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Abstract

Simultaneous multithreading is a technique that permits multiple

independent threads to issue multiple instructions each cycle. In

previous work we demonstrated the performance potential of si-

multaneous multithreading, based on a somewhat idealized model.

In this paper we show that the throughput gains from simultaneous

multithreading can be achieved without extensive changes to a con-

ventional wide-issue superscalar, either in hardware structures or

sizes. We present an architecture for simultaneous multithreading

that achieves three goals: (1) it minimizes the architectural impact

on the conventional superscalar design, (2) it has minimal perfor-

mance impact on a single thread executing alone, and (3) it achieves

significant throughput gains when running multiple threads. Our

simultaneous multithreading architecture achieves a throughput of

5.4 instructions per cycle, a 2.5-fold improvement over an unmod-

ified superscalar with similar hardware resources. This speedup is

enhanced by an advantage of multithreading previously unexploited

in other architectures: the ability to favor for fetch and issue those

threads most efficiently using the processor each cycle, thereby

providing the “best” instructions to the processor.

1 Introduction

Simultaneous multithreading (SMT) is a technique that permits mul-

tiple independent threads to issue multiple instructions each cycle

to a superscalar processor’s functional units. SMT combines the

multiple-instruction-issue features of modem superscalars with the

latency-hiding ability of multithreaded architectures. Unlike con-

ventional multithreaded architectures [1, 2, 15, 23], which depend

on fast context switching to share processor execution resources, all

hardware contexts in an SMT processor are active simultaneously,

competing each cycle for all available resources. This dynamic

sharing of the functional units allows simultaneous multi thread-

ing to substantially increase throughput, attacking the two major

impediments to processor utilization — long Iatencies and limited

per-thread parallelism. lltllsen, et al., [27] showed the potential of
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an SMT processor to achieve significantly higher throughput than

either a wide superscalar or a multithreaded processor, That paper

also demonstrated the advantages of simultaneous multithreading

over multiple processors on a single chip, due to SMT’S ability to

dynamically assign execution resources where needed each cycle.

Those results showed SMT’S potential based on a somewhat ide-

alized model. This paper extends that work in four significant ways.

First, we demonstrate that the throughput gains of simultaneous mul-

tithreading are possible withm~ extensive changes to a conventional,

wide-issue superscalar processor. We propose an architecture that

is more comprehensive, realistic, and heavily leveraged off existing

superscalar technology. Our simulations show that a minimal im-

plementation of simultaneous multithreading achieves throughput

1.8 times that of the unmodified superscala~ small tuning of this

architecture increases that gain to 2.5 (reaching throughput as high

as 5.4 instructions per cycle). Second, we show that SMT need not

compromise single-thread performance. Third, we use our more

detailed architectural model to analyze and relieve bottlenecks that

did not exist in the more idealized model. Fourth, we show how

simultaneous multithreading creates an advantage previously unex-

ploitable in other architectures: namely, the ability to choose the

“best” instructions, from all threads, for both fetch and issue each

cycle. By favoring the threads most efficiently using the processor,

we can boost the throughput of our limited resources. We present

several simple heuristics for this selection process, and demonstrate

how such heuristics, when applied to the fetch mechanism, can

increase throughput by as much as 37%.

This paper is organized as follows. Section 2 presents our baseline

simultaneous multithreading architecture, comparing it with exist-

ing superscalar technology. Section 3 describes our simulator and

our workload, and Section 4 shows the performance of the baseline

architecture. In Section 5, we examine the instruction fetch pro-

cess, present several heuristics for improving it based on intelligent

instruction selection, and give performance results to differentiate

those heuristics. Section 6 examines the instruction issue process in

a similar way. We then use the best designs chosen from our fetch

and issue studies in Section 7 as a basis to discover bottlenecks

for further performance improvement. We discuss related work in

Section 8 and summarize our results in Section 9.

This research was supported by ONR grants NOO014-92-J-1395 and
NOO014-94-1-1136, NSF grants CCR-9200832 and CDA-9123308, NSF
PYI Award MIP-9058439, the Washington Technology Center, Digitat
Equipment Corporation, and fellowships from Intel and the Computer Mea-
surement Group.

191



QFetch

Unit p~
+--- Pc

t

Instruction Cache

r——
I I I I

integer

instruction queue
I I I I

, .++q=jji=jjl

infld-store

units

Figure 1: Our base simultaneous multithreading hardware architecture.

2 A Simultaneous Multithreading Processor

Architecture

In this section we present the architecture of our simultaneous mul-

tithreading processor. We show that the throughput gains provided

by simultaneous multithreading are possible without adding undue

complexity to a conventional superscalar processor design.

Our SMT architecture is derived from a high-performance, out-

of-order, superscalar architecture (Figure 1, without the extra pro-

gram counters) which represents a projection of current superscalar

design trends 3-5 years into the future. This superscalar proces-

sor fetches up to eight instructions per cycle; fetching is controlled

by a conventional system of branch target buffer, branch predic-

tion, and subroutine return stacks. Fetched instructions are then

decoded and passed to the register renaming logic, which maps

logical registers onto a pool of physical registers, removing false

dependence. Instructions are then placed in one of two instruc-

tion queues. Those instruction queues are similar to the ones used

by the MIPS R1 0000 [20] and the HP PA-8000 [21], in this case

holding instructions until they are issued. Instructions are issued to

the functional units out-of-order when their operands are available.

After completing execution, instructions are retired in-order, freeing

physical registers that are no longer needed.

Our SMT architecture is a straightforward extension to this con-

ventional superscalar design. We made changes only when neces-

sary to enable simultaneous multithreading, and in general, stmc-

tures were not replicated or resized to support SMT or a multi-

threaded workload. Thus, nearly all hardware resources remain

completely available even when there is only a single thread in

the system. The changes necessary to support simultaneous multi-

threading on that architecture are:

o

●

●

e

multiple program counters and some mechanism by which the

fetch unit selects one each cycle,

a separate return stack for each thread for predicting subroutine

return destinations,

per-thread instruction retirement, instruction queue flush, and

trap mechanisms,

a thread id with each branch target buffer entry to avoid pre-

dicting phantom branches, and

● a larger register file, to support logical registers for all threads

plus additional registers for register renaming. The size of

the register file affects the pipeline (we add two extra stages)

and the scheduling of load-dependent instructions, which we

discuss later in this section.

