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Abstract

This paper examines simultaneous multithreading, a technique per-

mitting several independent threads to issue instructions to a su-

perscalar’s multiple functional units in a single cycle. We present

several models of simultaneous multithreading and compare them

with alternative organizations: a wide superscalar, a fine-grain mul-

tithreaded processor, and single-chip, multiple-issue multiprocess-

ing architectures. Our results show that both (single-threaded) su-

perscalar and fine-grain multithreaded architectures are limited in

their ability to utilize the resources of a wide-issue processor. Si-

multaneous multithreading has the potential to achieve 4 times the

throughput of a superscalar, and double that of fine-grain multi-

threading. We evaluate several cache configurations made possible

by this type of organization and evaluate tradeoffs between them.

We also show that simultaneous multithreading is an attractive alter-

native to single-chip multiprocessors; simultaneous multithreaded

processors with a variety of organizations outperform corresponding

conventional multiprocessors with similar execution resources.

While simultaneous multithreading has excellent potential to in-

crease processor utilization, it can add substantial complexity to

the design. We examine many of these complexities and evaluate

alternative organizations in the design space.

1 Introduction

This paper examines simultaneous mr.dtithreading (SM), a technique

that permits several independent threads to issue to multiple func-

tional units each cycle. In the most general case, the binding between

thread and functional unit is completely dynamic. The objective of

SM is to substantially increase processor utilization in the face of

both long memory latencies and limited available parallelism per

thread, Simultaneous mukithreading combines the multiple-issue-

per-instruction features of modem superscalar processors with the

latency-hiding ability of multithreaded architectures. It also inherits

numerous design challenges from these architectures, e.g., achiev-

ing high register file bandwidth, supporting high memory access

demands, meeting large forwarding requirements, and scheduling

instructions onto functional units. In this paper, we (1) introduce

several SM models, most of which limit key aspects of the complex-
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ity of such a machine, (2) evaluate the performance of those models

relative to superscalar and fine-grain multithreading, (3) show how

to tune the cache hierarchy for SM processors, and (4) demonstrate

the potential for performance and real-estate advantages of SM ar-

chitectures over small-scale, on-chip multiprocessors.

Current microprocessors employ various techniques to increase

parallelism and processor utilization; however, each technique has

its limits. For example, modem superscalars, such as the DEC

Alpha 21164 [1 1], PowerPC 604 [9], MIPS R1OOOO[24], Sun Ul-

traSparc [25], and HP PA-8000 [26] issue up to four instructions per

cycle from a single thread. Multiple instruction issue has the poten-

tial to increase performance, but is ultimately limited by instruction

dependencies (i.e., the available parallelism) and long-latency op-

erations within the single executing thread. The effects of these are

shown as horizontal waste and vertical waste in Figure 1. Multi-

threaded architectures, on the other hand, such as HEP [28], Tera [3],

MASA[15] and Alewife [2] employ multiple threads with fast con-

text switch between threads. Traditional multithreading hides mem-

ory and firnctional unit latencies, attacking vertical waste. In any one

cycle, though, these architectures issue instructions from only one

thread. The technique is thus limited by the amount of parallelism

that can be found in a single thread in a single cycle. And as issue

width increases, the ability of traditional mukithreading to utilize

processor resources will decrease. Simultaneous multithreading, in

contrast, attacks both horizontal and vertical waste.

This study evaluates the potential improvement, relative to wide

superscalar architectures and conventional multithreaded architec-

tures, of various simultaneous multithreading models. To place our

evaluation in the context of modem superscalar processors, we simu-

late a base architecture derived from the 300 MHz Alpha 21164 [1 1],

enhanced for wider superscalar execution; our SM architectures are

extensions of that basic design, Since code scheduling is crucial

on wide superscalars, we generate code using the state-of-the-art

Multiflow trace scheduling compiler [20].

Our results show the limits of superscalar execution and tradi-

tional multithreading to increase instruction throughput in future

processors. For example, we show that (1) even an 8-issue super-

scalar architecture fails to sustain 1.5 instructions per cycle, and (2)

a fine-grain multithreaded processor (capable of switching contexts

every cycle at no cost) utilizes only about 40% of a wide superscalar,
regardless of the number of threads. Simultaneous multithreading,

on the other hand, provides significant performance improvements

in instruction throughput, and is only limited by the issue bandwidth

of the processor.

A more traditional means of achieving parallelism is the con-
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issue slots
I El full issue slot

•l empty issue slot

horizontal waste =9 slots

vertical waste = 12 slots

Figure 1: Empty issue slots can be defined as either vertical

waste or horizontal waste. Vertical waste is introduced when

the processor issues no instructions in a cycle, horizontal waste

when not all issue slots can be filled in a cycle. Superscalar

execution (as opposed to single-issue execution) both introduces

horizontal waste and increases the amount of vertical waste.

ventional multiprocessor. As chip densities increase, single-chip

multiprocessors will become a viable design option [7]. The simul-

taneous multithreaded processor and the single-chip multiprocessor

are two close organizational alternatives for increasing on-chip exe-

cution resources. We compare these two approaches and show that

simultaneous multithreading is potentially superior to mukiprocess-

ing in its ability to utilize processor resources. For example, a single

simultaneous multithreaded processor with 10 functional units out-

performs by 24% a conventional 8-processor multiprocessor with a

total of 32 functional units, when they have equal Issue bandwidth.

For this study we have speculated on the pipeline structure for

a simultaneous multithreaded processor, since an implementation

does not yet exist. Our architecture may therefore be optimistic in

two respects: first, in the number of pipeline stages required for

instruction issue; second, in the data cache access time (or load de-

lay cycles) for a shared cache, which affects our comparisons with

single-chip multiprocessors. The likely magnitude of these effects

is discussed in Sections 2.1 and 6, respectively. Our results thus

serve, at the least, as an upper bound to simultaneous multithread-

ing performance, given the other constraints of our architecture.

