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ABSTRACT
Accurate simulation is essential for the proper design and evalu-
ation of any computing platform. Upon the current move toward
the CPU-GPU heterogeneous computing era, researchers need a
simulation framework that can model both kinds of computing de-
vices and their interaction. In this paper, we present Multi2Sim, an
open-source, modular, and fully configurable toolset that enables
ISA-level simulation of an x86 CPU and an AMD Evergreen GPU.
Focusing on a model of the AMD Radeon 5870 GPU, we address
program emulation correctness, as well as architectural simulation
accuracy, using AMD’s OpenCL benchmark suite. Simulation ca-
pabilities are demonstrated with a preliminary architectural explo-
ration study, and workload characterization examples. The project
source code, benchmark packages, and a detailed user’s guide are
publicly available at www.multi2sim.org.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Processor Architec-
tures—Multiple Data Stream Architectures; B.1.2 [Hardware]:
Control Structures and Microprogramming—Control Structure
Performance and Design Aids

Keywords
GPU, AMD, Evergreen ISA, Multi2Sim

∗This work was done while the author was with AMD.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09 ...$15.00.

1. INTRODUCTION
GPUs have become an important component of High Perfor-

mance Computing (HPC) platforms by accelerating the ever de-
manding data-parallel portions of a wide range of applications. The
success of GPU computing has made microprocessor researchers in
both academia and industry believe that CPU-GPU heterogeneous
computing is not just an alternative, but the future of HPC. Now,
GPUs are showing up as integrated accelerators for general purpose
platforms [8, 5, 9]. This move attempts to leverage the combined
capabilities of multi-core CPU and many-core GPU architectures.

As CPU-GPU heterogeneous computing research gains momen-
tum, the need to provide a robust simulation environment becomes
more critical. Simulation frameworks provide a number of benefits
to researchers. They allow pre-silicon designs to be evaluated and
performance results to be obtained for a range of design points. A
number of CPU simulators supporting simulation at the ISA level
have been developed [11, 14] and successfully used in a range of
architectural studies. Although there are tools that are currently
available for simulating GPUs at the intermediate language level
(e.g., PTX) [12, 13], the research community still lacks a publicly
available framework integrating both fast functional simulation and
cycle-accurate detailed architectural simulation at the ISA level that
considers a true heterogeneous CPU-GPU model.

In this paper we present Multi2Sim, a simulation framework for
CPU-GPU computing. The proposed framework integrates a pub-
licly available model of the data-parallel AMD Evergreen GPU
family [3]1 with the simulation of superscalar, multi-threaded, and
multicore x86 processors. This work also offers important insight
into the architecture of an AMD Evergreen GPU, by describing our
models of instruction pipelines and memory hierarchy, to a deeper
extent than previous public work, to the best of our knowledge, has
done before.

Multi2Sim is provided as a Linux-based command-line toolset,
designed with an emphasis on presenting a user-friendly interface.
It runs OpenCL applications without any source code modifica-
tions, and provides a number of instrumentation capabilities that

1AMD has used the Evergreen ISA specification for the implemen-
tation of its mainstream Radeon 5000 and 6000 series of GPUs.
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enable research in application characterization, code optimization,
compiler optimization, and hardware architecture design. To illus-
trate the utility and power of our toolset, we report on a wide range
of experimental results based on benchmarks taken from AMD’s
Accelerated Parallel Processing (APP) SDK 2.5 [1].

The rest of this paper is organized as follows. Section 2 intro-
duces the functional simulation model in Multi2Sim. Section 3
presents the Evergreen GPU architecture and its simulation. Sec-
tion 4 reports our experimental evaluation. We summarize related
work in Section 5, and conclude the paper in Section 6.

2. THE MULTI2SIM PROJECT
The Multi2Sim project started as a free, open-source, cycle-

accurate simulation framework targeting superscalar, multi-
threaded, and multicore x86 CPUs. The CPU simulation frame-
work consists of two major interacting software components: the
functional simulator and the architectural simulator. The func-
tional simulator (i.e., emulator) mimics the execution of a guest
program on a native x86 processor, by interpreting the program
binary and dynamically reproducing its behavior at the ISA level.
The architectural simulator (i.e., detailed or timing simulator) ob-
tains a trace of x86 instructions from the functional simulator, and
tracks execution of the processor hardware structures on a cycle-
by-cycle basis.

