core simulations, PIPP consistently outperforms unmanaged
LRU by a large margin (19.0% on the harmonic mean), and also
outperforms both UCP and TADIP (10.6% and 10.1%, respectively).
Similar results hold for the quad-core case where PIPP is 21.9%
better than LRU, 12.1% better than UCP and 17.5% better than
TADIP.

Figure 5 shows the results measured by total IPC throughput and
fair speedup, relative to LRU. The trends are very similar to the
weighted speedup results, demonstrating that PIPP also provides
higher raw throughput and better fairness. Due to the similarity of
the overall trends, we only deal with weighted speedup in the rest
of this paper.

PIPP consistently outperforms UCP for both dual-core and quad-
core workloads on all of the performance metrics (with the one
exception of UCP4-4 for the fair speedup metric where the per-
formance of PIPP is still very close to UCP). PIPP’s strong per-
formance comes from its effective capacity management combined
with it not being strictly bound to the partition allocations and its

abilities to exploit DIP-friendly behaviors. These attributes will be
further explored in the next section.

There are a few workloads where, while still performing well
compared to LRU, PIPP still gets beat by TADIP. An interesting
pair of workloads to contrast are DIP2-3 and DIP2-5, where PIPP
performs better than TADIP on DIP2-3 and TADIP is superior on
DIP2-5, and each responds well to LRU insertion. For each work-
load, one of the benchmarks contained a large number of lines that
observe a single reuse in an unshared cache; contention in a shared
cache shortens the lifetimes of these lines such that they become
zero-reuse lines that TADIP takes advantage of.

In the case of DIP2-3, there are many lines with just a few uses,
but very few lines with many uses. It would be desirable to have
a cache management policy that can keep the lines resident in the
cache just long enough to expose these additional hits, but then
quickly evict them after they become dead. PIPP can provide this
type of effect because it inserts the lines with slightly higher pri-
ority than the lowest possible which provides a short window for
additional hits to manifest. PIPP’s incremental promotion policy
discourages these lines from staying in the cache for too long af-
ter they become dead. TADIP on the other hand may not keep the
lines in the cache long enough to expose the extra hits, and when
it does, the lines are directly promoted to the highest priority po-
sition. Since most lines in this program have only a single reuse,
TADIP’s promotion policy actually ends up maximizing the dead
time of these lines.

Compared to the DIP2-3 workload, DIP2-5 (where TADIP per-
forms better) has many more lines with many more reuses (in ad-
dition to the many zero-reuse lines). In this scenario, PIPP’s incre-
mental promotion policy is too cautious leading to situations where
lines with more uses in the near future do not get promoted high
enough in the priority ordering for them to evade eviction before
their next uses. TADIP’s more aggressive promotion policy does a
better job at keeping these lines in the cache to expose many more
hits. This suggests that perhaps PIPP could be further enhanced by
providing some facilities to dynamically tune the aggressiveness of
the promotion policies.

178

Total IPC Throughput (Normalized to LRU)

D
u

a
l-

C
o

re

���

���

���

���

���

���

���

��	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�

�
�
�
�
�

��

�����

����

Q
u

a
d

-C
o

re

���

���

���

���

���

���

���

��	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�

�
�
�
�
�

��

�����

����

Fair Speedup (Normalized to LRU)

D
u

a
l-

C
o

re

���

���

���

���

���

���

���

��	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�

�
�
�
�
�

��

�����

����

Q
u

a
d

-C
o

re

���

���

���

���

���

�
�
	

��

�
�
	

��

�
�
	

��

�
�
	

��

�
�
	

�

�
�
	

��

�
�
	

��

�	

��

�	

��

�	

��

�	

��

�	

�

�	

��

�	

��

�
�
�
�
�

�
�
�
�
�

��	

���	

	�		

Figure 5: Performance results for the IPC throughput and fair

speedup metrics.

5. ANALYSIS
In this section, we first provide some additional quantitative results
to demonstrate PIPP’s abilities to deal with different types of mem-
ory behaviors. We then provide results from our sensitivity analysis
to show the importance of the different design choices for PIPP.