Real implementations may see reduced performance due to various

design tradeoffs; we intend to explore these implementation issues

in future work.

Previous studies have examined architectures that exhibit simul-

taneous multithreading through various combinations of VLIW, su-

perscalar, and multithreading features, both analytically [34] and

through simulation [16, 17, 6, 23]; we discuss these in detail in

Section 7, Our work differs and extends from that work in multiple

respects: (1) the methodology, including the accuracy and detail of

our simulations, the base architecture we use for comparison, the

workload, and the wide-issue compiler optimization and scheduling

technology; (2) the variety of SM models we simulate; (3) our anal-

ysis of cache interactions with simultaneous multithreading; and

finally, (4) in our comparison and evaluation of multiprocessing and

simultaneous multithreading,

This paper is organized as follows. Section 2 defines in detail

our basic machine model, the workloads that we measure, and the

simulation environment that we constmcted. Section 3 evaluates

the performance of a single-threaded superscalar architecture; it

provides motivation for the simultaneous multithlreaded approach.

Section 4 presents the performance of a range of SM architectures

and compares them to the superscalar architecture, as well as a

fine-grain multithreaded processor. Section 5 explores the effect of

cache design alternatives on the performance of simultaneous multi-

threading. Section 6 compares the SM approach with conventional

multiprocessor architectures. We discuss related work in Section 7,

and summarize our results in Section 8,

2 Methodology

Our goal is to evaluate several architectural alternatives as defined

in the previous section: wide superscalars, traditional multithreaded

processors, simultaneous multithreaded processors, and small-scale

multiple-issue multiprocessors. To do this, we have developed a

simulation environment that defines an implementation of a simul-

taneous multithreaded architecture; that architecture is a straight-

forward extension of next-generation wide superscalar processors,

running a real multiprogrammed workload that is highly optimized

for execution on our target machine.

2.1 Simulation Environment

Our simulator uses emulation-based instruction-level simulation,

similar to Tango [8] and g88 [4]. Like g88, it features caching of

partially decoded instructions for fast emulated execution.

Our simulator models the execution pipelines, the memory hier-

archy (both in terms of hit rates and bandwidths), the TLBs, and the

branch prediction logic of a wide superscalar processor. It is based

on the Alpha AXP 21164, augmented first for wider superscalar ex-

ecution and then for multithreaded execution. The model deviates

from the Alpha in some respects to support increased single-stream

parallelism, such as more flexible instruction issue, improved branch

prediction, and larger, higher-bandwidth caches.

The typical simulated configuration contains 10 functional units

of four types (four integer, two floating point, three load/store and

1 branch) and a maximum issue rate of 8 instructicms per cycle. We

assume that all functional units are completely pipelined. Table 1

shows the instruction latencies used in the simuliitions, which are

derived from the Alpha 21164,

Instruction Class

integer multiply

conditional move

compare

all other integer

FP divide

all other FP

load (Ll cache hit, no bank conflicts)

load (L2 cache hit)

load (L3 cache hit)

load (memory)

control hazard (br or jmp predicted)

control hazard (br or jmp mispredicted)

Latency

8,16

2

0
1

17,30

4

2

8

14

50

1

6

Table 1: Simukdted instruction latencies
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We assume first- and second-level on-chip caches considerably

larger than on the Alpha, for two reasons. First, multithreading

puts a larger strain on the cache subsystem, and second, we expect

larger on-chip caches to be common in the same time-frame that

simultaneous multithreading becomes viable. We also ran simu-

lations with caches closer to cu~ent processors—we discuss these

experiments as appropriate, but do not show any results. The caches

(Table 2) are multi-ported by interleaving them into banks, similar

to the design of Sohi and Franklin [30]. An instruction cache access

occurs whenever the program counter crosses a 32-byte boundary;

otherwise, the instruction is fetched from the prefetch buffer. We

model lockup-free caches and TLBs. TLB misses require two full

memory accesses and no execution resources.

ICache DCache L2 Cache L3 Cache

Size 64 KB 64 KB 256 KB 2 MB

Assoc DM DM 4-way DM

Line Size 32 32 32 32

Banks 8 8 4 1

Transfer

time/bank 1 cycle 1 cycle 2 cycles 2 cycles

Table2: Details of thecachehlerarchy

Wesupportlimited dynamic execution. Dependence-freeinstruc-

tions are issued in-order to an eight-instruction-per-thread schedul-

ing window; from there, instructions can be scheduled onto func-

tional units out of order, depending on functional unit availability.

Instructions not scheduled due to functional unit availability have

priority inthe nextcycle. Wecomplementthis straightforward issue

model with the use of state-of-the-art static scheduling, using the

Multiflow trace scheduling compiler [20]. This reduces the benefits

that might be gained by full dynamic execution, thus eliminating

a great deal of complexity (e.g., we don’t need register renaming

unless weneedprecise exceptions, andwecanuse a simple l-bit-

per-register scoreboarding scheme) in the replicated register sets

and fetch/decode pipes.

A 2048-entry, direct-mapped, 2-bit branch prediction history ta-

ble [29] supports branch prediction; the table improves coverage

of branch addresses relative to the Alpha (withan 8KB I cache),

which only stores prediction information for branches that remain

inthe I cache. Conflicts inthetable are notresolved. Topredictre-

turn destinations, we use a 12-entry return stack like the21164 (one

retumstack perhardware context). Ourcompiler does nonsupport

Alpha-style hints for computed jumps; we simulate the effect with

a 32-entry jump table, which records the last jumped-to destination

from a particular address.