The current version of the CPU functional simulator supports the
execution of a number of different benchmark suites without any
porting effort, including single-threaded benchmark suites (e.g.,
SPEC2006 and Mediabench), multi-threaded parallel benchmarks
(SPLASH-2 and PARSEC 2.1), as well as custom self-compiled
user code. The architectural simulator models many-core super-
scalar pipelines with out-of-order execution, a complete memory
hierarchy with cache coherence, interconnection networks, and ad-
ditional components.

Multi2Sim integrates a configurable model for the commercial
AMD Evergreen GPU family (e.g., Radeon 5870). The latest re-
leases fully support both functional and architectural simulation of
a GPU, following the same interaction model between them as for
CPU simulation. While the GPU emulator provides traces of Ev-
ergreen instructions, the detailed simulator tracks execution times
and architectural state.

All simulated programs begin with the execution of CPU code.
The interface to the GPU simulator is the Open Compute Language
(OpenCL). When OpenCL programs are executed, the host (i.e.,
CPU) portions of the program are run using the CPU simulation
modules. When OpenCL API calls are encountered, they are inter-
cepted and used to setup or begin GPU simulation.

Figure 1: OpenCL programming and memory model.

2.1 The OpenCL Programming Model
OpenCL is an industry-standard programming framework de-

signed specifically for developing programs targeting heteroge-
neous computing platforms, consisting of CPUs, GPUs, and
other classes of processing devices [7]. OpenCL’s programming
model emphasizes parallel processing by using the single-program
multiple-data (SPMD) paradigm, in which a single piece of code,
called a kernel, maps to multiple subsets of input data, creating a
massive amount of parallel execution.

Figure 1 provides a view of the basic execution elements hierar-
chy defined in OpenCL. An instance of the OpenCL kernel is called
a work-item, which can access its own pool of private memory.
Work-items are arranged into work-groups with two basic proper-
ties: i) those work-items contained in the same work-group can
perform efficient synchronization operations, and ii) work-items
within the same work-group can share data through a low-latency
local memory. The totality of work-groups form the ND-Range
(grid of work-item groups) and share a common global memory.

2.2 OpenCL Simulation

Figure 2: Comparison of software modules of an OpenCL pro-
gram: native AMD GPU based heterogeneous system versus
Multi2Sim simulation framework.

The call stack of an OpenCL program running on Multi2Sim dif-
fers from the native call stack starting at the OpenCL library
call, as shown in Figure 2. When an OpenCL API func-
tion call is issued, our implementation of the OpenCL runtime
(libm2s-opencl.so) handles the call. This call is intercepted
by the CPU simulation module, which transfers control to the GPU
module as soon as the guest application launches the device kernel
execution. This infrastructure allows unmodified x86 binaries (pre-
compiled OpenCL host programs) to run on Multi2Sim with total
binary compatibility with the native environment.

3. ARCHITECTURAL SIMULATION OF
AN AMD EVERGREEN GPU

This section presents the architecture of a generic AMD Ever-
green GPU device, focusing on hardware components devoted to
general purpose computing of OpenCL kernels. As one of the nov-
elties of this paper, the following block diagrams and descriptions
provide some insight into the instruction pipelines, memory com-
ponents, and interconnects, which tend to be kept private by the ma-
jor GPU vendors, and remain undocumented in currently available
tools. All presented architectural details are accurately modeled on
Multi2Sim, as described next.

3.1 The Evergreen GPU Architecture
A GPU consists of an ultra-threaded dispatcher, an array of

independent compute units, and a memory hierarchy. The ultra-
threaded dispatcher processes the ND-Range and maps waiting
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Figure 3: Block diagram of the GPU architecture.

work-groups onto available compute units. Once a work-group is
assigned to a compute unit, it remains in the compute unit until its
execution completes. As a work-group executes, work-items fetch
and store data through the global memory hierarchy, formed of two
levels of cache, interconnects, and memory controllers. Figure 3a
shows a block diagram of the Evergreen family compute device.

