
Task Selection for a Multiscalar Processor 

T. N. Vijaykumar 

vijay@ecn.purdue.edu 

School of Electrical and Computer Engineering 

Gurindar S. Sohi 

sohi@cs.wisc.edu 

Computer Sciences Department 

Purdue University University of Wisconsin-Madison 

Abstract 

The M&scalar architecture advocates a distributed 

processor organization and task-level speculation to exploit 

high degrees of instruction level parallelism (ILP) in 

sequential programs without impeding improvements in 

clock speeds. The main goal of this paper is to understand 

the key implications of the architectural features of distrib- 

uted processor organization and task-level speculation for 

compiler task selection from the point of view of per$or- 

mance. We identify the fundamental performance issues to 

be: control $0~ speculation, data communication, data 

dependence speculation, load imbalance, and task over- 

head. We show that these issues are intimately related to a 

few key characteristics of tasks: task size, inter-task control 

flow, and inter-task data dependence. We describe compiler 

heuristics to select tasks with favorable characteristics. We 

report experimental results to show that the heuristics are 

successful in boosting overall performance by establishing 

larger ILP windows. 

improvements in clock speeds. The key idea is to split one 
large window into multiple smaller windows and one wide- 
issue processing unit (PU) into multiple narrow-issue pro- 
cessing units connected together. 

Unless key performance issues are understood, smaller 
distributed designs may not always perform better than 
larger centralized designs, despite clock speed advantages. 
The choice of tasks is pivotal to achieve high performance. 

While a good task selection may result in the program parti- 
tioned into completely independent tasks leading to high 
performance improvements, a poor task selection may lead 

to the program partitioned into dependent tasks resulting in 
performance worse than that of a single processing unit, 
due to overhead resulting from distributing hardware 
resources. 

1. Introduction 

Modern microprocessors achieve high performance by 
exploiting instruction level parallelism (ILP) in sequential 
programs. They establish a large dynamic window of 
instructions and employ wide-issue organizations to extract 
ILP and execute multiple instructions simultaneously. 
Larger windows enable more dynamic instructions to be 
examined, which leads to the identification of more inde- 

pendent instructions that can be executed by wider proces- 
sors. However, large centralized hardware structures for 
larger windows and wider processors may be harder to 

engineer at high clock speeds due to quadratic wire delays, 
limiting overall performance (e.g., the DEC Alpha 21264 
already implements a two-cluster pipeline because bypass- 
ing across a single larger cluster would not fit within a 
cycle). The Multiscalar architecture [5] [6] [ 141 advocates a 
distributed processor organization to avail of the advantages 
of large windows and wide-issue pipeline without impeding 

The main goal of this paper is to understand the implica- 
tions of the architectural features of distributed processor 
organization and task-level speculation for compiler task 
selection from the point of view of performance. We iden- 

tify the fundamental performance issues to be: control flow 
speculation, data communication, data dependence specula- 
tion, load imbalance, and task overhead (Section 2). We 

show that these issues are intimately related to a few key 
characteristics of tasks: task size, inter-task control flow, 
and inter-task data dependence (Section 2). Task size pri- 
marily affects load imbalance and overhead, inter-task con- 

trol flow influences control speculation, and inter-task data 
dependence impacts data communication and data depen- 
dence speculation. These issues, which do not exist for 
centralized microarchitectures that do not perform task- 

level speculation (e.g., superscalar) have not been studied 
before in the context of sequential programs and microar- 
chitectures, but are germane to several recent proposals for 
distributed microarchitectures employing some form of task 
level speculation, including the MIT RAW [19], Stanford 

Hydra [ 121, CMU STAMPede [ 161, and Minnesota Super- 
threaded architecture [ 171. In Section 3, we describe our 
compiler heuristics to select tasks with favorable character- 

81 
0-8186-8609-X/98 $10.00 0 1998 IEEE 



istics. In Section 4, we analyze the effects of the various 
heuristics on overall performance and present measure- 
ments of the key task characteristics. We draw some con- 
clusions in Section 5. 

2. Overview of a Multiscalar processor 

We begin with a description of the execution model of a 
Multiscalar processor in the abstract but in enough detail to 
pinpoint problems. We define tasks and then follow the time 
line of the execution of a task to identify different sources 

of performance loss. We associate each such phase with a 
specific task characteristic to motivate the heuristics to 
select tasks with favorable characteristics. 

2.1. Execution model 

In a Multiscalar processor, sequential programs are parti- 
tioned into sequential (not necessarily independent) tasks. 
Figure 1 illustrates the Multiscalar execution model. 
Figure 1 shows a static program partitioned into three tasks 
and three points of search in the dynamic stream with three 
corresponding windows. Execution proceeds by assigning 
tasks to PUS. After assigning a task for execution, one of 
the possible successors of the task is predicted to be the 
next task, similar to branch prediction employed by super- 
scalar machines, i.e., control flow speculation is used. 
Since the tasks are derived from a sequential program and 
are predicted in the original program order, the total order 
among the tasks is unambiguous. The predicted task specu- 
latively executes on a PU using its private resources unless 

it needs values computed by another task executing on a 
different PU. Irma-task dependences are handled by the 
processing units, similar to superscalar processors. In the 
case of inter-task register data dependences, a producer task 
communicates the required value to the consumer task 
when it has been computed [3]. In the case of inter-task 
memory data dependences, memory dependence specula- 
tion is ,employed; a task begins by speculating that it does 
not depend on any previous task for memory values and 
executes loads from the specified addresses. If the specula- 
tion is incorrect (i.e., a previous task performs a store to the 
same address as a load performed by this task), a memory 
dependence violation is detected by the Address Resolution 
Buffer (ARB) [7] and the offending task that performed the 
load (and all its successor tasks) is squashed. In a real 
implementation, it may be difficult to isolate tasks that are 

dependent on the offending task and squash only those. If 
control flow speculation is incorrect (i.e., one of tbe tasks 

assigned for execution was incorrect), the incorrect task 
(and all its successor tasks) is squashed similar to a branch 
misprediction in superscalar machines. Since tasks execute 
speculatively, the state (register and memory) produced by 
it is buffered and cannot update architectural state. When a 

Point 1 
) 

Window 1 
$ 

Point 2 
) 

Window 2 
$ 

Point 3 
) 

Window 3 
t 

Figure 1: Abstraction of a Multiscalar processor. 

task completes and all speculations (control flow and mem- 
ory dependence) have been resolved to be correct, the task 
is retired (i.e., its speculative state is promoted to architec- 
tural state). Tasks are retired in the original program order 
to maintain sequential program semantics; a task is retired 
only after its predecessor task has been retired. 