5.1 Why Does PIPP Work?

Occupancy Control

We have claimed that PIPP is effective at controlling the occupancy
of shared caches, but so far we have only demonstrated that the per-
formance of PIPP is as good as or better than UCP. To measure the
effectiveness of PIPP’s capacity management, we measured the dif-
ference between each core’s actual cache occupancy and the target
partitioning. We define a core’s partitioning deviation as the abso-
lute difference between the average number of ways occupied and
the target number of ways allocated. For example, if corei has a tar-
get allocation of πi=3 in an eight-way cache, but actually occupies
half of the cache’s total capacity, then on average corei occupies
four out of every eight lines in the cache, and so the partitioning
deviation is equal to one. During simulation, every one million cy-
cles we measure the partitioning deviation of each core and then
we average all of the samples over the entire simulation.

Figure 6 shows the average partitioning deviation for all of the
workloads. For the vast majority of the workloads, the partition-
ing deviation is within 1.0 of the target allocation. This shows that
PIPP can create aggregate conditions that are similar to those cre-
ated by UCP. The imperfect partitioning is a direct result of the fact
that PIPP only pseudo-partitions the cache but does not explicitly
enforce allocations. Nevertheless, PIPP still manages to balance

D
u

a
l-

C
o

re

���

���

���

���

���

���

�
�
�
�
	�

�
�
�
�
	�

�
�
�
�
	�

�
�
�
�
	

�
�
�
�
	�

�
�
�
�
	�

�
�
�
�
	�

��
�
	�

��
�
	�

��
�
	�

��
�
	

��
�
	�

��
�
	�

��
�
	�

�
�
�
��
�
�

�
�
�
��
�
�
�	

	

�
�

�
�
�
�
�	
�

���

����

Q
u

a
d

-C
o

re

���

���

���

���

���

�
�
�
	

�

�
�
�
	

�

�
�
�
	

�

�
�
�
	

�

�
�
�
	

	

�
�
�
	

�

�
�
�
	

�

��
	

�

��
	

�

��
	

�

��
	

�

��
	

	

��
	

�

��
	

�

�
�
�
��
�
�

�
�
�
��
�
�
�	

	

�
�

�
�
�
�
�	
�

���

����

Figure 6: Average partitioning deviation for all of the dual-core

and quad-core workloads for PIPP.

per-core capacities in a way that comes reasonably close to the tar-
get allocations. It is also important to note that PIPP’s partitioning
deviation does not necessarily result in lower performance, for ex-
ample due to the theft of a dead line from another core.

Insertion Behavior

PIPP can reduce the amount of time that dead-on-arrival lines re-
side in the cache by simply inserting them in a position of lower
priority. Of particular interest are the workloads DIP2-0 and DIP2-
1 where UCP provides absolutely no benefit and TADIP is still able
to deliver about 16% speedup for both workloads. These “pure
TADIP” workloads exhibit a large number of lines with no-reuse,
and this is reflected by the fact that on average, TADIP inserts lines
with a priority of 1.683 and 1.685 (where a priority of 1 is “LRU”
insertion, and a priority of 16 is “MRU” insertion) for DIP2-0 and
DIP2-1, respectively. For the same workloads, PIPP has average in-
sertion priorities of 1.330 and 1.329, effectively showing that PIPP
can mimic TADIP’s LRU-insertion behavior.

Pseudo-Partitioning Benefit

One of the qualitative differences between PIPP and conventional
way-partitioned cache management schemes is that the partition-
ing is not rigid which allows cores to obtain more cache resources
than would be normally allowed. In particular, we say that a core
“steals” a cache line when it inserts a line into the LLC, but insert-
ing this line causes the core to exceed its target partition (in this
cache set). For example, if a core has a target allocation of π=3
ways, inserts a line and then the core now occupies four or more
ways in this set, then we say that this insertion stole a cache line.

