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Novel data-driven and demand-driven computer architectures are under development in a 
large number of laboratories in the United States, Japan, and Europe. These computers 
are not based on the tradlUonal von Neumann organization; instead, they are attempts to 
identify the next generation of computer. Basmally, m data-driven (e.g., data-flow) 
computers the availability of operands triggers the execution of the operation to be 
performed on them, whereas in demand-driven (e.g, reduction) computers the 
reqmrement for a result triggers the operation that will generate it. 

Although there are these two distinct areas of research, each laboratory has developed 
its own mdlvxdual model of computation, stored program representation, and machine 
organization. Across this spectrum of designs there m, however, a significant sharing of 
concepts. The aim of this palaer m to identify the concepts and relationships that exist 
both within and between the two areas of research. It does thin by examlmng data-driven 
and demand-driven architecture at three levels, computation organizatmn, (stored) 
program organization, and machine organLzation. Finally, a survey of various novel 
computer architectures under development is given. 

Categories and Subject Descriptors: C.0 [Compute r  Sys t ems  Organizat ion]:  
General-- hardware/software interfaces; system architectures; C.1.2 [P rocesso r  
Archi tec ture] :  Multiple Data Stream Architectures (Multiprocessors); C.1.3 [P rocesso r  
Arch i tec ture ]  Other Architecture Styles--data-flow architectures; high-level language 
architectures, D 3 2 [ P r o g r a m m i n g  Languages]  Language Classifications--data-flow 
languages; macro and assembly languages; very hzgh-level languages 

General Terms: Design 

Add~tmnal Key Words and Phrases Demand = driven architecture, data - driven 
architecture 

INTRODUCTION 

For more than thirty years the principles of 
computer architecture design have largely 
remained static [ORGA79], based on the von 
Neumann organization. These von Neu- 
mann principles include 

(1) a single computing element incorporat- 
ing processor, communications, and 
memory; 

(2) hnear organization of fLxed-size mem- 
ory cells; 

(3) one-level address space of cells; 
(4) low-level machine language (instruc- 

tions perform simple operations on el- 
ementary operands); 

(5) sequential, centralized control of com- 
putation. 

Over the last few years, however, a num- 
ber of novel computer architectures based 
on new "naturally" parallel organizations 
for computation have been proposed and 
some computers have even been built. The 
principal stimuli for these novel architec- 
tures have come from the pioneering work 
on data flow by Jack Dennis [DENN74a, 
DENS74b], and on reduction languages and 
machines by John Backus [BACK72, 
BACK73] and Klaus Berkling [BERK71, 
BERK75]. The resulting computer architec- 
ture research can be broadly classified as 
either data driven or demand driven. In 
data-driven (e.g., data-flow) computers the 
availability of operands triggers the execu- 
tion of the operation to be performed on 
them, whereas in demand-driven (e.g., re- 
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duction) computers the requirement for a 
result triggers the operation that will gen- 
erate it. 

Although the motivations and emphasis 
of individual research groups vary, there 
are basically three interacting driving 
forces. First, there is the desire to utilize 
concurrency to increase computer perform- 

ance. This is based on the continuing de- 
mand from areas such as weather forecast- 
ing and wind tunnel simulation for com- 
puters with a higher performance. The nat- 
ural physical laws place fundamental limi- 
tations on the performance increases ob- 
tainable from advances in technology alone. 
And conventional high-speed computers 
like CRAY 1 and ILLIAC IV seem unable 
to meet these demands [TREL79]. Second, 
there is the desire to exploit very large scale 
integration (VLSI) in the design of com- 
puters [SEIT79, MEAD80, TREL80b]. One 
effective means of employing VLSI would 
be parallel architectures composed of iden- 
tical computing elements, each containing 
integral capabilities for processing, com- 
munication, and memory. Unfortunately 
"general-purpose" organizations for inter- 
connecting and programming such archi- 
tectures based on the von Neumann prin- 
ciples have not been forthcoming. Third, 
there is the growing interest in new classes 
of very high level programming languages. 
The most well-developed such class of lan- 
guages comprises the functional languages 
such as LISP [McCA62], FP [BACK78], 
LUCID [ASHC77], SASL [TURN79a], Id 
[ARvI78], and VAL [ACKE79b]. Because of 
the mismatch between the various princi- 
ples on which these languages are based, 
and those of the von Neumann computer, 
conventional implementations tend to be 
inefficient. 

There is growing agreement, particularly 
in Japan and the United Kingdom, that the 
next generation of computers will be based 
on non-von Neumann architecture. (A re- 
port [JIPD81a] by Japan's Ministry of In- 
ternational Trade and Industry contains a 
good summary of the criteria for these fifth- 
generation computers.) Both data-driven 
and demand-driven computer architecture 
are possible fifth-generation architectures. 
The question then becomes, which archi- 
tectural principles and features from the 
various research projects will contribute to 
this new generation of computers? 

Work on data-driven and demand-driven 
architecture falls into two principal re- 
search areas, namely, data flow [DENN79b, 
Gosw79a] and reduction [BERK75]. These 
areas are distinguished by the way compu- 
tation, stored programs, and machine re- 
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sources are organized. Although research 
groups in each area share a basic set of 
concepts, each group has augmented the 
concepts often by introducing ideas from 
other areas {including traditional control- 
flow architectures) to overcome difficulties. 
The aim of this paper is to identify the 
concepts and relationships that exist both 
within and between these areas of research. 
We start by presenting simple operational 
models for control flow, data flow, and re- 
duction. Next we classify and analyze the 
way computation, stored programs, and 
machine resources are organized across the 
three groups. Finally, a survey of various 
novel computer architectures under devel- 
opment is given in terms of these classifi- 
cations. 