Noticeably absent from this list is a mechanism to enable simulta-

neous multithreaded scheduling of instructions onto the functional

units. Because any apparent dependence between instructions from

different threads are removed by the register renaming phase, a con-

ventional instruction queue (IQ) designed for dynamic scheduling

contains all of the functionality necessary for simultaneous mul-

tithreading, The instruction queue is shared by all threads and an

instruction from any thread in the queue can issue when its operands

are available.

We fetch from one program counter (PC) each cycle. The PC is

chosen, in round-robin order, from among those threads not already

experiencing an I cache miss. This scheme provides simultaneous

multithreading at the point of issue, but only fine-grain multithread-

ing of the fetch unit. We will look in Section 5 at ways to extend

simultaneous multithreading to the fetch unit. We also investigate

alternative thread priority mechanisms for fetching.

A primary impact of multithreading on our architecture is on the

size of the register file. We have a single register file, as thread-

specitic logical registers are mapped onto a completely shared phys-

ical register file by the register renaming. To support eight threads,

we need a minimum of 8*32= 256 physical integer registers (for a

32-register instruction set architecture), plus more to enable register

renaming. Access to such a large register tile will be slow, almost

certainly affecting the cycle time of the machine.

To account for the size of the register tile, we take two cycles to

read registers instead of one. In the first cycle values are read into

a buffer closer to the functional units. The instruction is sent to a

similar buffer at the same time. The next cycle the data is sent to a

functional unit for execution. Writes to the register file are treated

similarly, requiring an extra register write stage. Figure 2 shows

the pipeline modified for two-phase register access, compared to the

pipeline of the original superscalar.

The two-stage register access has several ramifications on our

architecture. First, it increases the pipeline distance between~etch

and exec, increasing the branch misprediction penalty by 1 cycle.

Second, it takes an extra cycle to write back results, requiring an

extra level of bypass logic. Third, increasing the distance between
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Figure 2: The pipeline of (a) a conventional superscalar processor and (b) that pipeline modified for an SMT processor, along with
some implications of those pipelines.

queue and exec increases the period during which wrong-path in-

structions remain in the pipeline after a misprediction is discovered

(the misqueue penalty in Figure 2). Wrong-path instructions are

those instructions brought into the processor as a result of a branch

misprediction. Those instructions consume instruction queue slots,

renaming registers and possibly issue slots, all of which, on an SMT

processor, could be used by other threads.

This pipeline does not increase the inter-instruction latency be-

tween most instructions. Dependent (single-cycle latency) instmc-

tions can still be issued on consecutive cycles, for example, as long

as inter-instruction latencies are predetermined. That is the case for

all instructions but loads. Since we are scheduling instructions a

cycle earlier (relative to the exec cycle), load-hit latency increases

by one cycle (to two cycles). Rather than suffer this penalty, we

schedule load-dependent instructions assuming a 1-cycle data la-

tency, but squash those instructions in the case of an L1 cache miss

or a bank conflict. There are two performance costs to this solution,

which we call optimistic issue. Optimistically issued instructions

that get squashed waste issue slots, and optimistic instructions must

still be held in the IQ an extra cycle after they are issued, until it is

known that they won’t be squashed.

The last implication of the two-phase register access is that there

are two more stages between rename and commit, thus increasing

the minimum time that a physical register is held by an in-flight

instruction. This increases the pressure on the renaming register

pool.

We assume, for each machine size, enough physical registers

to support all active threads, plus 100 more registers to enable

renaming, both for the integer file and the floating point file; i.e., for

the single-thread results, we model 132 physical integer registers,

and for an 8-thread machine, 356. We expect that in the 3-5 year

time-frame, the scheme we have described will remove register file

access from the critical path for a 4-thread machine, but 8 threads

will still be a significant challenge. Nonetheless, extending our

results to an 8-thread machine allows us to see trends beyond the 4-

thread numbers and anticipates other solutions to this problem. The

number of registers available for renaming determines the number

of instructions that can be in the processor between the rename stage

and the commit stage.

This architecture allows us to address several concerns about

simultaneous multithreaded processor design. In particular, this

paper shows tha~

●

●

●

●

●

Instruction scheduling is no more complex than on a dynami-

cally scheduled superscalar.

Register file data paths are no more complex than in the su-

perscalar, and the performance implications of the register file

and its extended pipeline are small.

The required instruction fetch throughput is attainable, even

without any increase in fetch bandwidth.

Unmodified (for an SMT workload) cache and branch predic-

tion structures do not thrash on that workload.

Even aggressive superscalar technologies, such as dynamic

scheduling and speculative execution, are not sufficient to take

full advantage of a wide-issue processor without simultaneous

multithreading.

We have only presented an outline of the hardware architecture

to this point the next section provides more detail.

2.1 Hardware Details

The processor contains 3 floating point functional units and 6 integer

units; four of the six integer units also execute loads and stores. The

peak issue bandwidth out of the two instruction queues is therefore

nine; however, the throughput of the machine is bounded by the

peak fetch and decode bandwidths, which are eight instructions per

cycle. We assume that all timctional units are completely pipelined.

Table 1 shows the instruction latencies, which are derived from the

Alpha 21164 [8].

We assume a 32-entry integer instruction queue (which han-

dles integer instructions and all Ioad/store operations) and a 32-

entry tloating point queue, not significantly larger than the HP PA-

8000 [21], which has two 28-entry queues.