For each workload, we monitor every LLC insertion and record
whether the insertion resulted in a line theft. We then monitor two
types of events. The first is for every line which was stolen, how
many times was that line subsequently reused? This provides an
estimate of the benefit of stealing capacity from other cores. Sec-
ond, for every stolen line, we remember the previous occupant’s
address. If we later observe a miss on this address, but we find the
address in one of the stolen line’s previous-address fields, then we
record this as a miss that was caused by stealing the line (“forced
miss”). Figure 7 shows the averages (across accesses by all cores)
for these metrics along with markers indicating the net impact ac-
counting for both additional hits and misses caused by line thefts.
Note that these metrics are not necessarily directly proportional to
performance impact because, for example, the number of hits cred-
ited for a stolen line include all reuses of that line. In a conventional
cache, it is possible that after the first access, the line is reinstalled

179

D
u

a
l-

C
o

re

����

��

���

���

���

���

�
	

�
��

�
	

�
��

�
	

�
��

�
	

�
��

�
	

�
��

�
	

�
�

�
	

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
�

�
�

�
��

�
�
�
��
�
�

�
�
��
��
�
�
�
	

	

Q
u

a
d

-C
o

re

����

��

���

���

���

���

�
	

�

��

�
	

�

��

�
	

�

��

�
	

�

��

�
	

�

��

�
	

�

�

�
	

�

��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
�

�
�

�
��

�
�
�

��
�

�

�
�
��
��
�
�
�
	

	

�������������

��� �!�"���

#���$�!�%��

Figure 7: Number of hits on lines stolen from other cores, num-

ber of misses induced by having lines stolen by other cores, and

the difference.

Configuration pprom pstream Promotion

Baseline PIPP 3/4 1/64 0/+1

50-50 Probability 1/2 1/2 0/+1

Always MRU Promotion 1 1 MRU

Stochastic MRU Promotion 3/4 1/64 0/MRU

Always Promote by +1 1 1 +1

No-Stream 3/4 3/4 0/+1

Table 2: Variants on PIPP for studying the importance of dif-

ferent components of the algorithm.

in the cache and the remaining hits would have occurred anyway.
Nevertheless, the results show that the lines that are stolen are in-
deed useful, and that the theft of lines from other cores do not in-
troduce that many more misses. This result is intuitive in that when
a line gets stolen, the evicted line is already in the lowest priority
position in the eviction order, which tends to be correlated with a
lack of near-future reuses. That is, when one core steals a line from
another core, there is a good chance that the line would have been
evicted soon anyway. PIPP can effectively make use of these dead
lines to improve the efficiency of the cache.

5.2 PIPP Parametric Sensitivity Analysis
Our PIPP mechanism contains several parameters that can be cho-
sen by the computer architect. These include decisions about pro-
motion policies, whether to make PIPP aware of streaming applica-
tion behaviors, and setting the two different probabilities pprom and
pstream. We first consider several variants on the PIPP mechanism.
These are summarized in Table 2, with the original PIPP included
for reference. These variants were chosen to demonstrate the im-
portance of different design choices for PIPP. Figure 8(a) shows the
performance degradation (higher is worse) for the harmonic mean
of the weighted IPC speedup normalized to the stream-sensitive
PIPP. Omission of any of these features can lead to an 11.6% per-
formance penalty.

We also explored the sensitivity of the results to different choices
of pprom and pstream. It would not be desirable to have to carefully
retune these probabilities for different workloads or new processor
designs. Figure 8(b) shows the performance results when all pa-
rameters for the original stream-sensitive PIPP are held constant
except for pprom. The results are normalized to the original case

where pprom = 3
4
. Note that for any similar values for pprom,

the overall performance change is less than 1%. Similarly, Fig-
ure 8(c) modifies pstream while keeping all other parameters the
same. The original value for pstream was 1

128
, but these result

show that one can change this probability over a reasonably wide
range and the overall performance changes are quite small. These
results are good in that they suggest that the probability parameters
need not be chosen too carefully; any reasonable values will result
in good performance.

6. IMPLEMENTATION ISSUES
In this section, we briefly discuss some of the remaining hardware
overhead required to implement PIPP, and then present a simple
optimization to eliminate much of the remaining costs.

6.1 Hardware Overhead
One of the critical components of many previously proposed cache
partitioning approaches is the mechanism for estimating or pre-
dicting what the benefit/cost would be of providing a core with
more/fewer ways. This information provides the input for the par-
titioning mechanism to make its decisions. In particular, the im-
plementation of PIPP evaluated thus far in this paper simply makes
use of the same Shadow Tag approach used in the UCP work and
discussed in Section 2. As described earlier, the Utility Monitor

(UMON) maintains one set of shadow tags per core to track what
the cache’s contents would be if each core had exclusive access to
the cache. Depending on the recency positions of the hits observed
in the shadow tags, utility monitoring counters are updated to create
the corresponding utility curves such as those shown in Figure 1.