1. BASIC CONCEPTS 

Here we present simple operational models 
of control flow, data flow, and reduction. In 
order to compare these three models we 
discuss each in terms of a simple machine 
code representation. These representations 
are viewed as instructions consisting of se- 
quences of arguments--operators, literal 
operands, references--dehmited by paren- 
theses: 

(argO argl arg2 arg3 . . .  a r g n -  1 argn). 

However, the terms "instruction" and "ref- 
erence" are given a considerably more gen- 
eral meaning than their counterparts in 
conventional computers. To facilitate com- 
parisons of control flow, data flow, and re- 
duction, simple program representations 
for the statement a = (b + 1) • (b - c) are 
used. Although this statement consists of 
simple operators and operands, the con- 
cepts illustrated are equally applicable to 
more complex operations and data struc- 
tures. 

1.1 Control Flow 

We start by examining control flow, the 
most familiar model. In the control-flow 
program representations shown in Figure 1, 
the statement a = (b + 1)*(b - c) is 
specified by a series of instructions each 
consisting of an operator followed by one or 
more operands, which are literals or refer- 
ences. For instance, a dyadic operation such 

as + is followed by three operands; the f'~rst 
two, b and 1, provide the input data and 
the last, t l ,  is the reference to the shared 
memory cell for the result. Shared memory 
cells are the means by which data are 
passed between instructions. Each refer- 
ence in Figure 1 is also shown as a unidi- 
rectional arc. Solid arcs show the access to 
stored data, while dotted arcs define the 
flow of control. 

In traditional sequential (von Neumann) 
control flow there is a single thread of con- 
trol, as in Figure la, which is passed from 
instruction to instruction. When control 
reaches an instruction, the operator is ini- 
tially examined to determine the number 
and usage of the following operands. Next 
the input addresses are dereferenced, the 
operator is executed, the result is stored in 
a memory cell, and control is passed im- 
plicitly to the next instruction in sequence. 
Explicit control transfers are caused by op- 
erators such as GOTO. 

There are also parallel forms of control 
flow [FARR79, HOPK79]. In the parallel form 
of control flow, shown in Figure lb, the 
implicit sequential control-flow model is 
augmented by parallel control operators. 
These parallel operators allow more than 
one thread of control to be active at an 
instance and also provide means for syn- 
chronizing these threads. For example, in 
Figure lb the FORK operator activates the 
subtraction instruction at address i2 and 
passes an implicit flow of control on to the 
addition instruction. The addition and sub- 
traction may then be executed in parallel. 
When the addition finishes execution, con- 
trol is passed via the GOTO i3 instruction 
to the JOIN instruction. The task of the 
JOIN is to synchronize the two threads of 
control that  are released by the addition 
and subtraction instruction, and release a 
single thread to activate the multiply in- 
struction. 

In the second parallel form of control 
flow, shown in Figure lc, each instruction 
explicitly specifies its successor instruc- 
tions. Such a reference, il/0, defines the 
specific instruction and argument position 
for the control signal, or control token. Ar- 
gument positions, one for each control sig- 
nal required, are represented by empty 
bracket symbols ( ) ,  and an instruction is 
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( ) t 2 : (  ) a : (  ) 

..~) 

(a) 

s-- -~ i2:~--- -~i3: 
(...FORK i2 ~ + b 1 tl GOTO i3 ~- b c t2 JOIN 2 * tl t2 a 

b:(4 : tl:( ) t2:( ) a:( ) 

(b) 

. , . )  

t0: ( . . .  il/o 12/o) bj,(4)¢,__ ¢: (2) 
; . . . . .  \ 

i l :  ( ( l~)  + b 1 t l  i 3 / 0 )  t 2 :  ( ( 4 )  - b c 

i t 

- "  " t 2 :  ( ) I t l :  ( ) / 

t3: ((~') (I,) t l  t2 a . . . )  

a :  ( ) 

(c) 

t 2  i 3 / i  ) 

Figure 1. Control~flow programs for a = (b + 1) * (b - c): (a) sequential,  (b) parallel 
"FORK-JOIN" ;  (c) parallel "control  tokens." 

executed when it has received the required 
control tokens. The two parallel forms of 
control flow, illustrated by Figures lb and 
lc, are semantically equivalent; FORKS are 
equivalent to multiple successor instruction 
addresses and JOINs are equivalent to mul- 
tiple empty bracket arguments. 

The sequential and parallel control-flow 
models have a number of common features: 
(1) data are passed indirectly between in- 
structions via references t~ shared memory 
cells; (2) literals may be stored in instruc- 
tions, which can be viewed as an optimiza- 
tion of using a reference to access the literal; 
(3) flow of control is implicitly sequential, 
but explicit control operators can be used 
for parallelism, etc.; and (4) because the 
flows of data and control are separate, they 
can be made identical or distinct. 

1.2 Data Flow 

Data flow is very similar to the second form 
of parallel control flow with instructions 
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activated by tokens and the requirement 
for tokens being the indicated ( ) symbols. 
Data-flows programs are usually described 
in terms of directed graphs, used to illus- 
trate the flow of data between instructions. 
In the data-flow program representation 
shown in Figure 2, each instruction consists 
of an operator, two inputs which are either 
literal operands or "unknown" operands de- 
fined by empty bracket ( ) symbols, and a 
reference, i3/1, defining the specific instruc- 
tion and argument position for the result. 
A reference, also shown as a unidirectional 
arc, is used by the producer instruction to 
store a data token (i.e., result) into the 
consumer. Thus data are passed directly 
between instructions. 