The caches (Table 2) are multi-ported by interleaving them into

banks, similar to the design of Sohi and Franklin [26]. We model

lockup-free caches and TLBs. TLB misses require two full memory

accesses and no execution resources. We model the memory sub-

system in great detail, simulating bandwidth limitations and access

conflicts at multiple levels of the hierarchy, to address the concern
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Instruction Class II Latency

integer multiply 8,16

conditional move

compare

all other integer

FP divide

all other FP

load (cache hit)

2

0

1

17,30

4

1

Table 1: Simulated instruction latencies

I II

Size 32 KB

II ICache DCache L2 L3

32 KB 256 KB 2 MB

Associativity DM DM 4-way DM

Line Size 64 64 64 64

Banks 8 8 8 1
11 i 1 1

Transfer time 1 cvcle 1 1 4

Accesses/cycle II var (1 -4) 4 1 1/4

Cache fill time 2 cvcles 2 2 8

Latency to

next level 6 6 12 62

Table 2: Details of the cache hierarchy

that memory throughput could be a limiting condition for simulta-

neous multithreading.

Each cycle, one thread is given control of the fetch unit, chosen

from among those not stalled for an instmction cache (I cache) miss.

If we fetch from multiple threads, we never attempt to fetch from

threads that conflict (on an I cache bank) with each other, although

they may conflict with other I cache activity (cache fills).

Branch prediction is provided by a decoupled branch target buffer

(BTB) and pattern history table (PHT) scheme [4]. We use a 256-

entry BTB, organized as four-way set associative. The 2K x 2-bit

PHT is accessed by the XOR of the lower bits of the address and the

global history register [18, 30]. Return destinations are predicted

with a 12-entry return stack (per context).

We assume an efficient, but not perfect, implementation of dy-

namic memory disambiguation. This is emulated by using only part

of the address (10 bits) to disambiguate memory references, so that

it is occasionally over-conservative.

3 Methodology

The methodology in this paper closely follows the simulation and

measurement methodology of [27]. Our simulator uses emulation-

based, instruction-level simulation, and borrows significantly from

MIPSI [22], a MIPS-based simulator. The simulator executes un-

modified Alpha object code and models the execution pipelines,

memory hierarchy, TLBs, and the branch prediction logic of the

processor described in Section 2.

In an SMT processor a branch misprediction introduces wrong-

path instructions that interact with instructions from other threads.

To model this behavior, we fetch down wrong paths, introduce those

instructions into the instruction queues, track their dependence,

and issue them. We eventually squash all wrong-path instructions

a cycle after a branch misprediction is discovered in the exec stage.

Our throughput results only count useful instructions.

Our workload comes primarily from the SPEC92 benchmark

suite [7]. We use five floating point programs (alvinn, doduc, fpppp,

ora, and tomcatv) and two integer programs (espresso and xlisp)

from that suite, and the document typesetting program TeX. We

assign a distinct program to each thread in the processor the multi-

programmed workload stresses our architecture more than a parallel

program by presenting threads with widely varying program char-

acteristics and with no overlap of cache, TLB or branch prediction

usage. To eliminate the effects of benchmark differences, a single

data point is composed of 8 runs, each T * 300 million instructions

in length, where T is the number of threads. Each of the 8 runs uses

a different combination of the benchmarks.

We compile each program with the Multiflow trace scheduling

compiler [17], modified to produce Alpha code. In contrast to [27],

we turn off trace scheduling in the compiler for this study, for two

reasons. In our measurements, we want to differentiate between

useful and useless speculative instructions, which is easy with hard-

ware speculation, but not possible for software speculation with our

system. Also, software speculation is not as beneficial on an ar-

chitecture which features hardware speculation, and in some cases

is harmful. However, the Multiflow compiler is still a good choice

for our compilation engine, because of the high quality of the loop

unrolling, instruction scheduling and alignment, and other opti-

mization, as well as the ease with which the machine model can be

changed. The benchmarks are compiled to optimize single-thread

performance on the base hardware.

4 Performance of the Base Hardware Design

In this section we examine the performance of the base architec-

ture and identify opportunities for improvement. Figure 3 shows

that with only a single thread running on our SMT architecture, the

throughput is less than 2% below a superscalar without SMT sup-

port. The drop in throughput is due to the longer pipeline (described

in Section 2) used by the SMT processor. Its peak throughput is

84% higher than the superscalar. This gain is achieved with virtually

no tuning of the base architecture for simultaneous multithreading.

This design combines low single-thread impact with high speedup

for even a few threads, enabling simultaneous multithreading to

reap benefits even in an environment where multiple processes are

running only a small fraction of the time, We also note, however,

that the throughput peaks before 8 threads, and the processor uti-

lization, at less than 50% of the 8-issue processor, is well short of

the potential shown in [27].

We make several conclusions about the potential bottlenecks of

this system as we approach 8 threads, aided by Figure 3 and Table 3.

Issue bandwidth is clearly not a bottleneck, as the throughput rep-

resents a fraction of available issue bandwidth, and our data shows

that no functional unit type is being overloaded. We appear to

have enough physical registers. The caches and branch prediction

logic are being stressed more heavily at 8 threads, but we expect

the latency-hiding potential of the additional threads to make up for

those drops. The culprit appears to be one or more of the following

three problems: (1) IQ size — IQ-full conditions are common, 12

to 21% of cycles total for the two queues; (2) fetch throughput —

even in those cycles where we don’t experience an IQ-frill condition,

our data shows that we are sustaining only 4,2 useful instructions

fetched per cycle (4.5 including wrong-path); and (3) lack of par-

allelism — although the queues are reasonably full, we find fewer

194



2 4 6 8

Number of Threads

Figure 3: Instruction throughput for the base hardware archi-

tecture.

than four out of, on average, 27 instructions per cycle to issue. We

expect eight threads to provide more parallelism, so perhaps we

have the wrong instructions in the instruction queues.

The rest of this paper focuses on improving this base architecture.

The next section addresses each of the problems identified here with

different fetch policies and IQ configurations. Section 6 examines

ways to prevent issue waste, and Section 7 re-examines the imlproved

architecture for new bottlenecks, identifying directions for further

improvement.

5 The Fetch Unit — In Search of Usefud In-

structions

In this section we examine ways to improve fetch throughput without

increasing the fetch bandwidth. Our SMT architecture shares a

single fetch unit among eight threads. We can exploit the high level

of competition for the fetch unit in two ways not possible with single-

threaded processors: (1) the fetch unit can fetch from multiple

threads at once, increasing our utilization of the fetch banclwidth,

and (2) it can be selective about which thread or threads to fetch

from. Because not all paths provide equally useful instructions in a

particular cycle, an SMT processor can benefit by fetching from the

thread(s) that will provide the best instructions.