The UMON shadow tags represent additional overhead that would
not be required in a conventional unmanaged cache, although the
use of Dynamic Set Sampling (DSS) reduces the overhead by a
significant amount. For example, a cache with 4096 sets shared
by four cores requires 1.1MB to store the unsampled shadow tags
(assuming 36-bit tag entries), whereas with DSS the overhead is
reduced to only 9.1KB (assuming 32 sampled sets). Suh et al. pro-
posed to estimate marginal utility based on the actual hit position in
the shared cache [40]. A hit in recency position i in the real cache
causes the ith marginal utility counter to get incremented. For ex-
ample, a set containing the lines {A, B, 1, C} where A is the most
recently used line and C is the least, and A, B and C belong to core0,
a hit on line C causes core0’s fourth counter to be incremented be-
cause C is located in the fourth most-recently used position, but if
core0 had the entire cache to itself, C would only be in the third
most-recently used spot. It is clear that while this approach does
not incur any additional storage overhead for shadow tags, the con-
tents of the marginal gain counters may be compromised, leading
to inaccurate utility curves [36].

6.2 Elimination of Shadow Tags
We propose In-Cache Estimation Monitors (ICEmon) which can be
thought of as a hybrid of Suh et al.’s approach, Qureshi and Patt’s
UMON, and Qureshi et al.’s leader set idea [35]. A small num-
ber of sets use a modified cache management policy to facilitate
utility tracking. Figure 9 shows an example cache with eight sets,
where one set is reserved for tracking core0 and another for core1.
Set zero estimates the utility for core0. For all accesses by core0,
this set is managed in a conventional LRU manner (evict the LRU
line, insert at the MRU position, promote to the MRU position on
a hit). We then enforce a private monitoring boundary (PMB)
where lines inserted/accessed by other cores are not permitted to
obtain a recency position greater than PMB. Core1 continues to
follow its insertion and promotion policies, with the modification

180

��

��

��

��

��

���

���

�
�
	�
�

�
�
�
�

�
��
�
�
�

�
�
�

�
�
�
�

�
�
��
�
��
��

�
�
�

�
�
�
�

�
��
�
�
�

�
�
�
�

�
�

	�
��
!
�
�

�
�
��
�
��

�
�
	�

�
�
�
��

�
��
�
�

"#��	$�!

%#�&	$�!

���

��

��

��

��

��

��

�� ��� ��� ��� 	��
��

�
�
��
�
��

�
�
	�

�
�
�
��

�
��
�
�

��������

��������

���

��

��

��

��

��

�� ��� ��� ��� ��� 	��

�
�
��
�
��

�
�
	�

�
�
�
��

�
��
�
�

�������

���������

(a) (b) (c)

Figure 8: Performance sensitivity to different (a) PIPP design choices, (b) values for pprom and (c) values for pstream.

Set 7

or promote past PMB
Core 1 cannot insert

Core 0 may "demote" into lower priorities

Cache Sets

Highest Priority Lowest Priority
P MB

Core 1 promotes to MRU

Core 0 inserts at MRU

tracks Core 1

Set 0

tracks

Core 0

Other sets follow PIPP insertion and promotion based
on target partition and promotion probabilities

Similar behavior for the set
that tracks Core 1

Figure 9: Example organization of the In-Cache Estimation

Monitors (ICEmon) for two cores sharing an eight-set, eight-

way cache.

that insertion and promotion are capped at PMB, as shown in Fig-
ure 9. Set seven monitors core1 in a similar fashion with core0 not
being able to cross the PMB.

By dedicating w–PMB ways (in a w-way cache) to the mon-
itored core, our ICEmon is able to accurately track the marginal
gain updates for the first w–PMB ways. These ways are typi-
cally the most important in that they account for the majority of
the area underneath the marginal utility curves (i.e., the first few
ways usually provide the most hits). For the remaining w ways, the
utility tracking may have some errors because the lines accessed
by the other cores will pollute and perturb the recency ordering of
the core being tracked. This can create problems similar to Suh et
al.’s monitoring scheme, but the impact on ICEmon is much less
because these tracking errors only impact the PMB-least recently
used lines which typically account for a much smaller number of
the total accesses.