An instruction is enabled for execution 
when all arguments are known, that is, 
when all unknowns have been replaced by 
partial results made available by other in- 
structions. The operator then executes, re- 
moving the inputs from storage, processing 
them according to the specified operation, 
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14 i 1 
13: ) ( )~ a/l) 

(a) 

97 

! 
! 

11: (+ (~) 1 13/1) 12: (- 

13: (*~() 

(~) (I) i3 /2)  

) 

(b) 10 

Figure 2. D a t a - f l o w  p r o g r a m  for a = (b + 1) * (b - c) (a) S t a g e  
1; (b) S t a g e  4. 

and using the embedded  reference to store 
the result  a t  an  unknown operand in a 
successor instruction. In  t e rms  of directed 
graphs, an instruct ion is enabled when a 
da ta  token is present  on each of its input  
arcs. During execution the opera tor  re- 
moves  one da ta  token f rom each input  arc 
and releases a set of  result  tokens  onto the 
output  arcs. 

Figure 2 i l lustrates the sequence of exe- 
cution for the p rogram f ragment  a = (b + 
1) * (b - c), using a black dot on an arc to 
indicate the presence of a da ta  token. The  
two black dots at  Stage 1 in Figure 2 indi- 
cate tha t  the data  tokens  corresponding to 
the values of b and c have  been genera ted 
by  predecessor  instructions. Since b is re- 
quired as input  for two subsequent  instruc- 
tions, two copies of  the token are genera ted 
and stored into the respective locations in 
each instruction. T h e  availabili ty of these 
inputs  completes  bo th  the addit ion and the 
subtract ion instruction, and enables their  
operators  for execution. Executing com- 
pletely independently,  each opera tor  con- 
sumes its input  tokens  and stores its result  

into the mult ipl icat ion instruct ion "i3." 
This  enables the multiplication, which ex- 
ecutes and stores its result  corresponding 
to the identifier "a," shown at  Stage 4. 

In the data-flow model  there  are a num- 
ber  of interesting features: (1) par t ia l  re- 
sults are passed directly as da ta  tokens  
between instructions; (2) literals m a y  be 
embedded  in an instruction tha t  can be 
viewed as an optimizat ion of the  data  token  
mechanism;  (3) execution uses up da ta  to- 
k e n s m t h e  values are no longer available as 
inputs  to this or any  o ther  instruction; (4) 
there  is no concept  of  shared da ta  s torage 
as embodied  in the  t radi t ional  notion of a 
variable; and (5) sequencing cons t ra in t s - -  
flows of con t ro l - - a re  t ied to the  flow of 
data. 

1.3 Reduction 

Control-flow and data-flow programs  are 
built  f rom fixed-size instructions whose ar- 
guments  are primit ive opera tors  and oper- 
ands. Higher  level p rogram st ructures  are 
built  f rom linear sequences of these  primi- 
t ive instructions. 
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In contrast, reduction programs are built 
from nested expressions. The nearest anal- 
ogy to an "instruction" in reduction is a 
function application, consisting of (func- 
tion) (argument), which returns its result 
in place. Here a (function) or (argument) 
is recursively defined to be either an atom, 
such as + or 1, or an expression. Likewise, 
a reference may access, and function appli- 
cation may return, either an atom or an 
expression. Higher level program structures 
are reflected in this machine representa- 
tion, being themselves function applica- 
tions built from more primitive functions. 
In reduction, a program is mathematically 
equivalent to its result in the same way that  
the expression 3 + 3 is equivalent to the 
number 6. Demanding the result of the 
definition "a," where a -- (b + 1) * (b - c), 
means that  the embedded reference to "a" 
is to be rewritten in a simpler form. (It may 
be helpful for the reader to view this eval- 
uation of a reference as calling the corre- 
sponding definition, giving reduction a 
CALL-RETURN pattern of control.) Be- 
cause of these attributes, only one defini- 
tion of "a" may occur in a program, and all 
references to it give the same value, a prop- 
erty known as referential transparency. 
There are two forms of reduction, differ- 
entiated in the way that  arguments in a 
program are manipulated, called string re- 
duction and graph reduction. 

The basis of string reduction is that  each 
instruction that  accesses a particular defi- 
nition will take and manipulate a separate 
copy of the definition. Figure 3 illustrates 
string manipulation for a reduction execu- 
tion sequence involving the definition a -- 
(b + 1) • (b - c). Each instruction consists 
of an operator followed by literals or 
embedded references, which are used to 
demand its input operands. At Stage 1 in 
Figure 3 some instruction, containing the 
reference "a," demands the value corre- 
sponding to the definition "a." This causes 
a copy of the definition to be loaded into 
the instruction overwriting the reference 
"a," as also shown in Figure 3. Next the 
multiplication operator demands the values 
corresponding to i l  and i2, causing them to 
be overwritten by copies of their defini- 
tions. The multiplication then suspends and 
the addition and subtraction operators de- 

mand the values of b and c. The substitu- 
tion of the values 4 and 2 is shown at Stage 
3 in Figure 3. The reducible subexpressions 
(+ 4 1) and ( -  4 2) are then rewritten, caus- 
ing the multiplication to be reenabled. Fi- 
nally at Stage 5 the multiplication is re- 
placed by the constant 10, which is the 
value of "a." 

The basis of graph reduction is that each 
instruction that  accesses a particular defi- 
nition will manipulate references to the def- 
inition. That  is, graph manipulation is 
based on the sharing of arguments using 
pointers. Figure 4 illustrates graph reduc- 
tion using the same program definition 
a -- (b + 1) * (b - c) as above. At Stage 1 
in Figure 4 an instruction demands the 
value corresponding to "a," but instead of 
a copy of the definition being taken, the 
reference is traversed in order to reduce the 
definition and return with the actual value. 
One of the ways of identifying the original 
source of the demand for "a," and thus 
supporting the return, is to reverse the arcs 
(as shown in Figure 4) by inserting a source 
reference in the definition. 