2.2. Definition 

A Multiscalar task may comprise a basic block, multiple 
basic blocks, loop bodies, entire loops, or entire function 

invocations. Statically, a task is defined to be a connected, 
single-entry subgraph of the static control flow graph 
(CFG) of a sequential program. Dynamically, a task corre- 
sponds to a contiguous fragment of the dynamic instruction 

stream that may be entered only at the first instruction of the 
fragment. Since the compiler does not have access to 
dynamic control flow paths, it treats a set of static control 
flow paths connected together in a subgraph of the CFG as a 
task. Thus, a static task contains computation that is a 
superset of the computation performed by each dynamic 
invocation of the task. Although inexact, this definition 
allows the compiler to conveniently perform task selection. 

2.3. Tie line of a task 

We add timing information to the functional description 

of execution of tasks to account for execution time of tasks. 
When a task is assigned for execution, two possibilities 
arise: (1) the task completes and is retired, or (2) an incor- 

82 



rect speculation (control flow or memory dependence) 
occurs and the task is squashed. 

2.3.1. Scenario 1: task is retired 

When a task is assigned for execution, it begins by fetch- 
ing instructions from the start PC and filling the pipeline of 
the PU with instructions. The time associated with filling 
the pipeline is classified as task start overhead. An 

instruction executes after its input operands are available, 
similar to a superscalar machine. If an input operand is not 
available, then the instruction waits until the value is avail- 
able. If the instruction waits for a value to be produced and 
communicated by another task, then the associated wait 
time is classified as inter-task data communication delay. 
If the instruction waits for a value to be produced by a pre- 
vious instruction in the same task, then the associated wait 
time is classified as intra-task data dependence delay. As 
soon as the required value is available, execution proceeds 
and eventually the task ends. After completion, the task 
waits until the previous task retires; the associated wait time 

is classified as load imbalance. When the task is allowed to 
retire, it commits its speculative state to architectural stor- 
age; the associated time is classified as task end overhead. 
Figure 2(a) illustrates the various phases of scenario 1. 

2.3.2. Scenario 2: task is squashed 

When a task is assigned for execution, it proceeds as 
explained above until the control-flow speculation is 
resolved. If either the task itself or one of its predecessor 
task is detected to have misspeculated, the task is squashed 
and a new task is assigned to the PU. The entire time since 
the start of the task, irrespective of whether the task was 

waiting for values or executing instructions, is classified as 
control flow misspeculation penalty or memory depen- 
dence misspeculation penalty, as the case may be. Since a 
misspeculation may cause several tasks to be squashed (the 
offending task and all its successors), the misspeculation is 
associated with the sum of all the individual penalties of 

each of the squashed tasks. Figure 2 (b) illustrates the vari- 
ous phases of scenario 2. 

2.4. Performance and tasks 

From the discussion of the task execution time line, the 

major categories of performance degradation are: control 
flow misspeculation, inter-task data communication, mem- 
ory dependence misspeculation, load imbalance and task 
overhead. We now relate the performance issues to concrete 
task characteristics: task size, inter-task control flow, and 
inter-task data dependence. 

Events Execution Phase 
Time 

I 
Task assigned 

Task start 

Pipeline full 

Use value 

overhead 

Useful cycles 

Inter-task data 
communication 

Value received 
delay 

Use value 
Useful cycles 

(a) Intra-task data 
dependence 

Value ready 
delay 

Useful cycles 

Task complete 

Load imbalance 

Task retire 

PU free 

Task assigned ., ; ” 
Misspeculation 

(b) Squash task Penalty 
Task restarted 

PU free 

Figure 2: Time line of the execution of a task. 

2.4.1. Task size 

Small tasks do not expose adequate parallelism and incur 

high overhead. If tasks contain a large number of dynamic 
instructions, then several problems arise: (1) Large tasks 
increase both the number of misspeculations and misspecu- 
lation penalty. Speculating over a large number of memory 
operations usually results in a large likelihood of misspecu- 
lating a true data dependence and discarding a large amount 
of work. (2) Large tasks may cause the AFU3 to overflow 
causing the task to stall until speculation is resolved. (3) 
Large tasks may result in a loss of opportunity because nar- 
row PUS cannot put large amounts of intra-task parallelism 
to use. Load imbalance causes performance loss similar to 
large-scale, parallel machines [lo]. Large variations in the 

amount of computation of adjacent tasks causes load imbal- 
ance resulting in successor tasks waiting for predecessor 
task to complete and retire. There are two kinds of overhead 
associated with tasks: (1) task start overhead, and (2) task 
end overhead. Task start overhead is primarily caused by 
pipeline filling at the start of every task, similar to the prob- 

lem of short vectors in a vector machine. At the end of a 
task, the speculative state of the task is committed to the 
architectural storage; if this involves actual movement of 

83 



data (as opposed to just tagging of data as committed with- 
out physical movement) extra cycles are spent. 