Figure 10 shows the performance of PIPP using UMON with
DSS, and PIPP using our proposed ICEmon scheme. For reference,
we also include the performance of the best of UCP and TADIP.
The PIPP+ICEmon configuration uses 32 leader sets per core to
estimate the marginal gain counters. For each leader set, PMB is
set to four ways.

Our ICEmon mechanism for estimating the marginal utilities
does introduce some error in the partitioning decisions, as shown by
the difference in the PIPP+UMON/DSS and PIPP+ICEmon results.
For the dual-core configurations, the small amount of error intro-
duced by ICEmon, as compared to UMON/DSS, results in an aver-
age performance loss of only 1.4% (for both means); for the quad-

D
u

a
l-

C
o

re

���
���
���
���
���
���
���
��	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�

�
�
�
�
�

�����
���������
�����
�� !�""
�������#$%�

Q
u

a
d

-C
o

re

���
���
���
���
���
���
���
��	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
��
�
�

�
�
�
�
�

�
�
�
�
�

�����
���������
�����
�� !�""
�������#$%�

Figure 10: Weighted speedup of PIPP with different utility

tracking mechanisms.

core results, the performance loss is a more modest 3.6%/4.8% for
the harmonic/geometric mean. Note that even with the reduction in
performance due to the less accurate ICEmon scheme, the average
performance across all of the dual-core and quad-core workloads
still exceeds the best of both UCP and TADIP.

The main reason that the quad-core results are not better is that
we did not recalibrate the PMB setting, and so in the leader sets,
three cores worth of cache lines are forced to share the four ways
which results in more error in tracking the marginal utility of the
last few ways. We were also concerned that a hot set that mapped
to a leader set could cause significant pathological behaviors. We
considered a variant of PIPP/ICEmon where during each sampling
interval, the leader sets are rotated so all sets in the cache take turns
as leaders. It turns out that this hot-set phenomenon is not impor-
tant, at least for our workloads, and this rotating leader-set approach
made very little difference on performance. Table 3 summarizes the
storage overhead required for the UMON and ICEmon approaches
for estimating marginal utility.

7. RELATED WORK
Apart from the most relevant studies already discussed in the ear-
lier sections of this paper, there exists a large body of additional
work on way-partitioned caches and other techniques for manag-
ing shared caches.

181

Shadow Storage
Tag UMON 4MB/16-way

Storage Counters L2, 4 cores

UMON (no DSS) swtN wN 1.1 MB

UMON (w/ DSS) αswtN wN 9.1 KB

ICEmon 0 wN 20 bytes

Table 3: Summary of overheads for different marginal util-

ity estimation schemes. Example storage overhead assumes

s=4096 sets, w=16 ways, N=4 cores, t=36 bits per shadow tag

entry, α= 1

128
(DSS sampling rate), UMON counter size=10 bits.

Several research efforts by multiple groups have proposed vari-
ants of way-partitioned caching to provide Quality of Service (QoS)
in shared-cache multi-cores [12, 17, 18, 24]. PIPP in of itself does
not provide or enforce any explicit QoS guarantees. It may be
possible to allow the operating system to specify partitions and/or
export utility monitoring information back to software to provide
higher-level control over managing QoS among cores, but such
work is beyond the scope of this paper.

There have also been a few proposed schemes that relax the strict
“way-partitioned” organization of the cache. Rafique et al. pro-
posed a mechanism for enforcing OS-specified partitions or quo-

tas [37], and they introduce the concept of reluctance that effec-
tively enables cores to steal lines from other cores (possibly ex-
ceeding their quotas) when the other cores are not making effec-
tive use of their own cache allocations. Chang and Sohi proposed
Multiple Time-sharing Partitions (MTP) where the partitioning de-
cisions can be adjusted in both space and time [7]. For example,
consider two cores sharing an eight-way cache where each core
needs six ways to hold the majority of their working sets. Chang
and Sohi observe that rather than providing a “fair” allocation of
four ways per core, it is sometimes better to simply allow one core
to receive an unfair allocation (e.g., six ways), and then later al-
low the other core an equally unfair allocation. Although on a per-
timeslice basis, the partitioning is unfair, across multiple timeslices
fairness is still maintained. Such an approach could potentially be
adapted to PIPP by simply varying the target partition allocations
from one timeslice to the next. Srikantaiah et al. observed that in
shared caches, interference between cores can induce “compulsory
inter-cache” misses (compulsory misses due to unrelated accesses
from other cores) [38], and they propose dynamic set pinning as a
means to prevent such misses.