A compute unit consists of three execution engines, a local mem-
ory, and a register file. The three execution engines, called control
flow (CF), arithmetic-logic (ALU), and texture (TEX) engines, are
devoted to execute different portions of an OpenCL kernel binary,
referred to as CF, ALU, and TEX clauses, respectively (see Sec-
tion 3.2). A block diagram of the compute unit is illustrated in
Figure 3b.

The ALU engine contains a set of stream cores, each devoted to
the execution of one work-item’s arithmetic operations. ALU in-
structions are organized as 5-way VLIW bundles, created at com-
pile time. Each instruction in a VLIW bundle is executed on one of
the 5 VLIW lanes forming the stream core.

An Evergreen GPU defines the concept of a wavefront as a
group of work-items executing in a Single-Instruction Multiple-
Data (SIMD) fashion. Each instruction is executed concurrently by
every work-item comprising a wavefront, although each work-item
uses its private data for the computations. This model simplifies in-
struction fetch hardware by implementing a common front-end for
a whole wavefront.

3.2 The Evergreen Instruction Set Architec-
ture (ISA)

When the GPU functional simulator receives the OpenCL ker-
nel to execute, an emulation loop starts by fetching, decoding, and
executing Evergreen instructions. The basic format of the AMD
Evergreen ISA can be observed in the sample code from Figure 4.

Figure 4: Example of AMD Evergreen assembly code: (a) main
CF clause instruction counter, (b) internal clause instruction
counter, (c) ALU clause, (d) TEX clause.

Evergreen assembly uses a clause-based format. The kernel exe-
cution starts with a CF instruction. CF instructions affect the main
program control flow (such is the case for CF instruction 03), write
data to global memory (04), or transfer control to a secondary
clause, such as an ALU clause (00, 02), or a TEX clause (01).
ALU clauses contain instructions performing arithmetic-logic op-
erations and local memory accesses, while TEX clauses are exclu-
sively devoted to global memory read operations.

ALU instructions are packed into VLIW bundles. A VLIW bun-
dle is run one at a time on a stream core, where each ALU instruc-
tion label reflects the VLIW lane assigned to that instruction. An
ALU instruction operand can be any output from the previously
executed VLIW bundle using the Previous Vector (PV) or the Pre-
vious Scalar (PS) special registers. Finally, constant memory is an
additional globally accessible storage initialized by the CPU, which
can also be used as ALU instruction operands (KC).

From our discussion above of Evergreen ISA characteristics,
we can observe a couple of important differences from working
with higher level intermediate languages, such as AMD’s IL [4] or
NVIDIA’s PTX [6]. For example, in AMD’s Evergreen ISA there
is a limited number of general purpose registers, so there are re-
strictions on how to form VLIW bundles, and there are specific
rules to group machine instructions forming clauses. In general,
there are many properties of the ISA run directly by the machine
that need not be considered working with an intermediate language.
Thus, significant performance accuracy can be gained with ISA-
level simulation.

3.2.1 Kernel Execution Model
When an OpenCL kernel is launched by a host program, the ND-

Range configuration is provided to the GPU. Work-groups are then
created and successively assigned to compute units when they have
available execution resources. The number of work-groups that can
be assigned to a single compute unit is determined by four hardware
limitations: i) the maximum number of work-groups supported per
compute unit, ii) the maximum number of wavefronts per compute
unit, iii) the number of registers on a compute unit, and iv) the
amount of local memory on a compute unit. Maximizing the num-
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ber of assigned work-groups per compute unit is a performance-
sensitive decision that can be evaluated on Multi2Sim.

Each work-group assigned to a compute unit is partitioned into
wavefronts, which are then placed into a ready wavefront pool. The
CF engine selects wavefronts from the wavefront pool for execu-
tion, based on a wavefront scheduling algorithm. A new wavefront
starts running the main CF clause of the OpenCL kernel binary,
and subsequently spawns secondary ALU and TEX clauses. The
wavefront scheduling algorithm is another performance sensitive
parameter, which can be evaluated with Multi2Sim.