2.4.2. Inter-task control flow 

Control flow edges that are exposed during task selec- 
tion, giving rise to inter-task control flow, affect control 
flow speculation by the hardware. The resolution of control 

flow from one task to the next can be done typically only at 
the end of the task because the branch instructions that 
change control flow from one task to next may be encoun- 
tered only at the end of the task. The result of this “late” 
resolution is that control flow misspeculation penalties are 
of the order of the execution time of tasks, which may be 
many cycles. Both the number of successors and the kind 
(predictable or not) of successors are key factors. Since a 
task is assigned for execution via control flow speculation, 

it is important that tasks have at most as many successors as 
can be tracked by the hardware prediction tables. These 

hardware tables are built to track some fixed number (N) of 
successors. If tasks are selected to have more than N suc- 
cessors, dynamic control flow speculation accuracy 
decreases, leading to loss of performance. Control flow 
misspeculation depends on the predictability of the succes- 
sors and the position of the control flow dependences that 
are exposed by task selection (dynamically encountered/ 
executed early or late during the execution of the task). 

2.4.3. Inter-task data dependence 

Data dependence edges that are included within tasks do 
not cause any data communication delay or dependence 
misspeculation. Data dependence edges that are exposed 
during task selection, giving rise to inter-task data depen- 
dence, affect data communication and data dependence 
speculation. Inter-task data dependence delay and data 
dependence misspeculation cost is determined by the posi- 
tion in the task (dynamically encountered/executed early or 
late during the execution of the task) of the data depen- 
dences that are exposed by task selection. The interval 
between the instant when a task begins execution and the 
instant when a producer or consumer instruction executes 
depends on (1) whether the instruction depends on values 
from predecessor tasks and if so, the time when the value is 
produced and communicated and (2) the number of other 
instructions of the task that are ahead of the instruction as 
per program order, since instructions in a task are executed 
on a PU in the usual uniprocessor style of execution. A pro- 
ducer instruction, therefore, may execute much later after 
the task begins execution if a required value is available 
later or if many other instructions precede the instruction. 

Thus, a data dependence may get aggravated to a long delay 
if split across large tasks. If an inter-task data dependence is 
misspeculated (instead of waiting) then similar perfor- 

mance loss is incurred. If the producer is executed at the 
end of its task and the consumer is executed at the begin- 
ning of its task, then the squash penalty incurred is propor- 
tional to the execution time of the producer task. 

3. Selecting tasks 

The guiding principle used to select tasks is that control 

and data dependent computation is grouped into a task so 
that communication or misspeculation are minimized. Data 

dependences, control dependences, load imbalance, and 
task overhead often impose conflicting requirements. 
Sarkar showed that given the communication costs and 
amount of work associated with each function invocation, 
partitioning simple functional programs into non-specula- 
tive tasks to optimize the execution-time on a multiproces- 
sor is NP-Complete [ 131. Due to the intractable nature of 
obtaining optimal tasks, we rely on heuristics to approach 
the problem. This section describes how our task selection 
heuristics produce tasks with favorable characteristics. 

However, before going into the description, it may be help- 
ful to summarize the observations that led to our choice of 
task selection strategies. 

We started with a basic process of CFG traversal to per- 
form task selection. To this basic process, we added the 
heuristics, which are based on the characteristics described 
earlier, to steer the traversal. The heuristics were imple- 
mented in a progression starting with tasks containing a sin- 

gle basic block. To alleviate the performance problems 
caused by the small size of basic block tasks, multiple basic 
blocks are included within tasks. But tasks containing mul- 
tiple basic blocks often incurred excessive inter-task control 
flow misspeculations. To mitigate control flow misspecula- 

tions, the number of successors of a task were controlled 
through the control flow heuristic. Even though control flow 
speculation improved, inter-task data dependences were 
aggravated, resulting in performance loss. To reduce this 
loss, data dependences were included within tasks through 
the data dependence heuristic. Profiling was used to inte- 
grate all of the heuristics together. 

3.1. Basic task selection process 

Task selection proceeds by traversing the CFG of the 
application starting at the root of the CFG. Basic blocks are 
included in a task by progressively examining whether suc- 
cessors of the basic blocks that have already been included 
in the task may also be added to the task. The heuristics are 
incorporated in the selection process via decision-making 
functions that determine whether a particular basic block 
should be included in a task or not. If the heuristics termi- 
nate a control flow path by not including a basic block, then 

another task is grown starting at that basic block. Figure 3 

84 



shows the heuristics in pseudo-code. task_selection() is the 
top level driver for the process. 

3.2. Task size heuristic 

Demarcating basic blocks as tasks is easy for the com- 
piler because basic blocks are already identified. Tasks so 

obtained are called basic block tasks. No special decision- 
making functions are required to generate basic block tasks. 
Since basic block tasks are too small to expose enough par- 
allelism, multiple basic blocks are assembled into one task. 
But, generating tasks comprising arbitrarily many basic 
blocks may lead to the problem of large tasks. Apart from 
including many basic blocks within tasks, including entire 
loops and function invocations within tasks also may lead to 
large tasks. Terminating tasks at function invocations as 
well as entry and exit of loops naturally limits task size. 
Most modular applications tend to have function calls, 
which naturally prevent large tasks. But frequent function 
invocations with little computation between them and loops 
with small loop bodies may lead to small tasks. Loops can 
be unrolled so that multiple iterations of short loops can be 
included to increase the size of short loop-body tasks; short 

function invocations can be inlined or included entirely 
within tasks to avoid small tasks. 

task_size_heuristics() in Figure 3 shows the pseudo-code 
for our implementation. Calls to functions that contain 
fewer than CALL-THRESH (set to 30) dynamic instruc- 
tions are included entirely within a task. We chose to 
include entire calls instead of inlining because inlining may 
cause code-bloat. CALL-THRESH was set to 30 to keep 
task overhead to around 6% of task execution time (assum- 
ing task overhead of 2 cycles and each instruction takes one 
cycle). Loop bodies containing fewer than 

LOOP-THRESH (set to 30) static instructions are unrolled 
to expand to LOOP-THRESH instructions. Entry into 
loops, exit out of loops and function calls (with more than 
30 instructions) always terminate tasks. 