We examine a variety of fetch architectures and fetch policies

that exploit those advantages. Specifically, they attempt to improve

fetch throughput by addressing three factors: fetch efficiency, by

partitioning the fetch unit among threads (Section 5.1); fetch ef-

fectiveness, by improving the quality of the instructions fetched

(Section 5,2); and fetch availability, by eliminating conditions that

block the fetch unit (Section 5.3).

5.1 Partitioning the Fetch Unit

Recall that our baseline architecture fetches up to eight instructions

from one thread each cycle. The frequency of branches in typical

instruction streams and the misalignment of branch destkations

make it difficult to fill the entire fetch bandwidth from one thread,

Nurr

Metric 1

out-of-registers (% of cycles) 3%

I cache miss rate 2.5%

-misses per thousand instructions 6

D cache miss rate 3.1%

-misses per thousand instructions 12

L2 cache miss rate 17.6%

-misses per thousand instructions 3

L3 cache miss rate 55.1%

-misses per thousand instructions 1

branch misprediction rate 5.O’%0

jump misprediction rate 2+2%

integer IQ-tldl (7o of cycles) 7%

fp IQ-full (% of cycles) 14%

avg (combined) queue population 25

wrong-path instructions fetched 24%

wrong-path instructions issued 9%

er of T]

4

7%

7.8%

17

6.5%

25

15.0%

5

33.6%

3

7.4%

6.4%

10%
9%

25

7%

4%

cads

8

3%

14.1%

29

11.3%

43

12.5%

9

45.4%

4

9.1%

12.9%

9%

3%

27

7%

3%

Table 3: The result of increased multithreading on some low-

Ievel metrics for the base architecture.

even for smaller block sizes [5, 24]. In this processor, we can spread

the burden of filling the fetch bandwidth among multiple threads.

For example, the probability of finding four instructions from each

of two threads should be greater than that of finding eight from one

thread.

In this section, we attempt to reduce fetch block fragmentation

(our term for the various factors that prevent us from fetching the

maximum number of instructions) by fetching from multiple threads

each cycle, while keeping the maximum fetch bandwidth (but not

necessarily the I cache bandwidth) constant. We evaluate several

fetching schemes, which are labeled alg.numl.num2, where alg is

the fetch selection method (in this section threads are always selected

using around-robin priority scheme), numl is the number of threads

that can fetch in 1 cycle, and num2 is the maximum number of

instructions fetched per thread in 1 cycle. The maximum number

of total instructions fetched is always limited to eight. For each

of the fetch partitioning policies, the cache is always 32 kilobytes

organized into 8 databanks; a given bank can do just one access per

cycle.

RR.1.8 — This is the baseline scheme from Section 4. Each

cycle one thread fetches as many as eight instructions. The thread

is determined by a round-robin priority scheme from among those

not currently suffering an I cache miss. In this scheme the I cache is

indistinguishable from that on a single-threaded superscalar. Each

cache bank has its own address decoder and output drivers; each

cycle, only one of the banks drives the cache output bus, which is 8

instructions (32 bytes) wide.

RR.2.4, RR.4.2 — These schemes fetch fewer instructions per

thread from more threads (four each from two threads, or two each

from four threads). If we try to partition the fetch bandwidth too

finely, however, we may suffer threadshortage, where fewer threads

are available than are required to fill the fetch bandwidth.

For these schemes, multiple cache addresses are driven to each

cache data bank, each of which now has a multiplexer before its

address decoder, to select one cache index per cycle. Since the cache

banks are single-ported, bank-conflict logic is needed to ensure that

each address targets a separate bank. RR.2.4 has two cache output
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Figure 4: Instruction throughput for the different instruction

cache interfaces with round-robin instruction scheduling.

buses, each four instructions wide, while RR.4.2 has four output

buses, each two instructions wide. For both schemes, the total width

of the output buses is 8 instructions (identical to that in RR. 1.8), but

additional circuitry is needed so each bank is capable of driving any

of the multiple (now smaller) output buses, and is able to select one

or none to drive in a given cycle. Also, the cache tag store logic

must be replicated or multiple-ported in order to calculate hithniss

for each address looked up per cycle.

Thus, the hardware additions are: the address roux; multiple ad-

dress buses; selection logic on the output drivers; the bank conflict

logic; and multiple hithuiss calculations. The changes required for

RR.2.4 would have a negligible impact on area and cache access

time. The changes for RR.4.2 are more extensive, and would be

more difficult to do without affecting area or access time. These

schemes actually reduce the latency in the decode and rename stages,

as the maximum length of dependency chains among fetched in-

structions is reduced by a factor of 2 and 4, respectively.

RR.2.8 — This scheme attacks fetch block fragmentation witbout

suffering from thread shortage by fetching eight instructions more

flexibly from two threads. This can be implemented by reading an

eight-instruction block for each thread (16 instructions total), then

combining them. We take as many instructions as possible from the

first thread, then fill in with instructions from the second, up to eight

total. Like RR.2.4, two addresses must be routed to each cache

bank, then multiplexed before the decodec bank-conflict logic and
two hithniss calculations per cycle are necessary; and each bank

drives one of the two output buses. Now, however, each output

bus is eight instructions wide, which doubles the bandwidth out of

the cache compared to any of the previous schemes. This could be

done without greatly affecting area or cycle time, as the additional

bussing could probably be done without expanding the cache layout.

In addition, logic to select and combine the instructions is necessary,

which might or might not require an additional pipe stage. Our

simulations assume it does not.

Figure 4 shows that we can get higher maximum throughput by

splitting the fetch over multiple threads. For example, the RR.2.4

scheme outperforms RR. 1.8 at 8 threads by 9%. However, better

maximum throughput comes at the cost of a 12?70single-thread

penalty; in fact, RR.2.4 does not surpass RR. 1.8 until 4 threads,

The RR,4.2 scheme needs 6 threads to surpass RR. 1.8 and never

catches the 2-thread schemes, suffering from thread shortage.