When a wavefront is extracted from the pool, it is only inserted
back in when the executed CF instruction completes. This ensures
that there is only a single CF instruction in flight at any time for a
given wavefront, avoiding the need for branch prediction or specu-
lative execution in case flow control is affected. The performance
penalty for this serialization is hidden by overlapping the execution
of different wavefronts. Determining the extent to which overlap-
ping execution is occurring and the cause of bottlenecks are addi-
tional benefits of simulating execution with Multi2Sim.

3.2.2 Work-Item Divergence
In a SIMD execution model, work-item divergence is side-effect

generated when a conditional branch instruction is resolved differ-
ently for any work-items within a wavefront. To address work-item
divergence present during SIMD execution, the Evergreen ISA pro-
vides each wavefront with an active mask. The active mask is a bit
map, where each bit represents the active status of an individual
work-item in the wavefront. If a work-item is labeled as inactive,
the result of any arithmetic computation performed in its associated
stream core is ignored, preventing the work-item from changing the
kernel state.

This work-item divergence strategy attempts to converge all
work-items together across all possible execution paths, allowing
only those active work-items whose conditional execution matches
the currently fetched instruction flow to continue execution. To
support nested conditionals and procedure calls, an active mask
stack is used to push and pop active masks, so that the active mask
at the top of the stack always represents the active mask of the cur-
rently executing work-items. Using Multi2Sim, statistics related to
work-item divergence are available to researchers (see Section 4.3).

3.3 The Instruction Pipelines
In a compute unit, the CF, ALU, and TEX engines are orga-

nized as instruction pipelines. Figure 5 presents a block diagram
of each engine’s instruction pipeline. Within each pipeline, deci-
sions about scheduling policies, latencies, and buffer sizes must
be made. These subtle factors have performance implications, and
provide another opportunity for researchers to benefit from experi-
menting with design decisions within Multi2Sim.

The CF engine (Figure 5a) runs the CF clause of an OpenCL
kernel. The fetch stage selects a new wavefront from the wavefront
pool on every cycle, switching among them at the granularity of
one single CF instruction. Instructions from different wavefronts
are interpreted by the decode stage in a round-robin fashion. When
a CF instruction triggers a secondary clause, the corresponding ex-
ecution engine (ALU or TEX engine) is allocated, and the CF in-
struction remains in the execute stage until the secondary clause
completes. Other CF instructions from other wavefronts can be ex-
ecuted in the interim, as long as they do not request a busy execu-
tion engine. CF instruction execution (including all instructions run
in a secondary clause, if any) finishes in order in the complete stage
stage. The wavefront is returned to the wavefront pool, making it
again a candidate for instruction fetching. Global memory writes

are run asynchronously in the CF engine itself, without requiring a
secondary engine.

The ALU engine is devoted to the execution of ALU clauses
from the allocated wavefront (Figure 5b). After the fetch and de-
code stages, decoded VLIW instructions are placed into a VLIW
bundle buffer. The read stage consumes the VLIW bundle and
reads the source operands from the register file and/or local mem-
ory for each work-item in the wavefront. The execute stage issues
an instance of a VLIW bundle to each of the stream cores every cy-
cle. The number of stream cores in a compute unit might be smaller
than the number of work-items in a wavefront. Thus, a wavefront
is split into subwavefronts, where each subwavefront contains as
many work-items as there are stream cores in a compute unit. The
result of the computation is written back to the destination operands
(register file or local memory) at the write stage.

The TEX engine (Figure 5c) is devoted to the execution of global
memory fetch instructions in TEX clauses. The TEX instruction
bytes are stored into a TEX instruction buffer after being fetched
and decoded. Memory addresses for each work-item in the wave-
front are read from the register file and a read request to the global
memory hierarchy is performed at the read stage. Completed
global memory reads are handled in order by the write stage. The
fetched data is stored into the corresponding locations of the regis-
ter file for each work-item. The lifetime of a memory read is mod-
eled in detail throughout the global memory hierarchy, as specified
in the following sections.