For our multithreaded experiments, we assume support is added

for up to eight hardware contexts. We support several models of

simultaneous multithreaded execution, asdiscussed in Section4. In

most of our experiments instructions are scheduled in a strict prior-

ity order, i.e., context O can schedule instructions onto any available

functional unit, contextl canschedule onto anyunit unutilizedby

context O, etc. Our experiments show that the overall instruction

throughput of this scheme and a completely fair scheme are virtually

identical for most of our execution models; only the relative speeds

of thedifferent threads change. Theresults from thepriority scheme

present us with some analytical advantages, as will be seen in Sec-

tion 4, and the performance of the fair scheme can be extrapolated

from the priority scheme results.

We do not assume any changes to the basic pipeline to accommo-

date simultaneous multithreading. The Alphadevotes a full pipeline

stage toamange ins~ctions forissue andanotherto issue. Ifsimul-

taneous multithreading requires more than two pipeline stages for

instruction scheduling, the primary effect would be an increase in

themisprediction penalty. Wehaverun experiments that show that

a one-cycle increase in the misprediction penalty would have less

than a 1% impact on instruction throughput in single-threaded mode.

With 8 threads, where throughput is more tolerant of misprediction

delays, the impact was less than .5%.

2.2 Workload

Our workload is the SPEC92 benchmark suite [1 O]. To gauge the

raw instruction throughput achievable by multithreaded superscalar

processors, we chose uniprocessor applications, assigning a distinct

program to each thread. This models a parallel workload achieved

by multiprogramming rather than parallel processing. In this way,

throughput results are not affected by synchronization delays, ineffi-

cient parallelization, etc., effects that would make it more difficult to

see the performance impact of simultaneous multithreading alone.

In the single-thread experiments, all of the benchmarks are run

to completion using the default data set(s) specified by SPEC. The

multithreaded experiments are more complex; to reduce the effect

of benchmark difference, a single data point is composed of B

runs, each T * 500 million instructions in length, where T is the

number of threads and B is the number of benchmarks. Each of

the B runs uses a different ordering of the benchmarks, such that

each benchmark is run once in each priority position. To limit the

number of permutations, we use a subset of the benchmarks equal

to the maximum number of threads (8).

We compile each program with the Multiflow trace scheduling

compiler, modified to produce Alpha code scheduled for our target

machine. The applications were each compiled with several differ-

ent compiler options; the executable with the lowest single-thread

execution time on our target hardware was used for all experiments.

By maximizing single-thread parallelism through our compilation

system, we avoid overstating the increases in parallelism achieved

with simultaneous multithreading,

3 Superscalar Bottlenecks: Where Have All
the Cycles Gone?

This section provides motivation for simultaneous multithreading

by exposing the limits of wide superscalar execution, identifying

the sources of those limitations, and bounding the potential im-

provement possible from specific latency-hiding techniques.

Using the base single-hardware-context machine, we measured

the issue utilization, i.e., the percentage of issue slots that are tilled

each cycle, for most of the SPEC benchmarks. We also recorded the

cause of each empty issue slot. For example, if the next instruction

cannot be scheduled in the same cycle as the current instruction,

then the remaining issue slots this cycle, as well as all issue slots

for idle cycles between the execution of the current instruction and

the next (delayed) instruction, are assigned to the cause of the delay.

When there are overlapping causes, all cycles are assigned to the

cause that delays the instruction the most if the delays are additive,
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Figure 2: Sources of all unused issue cycles in an 8-issue superscalar processor. Processor busy represents the utilized issue slots; all

others represent wasted issue slots.

such as an I tlb miss and an I cache miss, the wasted cycles are

divided up appropriately. Table 3 specifies all possible sources

of wasted cycles in our model, and some of the latency-hiding or

latency-reducing techniques that might apply to them. Previous

work [32, 5, 18], in contrast, quantified some of these same effects

by removing barriers to parallelism and measuring the resulting

increases in performance.

Our results, shown in Figure 2, demonstrate that the functional

units of our wide superscalar processor are highly underutilized.

From the composite results bar on the far right, we see a utilization

of only 19% (the “processor bus y“ component of the composite bar

of Figure 2), which represents an average execution of less than 1.5

instructions per cycle on our 8-issue machine.

These results also indicate that there is no dominant source of

wasted issue bandwidth. Although there are dominant items in

individual applications (e.g., mdljsp2, swm, fpppp), the dominant
cause is different in each case. In the composite results we see that

the largest cause (short FP dependence) is responsible for 37% of

the issue bandwidth, but there are six other causes that account for

at least 4.5% of wasted cycles. Even completely eliminating any

one factor will not necessarily improve performance to the degree

that this graph might imply, because many of the causes overlap.

Not only is there no dominant cause of wasted cycles — there

appears to be no dominant solution. It is thus unlikely that any single

latency-tolerating technique will produce a dramatic increase in the

performance of these programs if it only attacks specific types of

latencies. Instruction scheduling targets several important segments

of the wasted issue bandwidth, but we expect that our compiler

has already achieved most of the available gains in that regard.

Current trends have been to devote increasingly l:arger amounts of

on-chip area to caches, yet even if memory latencies are completely

eliminated, we cannot achieve 40% utilization of this processor. If

specific latency-hiding techniques are limited, then any dramatic

increase in parallelism needs to come from a general latency-hiding

solution, of which multithreading is an example. The different types

of multithreading have the potential to hide all sc~urces of latency,

but to different degrees.