The RR.2.8 scheme provides the best of both worlds: few-

tbreads performance like RR. 1.8 and many-threads performance

like RR.2.4. However, the higher throughput of this scheme puts

more pressure on the instruction queues, causing IQ-full conditions

at a rate of 18910(integer) and 8% (fp) with 8 threads,

With the RR.2.8 scheme we have improved the maximum

throughput by 10% without compromising single-thread perfor-

mance. This was achieved by a combination of (1) partitioning

the fetch bandwidth over multiple threads, and (2) making that par-

tition flexible. This is the same approach (although in a more limited

fashion here) that simultaneous multithreading uses to improve the

throughput of the functional units [27].

5.2 Exploiting Thread Choice in the Fetch Unit

The efficiency of the entire processor is affected by the quality of

instructions fetched. A multithreaded processor has a unique ability

to control that factor. In this section, we examine fetching policies

aimed at identifying the “best” thread or threads available to fetch

each cycle. Two factors make one thread less desirable than another.

The first is the probability that a thread is following a wrong path as

a result of an earlier branch misprediction. Wrong-path instructions

consume not only fetch bandwidth, but also registers, IQ space,

and possibly issue bandwidth. The second factor is the length of

time the fetched instructions will be in the queue before becoming

issuable. We maximize the throughput of a queue of bounded size

by feeding it instructions that will spend the least time in the queue.

If we fetch too many instructions that block for a long time, we

eventually fill the IQ with unissuable instructions, a condition we

call IQ clog. This restricts both fetch and issue throughput, causing

the fetch unit to go idle and preventing issuable instructions from

getting into the IQ. Both of these factors (wrong-path probability

and expected queue time) improve over time, so a thread becomes

more desirable as we delay fetching it.

We define several fetch policies, each of which attempts to im-

prove on the round-robin priority policy using feedback from other

parts of the processor, The first attacks wrong-path fetching, the

others attack IQ clog. They are:

BRCOUNT — Here we attempt to give highest priority to those

threads that are least likely to be on a wrong path. We do this

by counting branch instructions that are in the decode stage, the

rename stage, and the instruction queues, favoring those with the

fewest unresolved branches.

MISSCOUNT — This policy detects an important cause of IQ

clog. A long memory latency can cause dependent instructions to

back up in the IQ waiting for the load to complete, eventually filling

the queue with blocked instructions from one thread. This policy

prevents that by giving priority to those threads that have the fewest

outstanding D cache misses.

ICOUNT — This is a more general solution to IQ clog. Here

priority is given to threads with the fewest instructions in decode,

rename, and the instruction queues. This achieves three purposes:

(1) it prevents any one thread from filling the IQ, (2) it gives highest
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Figure 5: Instruction throughput for fetching based on several priority heuristics, all compared to the baseline round-robin scheme.

The results for 1 thread are-tl-e same for all schemes, and thus not shown.

priority to threads that are moving instructions through the IQ most

efficiently, and (3) it provides a more even mix of instructions from

the available threads, maximizing the parallelism in the queues. If

cache misses are the dominant cause of IQ clog, MISSCOUNT

may perform better, since it gets cache miss feedback to the fetch

unit more quickly. If the causes are more varied, ICOUNT should

perform better.

IQPOSN — Like ICOUNT, IQPOSN strives to minimize IQ clog

and bias toward efficient threads. It gives lowest priority to those

threads with instructions closest to the head of either the integer

or floating point instruction queues (the oldest instruction is at the

head of the queue). Threads with the oldest instructions will be

most prone to IQ clog, and those making the best progress will

have instructions farthest from the head of the queue. This policy

does not require a counter for each thread, as do the previc~us three

policies.

Like any control system, the efficiency of these mechanisms is

limited by the feedback latency resulting, in this case, from feeding

data from later pipeline stages back to the fetch stage. For example,

by the time instructions enter the queue stage or the exec s[tage, the

information used to fetch them is three or (at least) six cy(sles old,

respectively.

Both the branch-counting and the miss-counting policies tend to

produce frequent ties. In those cases, the tie-breaker is round-robin

priority.

Figure 5 shows that all of the fetch heuristics provide speedup

over round-robin. Branch counting and cache-miss counting pro-

vide moderate speedups, but only when the processor is saturated

with many threads. Instruction counting, in contrast, produces more

significant improvements regardless of the number of threads. IQ-

POSN provides similar results to ICOUNT, being within 4% at all

times, but never exceeding it.

The branch-counting heuristic does everything we ask of it. It

reduces wrong-path instructions, from 8,2% of fetched instructions

to 3.6%, and from 3.6% of issued instructions to 0.8% (RR..1.8 vs.

BRCOUNT. 1.8 with eight threads). And it improves throughput

by as much as 8%. Its weakness is that the wrong-path problem

it solves is not large on this processor, which has already attacked

the problem with simultaneous multithreading. Even with the RR

scheme, simultaneous multithreading reduces fetched wrong-path

instructions from 16% with one thread to 8% with 8 threads.

Cache miss counting also achieves throughput gains as high as

8% over RR, but in general the gains are much lower. It is not

particularly effective at reducing IQ clog, as we get IQ-full condi-

tions 12% of the time on the integer queue and 14% on the floating

point queue (for MISSCOUNT.2.8 with 8 threads). These results

indicate that IQ clog is more than simply the result of long memory

Iatencies,

1 8 Threads

Metric Thread RR ICOUNT

integer IQ-frill (% of cycles) 7% 18% 6%

fp IQ-full (% of cycles) 14% 8% 1%

avg queue population 25 38 30

out-of-registers (% of cycles) 3% 8% 5%

Table 4: Some low-level metrics for the round-robin and

instruction-counting priority policies (and the 2.8 fetch parti-

tioning scheme).

The instruction-counting heuristic provides instruction through-

put as high as 5.3 instructions per cycle, a throughput gain over the

unmodified superscalar of 2.5. It outperforms the best round-robin

result by 23~0, Instruction counting is as effective at 2 and 4 threads

(in benefit over round-robin) as it is at 8 threads. It nearly elimin-

ates IQ clog (see IQ-full results in Table 4) and greatly improves

the mix of instructions in the queues (we are finding more issuable
instructions despite having fewer instructions in the two queues).