3.4 Memory Subsystem
The GPU memory subsystem contains different components for

data storage and transfer. With Multi2Sim, the memory subsys-
tem is highly configurable, including customizable settings for the
number of cache levels, memory capacities, block sizes, number of
banks, and ports. A description of the memory components for the
Evergreen model follows:

Register file (GPRs). Multi2Sim provides a model with no con-
tention for register file accesses. In a given cycle, the register can be
accessed by the TEX and ALU engines simultaneously by differ-
ent wavefronts. Work-items within and among wavefronts always
access different register sets.

Local Memory. A separate local memory module is present in
each compute unit, and is modeled in Multi2Sim with a config-
urable latency, number of banks, ports, and allocation chunk size.
In an OpenCL kernel, accesses to local memory are defined by the
programmer by specifying a variable’s scope, whose accesses are
then compiled into distinct assembly instructions. Contention to lo-
cal memory is modeled by serializing accesses to the same memory
bank whenever no read or write port is available. Also, memory
access coalescing is considered by grouping those accesses from
different work-items to the same memory block.

Global memory. The GPU global memory is accessible by all
compute units. It is presented to the programmer as a separate
memory scope, and implemented as a memory hierarchy managed
by hardware in order to reduce access latency. In Multi2Sim, the
global memory hierarchy has a configurable number of cache levels
and interconnects. A possible configuration is shown in Figure 6a,
using private L1 caches per compute unit, and multiple L2 caches
that are shared between subsets of compute units. L1 caches pro-
vide usually a similar access time as local memory, but they are
managed transparently by hardware, similarly to how a memory
hierarchy is managed on a CPU.

Interconnection networks. Each cache in the global memory
hierarchy is connected to the lower-level cache (or global memory)
using an interconnection network. Interconnects are organized as
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Figure 5: Block diagram of the execution engine pipelines.

Figure 6: Components of the GPU global memory hierarchy, as modeled in Multi2Sim.

point-to-point connections using a switch, whose architecture block
diagram is presented in Figure 6b. A switch contains two disjoint
inner subnetworks, each devoted to package transfers in opposite
directions.

Cache access queues. Each cache memory has a buffer where
access requests are enqueued, as shown in Figure 6c. On one hand,
access buffers allow for asynchronous writes that prevent stalls in
instruction pipelines. On the other hand, memory access coalesc-
ing is handled in access buffers at every level of the global mem-
ory hierarchy (both caches and global memory). Each sequence
of subsequent entries in the access queue reading or writing to the
same cache block are grouped into one single actual memory ac-
cess. The coalescing degree depends on the memory block size,
the access queue size, and the memory access pattern, and is a very
performance sensitive metric measurable with Multi2Sim.

4. EXPERIMENTAL EVALUATION
This section presents a set of experiments aimed at validating and

demonstrating the range of functional and architectural simulation

features available with Multi2Sim. All simulations are based on
a baseline GPU model resembling the commercial AMD Radeon
5870 GPU, whose hardware parameters are summarized in Table 1.

For the simulator performance studies, simulations were run on
a machine with four quad-core Intel Xeon processors (2.27GHz,
8MB cache, 24GB DDR3). Experimental evaluations were per-
formed using a subset of the AMD OpenCL SDK [1] applications,
representing a wide range of application behaviors and memory
access patterns [16]. The applications discussed in this paper are
listed in Table 2, where we include a short description of the pro-
grams and the corresponding input dataset characteristics.

4.1 Validation
Our validation methodology for establishing the fidelity of the

GPU simulator considered the correctness of both the functional
and architectural simulation models, though we follow two differ-
ent validation methodologies. For the functional simulator, the cor-
rectness of the instruction decoder is validated by comparing the
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Figure 7: Validation for the architectural simulation, comparing simulated and native absolute execution times.
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Figure 8: Validation for architectural simulation, comparing trends between simulated and native execution times.

disassembled code to the Evergreen output that is generated by the
AMD compiler. We also validate the correctness of each bench-
mark’s execution by comparing the simulated application output
with the output of the application run directly on the CPU. All sim-
ulations generate functionally correct results for all programs stud-
ied and input problem sets.