This traversal of the definition and the 
reversal of the references is continued until 
constant arguments, such as b and c in 
Figure 4, are encountered. In Figure 4, re- 
duction of the subexpressions in the defi- 
nition starts with the rewriting of the ad- 
dition and the subtraction as shown at 
Stage 4. This proceeds until the value of 
"a" is calculated and a copy is returned to 
the instruction originally demanding "a." 
(If there are no further references to b, c, 
il, and i2, then they can be "garbage col- 
lected.") Any subsequent requests for the 
value of "a" will immediately receive the 
constant 10--one of the major benefits of 
graph reduction over string reduction. 

In reduction the main points to note are 
that: (1) program structures, instructions, 
and arguments are all expressions; (2) there 
is no concept of updatable storage such as 
a variable; (3) there are no additional se- 
quencing constraints over and above those 
implied by demands for operands; and (4) 
demands may return both simple or com- 
plex arguments such as a function (as input 
to a higher order function). 

Control flow, data flow, and reduction 
clearly have fundamental differences, 
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definition 

il: (+ 

7 
a :  (*  t l  t 2 )  ~ ~ c o p y  

" N 
I demand 

(... a ...) => ( . . . ( *  

(a) 

ll i2)...) 

(...(* (+ 4 i) (- 4 2))...) => (...(* 5 2)...) => (...i0...) 

(b) 

Figure 3. String reductlon program for a = (b + l) * (b - c) (a) Stages 1 and 3, (b) 
Stages 3-5. 

definition 

il: (+ b ~ :  (-?e) 

a: (* il 12) 

= > . . .  => 

° , . 

j: (... a ...) demand 

i l :  (+ b 1 a / l )  i 2 :  ( -  b / 2 )  

J 
a: (* II i2 j/l) 

Y 

(a) 

b: (4) c: (2) 

il: (+ 4 1 a/l) 12: (- 4 2 a/2) 

a: (* ii 12 j/l) 

=> 

b:  (4) c:  (2) 

i l :  (5 )  i 2 :  (2 )  

a :  (* 5 2 j / l )  

, . )  . J 

=>Ja: (10) J 

(b) 

Figure 4. Graph reduction program for a = (b + 1) * (b - c): (a) Stages 1 and 3, (b) Stages 
4-6. 
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which relate to their advantages and dis- 
advantages for representing programs. 
However, they also have interesting under- 
lying similarities. In the next two sections 
on computation organization and program 
organization we attempt to identify and 
classify these underlying concepts. 

2. COMPUTATION ORGANIZATION 

In this section we examine, at an abstract 
level, the way computation progresses. This 
progress takes the form of successive 
changes in the state of the computation 
brought about by executing instructions. 
Computation organization describes how 
these state changes come to take place by 
describing the sequencing and the effect of 
instructions. We describe the rules deter- 
mining which instructions are selected for 
execution and how far reaching the effects 
of their execution may be. 

This abstract level of classification en- 
ables a clear distinction to be drawn be- 
tween the terms: control driven, data 
driven, and demand driven. These three 
classes are often identified with, respec- 
tively, the operational models control flow, 
data flow, and reduction. Here we define 
the notions of control-driven, data-driven, 
and demand-driven computation organiza- 
tions and identify their relationships to the 
three operational models. 

2.1 Classification 

Computation organizations may be classi- 
fied by considering computation to be a 
continuous repetition of three phases: se- 
lect, examine, and execute. It needs to be 
emphasized that this description does not 
necessarily reflect the way in which partic- 
ular computer implementations operate but 
rather that it is a logical description of the 
affects achieved. 

(1) Select. At the select phase a set of 
instructions is chosen for possible execu- 
tion. The rule for making this choice is 
called a computation rule. The computa- 
tion rule selects a subset of instructions in 
the program. Only instructions chosen by 
the select phase may be executed, but se- 
lection does not guarantee execution. Three 
of the computational rules used in this clas- 

sification are imperative, innermost, and 
outermost. The imperative computation 
rule selects the instructions indicated by, 
for example, a special ("program counter") 
register or the presence of control tokens. 
This selection is made regardless of the 
position of the instruction in the program 
structure. Innermost and outermost com- 
putation rules select, respectively, the in- 
structions most deeply nested and least 
deeply nested in the program structure. An 
innermost instruction has no instructions 
as arguments to it (only values). An outer- 
most instruction is not nested as an argu- 
ment of any other instruction. The instruc- 
tions selected by the three rules are illus- 
trated in Figure 5. 

(2) Examine. At the examine phase, 
each of the instructions previously chosen 
in the select phase is examined to see if it 
is executable. The decision is based on ex- 
amination of each instruction's actual ar- 
guments. The rule for making this decision 
is called a firing rule. For instance, the 
firing rule may require all operands to be 
data values, or it may require only one 
operand to be a value as, for example, in a 
conditional. If an instruction is executable, 
it is passed on to the next phase for execu- 
tion; otherwise, the examine phase may 
take some action, such as delaying the in- 
struction or attempting to coerce argu- 
ments so as to allow execution. 

(3) Execute. At the execute or "target" 
phase, which is broadly similar in all com- 
putation organizations, instructions are ac- 
tually executed. The result of execution is 
to change the state of the computer. Results 
are made available and are passed to other 
parts of the program. Execution may pro- 
duce globally perceived changes, perhaps 
by changing the state of a globally shared 
memory, or it may produce localized 
changes as when an expression is replaced 
by its value. 