3.3. Control flow heuristic 

If multiple basic blocks are included within a task, then 
the number of successors of each task needs to be con- 
trolled. Tasks so obtained are called control flow tasks. To 
control the number of successors of tasks while employing 
the task size heuristic, basic blocks and control flow edges 
are categorized as terminal or non-terminal. If a basic 
block is terminal, then none of its successors (in the CFG) 
are included in the task containing the basic block. From 
Section 3.2, loop back edges and edges that lead into a loop, 
and basic blocks that end in a function call or a function 

return are marked as terminal. is_a_terminal_node() and 
is_a_terminal_edge() in Figure 3 show the pseudo-code. 

Terminal edges are not included within a task. Non-terminal 
edges may or may not be included within a task, depending 
upon the heuristics. 

dependence-task0 in Figure 3 shows how the number of 
successors of a task is controlled. dependence-task0 
explores one basic block per invocation and queues the chil- 
dren of the basic block under consideration for further 
exploration. During the CFG traversal, if any terminal 
edges or terminal basic blocks are encountered, then the 

path is not explored any further, and the basic blocks that 
terminate the path are marked as successors. 

dependence-task0 explores one basic block per invocation 
and queues the children of the basic block under consider- 
ation for further exploration. In order to ensure that tasks 
have at most N successors, the number of successors is 
tracked when basic blocks are included within tasks; the 
largest collection of basic blocks that correspond to at most 
N successors called the feasible task is also tracked. After a 
basic block is added to the potential task, if the resulting 

number of successors is at most N, then the basic block is 
added to the feasible task. By taking advantage of recon- 

verging control flow paths, tasks are made larger without 
necessarily increasing the number of successors. But during 
the traversal, it is not known a priori which paths recon- 
verge and which do not. The control flow heuristic uses a 

greedy approach; the traversal continues to explore control 
flow paths even if the number of successors exceeds the 

allowed limit. When all the control flow paths are termi- 
nated, the feasible task so obtained demarcates the task. 

There are a myriad of techniques to alleviate the prob- 
lems caused by control flow for scheduling of superscalar 
code, such as trace scheduling [4], predication [8], and if- 
conversion [2]. The key point for Multiscalar is that as long 
as control flow is included within tasks the primary problem 
of mispredictions is alleviated. Techniques like predication 
can be employed to improve the heuristics but are not 
explored here because such techniques need either extra 

hardware support (predication) or may introduce bookkeep- 
ing overhead (trace scheduling). Intra-task control flow may 
cause performance loss due to delay of register communica- 
tion. This secondary problem can be alleviated by schedul- 
ing using the previously mentioned techniques. For loops, 
we move the induction variable increments to the top of the 
loops so that later iterations get the values of the induction 
variables from earlier iterations without any delay. Register 
communication scheduling is not discussed in this paper; 

details are available in [ 181. 

3.4. Data dependence heuristic 

The key problem with a data dependence is that if the 
producer is encountered late and the consumer is encoun- 

85 



task_selection() ( expand_task(blk, task, dep_edge) { 

task_size_heuristic(); explore-q = task->explore_q; 

identify_data_dependences(); root = task->root; 

dep_list = sort_datadep_by_freq(); while (not_empty(explore_q)) 

for each (u,v) in dep_list dependence_task(blk, root, dep_edge); 

for each t = including-task of u ] 
expand_task(u, t, (u,v)); dependence_task(blk, root, dep_edge) { 

if (not_in_any_task(u)) if (! is_a_terminal_node(blk) { 

expand_task(u, new-task(u), (u,v)); for each child ch of blk 

] if (! is_a_terminal_edge(blk, ch) { 

task_size_heuristic() { if (codependent(ch, dep_edge)) 

for each loop 1 add_explore_q(ch); 

if (loop_size(l) c LOOP-THRESH) t = adjust_targets(root, blk, ch); 

unroll_loop(l); if (t c N) 

for each block blk ending in a call f feasible_task(root, blk, ch); 

if (#instructions(f) < CALL-THRESH) } else 

mark_for_inclusion(bIk); add_to_task_q(ch); 

] } else 

is_a_terminal_node(blk) { for each child ch of blk 

return ((does_not_end_in_call(blk) 1 1 add_to_task_q(ch>; 

!marked_for_inclusion(blk)) ] 
&& not_a_loop_end(blk) is_a_terminal_edge(blk, ch) { 

&& not_a_loop_head(blk)); retum(dfs_num(blk) < dfs_num(ch)); 

] I 

Figure 3: Task selection heuristics. 

tered early, then many cycles may be wasted waiting for the 
value to be communicated. The main goal of data depen- 
dence driven task selection is that for a given data depen- 
dence extending across several basic blocks, either the 
dependence is included within a task or it is exposed such 
that the resulting communication does not cause stalls. 
Tasks so obtained are called data dependence tasks. 

During the selection of a task, the data dependence heu- 
ristic steers the exploration of control flow paths to those 
basic blocks that are dependent on the basic blocks that 
have been included in the task. The Control flow heuristic 
includes basic blocks in tasks regardless of whether they are 
dependent on other basic blocks contained in the task. The 
Data dependence heuristic, instead, includes a basic block 
only if it is dependent on other basic blocks included in the 
task. Thus, the data dependence heuristic explores only 
those control flow paths that lead to dependent basic blocks 
and terminate the other paths. There are several impedi- 
ments to including a data dependence within a task: (1) 

many memory dependences are unknown or ambiguous at 
compile-time and (2) including a data dependence within a 
task may result in a task with more successors than desired. 