Regarding the fidelity of the architectural model, Multi2Sim’s
performance results have been compared against native execution
performance (native here refers to the actual Radeon 5870 hard-
ware), using ten different input sizes within the ranges shown in
Table 2 (column Input Range). Since our architectural model is
cycle-based, and the native execution is measured as kernel execu-
tion time, it is challenging to compare our metrics directly. To con-
vert simulated cycles into time, we use the documented ALU clock
frequency of 850MHz of the 5870 hardware. The native execution
time is computed as the average time of 1000 kernel executions for
each benchmark. Native kernel execution time was measured us-
ing the AMD APP profiler [2]. The execution time provided by the
APP profiler does not include overheads such as kernel setup and
host-device I/O [2].

Figure 7a and Figure 7b plot simulated execution time and native
execution time performance trends, respectively (only four bench-

marks are shown for clarity). Figure 7c shows the percentage dif-
ference in performance for a larger selection of benchmarks. The
value shown for each benchmark in Figure 7c is the average of
the absolute percent error for each input of the benchmark. For
those cases where simulation accuracy decreases, Figure 8 shows
detailed trends, leading to the following analysis.

In Figure 8a, we show the correlation between the native execu-
tion time and the simulated execution time for the studied bench-
marks. For some of the benchmarks (e.g., Histogram or Recursive-
Gauss), execution times vary significantly. However, we still see
a strong correlation between each of the native execution points
and their associated simulator results for all benchmarks. In other
words, a change in the problem size for a benchmark has the same
relative performance impact for both native and simulated execu-
tions. The linear trend-line is represented using a curve-fitting al-
gorithm that minimizes the squared distances between every data
point and itself. For the benchmarks that are modeled accurately
using the simulator, the data points lie on the 45◦ line. The rea-
son for the occurrence of divergent slopes can be attributed to the
lack of precise representation of the memory hierarchy in the 5870
GPU, including the following factors:
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Table 1: Baseline GPU simulation parameters.

Table 2: List of OpenCL benchmarks used for experiments.
Column Input base contains the baseline problem size used, and
column Input range contains the range of problem sizes used
during simulator validation.

Figure 9: Simulation slowdowns over native execution for func-
tional and architectural simulation.

Specialized Memory Path Design. The AMD Radeon 5870
consists of two paths from compute units to memory [2], each with
different performance characteristics. The fast path performs only
basic operations, such as loads and stores for 32-bit data types. The
complete path supports additional advanced operations, including
atomics and stores for sub-32-bit data types. This design has been
deprecated in later GPU architectures for a more conventional lay-
out [17], which is similar to the one currently implemented in
Multi2Sim.

Cache Interconnects. The specification of the interconnection
network between the L1 and L2 caches has not been published.
We use an approximation where four L2 caches are shared between
compute units (Table 1).

Cache Parameters. The latency and associativity of the dif-
ferent levels of the cache hierarchy are not known. Some sources
of simulation inaccuracy can be attributed to cache parameters, as
shown in Figure 8, where the percent error is minimum for the cases
where the native cache hit ratios and simulated cache hit ratios vary
the least.

4.2 Simulation Speed
For the benchmarks used in this paper, Multi2Sim’s simulation

overhead is plotted in Figure 9 as a function of the slowdown over
native execution time. The average functional simulation slow-
down is 8700× (113s), and the average architectural simulation
time is 44000× (595s). It should be noted that simulation time
is not necessarily related to native execution time (e.g., simulat-
ing one 100-cycle latency instruction is faster than simulating ten
1-cycle instructions), so these results only aim to provide some rep-
resentative samples of simulation overhead.

Simulation performance has been also evaluated for an architec-
tural simulation on GPGPUSim, an NVIDIA-based GPU simula-
tor [10]. This simulator has been used as experimental support for
recent studies on GPU computing, exploring alternative memory
controller implementations [18] and dynamic grouping of threads
(work-items) to minimize thread divergence penalty [15], for ex-
ample. To enable this comparison, the APP SDK benchmarks were
adapted to run on GPGPUSim. Figure 9c shows the performance
slowdown over native execution, which averages about 90000×
(1350s).
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4.3 Benchmark Characterization
As a case study of GPU simulation, this section presents a brief

characterization of OpenCL benchmarks carried out on Multi2Sim,
based on instruction classification, VLIW bundle occupancy, and
control flow divergence. These statistics are dynamic in nature,
and are reported by Multi2Sim as part of its simulation reports.