This becomes clearer if we classify wasted cycles as either vertical
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Source of Wasted

Issue Slots Possible Latency-Hiding or Latency-Reducing Technique

instruction tlb miss, data decrease the TLB miss rates (e.g., increase the TLB sizes); hardware instruction prefetching; hardware

tlb miss or software data IJrefetchimz; faster servicing of TLB misses

I cache miss larger, more associative, or faster instruction cache hierarchy; hardware instruction prefetching

D cache miss larger, more associative, or faster data cache hierarchy; hardware or software prefetching; improved

instruction scheduling; more sophisticated dynamic execution

branch misprediction improved branch prediction scheme; lower branch misprediction penalty

control hazard speculative execution; more aggressive if-conversion

load delays (first-level shorter load latency; improved instruction scheduling; dynamic scheduling

cache hits)” II I
short integer delay improved instruction scheduling

long integer, short fp, long (multiply is the only long integer operation, divide is the only long floating point operation) shorter

fp delays latencies; improved instruction scheduling

memory conflict (accesses to the same memory location in a single cycle) improved instruction scheduling

Table 3: All possible causes of wasted issue slots, and latency-hiding or latency-reducing techniques that can reduce the number of

cycles wasted by each cause.

waste (completely idle cycles) or horizontal waste (unused issue

slots in a non-idle cycle), as shown previously in Figure 1. In our

measurements, 61% of the wasted cycles are vertical waste, the

remainder are horizontal waste. Traditional multithreading (coarse-

grain or fine-grain) can fill cycles that contribute to vertical waste.

Doing so, however, recovers only a fraction of the vertical waste;

because of the inability of a single thread to completely fill the issue

slots each cycle, traditional multithreading converts much of the

vertical waste to horizontal waste, rather than eliminating it.

Simultaneous multithreading has the potential to recover all issue

slots lost to both horizontal and vertical waste. The next section

provides details on how effectively it does so.

4 Simultaneous Multithreading

This section presents performance results for simultaneous muhi-

threaded processors. We begin by defining several machine models

for simultaneous multithreading, spanning a range of hardware com-

plexities. We then show that simultaneous multithreading provides

significant performance improvement over both single-thread su-

perscalar and fine-grain multithreaded processors, both in the limit,

and also under less ambitious hardware assumptions.

4.1 The Machine Models

The following models reflect several possible design choices for a

combined multithreaded, superscalar processor. The models differ
in how threads can use issue slots and functional units each cycle;

in all cases, however, the basic machine is a wide superscalar with

10 functional units capable of issuing 8 instructions per cycle (the

same core machine as Section 3). The models are:

● Fke-Grain Multithreading. Only one thread issues instruc-

tions each cycle, but it can use the entire issue width of the

processor. This hides all sources of vertical waste, but does not

hide horizontal waste. It is the only model that does not feature

simultaneous multithreading. Among existing or proposed ar-

●

b

●

chitectures, this is most similar to the Tera processor [3], which

issues one 3-operation LIW instruction per cycle.

SM:FuIl Simultaneous Issue. This is a completely flexible

simultaneous multithreaded superscalac all eight threads com-

pete for each of the issue slots each cycle. This is the least

realistic model in terms of hardware complexity, but provides

insight into the potential for simultaneous multithreading. The

following models each represent restrictions to this scheme

that decrease hardware complexity.

SM:Single Issue, SM:Dual Issue, and SM:Four Issue. These

three models limit the number of instructions each thread can

issue, or have active in the scheduling window, each cycle. For

example, in a SM:Dual Issue processor, each thread can issue

a maximum of 2 instructions per cycle; therefore, a minimum

of 4 threads would be required to fill the 8 issue slots in one

cycle.

SM:Llmited Connection. Each hardware context is directly

connected to exactly one of each type of functional unit. For

example, if the hardware supports eight threads and there are

four integer units, each integer unit could receive instructions

from exactly two threads. The partitioning of functional units

among threads is thus less dynamic than in the other models,

but each functional unit is still shared (the critical factor in

achieving high utilization). Since the choice of functional

units available to a single thread is different than in our original

target machine, we recompiled for a 4-issue (one of each type
of functional unit) processor for this model.

Some important differences in hardware implementation com-

plexity are summarized in Table 4. Notice that the fine-grain model

may not necessarily represent the cheapest implementation. Many

of these complexity issues are inherited from our wide superscalar

design rather than from multithreading, per se. Even in the SM:full

simultaneous issue model, the inter-instruction dependence check-

ing, the ports per register file, and the forwarding logic scale with

the issue bandwidth and the number of functional units, rather than

396



Inter-inst Instruction

Register Dependence Forwarding Scheduling

Model Ports Checking Logic onto FUS Notes
3

Fkte-Grain H H H/L* L

a

Scheduling independent of other threads.
SM:Single Issue L None H H
SM:Dual Issue M L H H
SM:Four Issue M M H H

SM:Limited M M M M No forwarding between FUS of same type;
Connection scheduling is independent of other ]H.Js

SM:FU1l Simultane- H H H H Most complex, highest performance
ous Issue
* We have modeled this scheme with all forwarding intact, but forwarding could be eliminated, requiring more threads for maximum performance

Table4: Acomparison ofkeyhardware complexi@ features of thevarious models (H=high complexity). Reconsider thenumberof

ports needed for each register file, the dependence checking for a single thread to issue multiple instructions, the amount of forwarding

logic, and the difficulty of scheduling issued instructions onto functional units.

the number of threads. Our choice of ten functional units seems rea-

sonable for an 8-issue processor. Current 4-issue processors have

between 4 and 9 functional units. The number of ports per register

file and the logic to select instructions for issue in the four-issue

and limited connection models are comparable to current four-issue

superscalars; the single-issue and dual-issue are less. The schedul-

ing of instructions onto functional units is more complex on all

types of simultaneous multithreaded processors. The Hirata, et al.,

design [16] is closest to the single-issue model, although they sim-

ulate a small number of configurations where the per-thread issue

bandwidth is increased. Others [34, 17, 23, 6] implement models

that are more similar to full simultaneous issue, but the issue width

of the architectures, and thus the complexity of the schemes, vary

considerably.