There are many data dependence detection techniques 
for memory dependences through memory disambiguation 

schemes [3] [20]. These techniques work well for programs 
that do not employ intricate pointers. Due to the prevalence 
of pointers in most of our benchmarks, we rely on the mem- 

ory dependence synchronization mechanism [ 1 l] to avoid 
excessive squashing and the ARB to ensure correctness. 
But register dependences are identified and specified 
entirely by the compiler using traditional def-use dataflow 
equations [ 11. Space constraints do not permit us to list the 
equations here. 

dependence-t&() in Figure 3 integrates the data depen- 
dence heuristic with the control flow heuristic. For each 
data def-use dependence, we try to include the dependence 
within a task, without exceeding the limit on the number of 
successors. If the producer is already included in a task, 
then that task is expanded in an attempt to include the 
dependence; otherwise, a new task is started at the pro- 

ducer. In general, if the producer and the consumer are not 
in adjacent basic blocks in the control flow graph, then the 
basic blocks in all the control flow paths from the producer 
to the consumer also have to be included. The set of basic 

blocks in all the control flow paths from the producer to the 
consumer is called the codependent set of the dependence. 
Codependent sets are identified by the dataflow equations 
that determine the def-use chains. codependent() deter- 
mines whether a basic block is in the codependence set of a 

86 



data dependence edge or not. The heuristic attempts to 
include a register dependence within a task by steering the 
basic traversal to include the codependent set. For the cases 
where a dependence cannot be included due to exceeding 
the limit on the number of successors, the heuristic avoids 
poor scheduling of the resultant communication. If the pro- 
ducer is not dependent on any other computation, then the 
heuristic starts a task at the producer enabling early execu- 
tion of the producer. If more than one dependence is taken 
into consideration, then including one dependence may 
exclude another because inclusion of a certain dependence 
may result in some control flow paths to be terminated and 
inclusion of another dependence may require some of the 
previously terminated paths to be not terminated. A simple 
solution to this difficulty is to prioritize the dependences 
using the execution frequency of the dependences, obtained 
by profiling. More details on the heuristics are in [ 181. 

3.5. Tasks selected by the heuristics 

Figure 4 illustrates task partitions that may result when a 
data dependence edge is considered. Figure 4(al) shows a 
part of the CFG of a program including a data dependence 
edge from the top basic block to the bottom basic block. 

-) indicates a control flow edge and + indicates a 

data dependence edge. For this example, let us assume that 
the number of hardware targets is 4. Since the control flow 
heuristic does not take data dependences into consideration, 
the dependence is split between Task1 and TasM. 
Figure 4(a2) shows a task that includes the data dependence 
edge by including all the basic blocks in the control flow 
path from the producer basic block to the consumer basic 
block. Figure 4(bl) shows a task partition obtained by the 
control flow heuristic. Since the control flow heuristic does 
not take data dependences into consideration, the producer 

of the data dependence is included at the end of Task1 and 
the consumer is included at the beginning of Task3, aggra- 
vating data dependence delay. Figure 4(b2) shows a task 
partition obtained by the data dependence heuristic consist- 
ing of two tasks in which the resultant inter-task communi- 
cation is scheduled favorably; the producer instruction is 
placed early in its task at the first basic block of the task and 
the consumer instruction is placed late in its task at the last 
basic block of the task. 

4. Experimental evaluation 

The heuristics described in the preceding sections have 
been implemented in the Gnu C Compiler, gee. SPEC95 

benchmark [ 151 source files are input to the compiler which 
produces executables. The binary generated by the compiler 

is executed by a simulator which faithfully captures the 

(al) 

W 

\ 
\ Task1 

Task1 ’ Task2’ \ ’ Task3 

Figure 4: Tasks and data dependence edges. 

behavior of a Multiscalar processor on a cycle per cycle 
basis by simulating all instructions except for system calls. 

4.1. Overview of experiments 

In this section, we describe the quantities measured in 

the experiments to analyze performance issues and demon- 
strate the impact of the compiler heuristics. In order to 

determine the effectiveness of the compiler heuristics, we 
measure performance of basic block tasks, control flow 
tasks, and data dependence tasks. 

For each of the task characteristics: task size, inter-task 

control flow, and inter-task data dependence, we measure a 
metric that closely correlates to performance. We measure 
the average number of dynamic instructions per task. For 

inter-task control flow, we measure prediction accuracies to 
estimate the magnitude of control flow misspeculation. By 
studying the nature of the dynamic window established by 
Multiscalar organizations, we can estimate the amount of 
parallelism that the machine can exploit. For superscalar 
processors, the average window size is a good metric of 
quality of the dynamic window. Since a Multiscalar proces- 
sor does not establish a single continuous window, we 
extend window size to another metric. For a Multiscalar 
processor, the total number of dynamic instructions that 
belong to all the tasks in execution simultaneously called 

the window span is the equivalent of the superscalar win- 
dow as far as potential exploitable parallelism is concerned. 
We present the average window span for the benchmarks. 