Figure 10a shows Evergreen instruction mixes executed by each
OpenCL kernel. The instruction categories are control flow in-
structions (jumps, stack operations, and synchronizations), global
memory reads, global memory writes, local memory accesses, and
arithmetic-logic operations. Arithmetic-logic operations form the
bulk of executed instructions (these are GPU-friendly workloads).

Figure 10b represents the average occupancy of VLIW bundles
executed in the stream cores of the GPU’s ALU engine. If a VLIW
instruction uses less than 5 slots, there will be idle VLIW lanes in
the stream core, resulting in an underutilization of available exe-
cution resources. The Evergreen compiler tries to maximize the
VLIW slot occupancy, but there is an upper limit imposed by the
available instruction-level parallelism in the kernel code. Results
show that we rarely utilize all 5 slots (except for SobelFilter thanks
to its high fraction of ALU instructions), and the worst case of only
one single filled slot is encountered frequently.

Finally, Figure 10c illustrates the control flow divergence effect
among work-items. When work-items within a wavefront execut-
ing in a SIMD fashion diverge on branch conditions, the entire
wavefront must go through all possible execution paths. Thus, fre-
quent work-item divergence has a negative impact on performance.
For each benchmark in Figure 10c, each color stride within a bar
represents a different control flow path through the program. If a
bar has one single stride, then only one path was taken by all work-
items for that kernel. If there are n strides, then n different control
flow paths were taken by different work-items. Notice that different
colors are used here with the only purpose of delimiting bar strides,
but no specific meaning is assigned to each color. The size of each
stride represents the percentage of work-items that took that con-
trol flow path for the kernel. Results show benchmarks with the
following divergence characteristics:

• No control flow divergence at all (URNG, DCT).

• Groups of divergence with a logarithmic decreasing size
due to different number of loop iterations (Reduction,
DwtHaar1D).

• Multiple divergence groups depending on input data (Bino-
mialOption2).

4.4 Architectural Exploration
The architectural GPU model provided in Multi2Sim allows re-

searchers to perform large design space evaluations. As a sample
of the simulation flexibility, this section presents three case studies,
where performance significantly varies for different input parame-
ter values. In each case, we compare two benchmarks with respect
to their architectural sensitivity. Performance is measured using
the number of instructions per cycle (IPC), where the instruction
count is incremented by one for a whole wavefront, regardless of
the number of comprising work-items.

Figure 11a shows performance scaling with respect to the num-
ber of compute units. The total memory bandwidth provided by
global memory is shared by all compute units, so increasing the

2The darker color for BinomialOption is caused by many small di-
vergence regions represented in the same bar.

number of compute units decreases the available bandwidth per ex-
ecuted work-group. The available memory bandwidth for the de-
vice in this experiment only increases between compute unit counts
which are a multiple of 5 when a new L2 is added (Table 1). When
the total bandwidth is exhausted, the trend (as seen between 10-
15 and 15-20 compute units) flattens. This point is clearly ob-
served when we increase the number of compute units in compute-
intensive kernels with high ALU-to-Fetch instruction ratios (e.g.,
URNG) and less so in memory-intensive benchmarks (e.g., His-
togram).

Figure 11b presents the performance achieved by varying the
number of stream cores per compute unit. In the BinomialOption
kernel we observe a step function, where each step corresponds to
a multiple of the wavefront size (64). This behavior is due to the
fact that the number of stream cores determines the number of sub-
wavefronts (or time-multiplexed slots) that stream cores deal with
for each VLIW bundle. When an increase in the number of stream
cores causes a decrease in the number of subwavefronts (e.g., 15 to
16, 21 to 22, and 31 to 32), performance improves. When the num-
ber of stream cores matches the number of work-items per wave-
front, the bottleneck due to a serialized stream core utilization dis-
appears. This effect is not observed for ScanLargeArrays due to a
lower wavefront occupancy.