4.2 The Performance of Simultaneous Multithreading

Figure 3 shows the performance of the various models as a function

of the number of threads. The segments of each bar indicate the

throughput component contributed by each thread. The bar-graphs

show three interesting points in the multithreaded design space: fine-

grained multithreading (only one thread per cycle, but that thread

can use all issue slots), SM: Single Issue (many threads per cycle,

but each can use only one issue slot), and SM: Full Simultaneous

Issue (many threads per cycle, any thread can potentially use any

issue slot).

The fine-grain multithreaded architecture (Figure 3(a)) provides

a maximum speedup (increase in instruction throughput) of only

2.1 over single-thread execution (from 1.5 IPC to 3.2). The graph

shows that there is little advantage to adding more than four threads

in this model. In fact, with four threads, the vertical waste has

been reduced to less than 3%, which bounds any further gains

beyond that point. This result is similar to previous studies [2, 1,19,

14, 33, 31] for both coarse-grain and fine-grain multithreading on

single-issue processors, which have concluded that multithreading

is only beneficial for 2 to 5 threads. These limitations do not apply

to simultaneous multithreading, however, because of its ability to

exploit horizontal waste.

Figures 3(b,c,d) show the advantage of the simultaneous multi-

threading models, which achieve maximum speedups over single-

thread superscalar execution ranging from 3.2 to 4.2, with an issue

rate as high as 6.3 IPC. The speedups are calculated using the full

simultaneous issue, 1-thread result to represent the single-thread

superscalar.

With SM, it is not necessary for any single thread to be able to

utilize the entire resources of the processor in order to get maximum

or near-maximum performance. The four-issue model gets nearly

the performance of the full simultaneous issue model, and even the

dual-issue model is quite competitive, reaching 94% of full simulta-

neous issue at 8 threads. The limited connection model approaches

full simultaneous issue more slowly due to its less flexible schedul-

ing. Each of these models becomes increasingly competitive with

full simultaneous issue as the ratio of threads to issue slots increases.

With the results shown in Figure 3(d), we see the possibility of

trading the number of hardware contexts against hardware complex-

ity in other areas. For example, if we wish to execute around four

instructions per cycle, we can build a four-issue or full simultaneous

machine with 3 to 4 hardware contexts, a dual-issue machine with 4

contexts, a limited connection machine with 5 contexts, or a single-

issue machine with 6 contexts. Tera [3] is an extreme example of

trading pipeline complexity for more contexts; it has no forward-

ing in its pipelines and no data caches, but supports 128 hardware

contexts.

The increases in processor utilization area direct result of threads

dynamically sharing processor resources that would otherwise re-

main idle much of the time; however, sharing also has negative

effects. We see (in Figure 3(c)) the effect of competition for is-

sue slots and functional units in the full simultaneous issue model,

where the lowest priority thread (at 8 threads) runs at 55% of the

speed of the highest priority thread. We can also observe the impact

of sharing other system resources (caches, TLBs, branch predic-

tion table); with full simultaneous issue, the highest priority thread,

which is fairly immune to competition for issue slots and functional

units, degrades significantly as more threads are added (a 35% slow-

down at 8 threads). Competition for non-execution resources, then,

plays nearly as significant a role in this performance region as the

competition for execution resources.

Others have observed that caches are more strained by a multi-

threaded workload than a single-thread workload, due to a decrease

in locality [21, 33, 1, 31]. Our data (not shown) pinpoints the ex-
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Figure 3: Instruction throughput as a function of the number of threads. (a)-(c) show the throughput by thread priority for particular

models, and (d) shows the total throughput for all threads for each of the six machine models. The lowest segment of each bar is the

contribution of the highest priority thread to the total throughput.

act areas where sharing degrades performance. Sharing the caches

is the dominant effect, as the wasted issue cycles (from the per-

spective of the first thread) due to I cache misses grows from 170

at one thread to 14% at eight threads, while wasted cycles due to

data cache misses grows from 12% to 18%. The data TLB waste

also increases, from less than 170 to 6%. In the next section, we

will investigate the cache problem. For the data TLB, we found

that, with our workload, increasing the shared data TLB from 64 to

96 entries brings the wasted cycles (with 8 threads) down to 1%,

while providing private TLBs of 24 entries reduces it to under 2Y0,

regardless of the number of threads.

It is not necessary to have extremely large caches to achieve

the speedups shown in this section. Our experiments with signif-

icantly smaller caches (not shown here) reveal that the size of the

caches affects 1-thread and 8-thread results equally, making the to-

tal speedups relatively constant across a wide range of cache sizes.

That is, while 8-thread execution results in lower hit rates than 1-

thread execution, the relative effect of changing the cache size is the

same for each.

In summary, our results show that simultaneous multithreading

surpasses limits on the performance attainable through either single-

thread execution or fine-grain multithreading, when run on a wide

superscalar. We have also seen that simplified implementations of

SM with limited per-thread capabilities can still attain high instrtrc-

tion throughput. These improvements come without any significant

tuning of the architecture for multithreaded execution; in fact, we

have found that the instruction throughput of the various SM models

is somewhat hampered by the sharing of the caches and TLBs. The

next section investigates designs that are more resistant to the cache

effects.