Dead-line prediction (also called dead-block prediction) attempts
to anticipate the last touch to a given line [1, 16, 22, 26, 29]. If the
system is confident that the line will not be accessed again, then
the line can be given the highest priority for replacement, thereby
minimizing the amount of time the otherwise useless line resides
in the cache. Other proposals predict the deadness of a line to
save power by either turning off dead lines or putting them into
a drowsy state [1, 10, 20]. PIPP does not target dead lines in a
fashion as explicit as these other works, but part of PIPP’s benefit
effectively comes from the reduction of the residency times of dead
cache lines.

8. CONCLUSIONS
Many previous studies have proposed a variety of mechanisms to
improve the performance of shared last-level caches by exploiting
a variety of common memory access behaviors. In this work, we
have introduced a single unified technique that can provide the ben-
efits of capacity management, adaptive insertion and inter-core ca-
pacity stealing. By covering multiple types of memory behaviors,

our proposed PIPP scheme delivers higher performance than previ-
ously proposed techniques.

This work opens several future directions for research. First,
there are likely many additional promotion policies that can be ex-
plored, and more work is needed to provide a deeper understanding
of how promotion policies interact with insertion and evictee se-
lection policies. Despite the fact that the ICEmon eliminates the
shadow tag overhead, there exists the overhead of the partition-
ing logic itself (the hardware that converts the utility curves into
actual partition allocations). Generalizations of ICEmon, perhaps
incorporating more Set Dueling concepts, may enable the complete
elimination of the partitioning logic.

Acknowledgments

Funding and equipment were provided by a grant from Intel Corpo-
ration, and funding was provided from the National Science Foun-
dation under Grant No. 0702275. We also thank the anonymous
reviewers for their constructive feedback and Aamer Jaleel for as-
sistance with TADIP.

9. REFERENCES
[1] J. Abella, A. González, X. Vera, and M. F. P. O’Boyle.

IATAC: A Smart Predictor to Turn-Off L2 Cache Lines.
Trans. on Architecture and Code Optimization, 2(1):55–77,
Mar. 2005.

[2] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
Infrastructure for Computer System Modeling. IEEE Micro
Magazine, pages 59–67, Feb. 2002.

[3] D. A. Bader, Y. Li, T. Li, and V. Sachdeva. BioPerf: A
Benchmark Suite to Evaluate High-Performance Computer
Architecture of Bioinformatics Applications. In Proc. of the
IEEE Int. Symp. on Workload Characterization, pages
163–173, Austin, TX, USA, Oct. 2005.

[4] M. Behar, A. Mendelson, and A. Kolodny. Trace Cache
Sampling Filter. In Proc. of the 14th Int. Conference on
Parallel Architectures and Compilation Techniques, pages
255–266, St. Louis, MO, USA, Sep. 2005.

[5] D. S. Bolme, M. M. Strout, and J. R. Beveridge. FacePerf:
Benchmarks for Face Recognition Algorithms. In Proc. of
the IEEE Int. Symp. on Workload Characterization, Boston,
MA, USA, Oct. 2007.

[6] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting
Inter-Thread Cache Contenton on a Chip Multi-Processor
Architecture. In Proc. of the 11th Int. Symp. on High
Performance Computer Architecture, pages 340–351, San
Francisco, CA, USA, Feb. 2005.

[7] J. Chang and G. Sohi. Cooperative Cache Partitioning for
Chip Multiprocessors. In Proc. of the 21st Int. Conference on
Supercomputing, pages 242–252, Seattle, WA, June 2007.