2.2 Control Flow 

The select phase of control-flow computa- 
tion corresponds to the fetch part of the 
fetch-execute control cycle. Each control- 
flow computing element has a program 
counter naming the next instruction to ex- 
ecute. In the select phase, the program 
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The e x p r e s s i o n  d e n o t e s  t h e  p r o d u c t  o f  two complex number s :  
( a , b )  * ( c , d )  

101 

Imperatlve 
( ( a ' c )  - (b~d)  , ( a ' d )  + ( b ~ c ) )  

? 

PC 

Instructions selected depending on the value o f  PC 

Innermost 

Instructions selected are the most deeply nested 

Outermost 
( (a-c) r (b'd) , (a'd) + (b~c)) 

Instructions selected are those un-nested 

Figure 5. Three computation rules applied to an expression. 

counter is used to choose the instructions 
to be used. Once chosen by select, instruc- 
tions are not checked by an examine phase, 
but are automatically passed on to execu- 
tion. The execute phase of control-flow in- 
structions is allowed to change any part of 
the state. Control flow uses a shared mem- 
ory to communicate results. The state of 
computation is represented by the contents 
of this shared memory and of the pro- 
gram counter register(s). A program 
counter is updated at the end of each cycle 
either implicitly or, in the case of GOTOs, 
explicitly. 

We define the term control driven to 
denote computation organizations in which 
instructions are executed as soon as they 
are selected. The select phase alone deter- 
mines which instructions are to be exe- 
cuted. For all computation organizations in 
this class the examine phase is redundant, 
and instruction sequencing is independent 
of program structure. 

2.3 Data Flow 

There are many varieties of data-flow com- 
puters; here we restrict ourselves to "pure" 
data-flow computation as described in Sec- 
tion 1.2. In pure data flow, instructions are 
executed as soon as all their arguments are 

available. Logically at least, each instruc- 
tion has a computing element allocated to 
it continuously, just waiting for arguments 
to arrive. So the select phase of data-flow 
computation may be viewed as logically 
allocating a computing element to every 
instruction. The examine phase implements 
the data-flow firing rule, which requires all 
arguments to be available before execution 
can take place. Arguments must be data 
items, not unevaluated expressions. If val- 
ues are not yet available, the computing 
element will not try to execute the instruc- 
tion but will remain dormant during the 
execute phase. The execute phase in data 
flow changes a local state consisting of the 
executing instruction and its set of succes- 
sor instructions. The instruction consumes 
its arguments and places a result in each 
successor instruction. 

We define the term data driven to denote 
computation organizations where instruc- 
tions passively wait for some combination 
of their arguments to become available. 
This implies a select phase, which (logi- 
cally) allocates computing elements to all 
instructions, and an examine phase, which 
suspends nonexecutable instructions. In 
data-driven computation organizations, the 
key factor governing execution is the avail- 
ability of data. For this reason "data 
driven" is the same as "availability driven." 
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2.4 Reduction 

Reduction computers each have different 
rules embodied in their select phase. The 
choice of computation rule is a design 
choice for a particular reduction computer. 
The commonest rules used are innermost 
and outermost (see Figure 5), and in fact 
the discussion of reduction in Section 1 was 
restricted to outermost reduction. The 
computation rule in a reduction computer 
determines the allocation of computing ele- 
ments at the beginning of each computation 
cycle. In the examine phase the arguments 
are examined to see whether execution is 
possible. If it is, the instruction is executed. 
Otherwise, the computing element tries to 
coerce the arguments into the required pat- 
tern. This coercion demands the evaluation 
of argument(s) until sufficient are available 
for execution. Logically, this demand con- 
sists of spawning one or more subcompu- 
tations to evaluate operands and waiting 
for them to return with a value. The in- 
struction set of a reduction computer may 
contain many different firing rules, each 
instruction having the rule most suited to 
it. For example, all arithmetic operations 
will have a firing rule that  forces their ar- 
guments to be values. The execute phase in 
a reduction machine involves rewriting an 
instruction in situ. The instruction is re- 
placed by its result where it stands. Only 
the local state consisting of the instruction 
itself and those instructions that  use its 
results are changed. Execution may thus 
also enable another instruction. 

We define the term demand driven to 
denote a computation organization where 
instructions are only selected when the 
value they produce is needed by another, 
already selected instruction. All outermost 
reduction architectures fall into this cate- 
gory but innermost reduction architectures 
do not. The essence of a demand-driven 
computation organization is that an in- 
struction is executed only when its result is 
demanded by some other instruction and 
the arguments may be recursively evalu- 
ated where necessary. In reduction com- 
puters with an innermost computation rule, 
instructions are never chosen by select until 
their arguments are available. This restric- 
tion means that all arguments reaching the 
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examine stage are preevaluated and hence 
no coercions need ever take place. It also 
means that  all instructions have all their 
arguments evaluated whether or not this is 
necessary, exactly as occurs in data flow. 
Thus we believe innermost computation 
organizations are data driven. 

2.5 Implications 

The implications of the computation orga- 
nization classification can now be summa- 
rized. Control-flow computers have a con- 
trol-driven computation organization; in- 
structions are arbitrarily selected, and once 
selected they are immediately executed. 
Data-flow computers have a data-driven 
computation organization; all instructions 
are in principle active, but only execute 
when their arguments become available. 
Some reduction computers are demand 
driven and some are data driven. 

Control-flow computers all have a con- 
trol-driven computation organization. The 
control-driven organization is characterized 
by the lack of an examine stage, and by a 
computation rule that  selects instructions 
independently of their place in the pro- 
gram's structure. This implies that the pro- 
gram has complete control over instruction 
sequencing. Once selected, instructions will 
always be executed regardless of the state 
of their operands. There is no wait for ar- 
guments, or demand for arguments, apart 
from the dereferencing of an address. It is 
up to the programmer to ensure that  argu- 
ments are set up before control reaches an 
instruction. The advantage of control- 
driven computation is full control over se- 
quencing. The corresponding disadvantage 
is the programming discipline needed to 
avoid run-time errors. These errors are 
harder to prevent and detect than excep- 
tions (overflow, etc.), which occur at the 
execute phase in all computation organiza- 
tions. A typical example of the twin gener- 
alities and dangers of control-driven com- 
putation organization is the ability to exe- 
cute data as a program. 