5 Cache Design for a Simultaneous Multi-

threaded Processor

Our measurements show a performance degradation due to cache

sharing in simultaneous multithreaded processors. In this section,

we explore the cache problem further. Our study focuses on the

organization of the first-level (Ll ) caches, comparing the use of

private per-thread caches to shared caches for both instructions and

data. (We assume that L2 and L3 caches are shared among all

threads.) All experiments use the 4-issue model with up to 8 threads.

The caches are specified as [total I cache size in KB]@ivate or

shared]. [D cache size] ljrivate or shared] in Figure 4. For instance,
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64p.64s has eight private 8 KB I caches and a shared 64 KB data

cache. Not all of the private caches will be utilized when fewer than

eight threads are running.

Figure 4 exposes several interesting properties for multlthreaded

caches. We see that shared caches optimize for a small number of

threads (where the few threads can use all available cache), while

private caches perform better with a large number of threads. For

example, the 64s.64s cache ranks first among all models at 1 thread

and last at 8 threads, while the 64p.64p cache gives nearly the

opposite result. However, the tradeoffs are not the same for both

instructions and data. A shared data cache outperforms a private

data cache over all numbers of threads (e.g., compare 64p.64s with

64p.64p), while instruction caches benefit from private caches at 8

threads. One reason for this is the differing access patterns between

instructions and data. Private I caches eliminate conflicts between

different threads in tbe I cache, while a shared D cache allows

a single thread to issue multiple memory instructions to different

~ 64s.64s

\
~ 64p.64s

o n

‘- 64s.64p

/ ~ 64p.64p

I
I I I I I I I I

12345678
Number of Threads

Figure 4: Results for the simulated cache configurations, shown

relative to the throughput (instructions per cycle) of the 64s.64p

cache results.

There are two configurations that appear to be good choices.

Because there is little performance difference at 8 threads, the cost

of optimizing for a small number of threads is small, making 64s.64s

an attractive option. However, if we expect to typically operate with

all or most thread slots full, the 64p.64s gives the best performance

in that region and is never worse than the second best performer with

fewer threads. The shared data cache in this scheme allows it to

take advantage of more flexible cache partitioning, while the private

instruction caches make each thread less sensitive to the presence of

other threads. Shared data caches also have a significant advantage

in a data-sharing environment by allowing sharing at the lowest level

of the data cache hierarchy without any special hardware for cache

coherence.

6 Simultaneous Multithreading v(ersus Single-

Chip Multiprocessing

As chip densities continue to rise, single-chip multiprocessors will

provide an obvious means of achieving parallelism with the available

real estate. This section compares the performance of simultaneous

multithreading to small-scale, single-chip multiprocessing (MP). On

the organizational level, the two approaches are extremely similac

both have multiple register sets, multiple functional units, and high

issue bandwidth on a single chip. The key difference is in the way

those resources are partitioned and scheduled: the multiprocessor

statically partitions resources, devoting a fixed number of functional

units to each thread; the SM processor allows t}le partitioning to

change every cycle. Clearly, scheduling is more complex for an

SM processo~ however, we will show that in other areas the SM

model requires fewer resources, relative to multiprocessing, in order

to achieve a desired level of performance.

For these experiments, we tried to choose SM and MP configu-

rations that are reasonably equivalent, although in several cases we

biased in favor of the MP. For most of the comparisons we keep all

or most of the following equal: the number of register sets (i.e, the

number of threads for SM and the number of processors for MP), the

total issue bandwidth, and the specific functional unit configuration.

A consequence of the last item is that the functional unit configu-

ration is often optimized for the multiprocessor and represents an

inefficient configuration for simultaneous multithreading. All ex-

periments use 8 KB private instruction and data caches (per thread

for SM, per processor for MP), a 256 KB 4-way set-associative

shared second-level cache, and a 2 MB direct-miipped third-level

cache. We want to keep the caches constant in our comparisons,

and this (private I and D caches) is the most natural configuration

for the multiprocessor.

We evaluate MPs with 1, 2, and 4 issues per cycle on each pro-

cessor. We evaluate SM processors with 4 and 8 issues per cycle;

however we use the SM:Four Issue model (defined in Section 4.1)

for all of our SM measurements (i.e., each thread is limited to four

issues per cycle). Using this model minimizes some of the inherent

complexity differences between the SM and MP architectures. For

example, an SM:Four Issue processor is similar to a single-threaded

processor with 4 issues per cycle in terms of both the number of

ports on each register file and the amount of inter-instruction de-

pendence checking. In each experiment we run the same version

of the benchmarks for both configurations (compilled for a 4-issue,

4 functional unit processor, which most closely matches the MP

configuration) on both the MP and SM models; this typically favors

the MP.

We must note that, while in general we have tried to bias the

tests in favor of the MP, the SM results may be c~ptimistic in two

respects—the amount of time required to schedule instructions onto

functional units, and the shared cache access time. The impact of the

former, discussed in Section 2.1, is small. The distance between the

load/store units and the data cache can have a large impact on cache

access time. The multiprocessor, with private caches and private

load/store units, can minimize the distances between them. Our

SM processor cannot do so, even with private caches, because the

loadlstore units are shared. However, two alternate configurations

could eliminate this difference. Having eight load/store units (one
private unit per thread, associated with a private cache) would still

allow us to match MP performance with fewer than half the total

number of MP functional units (32 vs. 15). Or with 4 load/store
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Purpose of Test

Unlimited FUS: equal

total issue bandwidth,

equal number of registel

sets (processors or

threads)

Unlimited FUS: Test A,

but limit SM to 10 FUS

Unequal Issue BW: MP

has up to four times the

total issue bandwidth

FU Utilization: equal

FUS, equal issue bw,

unequal reg sets

Common Elements

Test A: FUS = 32

Issue bw = 8

Reg sets = 8

Test B: FUS = 16

Issue bw = 4

Reg sets = 4

Test C: FUS = 16

Issue bw = 8

Reg sets = 4

Test D:

Issue bw = 8

Reg sets = 8
Test E:

FUS = 32

Reg sets = 8

Test F:

FUS= 16

Reg sets = 4

Test G:

NS=8

Issue BW = 8

Specific Configuration Throughput (instructions/cycle)

SM: 8 thread, 8-issue -.~ 6.64

MP 8 l-issue procs L~J 5.13

SM: 4 thread, 4-issue ~ 3.40.