87 



4.2. Simulation parameters 

The simulator models details of the processing units, the 

sequencer, the control flow prediction hardware, the register 
communication ring, and the memory hierarchy consisting 
of the ARB, Ll data and instruction cache, L2 cache, main 
memory, and interconnection between the PUS and the 
ARB and the Ll caches, the Ll caches and the L2 cache, as 
well as the system bus connecting the L2 caches and the 
main memory. Both access latencies and bandwidths are 
modeled at each of these components and the interconnects. 
The PUS are configured to use 2-way issue, 16-entry reor- 
der buffer, and B-entry issue list with two integer, one 

floating point, one branch, and one memory functional 
units. The intra-task prediction uses gshare with 16-bit his- 
tory, and 64K-entry table of 2-bit counters. The inter-task 

prediction uses a path-based scheme [9] with 16-bit history, 
64K-entry table of 2-bit counters and 2-bit target numbers. 
The register communication ring can carry 2 values per 
cycle and bypass values in the same cycle between adjacent 
PUS. The Ll I-cache characteristics are: 64KB (4PU)/ 
128KB (SPU), 2-way associative, 32 byte blocks, 1 cycle 
hit, interleaved as many banks as the number of PUS, lock- 
up free, fully pipelined, and augmented with a 32KB, 2- 

way associative task cache. The Ll D-cache characteristics 
are: 64KB (4PU)/128KB (SPU), 2-way associative, 32 byte 
blocks, 1 cycle hit, interleaved as many banks as the num- 
ber of PUS, lock-up free, fully pipelined, and augmented 
with a 32KB, 2-way associative task cache. The ARB char- 
acteristics are: 32 entries/PU, 32 x #PU bytes/entry, 4KB 
(4PU)/BKB (SPU), fully associative, 2 cycle hit, interleaved 
as many banks as the number of PUS, lock-up free, pipe- 
lined, and augmented with a 256-entry memory synchroni- 
zation table [ll]. The L2 cache is 4MB, and 2-way 
associative with 12 cycle hit latency and 16 bytes per cycle 
transfer. Finally, the main memory is infinite capacity with 

58 cycle latency, and 8 bytes per cycle transfer. 

All of the binaries for the experiments are generated with 
the highest level of gee 2.7.2 optimizations. For Fortran 
programs, we use f2c and then compile the C code with our 
compiler. Multiscalar-specific optimizations including task 
selection, loop restructuring, dead register analysis for reg- 
ister communication, and register communication schedul- 
ing and generation are also used [ 181. The compiler uses 
basic block frequency, obtained via dynamic profiling, for 

register communication scheduling and task selection. Pro- 
filing was done using the inputs specified by the SPEC95 

suite. 

4.3. Experiments and Results 

4.3.1. Effectiveness of the heuristics 

Figure 5 shows the improvements in IPC using the con- 

trol flow heuristic, the data dependence heuristic, and the 
task size heuristic for out-of-order and in-order PUS execut- 
ing the integer benchmarks and floating point benchmarks 
over the base case of basic block tasks. 

The compiler heuristics (control flow, data dependence 
and task size together) are effective in capturing parallelism 
beyond basic block tasks. Using out-of-order PUS, the inte- 
ger benchmarks improved by 19-38% and 25-39% on 4 and 
8 PUS, respectively, over basic block tasks, while the float- 
ing point benchmarks were boosted by 21-52% and 25-53% 
on 4 and 8 PUS, respectively, over basic block tasks. The 

floating point benchmarks have more regular, loop parallel- 
ism than the integer benchmarks, as a result of which the 

heuristics succeed in extracting more parallelism from the 
floating point benchmarks. 

For the integer benchmarks, the control flow heuristic 
improves performance 23%-54% and 23%-53% using 4 
and 8 out-of-order PUS, respectively, over basic block tasks. 

It is important to note that the measurements shown here for 
the data dependence heuristic are over and above the con- 
trol flow heuristic (i.e., the data dependence heuristic is 
applied in conjunction with the control flow heuristic). The 
data dependence heuristic adds modest performance 
improvements (<l-6% and <l-15% for 4 and 8 PUS, 
respectively) over the control flow heuristic. 

There are many reasons for the improvements being 
modest: (1) Out-of-order PUS can tolerate latencies due to 

register communication delays significantly and (2) by 
including adjacent basic blocks within a task, the control 
flow heuristic already includes data dependence chains 
within tasks; the data dependence heuristic has fewer 
opportunities to further capture data dependences. The 
trends for in-order PUS are similar to those for out-of-order 

PUS. These improvements are better than those for out-of- 
order PUS because in-order PUS do not have as much 
latency tolerance as out-of-order PUS; the heuristics are 
effective in avoiding inter-task dependences, which stifle in- 
order PUS more than out-of-order PUS. 

4.3.2. Task size 

In Table 1, the columns titled Basic Block, Control Flow, 

and Data Dependence show the task sizes in number of 

dynamic instructions for the corresponding heuristic. Since 

only 129.compress and 145fpppp respond to the task 
size heuristic, both control flow tasks and data depen- 
dence tasks are augmented with the task size heuristic 

88 



m basic block 0 control flow m data dependence m task size 

out-of-order 6.0 
out-of-order 

m 
5.0 rl 

2 cnh 1 
V.” 

0 
‘J 
2 4.0 5.0 L 
‘i 

SE 3.0 4.0 
S 
‘Z 
8 3.0 

z 
2.0 

2.0 

‘*‘ab ab ab ab ab ab ab ab 
0.0 

ab ab ab ab ab ab ab ab ab ab 

g cc Ii per1 tomcatv su2cor mgrid turb3d fpppp 

compress iipeg vortex swim hydro2d applu apsi wave5 

Figure 5: Impact of the compiler heuristics on SPEC95 benchmarks. 

for these benchmarks. The columns titled “#dyn inst” 

show the number of dynamic instructions and the columns 
titled “#ct inst” show the number of dynamic control trans- 

fer instructions per task. We discuss the entries in the col- 
umns “task pred”, “br pred”, and “win span” in the next two 
sections. The basic block tasks contain fewer than 10 
instructions for the integer benchmarks and more than 20 
instructions for the floating point benchmarks (except for 
ltMhydro2d). In general, the control flow tasks and the data 
dependence tasks are larger than the basic block tasks. The 
data dependence tasks are smaller than other control flow 
tasks because the control flow heuristic greedily includes 
basic blocks past data dependence chains, whereas the data 

dependence heuristic terminates tasks as soon as a data 

dependence is included. 129compress, lO;l.mgrid, 
145.fpppp do not follow this trend because the data depen- 
dence heuristic steers task selection to paths different from 
the control flow heuristic, resulting in entirely different 
tasks. Note that due to assembly-level macro instructions, 

some basic block tasks may include control transfer instruc- 

tions which are hidden from the compiler. For this reason, 
there may seem to be a discrepancy between the ratio of the 
size of the basic block tasks and that of the heuristic tasks 
and the number of control transfer instructions in the heu- 
ristic tasks. 