Data-flow computers have a data-driven 
computation organization that is character- 
ized by a passive examine stage. Instruc- 
tions are examined, and if they do not pass 
the firing rule, no action is taken to force 
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them to become executable. The data-flow 
firing rule requires all arguments to arrive 
before an instruction will execute. However, 
some data-flow implementations have 
found this too restrictive and have added 
non-data-driven instructions to provide 
some degree of explicit control. The advan- 
tage of data-driven computation is that in- 
structions are executed as soon as their 
arguments are available, giving a high de- 
gree of implicit parallelism. The disadvan- 
tages are that instructions may waste time 
waiting for unneeded arguments. This be- 
comes increasingly apparent when the im- 
plementation of data-flow procedures is 
considered. In addition, operators such as 
an if-then-else operator, which will use 
only two of its three arguments, discarding 
the other, will always be forced to wait for 
all three. In the worst case this can lead to 
nontermination through waiting for an un- 
needed argument, which is, for example, an 
infinite iteration. 

A reduction computer having a demand- 
driven organization is characterized by an 
outermost computation rule coupled with 
the ability to coerce arguments at the ex- 
amine stage. Instruction sequencing is 
driven by the need to produce a result at 
the outermost level, rather than to insist on 
following a set pattern. Each instruction 
chosen by the outermost select can decide 
to demand further instructions. Instruc- 
tions actively coerce their arguments to the 
required form if they are not already in it. 
Reduction computers not possessing (1) an 
outermost select and (2) a coercing examine 
phase cannot be classified as demand 
driven. The advantage of the demand- 
driven computation organization is that 
only instructions whose result is needed are 
executed. A procedure-calling mechanism 
is built in, by allowing the operator of an 
instruction to be defined as a block of in- 
structions. The disadvantage of demand- 
driven computation is in processing, say, 
arithmetic expressions, where every in- 
struction (+, *, etc.) always contributes to 
the final result. Propagating demand from 
outermost to innermost is wasted effort; 
only operator precedence will determine 
sequencing, and every instruction must be 
activated. In these cases, data-driven com- 
putation organization is better since the 
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sequencing is determined solely by operator 
priorities. Demand driven is superior only 
for "nonstrict" operators such as "if-then- 
else," which do not require all their argu- 
ments. 

Last, the execute phase of any computa- 
tion organization has important conse- 
quences for the underlying implementation. 
Global changes may have far-reaching ef- 
fects, visible throughout the computer. Lo- 
cal changes can only alter the state of a 
small part of the computation. To support 
a computation organization allowing global 
state changes, some form of global com- 
munications between instructions is re- 
quired. On the other hand, if only local 
changes are to be supported, this locality 
can be exploited in a distributed architec- 
ture. In general, data-flow and reduction 
programs are free from side effects, another 
feature making them suitable for distrib- 
uted implementation. 

3. PROGRAM ORGANIZATION 

We use the term program organization to 
cover the way machine code programs are 
represented and executed in a computer 
architecture. This section starts by classi- 
fying the underlying mechanisms of pro- 
gram organization for control-flow, data- 
flow, and reduction models. 

3.1 Classification 

Two computational mechanisms, which we 
refer to as the data mechanism and the 
control mechanism, seem fundamental to 
these three groups of models. The data 
mechanism defines the way a particular 
argument is used by a number of instruc- 
tions. There are three subclasses: 

(1) by hteral--where an argument is 
known at compile time and a separate 
copy is placed in each accessing instruc- 
tion {found in all the operational 
models); 

(2) by value--where an argument, gener- 
ated at run time, is shared by replicat- 
ing it and giving a separate copy to each 
accessing instruction, this copy being 
stored as a value in the instruction (as 
seen in data flow and string reduction}; 
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Data Mechanisms 

by va lue  by r e f e r e n c e  
(& literal) (& literal) 

Control 

Mechanisms 

sequential 

parallel 

recurslve 

yon Neumann 
control flow 

parallel 
data flow control flow 

string graph 
reduction reduction 

Figure 6. Computational models: control and data mechamsms. 

(3) by reference--where an argument is 
shared by having a reference to it stored 
in each accessing instruction (as seen in 
control flow and graph reduction). 

The control mechanism defines how one 
instruction causes the execution of another 
instruction, and thus the pattern of control 
within the total program. There are again 
three subclasses: 

(1) sequential--where a single thread of 
control signals an instruction to execute 
and passes from one instruction to an- 
other (as seen in traditional sequential 
control flow); 

(2) parallel--where control signals the 
availability of arguments and an in- 
struction is executed when all its argu- 
ments (e.g., input data) are available 
(as seen in data flow and parallel con- 
trol flow); 

(3) recursive--where control signals the 
need for arguments and an instruction 
is executed when one of the output 
arguments it generates is required by 
the invoking instruction. Having exe- 
cuted, it returns control to the invoking 
instruction (as seen in string reduction 
and graph reduction). 

The relationship of these data and con- 
trol mechanisms to the three groups of op- 
erational model is summarized in Figure 6. 
Using this classification as a basis, we now 
examine the advantages and disadvantages 
for program representation and execution 
of control flow, data flow, and reduction. 