MP: 4 l-issue procs 2.77

SM: 4 thread, 8-issue

MP. ‘7 A.ic<ne nrnrc
1.94

Figure 5: Results for the various multi~rocessor vs. simultaneous multithreading comparisons. The multiprocessor always has one

fu~ctional unit of each type per proces~or. In most cases the SM processor has the same total number of each FU type as the MP.

units and 8 threads, we could statically share a single cachelload-

store combination among each set of 2 threads. Threads O and

1 might share one load/store unit, and all accesses through that

load/store unit would go to the same cache, thus allowing us to

minimize the distance between cache and load/store unit, while still

allowing resource sharing.

Figure 5 shows the results of our SM/MP comparison for various

configurations. Tests A, B, and C compare the performance of the

two schemes with an essentially unlimited number of functional

units (FUS); i.e., there is a functional unit of each type available to

every issue slot. The number of register sets and total issue band-

width are constant for each experiment, e.g., in Test C, a 4 thread,

8-issue SM and a 4-processor, 2-issue-per-processor MP both have

4 register sets and issue up to 8 instructions per cycle. In these mod-

els, the ratio of functional units (and threads) to issue bandwidth is

high, so both configurations should be able to utilize most of their

issue bandwidth. Simultaneous multithreading, however, does so

more effectively.

Test D repeats test A but limits the SM processor to a more

reasonable configuration (the same 10 functional unit configura-

tion used throughout this paper). This configuration outperforms

the multiprocessor by nearly as much as test A, even though the

SM configuration has 22 fewer functional units and requires fewer

forwarding connections.

In tests E and F, the MP is allowed a much larger total issue

bandwidth. In test E, each MP processor can issue 4 instructions

per cycle for a total issue bandwidth of 32 across the 8 processors;

each SM thread can also issue 4 instructions per cycle, but the 8

threads share only 8 issue slots. The results are similar despite

the disparity in issue slots. In test F, the 4-thread, 8-issue SM

slightly outperforms a 4-processor, 4-issue per processor MP, which

has twice the total issue bandwidth. Simultaneous multithreading

performs well in these tests, despite its handicap, because the MP is

constrained with respect to which 4 instructions a single processor

can issue in a single cycle.

Test G shows the greater ability of SM to utilize a fixed number

of functional units. Here both SM and MP have 8 functional units

and 8 issues per cycle. However, while the SM is allowed to have

8 contexts (8 register sets), the MP is limited to two processors (2

register sets), because each processor must have at least 1 of each of

the 4 functional unit types. Simultaneous multithreading’s ability to

drive up the utilization of a fixed number of functional units through

the addition of thread contexts achieves more than 2 ~ times the

throughput.

These comparisons show that simultaneous multithreading out-

performs single-chip multiprocessing in a variety of configurations

because of the dynamic partitioning of functional units. More im-

portant, SM requires many fewer resources (functional units and

instruction issue slots) to achieve a given performance level. For

example, a single 8-thread, 8-issue SM processor with 10 functional

units is 24~o faster than the 8-processor, single-issue MP (Test D),

which has identical issue bandwidth but requires 32 functional units;
to equal the throughput of that 8-thread 8-issue SM, an MP system

requires eight 4-issue processors (Test E), which consume 32 func-

tional units and 32 issue slots per cycle.

Finally, there are further advantages of SM over MP that are not

shown by the experiments:

● Performance with few threads — These results show only the

performance at maximum utilization. The advantage of SM

(over MP) is greater as some of the contexts (processors) be-

come unutilized. An idle processor leaves l/p of an MP idle,
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●

while with SM, the other threads can expand to use the avail-

able resources. This is important when(1) we run parallel code

where the degree of parallelism varies overtime, (2) the perfor-

mance of a small number of threads is important in the target

environment, or (3) the workload is sized for the exact size of

the machine (e.g., 8 threads). In the last case, a processor and

all of its resources is lost when a thread experiences a latency

orders of magnitude larger than what we have simulated (e.g.,

IO).

Granularity and flexibility of design — Our configuration op-

tions are much richer with SM, because the units of design

have finer granularity. That is, with a multiprocessor, we

would typically add computing in units of entire processors.

With simultaneous multithreading, we can benefit from the ad-

dition of a single resource, such as a functional unit, a register

context, or an instruction issue slot; furthermore, all threads

would be able to share in using that resource. Our comparisons

did not take advantage of this flexibility. Processor designers,

taking full advantage of the configurability of simultaneous

multithreading, should be able to construct configurations that

even further out-distance multiprocessing.

For these reasons, as well as the performance and complexity

results shown, we believe that when component densities permit

us to put multiple hardware contexts and wide issue bandwidth

on a single chip, simultaneous multithreading represents the most

efficient organization of those resources.

7 Related Work

We have built on work from a large number of sources in this

paper. In this section, we note previous work on instruction-level

parallelism, on several traditional (coarse-grain and fine-grain) mul-

tithreaded architectures, and on two architectures (the M-Machine

and the Multiscalar architecture) that have multiple contexts active

simultaneously, but do not have simultaneous multithreading. We

also discuss previous studies of architectures that exhibit simulta-

neous multithreading and contrast our work with these in particular.