4.3.3. Control flow speculation accuracy 

Since control flow tasks and data dependence tasks usu- 
ally contain multiple branches per task, comparing predic- 
tion accuracies of these tasks with those of basic block tasks 

requires normalizing the accuracies with respect to the 
average number of dynamic branches per task. The columns 

titled “task pred” show the task misprediction percentages 
and the columns titled “br pred” show the effective mispre- 

diction percentage normalized to the average number of 
branches per task. The prediction accuracy of the basic 
block tasks is higher than that of superscalar branch predic- 
tion accuracy because it includes branches, jumps, function 

89 



Benchmarks 

go 

m88ksim 

Basic Block Tasks Control Flow Tasks Data Dependence Tasks 

#dyn task win #ct #dyn task br #ct #dyn task br win 

inst pred span inst inst pred pred inst inst pr ed pred span 

6.4 14 22 2.5 18.2 15 5.8 2.0 12.7 15 7.2 53 

4.3 3.1 25 3.0 14.8 4.0 1.4 2.4 10.3 4.9 2.0 67 

Table 1: Dynamic task size, control flow misspeculation rate and window span. 

calls and returns. In general, the prediction hardware is able 
to maintain high task prediction accuracies for the control 
flow tasks and the data dependence tasks despite predicting 
one of four targets, whereas basic block tasks expose only 
two targets. 

Comparing the basic block tasks with the control flow 
tasks in terms of task prediction accuracies (column “task 
pred”), there are two kinds of behavior: Task prediction 
accuracies are higher for the control flow tasks than the 
basic block tasks for those benchmarks which capture loop- 
level tasks, namely, 132.ijpeg, lOl.tomcatv, 102.swim. 
103.su2cor, 104.hydro2d, 107.mgrid, and 146.wave5. In 
these benchmarks, the most frequent tasks are loop bodies 

which do not expose any of the branches internal to the loop 
bodies and are easy to predict. The data dependence tasks 

have worse task prediction accuracies than the control flow 
task because including data dependence chains within tasks 
is preferred over reconverging control flow paths or loop 
bodies. If task prediction accuracy is normalized over the 
number of dynamic branches the effective prediction accu- 
racies (column “br pred”) are significantly better for the 
control flow tasks and data dependence tasks, demonstrat- 

ing the synergy between the heuristics and the control flow 
speculation hardware. 

4.3.4. Window span 

The window span is the range of all dynamic tasks in 

flight in the entire processor. The average size of tasks, the 
number of PUS, and the control flow prediction accuracy of 
a program determine its window span. The window span of 
a program is computed using the following equation, where 
Tusksize is the average task size, Pred is the average inter- 
task control flow prediction accuracy, and N is the number 
of PUS: Although Pred may change slightly with increasing 
number of PUS, the overall effect on the window span is 
minimal.. In Table 1, the columns “win span” under the col- 

windowspan = 
c 

Tasksize x Pred’ 

i=O,N-1 

umns “Basic Block” and “Data Dependence” show the win- 
dow span of the basic block tasks and the data dependence 
tasks for each of the benchmarks executing on 8 PUS. Due 
to the significantly smaller sizes and lower prediction accu- 
racies, the window spans for the basic block tasks are con- 

90 



siderably smaller than those for the data dependence tasks. 

The window spans of most integer benchmarks are in the 
modest range of 45-140 instructions. The window spans of 
most floating point benchmarks is considerably larger (250- 
800) than those of their integer counterparts due to the 
larger size of tasks and higher prediction accuracy. These 
measurements indicate that the amount of parallelism that is 
exposed through branch prediction (which is used by most 

modern superscalar processors) is significantly less than 
that exposed by task-level speculation. 

5. Conclusions 

In this paper, we studied the fundamental interactions 
between sequential programs and the novel features of dis- 
tributed processor organization and task-level speculation 
of a Multiscalar processor from the standpoint of perfor- 
mance. We identified important performance issues to 
include control speculation, data communication, data 

dependence speculation, load imbalance, and task over- 
head. We correlated these issues with a few key characteris- 

tics of tasks: task size, inter-task control flow, and inter-task 
data dependence. Task size affects load imbalance and over- 
head, inter-task control flow influences control speculation, 
and inter-task data dependence impacts data communica- 

tion and data dependence speculation. 

Task selection crucially affects overall performance 
achieved by a Multiscalar processor. The important heuris- 
tics to select tasks with favorable characteristics are: (1) 
Tasks should be neither small nor large; a small task may 
not expose enough parallelism and may incur overhead that 
may not be amortized over the execution of the task, where 
as a large task may incur memory dependence misspecula- 
tions and ARB overflows. (2) The number of successors of 

a task should be as many as can be tracked by the control 
flow speculation hardware; reconverging control flow paths 
can be exploited to generate tasks which include multiple 
basic blocks without taxing the prediction hardware. (3) 
Data dependences should be included within tasks to avoid 
communication and synchronization delays or misspecula- 
tion and roll back penalties. If a data dependence cannot be 
included within a task, then the dependence should be 
exposed such that the producer and consumer instructions 
involved in the dependence are scheduled favorably (i.e., 

the producer is executed early and the consumer is executed 
late in their respective tasks). 