Intelligent fetching with this heuristic is of greater benefit than par-

titioning the fetch unit, as the ICOUNT. 1.8 scheme consistently
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Figure 6: Instruction throughput for the 64-entry queue and early I cache tag lookup, when coupled with the ICOUNT fetch policy.

outperforms RR.2.8.

Table 4 points to a surprising result. As a result of simultaneous

multithreaded instruction issue and the ICOUNT fetch heuristics, we

actually put less pressure on the same instruction queue with eight

threads than with one, having sharply reduced IQ-full conditions. It

also reduces pressure on the register file (vs. RR) by keeping fewer

instructions in the queue.

BRCOUNT and ICOUNT each solve different problems, and

perhaps the best performance could be achieved from a weighted

combination of them, however, the complexity of the feedback

mechanism increases as a result. By itself, instruction counting

clearly provides the best gains.

Given our measurement methodology, it is possible that the

throughpu~ increases could be overstated if a fetch policy simply

favors those threads with the most inherent instruction-level paral-

lelism or the best cache behavior, thus achieving improvements that

would not be seen in practice. However, with the ICOUNT.2.8 pol-

icy, the opposite happens. Our results show that this scheme favors

threads with lower single-thread ILP, thus its results include a higher

sample of instructions from the slow threads than either the super-

scalar results or the RR results. If anything, then, the ICOUNT.2.8

improvements are understated.

In summary, we have identified a simple heuristic that is very suc-

cessful at identifying the best threads to fetch. Instruction counting

dynamically biases toward threads that will use processor resources

most efficiently, thereby improving processor throughput as well

as relieving pressure on scarce processor resources: the instruction

queues and the registers.

5.3 Unblocking the Fetch Unit

By fetching from multiple threads and using intelligent fetch heuris-

tics, we have significantly increased fetch throughput and efficiency.

The more efficiently we are using the fetch unit, the more we stand to

lose when it becomes blocked. In this section we examine schemes

that prevent two conditions that cause the fetch unit to miss fetch

opportunities, specifically IQ-full conditions and I cache misses.

The two schemes are:

BIGQ — The primary restriction on IQ size is not the chip area,

but the time to search it therefore we can increase its size as long as

we don’t increase the search space, In this scheme, we double the

sizes of the instruction queries, but only search the first 32 entries

for issue. This scheme allows the queues to buffer instructions from

the fetch unit when the IQ overflows.

ITAG — When a thread is selected for fetching but experiences a

cache miss, we lose the opportunity to fetch that cycle. If we do the

I cache tag lookups a cycle early, we can fetch around cache misses:

cache miss accesses are still started immediately, but only non-

missing threads are chosen for fetch. Because we need to have the

fetch address a cycle early, we essentially add a stage to the front of

the pipeline, increasing the misfetch and mispredict penalties. This

scheme requires one or more additional ports on the I cache tags,

so that potential replacement threads can be looked up at the same

time.

Although the BIGQ scheme improves the performance of the

round-robin scheme (not shown), 1.5-2910across the board, Figure 6

shows that the bigger queues add no significant improvement to the

ICOUNT policy. In fact, it is actually detrimental for several thread

configurations. This is because the buffering effect of the big queue

scheme brings instructions into the issuable part of the instruction

queue that may have been fetched many cycles earlier, using priority

information that is now out-of-date. The results indicate that using

up-to-date priority information is more important than buffering.

These results show that intelligent fetch heuristics have made the

extra instruction queue hardware unnecessary. The bigger queue by

itself is actually less effective at reducing IQ clog than the ICOUNT

scheme. With 8 threads, the bigger queues alone (131GQ,RR.2.8)

reduce IQ-frill conditions to 11 ‘%0(integer) and 0% (fp), while in-

struction counting alone (ICOUNT.2.8) reduces them to 6% and

19.. Combining BIGQ and ICOUNT drops them to 3% and O?ZO.

Early I cache tag lookup boosts throughput as much as 8%
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Issue Ntnrnber of Threads Useless Instructions

Method

- i m : i i 0’:

Table 5: Instruction throughput (instructions per cycle) for the issue priority schemes, and the percentage of useless instructions

issued when running with 8 threads.

over ICOUNT. It is most effective when fetching one thread

(ICOUNT1 .8, where the cost of a lost fetch slot is greater). How-

ever, it improves the ICOUNT.2.8 results no more than 270, as the

flexibility of the 2,8 scheme already hides some of the lost fetch

bandwidth. In addition, ITAG lowers throughput with few threads,

where competition for the fetch slots is low and the cost of the longer

tnisprediction penalty is highest.

Using a combination of partitioning the fetch unit, intelligent

fetching, and early I cache tag Iookups, we have raised the peak

performance of the base SMT architecture by 37% (5.4 instructions

per cycle vs. 3.9). Our maximum speedup relative to a conventional

superscalar has gone up proportionately, from 1.8 to 2.5 times the

throughput. That gain comes from exploiting characteristics of a

simultaneous multithreading processor not available to a single-

threaded machine.

High fetch throughput makes issue bandwidth a more critical

resource, We focus on this factor in the next section.

6 Choosing Instructions For Issue

Much as the fetch unit in a simultaneous multithreading processor

can take advantage of the ability to choose which threads to fetch,

the issue logic has the ability to choose instructions for issue. A

dynamically scheduled single-threaded processor may have enough

ready instructions to be able to choose between them, but with an

SMT processor the options are more diverse. Also, because we have

higher throughput than a single-threaded superscalar processor, the

issue bandwidtb is potentially a more critical resource, so avoiding

issue slot waste may be more beneficial.

In this section, we examine issue priority policies aimed at pre-

venting issue waste. Issue slot waste comes from two sources,

wrong-path instructions (resulting from mispredicted branches) and

optimistically issued instructions, Recall (from Section 2) that we

optimistically issue load-dependent instructions a cycle before we

have D cache hit information. In the case of a cache miss or bank

conflict, we have to squash the optimistically issued instruction,

wasting that issue slot.