Figure 11c plots the impact of increasing the L1 cache size. For
benchmarks that lack temporal locality and exhibit large strided ac-
cesses in the data stream, performance is insensitive to increasing
cache size, as seen in Reduction. In contrast, benchmarks with
locality are more sensitive to changes in the L1 cache size, as ob-
served for FloydWarshall.

5. RELATED WORK
While numerous mature CPU simulators at various levels are

available, GPU simulators are still in their infancy. There continues
to be a growing need for architectural GPU simulators that model
a GPU at the ISA level. And in the near future, we will see a
more pressing need for a true CPU-GPU heterogeneous simulation
framework. This section briefly summarizes existing simulators
targeting GPUs.

Barra [12] is an ISA-level functional simulator targeting the
NVIDIA G80 GPUs. It runs CUDA executables without any mod-
ification. Since the NVIDIA’s G80 ISA specification is not pub-
licly available, the simulator relies on a reverse-engineered ISA
provided by another academic project. Similar to our approach,
Barra intercepts API calls to the CUDA library and reroutes them
to the simulator. Unfortunately, it is limited to GPU functional sim-
ulation, lacking an architectural simulation model.

GPGPUSim [10] is a detailed simulator that models a GPU ar-
chitecture similar to NVIDIA’s architecture. It includes a shader
core, interconnects, thread block (work-group) scheduling, and
memory hierarchy. Multi2Sim models a different GPU ISA and ar-
chitecture (Evergreen). GPGPUSim can provide us with important
insight into design problems for GPUs. However, Multi2Sim also
supports CPU simulation within the same tool enabling additional
architectural research into heterogeneous architectures.

Ocelot [13] is a widely used functional simulator and dynamic
compilation framework that works at a virtual ISA level. Tak-
ing NVIDIA’s CUDA PTX code as input, it can either emulate or
dynamically translate it to multiple platforms such as x86 CPUs,
NVIDIA GPUs, and AMD GPUs. Ocelot has objectives different
than GPU architectural simulation, so there is an extensive func-
tionality not provided or targeted by Multi2Sim, which makes them
complementary tools.
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a) Classification of instruction types. b) VLIW bundles occupancy.
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DCT
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MatrixTranspose
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RecursiveGaussian
Reduction

ScanLargeArrays
SobelFilter
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c) Control flow divergence.

Figure 10: Examples of benchmarks characterization, based on program features relevant to GPU performance. IPC is calculated
as total number of instructions the for entire kernel, divided by total cycles to execute the entire kernel.

a) Scaling the number of compute units. b) Scaling the number of stream cores. c) Scaling L1 cache size.

Figure 11: Architectural exploration, showing results for those benchmarks with interesting performance trends.

When compared to previous work, Multi2Sim is unique in the
following aspects. First, it models the native ISA of a commercially
available GPU. Second, it provides an architectural simulation of a
real GPU with tractable accuracy. Third, Multi2Sim is a CPU-GPU
heterogeneous simulation framework, which can be used to evalu-
ate upcoming architectures where the CPU and GPU are merged on
silicon and share a common memory address space [8].

6. CONCLUSIONS
In this paper we have presented Multi2Sim, a full-fledged sim-

ulation framework that supports both fast functional and detailed
architectural simulation for x86 CPUs and Evergreen GPUs at the
ISA level. It is modular, fully configurable, and easy to use. The
toolset is actively maintained and is available as a free, open-source
project at www.multi2sim.org, together with packages of bench-
marks, a complete user guide, and active mailing lists and forums.

Ongoing work for Multi2Sim includes expanding benchmark
support by increasing Evergreen ISA coverage. Future releases will
include a model for the AMD Fusion architecture, where the CPU
and GPU share a common global memory hierarchy and address
space. Supporting shared memory for heterogeneous architectures
highlights the potential of Multi2Sim, as no other simulator can
provide useful architectural statistics in this type of environment.
Current development also includes support for OpenGL applica-
tions and exploration into OpenCL language extensions. Since

Multi2Sim is currently being used by a number of leading research
groups, we believe this is a great opportunity to accelerate research
on heterogeneous, parallel architectures.
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