[8] D. Chiou. Extending the Reach of Microprocessors: Column
and Curious Caching. PhD thesis, Massachusettts Institute of
Technology, 1999.

[9] J. Doweck. Inside Intel Core Microarchitecture and Smart
Memory Access. White paper, Intel Corporation, 2006.
http://download.intel.com/technology/architecture/sma.pdf.

[10] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy Caches: Simple Techniques for Reducing Leakage
Power. In Proc. of the 29th Int. Symp. on Computer
Architecture, pages 148–157, Anchorage, AK, USA, May
2002.

[11] H. Ghasemzadeh, S. Mazrouee, and M. R. Kakoee. Modified
Pseudo LRU Replacement Algorithm. In Proc. of the Int.
Symp. on Low Power Electronics and Design, pages 27–30,
Potsdam, Germany, Mar. 2006.

182

[12] F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A Framework for
Providing Quality of Service in Chip Multi-Processors. In
Proc. of the 40th Int. Symp. on Microarchitecture, Chicago,
IL, Dec. 2007.

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. MiBench: A Free,
Commerically Representative Embedded Benchmark Suite.
In Proc. of the 4th Workshop on Workload Characterization,
pages 83–94, Austin, TX, USA, Dec. 2001.

[14] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint
3.0: Faster and More Flexible Program Analysis. In Proc. of
the Workshop on Modeling, Benchmarking and Simulation,
Madison, WI, USA, June 2005.

[15] L. R. Hsu, S. K. Reinhardt, R. R. Iyer, and S. Makineni.
Communist, Utilitarian, and Capitalist Cache Policies on
CMPs: Caches as a Shared Resource. In Proc. of the 15th
Int. Conference on Parallel Architectures and Compilation
Techniques, pages 13–22, Seattle, WA, USA, Sep. 2006.

[16] Z. Hu, M. Martonosi, and S. Kaxiras. Timekeeping in the
Memory System: Predicting and Optimizing Memory
Behavior. In Proc. of the 29th Int. Symp. on Computer
Architecture, pages 209–220, Anchorage, AK, USA, May
2002.

[17] R. Iyer. CQoS: A Framework for Enabling QoS in Shared
Caches of CMP Platforms. In Proc. of the Int. Conference on
Supercomputing, Saint-Malo, France, June 2004.

[18] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell,
Y. Solihin, L. Hsu, and S. Reinhardt. QoS Policies and
Architecture for Cache/Memory in CMP Platforms. In Proc.
of the ACM SIGMETRICS, San Diego, CA, USA, June 2007.

[19] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. S. Jr.,
and J. Emer. Adaptive Insertion Policies for Managing
Shared Caches. In Proc. of the 17th Int. Conference on
Parallel Architectures and Compilation Techniques, 2007.

[20] S. Kaxiras, Z. Hu, and M. Martonosi. Cache Decay:
Exploiting Generational Behavior to Reduce Cache Leakage
Power. In Proc. of the 28th Int. Symp. on Computer
Architecture, pages 240–251, Göteborg, Sweden, June 2001.

[21] M. Kharbutli and Y. Solihin. Counter-Based Cache
Replacement Algorithms. In Proc. of the Int. Conference on
Computer Design, pages 61–68, San Jose, CA, USA, Oct.
2005.

[22] M. Kharbutli and Y. Solihin. Counter-Based Cache
Replacement and Bypassing Algorithms. Trans. on
Computers, 57(4):433–447, Apr. 2008.

[23] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and
Partitioning in a Chip Multiprocessor Architecture. In Proc.
of the 13th Int. Conference on Parallel Architectures and
Compilation Techniques, pages 111–122, Antibes
Juan-les-Pins, France, Sep. 2004.

[24] S. Kim, D. Chandra, and Y. Solihin. Fair Caching in a Chip
Multi-Processor Architecture. In Proc. of the IBM P=ACˆ2
Conference, Yorktown Heights, NY, USA, Oct. 2004.

[25] J. D. Kron, B. Prumo, and G. H. Loh. Double-DIP:
Augmenting DIP with Adaptive Promotion Policies to
Manage Shared L2 Caches. In Proc. of the Workshop on
Chip Multiprocessor Memory Systems and Interconnects,
Beijing, China, June 2008.