In a single-threaded processor, choosing instructions least likely

to be on a wrong path is always achieved by selecting the oldest

instructions (those deepest into the instruction queue). In a simul-

taneous multithreading processor, the position of an instruction in

the queue is no longer the best indicator of the level of speculation

of that instruction, as right-path instructions are intermingled in the

queues with wrong-path.

The policies we examine are OLDEST-FIRST, our default issue
algorithm up to this point, OPT-LAST and SPECLAST, which

only issue optimistic and speculative instructions (more specifi-

cally, any instruction behind a branch from the same thread in the

instruction queue), respectively, after all others have been issued,

and BRANCHYIRST, which issues branches as early as possible in

order to identify tnispredicted branches quickly. The default fetch

algorithm for each of these schemes is ICOUNT.2.8.

The strong message of Table 5 is that issue bandwidth is not yet

a bottleneck. Even when it does become a critical resource, the

amount of improvement we get from not wasting it is likely to be

bounded by the percentage of our issue bandwidth given to useless

instructions, which currently stands at 770 (4~0 wrong-path instruc-

tions, 3% squashed optimistic instructions). Because we don’t often

have more issuable instructions than functional units, we aren’t able

to and don’t need to reduce that significantly. The SPEC_LAST

scheme is unable to reduce the number of useless instructions at

all, while OPTLAST brings it down to 6%. BRANCHYIRST

actually increases it to 10%, as branch instructions are often load-

dependent therefore, issuing them as early as possible often means

issuing them optimistically. A combined scheme (OPTLAST and

BRANCHJTFLST) might reduce that side effect, but is unlikely to

have much effect on throughput.

Since each of the alternate schemes potentially introduces mul-

tiple passes to the IQ search, it is convenient that the simplest

mechanism still works well.

7 Where Are the Bottlenecks Now?

We have shown that proposed changes to the instruction queues

and the issue logic are unnecessary to achieve the best performance

with this architecture, but that significant gains can be produced by

moderate changes to the instruction fetch mechanisms. Here we ex-

amine that architecture more closely (using ICOUNT.2.8 as our new

baseline), identifying likely directions for further improvements.

In this section we present results of experiments intended to iden-

tify bottlenecks in the new design. For components that are potential

bottlenecks, we quantify the size of the bottleneck by measuring the

impact of relieving it. For some of the components that are not

bottlenecks, we examine whether it is possible to simplify those

components without creating a bottleneck. Because we are iden-

tifying bottlenecks rather than proposing architectures, we are no

longer bound by implementation practicalities in these experiments.

The Issue Bandwidth — The experiments in Section 6 indicate

that issue bandwidth is not a bottleneck. In fact, we found that even

an infinite number of fictional units increases throughput by only

0.5% at 8 threads.

Instruction Queue Size — Results in Section 5 would, similarly,

seem to imply that the size of the instruction queues was not a bottle-

neck, particularly with instruction counting; however, the schemes

we examined are not the same as larger, searchable queues, which

would also increase available parallelism. Nonetheless, the exper-
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iment with larger (64-entry) queues increased throughput by less

than 1%, despite reducing IQ-flrll conditions to O%.

Fetch Bandwidth — Although we have significantly improved

fetch throughput, it is still a prime candidate for bottleneck status.

Branch frequency and PC alignment problems still prevent us from

filly utilizing the fetch bandwidth. A scheme that allows us to fetch

as many as 16 instructions (up to eight each from two threads),

increases throughput 8% to 5.7 instructions per cycle. At that point,

however, the IQ size and the number of physical registers each

become more of a restriction. Increasing the instruction queues to

64 entries and the excess registers to 140 increases performance

another 7~o to 6.1 IPC. These results indicate that we have not yet

completely removed fetch throughput as a performance bottleneck.

Branch Prediction — Simultaneous multithreading has a dual

effect on branch prediction, much as it has on caches. While it

puts more pressure on the branch prediction hardware (see Table 3),

it is more tolerant of branch mispredictions. This tolerance arises

because SMT is less dependent on techniques that expose single-

thread parallelism (e.g., speculative fetching and speculative ex-

ecution based on branch prediction) due to its ability to exploit

inter-thread parallelism. With one thread running, on average 16%

of the instructions we fetch and 10’%0of the instructions we exe-

cute are down a wrong path. With eight threads running and the

ICOUNT fetch scheme, only 9% of the instructions we fetch and

4% of the instructions we execute are wrong-path.

Perfect branch prediction boosts throughput by 25% at 1 thread,

15% at 4 threads, and 9% at 8 threads. So despite the significantly

decreased efficiency of the branch prediction hardware, simulta-

neous multithreading is much less sensitive to the quality of the

branch prediction than a single-threaded processor. Still, better

branch prediction is beneficial for both architectures. Significant

improvements come at a cost, howeve~ a better scheme than our

baseline (doubling the size of both the BTB and PHT) yields only a

2% gain at 8 threads.

Speculative Execution-The ability to do speculative execution

on this machine is not a bottleneck, but we would like to know

whether eliminating it would create one. The cost of speculative

execution (in performance) is not particularly high (again, 4% of

issued instructions are wrong-path), but the benefits may not be

either.

Speculative execution can mean two different things in anSMT

processor, (1) the ability to issue wrong-path instructions that can

interfere with others, and (2) the ability to allow instructions to issue

before preceding branches from the same thread. In order to guar-

antee that no wrong-path instructions are issued, we need to delay

instructions 4 cycles after the preceding branch is issued. Doing this

reduces throughput by 7% at 8 threads, and 38% at 1 thread. Simply

preventing instructions from passing branches only lowers through-

put 1.5% (vs. 12% for 1 thread). Simultaneous multithreading

(with many threads) benefits much less from speculative execution

than a single-threaded processon it benefits more from the ability

to issue wrong-path instructions than from allowing instructions to

pass branches.

Memory Throughput — While simultaneous multithreading

hides memory latencies effectively, it is less effective if the problem

is memory throughput, since it does not address that problem. For

that reason, our simulator models memory throughput limitations at

multiple levels of the cache hierarchy, and the buses between them.

With our workload, we never saturate any single cache or bus, but in

some cases there are significant queueing delays for certain levels

of the cache. If we had infinite bandwidth caches (i.e., the same

cache latencies, but no cache bank or bus conflicts), the throughput

would only increase by 3~o.