The data presented in Section 3 provides a different perspective

from previous studies on ILP, which remove barriers to parallelism

(i.e. apply real or ideal latency-hiding techniques) and measure

the resulting performance. Smith, et al., [28] focus on the effects

of fetch, decoding, dependence-checking, and branch prediction

limitations on ILP; Butler, ef al., [5] examine these limitations plus

scheduling window size, scheduling policy, and functional unit con-

figuration; Lam and Wilson [18] focus on the interaction of branches

and ILP; and Wall [32] examines scheduling window size, branch

prediction, register renaming, and aliasing.

Previous work on coarse-grain [2, 27, 31] and fine-grain [28, 3,

15, 22, 19] multithreading provides the foundation for our work on

simultaneous multithreading, but none features simultaneous issu-

ing of instructions from different threads during the same cycle. In

fact, most of these architectures are single-issue, rather than super-

scalar, although Tera has LIW (3-wide) instructions. In Section 4,

we extended these results by showing how fine-grain multithreading

runs on a multiple-lsstse procrasor.

In the M-Machine [7] each processor cluster schedules LIW in-

structions onto execution units on a cycle-by-cycle basis similar to

the Tera scheme. There is no simultaneous issue of instructions

from multiple threads to functional units in the same cycle on indi-

vidual clusters. Franklin’s Multi scalar architecture [13, 12] assigns

fine-grain threads to processors, so competition for execution re-

sources (processors in this case) is at the level of a task rather than

an individual instruction.

Hirata, et al., [16] present an architecture for a multithreaded

superscalar processor and simulate its performance on a parallel

ray-tracing application, They do not simulate caches or TLBs, and

their architecture has no branch prediction mechanism. They show

speedups as high as 5.8 over a single-threaded ;architecture when

using 8 threads. Yamamoto, et al., [34] present an analytical model

of multithreaded superscalarperformance, backed up by simulation.

Their study models perfect branching, perfect caches and a homo-

geneous workload (all threads running the same trace). They report

increases in instruction throughput of 1.3 to 3 with four threads.

Keckler and Dally [17] and Prasadh and Wu [23] describe archi-

tectures that dynamically interleave operations frclm VLIW instruc-

tions onto individual functional units. Keckler and Dally report

speedups as high as 3,12 for some highly parallel applications.

Prasadh and Wu also examine the register file bandwidth require-

ments for 4 threads scheduled in this manner. They use infinite

caches and show a maximum speedup above 3 cwer single-thread

execution for parallel applications.

Daddis and Tomg [6] plot increases in instruction throughput

as a function of the fetch bandwidth and the size of the dispatch

stack. The dispatch stack is the global instruction window that issues

all fetched instructions. Their system has two threads, unlimited

functional units, and unlimited issue bandwidth ((but limited fetch

bandwidth). They report a near doubling of throughput.

In contrast to these studies of multithreaded, superscalararchitec-

tures, we use a heterogeneous, multiprogrammed workload based

on the SPEC benchmarks; we model all sources of latency (cache,

memory, TLB, branching, real instruction latencies) in detail. We

also extend the previous work in evaluating a variety of models of

SM execution. We look more closely at the reasons for the result-

ing performance and address the shared cache issue specifically.

We go beyond comparisons with single-thread processors and com-

pare simultaneous multithreading with other relevant architectures:

fine-grain, superscalar multithreaded architectures and single-chip

multiprocessors.

8 Summary

This paper examined simultaneous multithreading, a technique that

allows independent threads to issue instructions to multiple func-

tional units in a single cycle. Simultaneous multithreading combines

facilities available in both superscalar and multithreaded architec-

tures. We have presented several models of simultaneous mul-

tithreading and compared them with wide superscalar, fine-grain

multithreaded, and single-chip, multiple-issue multiprocessing ar-

chitectures. Our evaluation used execution-driven simulation based

on a model extended from the DEC Alpha 21164,, running a multi-

programmed workload composed of SPEC benchmarks, compiled

for our architecture with the Multiflow trace scheduling compiler.

Our results show the benefits of simultaneous multithreading

when compared to the other architectures, namely:

1. Given our model, a simultaneous multithreaded architec-

ture, properly configured, can achieve 4 times the instruction
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2.

3.

throughput of a single-threaded wide superscalar with the same

issue width (8 instructions per cycle, in our experiments).

While fine-grain multithreading (i.e., switching to a new thread

every cycle) helps close the gap, the simultaneous multithread-

ing architecture still outperforms fine-grain multithreading by

a factor of 2. This is due to the inability of fine-grain multi-

threading to utilize issue slots lost due to horizontal waste.

A simultaneous multithreaded architecture is superior in per-

formance to a multiple-issue multiprocessor, given the same

total number of register sets and functional units. Moreover,

achieving a specific performance goal requires fewer hardware

execution resources with simultaneous multithreading.

The advantage of simultaneous multithreading, compared to the

other approaches, is its ability to boost utilization by dynamically

scheduling functional units among multiple threads. SM also in-

creases hardware design flexibility; a simultaneous multithreaded

architecture can tradeoff functional units, register sets, and issue

bandwidth to achieve better performance, and can add resources in

a fine-grained manner.

Simultaneous multithreading increases the complexity of instruc-

tion scheduling relative to superscalars, and causes shared resource

contention, particularly in the memory subsystem. However, we

have shown how simplified models of simultaneous multithreading

reach nearly the performance of the most general SM model with

complexity in key areas commensurate with that of current super-

scalars; we also show how properly tuning the cache organization

can both increase performance and make individual threads less

sensitive to multi-thread contention.
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