[26] A.-C. Lai, C. Fide, and B. Falsafi. Dead-Block Prediction &
Dead-Block Correlating Prefetchers. In Proc. of the 28th Int.
Symp. on Microarchitecture, pages 144–154, Göteborg,
Sweden, June 2001.

[27] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communication Systems. In Proc. of the

30th Int. Symp. on Microarchitecture, pages 330–335,
Research Triangle Park, NC, USA, Dec. 1997.

[28] J. Lin, Q. Lu, X. Ding, Z. Zhang, and P. Sadayappan. Gaining
Insights into Multicore Cache Partitioning: Bridging the Gap
between Simulation and Real Systems. In Proc. of the 14th
Int. Symp. on High Performance Computer Architecture,
pages 367–378, Salt Lake City, UT, USA, Feb. 2008.

[29] H. Liu, M. Ferdman, J. Huh, and D. Burger. Cache Bursts: A
New Approach for Eliminating Dead Blocks and Increasing
Cache Efficiency. In Proc. of the 41st Int. Symp. on
Microarchitecture, pages 222–233, Lake Como, Italy, Nov.
2008.

[30] G. H. Loh, S. Subramaniam, and Y. Xie. Zesto: A
Cycle-Level Simulator for Highly Detailed
Microarchitecture Exploration. In Proc. of the Int. Symp. on
Performance Analysis of Systems and Software, Boston, MA,
USA, Apr. 2009.

[31] K. Luo, J. Gummaraju, and M. Franklin. Balancing
Throughput and Fairness in SMT Processors. In Proc. of the
2001 Int. Symp. on Performance Analysis of Systems and
Software, pages 164–171, Tucson, AZ, USA, Nov. 2001.

[32] R. Narayanan, B. Ozisikyilmax, J. Zambreno, G. Memik,
and A. N. Choudhary. MineBench: A Benchmark Suite for
Data Mining Workloads. In Proc. of the IEEE Int. Symp. on
Workload Characterization, pages 182–188, San Jose, CA,
USA, Oct. 2006.

[33] M. K. Qureshi, , D. Lynch, O. Mutlu, and Y. N. Patt. A Case
for MLP-Aware Cache Replacement. In Proc. of the 33rd Int.
Symp. on Computer Architecture, pages 167–178, Boston,
MA, USA, June 2006.

[34] M. K. Qureshi. Dynamic Spill-Accept for Scalable
High-Performance Caching in CMPs. In Proc. of the 15th
Int. Symp. on High Performance Computer Architecture,
Raleigh, NC, USA, Feb. 2009.

[35] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and J. Emer.
Adaptive Insertion Policies for High-Performance Caching.
In Proc. of the 34th Int. Symp. on Computer Architecture,
pages 381–391, San Diego, CA, USA, June 2007.

[36] M. K. Qureshi and Y. N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches. In Proc. of the 39th
Int. Symp. on Microarchitecture, pages 423–432, Orlando,
FL, Dec. 2006.

[37] N. Rafique, W.-T. Lin, and M. Thottethodi. Architectural
Support for Operating System-Driven CMP Cache
Management. In Proc. of the 15th Int. Conference on
Parallel Architectures and Compilation Techniques, pages
2–12, Seattle, WA, USA, Sep. 2006.

[38] S. Srikantaiah, M. Kandemir, and M. J. Irwin. Adaptive
Set-Pinning: Managing Shared Caches in Chip
Multiprocessors. In Proc. of the 13th Symp. on Architectural
Support for Programming Languages and Operating
Systems, Seattle, WA, USA, Mar. 2009.

[39] H. S. Stone, J. Tuerk, and J. L. Wolf. Optimal Paritioning of
Cache Memory. Trans. on Computers, 41(9):1054–1068,
Sep. 1992.

[40] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic
Partitioning of Shared Cache Memory. Jour. of
Supercomputing, 28(1):7–26, 2004.

[41] T. Y. Yeh, P. Faloutsos, S. J. Patel, and G. Reinman.
ParallAX: an Architecture for Real-Time Physics. In Proc. of
the 34th Int. Symp. on Computer Architecture, pages
232–243, San Diego, CA, USA, June 2007.

183