Register File Size — The number of registers required by this

machine is a very significant issue. While we have modeled the

effects of register renaming, we have not set the number of physical

registers low enough that it is a significant bottleneck. In fact,

setting the number of excess registers to infinite instead of 100 only

improves 8-thread performance by 2Y0. Lowering it to 90 reduces

performance by 1%, and to 80 by 3%, and 70 by 6%, so there is

no sharp drop-off point. The ICOUNT fetch scheme is probably a

factor in this, as we’ve shown that it creates more parallelism with

fewer instructions in the machine. With four threads and fewer

excess registers, the reductions were nearly identical.

‘-~

1 -~
1 2 3 4 5

Threads

Figure 7: Instruction throughputfor machines with 200 physical

registers and from 1 to 5 hardware contexts.

However, this does not completely address the total size of the reg-

ister file, particularly when comparing different numbers of threads.

An alternate approach is to examine the maximize performance

achieved with a given set of physical registers. For example, if

we identify the largest register file that could support the scheme

outlined in Section 2, then we can investigate how many threads

to support for the best performance. The tradeoff arises because

supporting more hardware contexts leaves fewer (excess) registers

available for renaming. The number of renaming registers, however,

determines the total number of instructions the processor can have

in-flight. It is difficult to predict the right register file size that far

into the future, but in Figure 7 we illustrate this type of analysis

by finding the performance achieved with 200 physical registers.

That equates to a l-thread machine with 168 excess registers or a

4-thread machine with 72 excess registers, for example. In this case

there is a clear maximum point at 4 threads.

In summary, fetch throughput is still a bottleneck in our proposed

architecture. It may no longer be appropriate to keep fetch and issue

bandwidth in balance, given the much greater difficulty of filling

the fetch bandwidth. Also, register file access time will likely be a

limiting factor in the number of threads an architecture can support.
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8 Related Work

A number of other architectures have been proposed that exhibit

simultaneous multithreading in some form. IMlsen, et al,, [27]

demonstrated the potential for simultaneous multithreading,, but did

not simulate a complete architecture, nor did that paper present

a specific solution to register file access or instruction scheduling.

This paper presents an architecture that realizes much of the potential

demonstrated by that work, simulating it in detail,

Hirata, et al., [13] present an architecture for a multithreaded

superscalar processor and simulate its performance on a parallel

ray-tracing application. They do not simulate caches or TLBs and

their architecture has no branch prediction mechanism. Yamamoto,

et al., [29] present an analytical model of multithreaded superscalar

performance, backed up by simulation. Their study models perfect

branching, perfect caches and a homogeneous workload (all threads

running the same trace). Yamamoto and Nemirovsky [28] simulate

an SMT architecture with separate instruction queues and up to four

threads. Gulati andBagherzadeh[11] model a 4-issue machine with

four hardware contexts and a single compiler-partitioned register

file.

Keckler and Dally [14] and Prasadh and Wu [19] describe archi-

tectures that dynamically interleave operations from VLIW instruc-

tions onto individual functional units.

Daddis and Torng [6] plot increases in instruction throughput as

a fnnction of the fetch bandwidth and the size of the dispatch stack,

a structure similar to our instruction queue. Their system has two

threads, unlimited functional units, and unlimited issue bandwidth.

In addition to these, Beckmann and Polychronopoulus [3], Gun-

ther [12], Li and Chu [16], and Govindarajan, et al., [10] all dis-

cuss architectures that feature simultaneous multithreading, none of

which can issue more than one instruction per cycle per thread.

Our work is distinguished from most of these studies in our

dual goals of maintaining high single-thread performance and min-

imizing the architectural impact on a conventional processor. For

example, two implications of those goals in our architecture are

limited fetch bandwidth and a centralized instruction scheduling

mechanism based on a conventional instruction queue.

Most of these studies either model infinite fetch bandwidth (with

perfect caches) or high-bandwidth instruction fetch, each context

fetching from a private cache. However, Hirata, et al., and Daddis

and Torng both model limited fetch bandwidth (with zero-latency

memory), using round-robin priority, our baseline mechanism, nei-

ther model the instruction cache, however. Gulati and Baghmzadeh

fetch from a single thread each cycle, and even look at thread se-

lection policies, but find no policy with improvement better than

intelligent round robin.

Also, only a few of these studies use any kind of centralized

scheduling mechanism: Yamamoto, e~al., model a global instruc-

tion queue that only holds ready instructions; Govindarajan, et

al., and Beckmann and Polychronopoulus have central queues, but

threads are very restricted in the number of instructions th~ey can

have active at once; Daddis and Tomg model an instruction queue

similar to ours, but they do not couple that with a realistic model of

functional units, instruction Iatencies, or memory latencies. Gulati

and Bagherzadeh model an instruction window composed c)f four-

instruction blocks, each block holding instructions from a single
thread.

The M-Machine [9] and the Multiscalar project [25] combine

multiple-issue with multithreading, but assign work onto processors

at a coarser level than individual instructions, Tera [2] combines

LIW with tine-grain multithreading.

9 Summary

This paper presents a simultaneous multithreading architecture that

● borrows heavily from conventional superscalar design, requir-

ing little additional hardware support,

● minimizes the impact on single-thread performance, running

only 270 slower in that scenario, and

● achieves significant throughput improvements over the super-

scalar when many threads are running: a 2.5 throughput gain

at 8 threads, achieving 5.4 IPC.

The fetch improvements result from two advantages of simultaneous

multithreading unavailable to conventional processors: the ability to

partition the fetch bandwidth over multiple threads, and the ability

to dynamically select for fetch those threads that are using processor

resources most efficiently.

Simultaneous multithreading achieves multiprocessor-type

speedups without multiprocessor-type hardware explosion. This ar-

chitecture achieves significant throughput gains over a superscalar

using the same cache sizes, fetch bandwidth, branch prediction hard-

ware, functional units, instruction queues, and TLBs. The SMT

processor is actually less sensitive to instruction queue and branch

prediction table sizes than the single-thread superscalar, even with

a multiprogrammed workload.
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