3.2 Control Flow 

Control flow is based on a "sequential" or 
"parallel" control mechanism. Flow of con- 
trol is implicitly sequential with explicit 
sequential and parallel patterns of control 
being obtained from, respectively, GOTO 
and FORK-JOIN style control operators. 
The basic data mechanism of control flow 
is a by-reference mechanism, with refer- 
ences embedded in instructions being used 
to access shared memory cells. This form 
of data sharing is shared update, in which 
the effects of changing the contents of a 
memory cell are immediately available to 
other users. 

In computers based on parallel program 
organizations such as parallel control flow, 
special precautions must be taken in a pro- 
gram's representation (style of machine 
code generated) to ensure that  the natural 
asynchronous execution does not lead to 
unwanted indeterminacy. This is basically 
a problem of synchronizing the usage of 
shared resources, such as a memory cell 
containing an instruction or data. It is ap- 
propriate to examine the support in parallel 
control-flow computers of two important 
programming mechanisms--iteration and 
procedures--because they illustrate how 
these synchronization problems are con- 
trolled and also the style of program rep- 
resentation used. 

Iteration becomes a potential problem 
for parallel control flow because program 
fragments with loops may lead to logically 
cyclic graphs in which each successive it- 
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F i g u r e  7. Control-flow i terat ion us ing feedback. 

erat ion of a loop could execute concur- 
rently, giving the possibility, for instance, 
of mul t ip le-data  i tems being stored in the 
same m e m o r y  cell. Two possible schemes 
may,  in general, be used to control  poten- 
tially concurrent  iteration. The  first uses 
the feedback of control  to synchronize ref- 
erence usage and the second represents  it- 
erat ion by the equivalent  recursion, thereby  
creating unique contexts for references. 

To  il lustrate these two schemes for rep- 
resenting iteration, we use as an example  a 
p rogram f ragment  tha t  calculates the one- 
hundred th  number  in the Fibonacci series: 

(fl, f2) := (1, 1); 
FORi  = 3 TO 100 DO 

(fl, f2) := (f2, f l  + f2) OD; 
answer := f2; 

This  fragment ,  using concurrent  assign- 
ment ,  consists of two calculations, one pro- 
ducing the Fibonacci series as successive 
values of f2, and the other  increment ing the 
i teration count  i. Since i is not  used within 
the D O . . .  OD, these two calculations m a y  
execute in parallel. 

The  first scheme for support ing i terat ion 
based on the feedback of control to syn- 
chronize resource usage is shown in Figure 
7. This  ensures tha t  only a single copy of 
an instruction can be active or tha t  a single 
data  i tem m a y  occupy a m e m o r y  cell, at  an 
instant. This  synchronizat ion is achieved 

by  the J O I N  instruction. Next  the  IF  in- 
struction, if false, per forms a new i terat ion 
or, if true, t ransfers  the  value of f2 to m e m -  
ory cell "answer."  Since m e m o r y  cells are 
continually upda ted  in this i terat ion 
scheme,  it m a y  be necessary in specific 
implementa t ions  to execute the concurrent  
ass ignment  (fl ,  f2) := (f2, f l  + f2) sequen- 
tially to exclude indeterminacy.  T h e  second 
i terat ion scheme makes  use of  the proce- 
dure mechan i sm to provide separa te  con- 
texts  for each iteration, by  t ransforming the 
i terat ive p rogram into the equivalent  recur- 
sion: 

fib(f1, f2, i) := IF i > 100 
THEN f2 
ELSE fib(f2, f l  + f2, i + 1) FI; 

answer := fib(l, 1, 3); 

Each  t ime a new call of  the function fib is 
made,  a new process, with a separa te  con- 
text, is created. 

At  a logical level there  are two instruc- 
tions involved in procedure  invocation. 
(Figure 8 i l lustrates this procedure  mecha-  
nism.) In  a calling process P1, there  is a 
CALL instruct ion tha t  first obtains  a new 
(globally unique) process identifier P2 and 
then  changes the context  of the  input  pa- 
ramete rs  f rom P1 to the  new context  P2. At  
the end of the called procedure,  there  mus t  
be a R E T U R N  instruct ion t ha t  changes 
the context  of the  computed  results  back  to 
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F i g u r e  8 .  Control-flow iteration using recursion. 

the calling context P1. To achieve this, the 
CALL instruction must pass the caller's 
process identifier P1 to the RETURN. 
When all the results have been returned to 
the calling process, the called process P2 is 
deleted by the RETURN instruction. 

3 . 3  D a t a  F l o w  

Data flow is based on a by-value data mech- 
anism and a parallel control mechanism, 
supported by data tokens. Thus flows of 
data and control are identical in data flow. 
A data token is used to pass a copy of a 
partial result directly from the producer to 
the consumer instruction. This form of data 
sharing is that  of independent copies, in 
which the effect of a consumer instruction 
accessing the contents of a received data 
token is hidden from other instructions. 

When an instruction is executed, the role 
of an embedded reference is to specify the 
consumer instruction and argument posi- 
tion for a data token. In terms of directed 
graphs, the role of the reference is to pro- 
vide a "name" that identifies uniquely a 
particular data token generated by a pro- 
gram at an instant, by specifying the arc on 
which it is traveling and the node to which 
it is destined. Unfortunately the two-field 
(instruction/argument position) name for- 

mat does not provide such uniqueness. For 
instance, more than one copy of a particular 
instruction may be executing in parallel. 
Thus tokens are no longer uniquely named, 
leading to the possibility of tokens being 
inserted in the wrong instruction. To distin- 
guish the separate contexts of instances of 
a procedure, an additional "process" field is 
logically appended to a reference. In sum- 
mary, the basic format of a reference is 
[ARvI77a, TREL78] 

• A >  {P / N / 
process I I 
instruction {node) 
argument {arc) 

and the fields are used for the following: 

(1) The process (P) field distinguishes sep- 
arate instances of an instruction N that 
may be executing in parallel, either 
within a single program or within dis- 
tinct programs. 