The task selection heuristics are effective in partitioning 
sequential programs into suitable tasks. The heuristics 
extract modest to high amount of parallelism from the inte- 
ger benchmarks. The heuristics are uniformly more suc- 
cessful in exploiting loop-level parallelism in the floating 

point benchmarks. Increasing the number of PUS increases 
the improvements for the heuristic tasks, indicating that the 

heuristics better utilize extra hardware. The synergy 
between the heuristics and the prediction hardware is effec- 
tive in improving the accuracy of control flow speculation. 
The window spans of data dependence tasks are signifi- 
cantly larger than those of basic block tasks due to their 
larger size and higher prediction accuracy. 

Acknowledgments 

We thank Scott Breach, Sridhar Gopal, and the anony- 
mous referees for their comments and valuable suggestions 

on earlier drafts of this paper. We also thank the employees 
of Compucrafters India Private Limited, Chennai, India, V. 
Srinivasan, and Babak Falsafi for their help with an earlier 
draft of this paper. 

This work was supported in part by MIP-9505853, ONR 
Grant NOO014-93-1-0465, and by U.S. Army Intelligence 
Center and Fort Huachuca under Contract DABT63-95-C- 

0127 and ARPA order no. D346, an anonymous donation to 
Purdue ECE, and a donation from Intel Corp. The views 
and conclusions contained herein are those of the authors 
and should not be interpreted as necessarily representing 

the official policies or endorsements, either expressed or 
implied, of the U. S. Army Intelligence Center and Fort 
Huachuca, or the U.S. Government. 

References 

111 

PI 

131 

[41 

VI 

El 

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, 
Techniques, and Tools. Addison-Wesley, Reading, MA, 
1986. 

J. Allen, K. Kennedy, C. Portetield, and J. Warren. Conver- 
sion of control dependence to data dependence. In Proceed- 
ingsof the 19th ACM Symposium on Principles of 
Programming Languages, pages 177-189, Austin, TX, Jan. 
1983. Association for Computing Machinery. 

S. Breach, T. Vijaykumar, and G. Sohi. The anatomy of the 
register file in a multiscalar processor. In Proceedingsofthe 
25th Annual International Symposium on Microarchitecture, 
pages 181-190, San Jose, CA, Nov. 1994. Association for 
Computing Machinery. 

J. Fisher. Trace scheduling: A technique for global micro- 
code compaction. IEEE Transactions on Computers, 
30:478-490, 1981. 

M. Franklin. The Multiscalar Architecture. Ph.D. thesis, 
University of Wisconsin-Madison, Madison, WI 53706, 
Nov. 1993. 

M. Franklin and G. S. Sohi. The expandable split window 
paradigm for exploiting fine-grain parallelism. In Proceed- 
ings of the 19th Annual International Symposium on Com- 

91 



puter Architecture, pages 58-67. Association for Computing 
Machinery, May 1992. 

[7] M. Franklin and G. S. Sohi. ARB: A hardware mechanism 
for dynamic reordering of memory references. IEEE Trans- 
actions on Computers, 45(5):552-571, May 1996. 

[8] P-T. Hsu and E. Davidson. Highly concurrent scalar pro- 
cessing. In Proceedings of the 13th Annual International 
Symposium on Computer Architecture, pages 386-395. 
Association for Computing Machinery, June 1986. 

[9] Q. Jacobson, S. Bennett, N. Sharma, and J. E. Smith. Con- 
trol flow speculation in multiscalar processors. In Proceed- 
ings of the Third IEEE Symposium on High-Performance 
Computer Architecture, pages 218-229, Feb. 1997. 

[lo] E. P. Markatos and T. J. LeBlanc. Load balancing vs. local- 
ity management in shared-memory multiprocessors. Techni- 
cal Report URCSD-TR 399, University of Rochester, Oct. 
1991. 

[ 1 l] A. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S. 
Sohi. Dynamic speculation and synchronization of data 
dependences. In Proceedings of the 24th Annual Interna- 
tional Symposium on Computer Architecture, pages 18 l- 
193, June 1997. 

[12] K. Olukotun, B. A. Nayfeh, L. Hammond, K. W. n, and K.- 
Y. Chang. The case for a single-chip multiprocessor. In Pro- 
ceedings of the Seventh International Symposium on Archi- 
tectural Support for Programming Languages and 
Operating Systems, pages 2-l 1, Oct. 1996. 

[ 131 V Sarkar and J. Hennessy. Partitioning parallel programs for 
macro-dataflow. In Conference Proceeedings of the 1986 

ACM Conference on Lisp and Functional Programming, 
pages 192-201. Association for Computing Machinery, 
1986. 

[14] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar proces- 
sors. In Proceedings of the 22nd Annual International Sym- 
posium on Computer Architecture, pages 414-425. 
Association for Computing Machinery, June 1995. 

[15] SPEC newsletter, Aug. 1995. 

[ 161 J. G. Steffan and T. C. Mowry. The potential for thread-level 
data speculation in tightly-coupled multiprocessors. In Pro- 
ceedings of the Fourth International Symposium on High- 
Performance Computer Architecture, pages 2-13, Feb. 
1998. 

[17] J.-Y Tsai and P-C. Yew. The superthreaded architecture: 
Thread pipelining with run-time data dependence checking 
and control speculation. In Proceedings of the 1996 Confer- 
ence on Parallel Architectures and Compilation Techniques, 
pages 35-46, Oct. 1996. 

[ 181 T. N. Vijaykumar. Compiling for the Multiscalar Architec- 
ture. Ph.D. thesis, University of Wisconsin-Madison, Madi- 
son, WI 53706, Jan. 1998. 

[ 191 E. Waingold et al. Baring it all to software: Raw machines. 
Computer, 30(9):8&93, Sept. 1997. 

[20] R. P. Wilson and M. Lam. Efficient context-sensitive pointer 
analysis for c programs. In Proceedings of the I995 ACM 
SIGPLAN Conference on Programming Language Design 
and Implementation, pages 1-12, 1995. 

92 