(2) The instruction (N) field identifies the 
consuming instruction to which the 
data token is being passed. 

(3) The argument (A) field identifies in 
which argument position in the instruc- 
tion N the token is to be stored. 
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In the machine code of a data-flow com- 
puter, the values of the N and the A fields 
are usually statically embedded in the code 
at compile time, whereas the value of the P 
is dynamically generated at run time by the 
system. 

Recall in our discussion of parallel con- 
trol flow that  special precautions need to 
be taken in the style of machine code gen- 
erated for a program to exclude unwanted 
indeterminacy. Similar precautions must be 
taken for data flow. Here we examine data- 
flow program representations for iteration 
and procedures, using the two schemes for 
iteration previously discussed for control 
flow. Again, the program fragment that cal- 
culates the one-hundredth number in the 
Fibonacci series is used for examples. It is 
interesting to compare these examples with 
those previously given for control flow. 

The first scheme for supporting iteration 
is illustrated by Figure 9. Here the feedback 
of data tokens synchronizes the usage of 
references, thereby ensuring that only a 
single data token can ever be on a logical 
arc at an instant. At the start of each iter- 
ation the IF instruction releases a true/false 
data token, a copy of which is passed to 
each SWITCH. A SWITCH takes two 
types of inputs: one being a true/false to- 
ken, which selects either the true or the 
false outputs, and the other the data token 
to be switched. If the token is false, the 
other tokens are fed into the iteration, 

whereas a true token causes the data token 
corresponding to f2 to be routed to answer 
and the other tokens to be discarded, as 
shown by the "earth" symbols. To ensure 
that all calculations within the loop have 
terminated before feeding back the tokens 
into the next iteration, a SYNCHronizer 
instruction is used. The SYNCH fires when 
all inputs are present and releases them 
onto the corresponding output arcs. 

The second scheme for supporting itera- 
tion is based on a data-flow procedure 
mechanism [ARvI78, MmA77, HOPK79], 
which allows concurrent invocations of a 
single procedure through the use of the 
process (P) field. This mechanism is essen- 
tial to provide distinct naming contexts for 
each procedure invocation, thus isolating 
the data tokens from those belonging to 
any other invocation. The second iteration 
scheme that represents iteration by the 
equivalent recursion is shown in Figure 10. 
In this example parallelism is only obtained 
when a new invocation of the procedure fib 
is to be used, by calculating the value pa- 
rameters (f2, f l  + f2, i + 1) concurrently. 
As in the control-flow procedure mecha- 
nism, discussed above, the CALL instruc- 
tion creates a new process and inserts the 
parameters, and the RETURN changes 
back the context of the results and deletes 
the invoked process. 

There is, in fact, a third scheme for sup- 
porting iteration in use in data-flow corn- 
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Figure 10. Data-flow iteration using recursion. 

puters, based on an additional iteration 
number field [ARvI77a, TREL78] in each 
reference, for example, P /N/A/ I .  This it- 
eration number field distinguishes individ- 
ual data tokens, logically flowing on a par- 
ticular arc, by giving each token a unique I 
value, for example, 1, 2, 3 . . . . .  Using this 
third scheme for the Fibonacci example, 
basically three sequences of data tokens 
would be generated: f2/1, f2/2, . . .  ; f l /1 ,  
f l / 2  . . . .  ; and i/1, i/2 . . . . .  Some of the 
data-flow computer designs [ARvI77a, 
WATS79] support this concept of an itera- 
tion number field, but the field is only di- 
rectly applicable for a single level of itera- 
tion. Using only iteration numbers for 
nested iterations such as 

FORx ffi 1 TO 3 DO 
FORy = 1 TO 3 DO 

FOR z = 1 TO 3 DO 
. - . N . , ,  

OD 
OD 

OD 

it would be necessary to provide three it- 
eration number fields in a reference to give 
unique names for the 27 tokens for, say, 
argument A of N, that is, P / N / A / I / I / 1  
. . .  P / N / A / I / 2 / 3  . . .  P /N/A/3/3 /3 .  (In 
fact, this case can be avoided by treating 

each FOR . . .  OD as a procedure with a 
unique process number and using a single 
iteration number for its one level of internal 
iteration.) 

3.4 Reduction 

Reduction is based on a recursive control 
mechanism and either a by-value or a by- 
reference data mechanism. String reduction 
has a by-value data mechanism, and graph 
reduction has a by-reference data mecha- 
nism. Reduction programs are essentially 
expressions that are rewritten in the course 
of execution. They are built (as described 
in Section 1.3) from functions applied to 
arguments. Recall that  both functions and 
arguments can be simple values or sub- 
expressions. In string reduction, copies of 
expressions are reduced. In graph reduc- 
tion, subexpressions are shared using ref- 
erences. Referential transparency (see Sec- 
tion 1.3) means that  a reduction program 
will give the same result whether data are 
copied or shared. Below, string reduction 
and graph reduction are described in more 
detail. Note that because reduction is in- 
herently recursive, we only show a recursive 
version of the Fibonacci program. In reduc- 
tion programs iteration is represented as 
tail recursion. 
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Initial Expression: 

( answer ) WHERE 
answer - f ib  (i, I, 3); 

fib (fl, f2, i) " IF I > i00 THEN f2 
ELSE fib (f2, fl+f2, l+l) FI; 

First Reduction: 

( IF 3 > I00 THEN 1 
ELSE fib (I, I+i, 3+1) FI ) 

Next Reductions: 

( IF FALSE THEN I 
ELSE fib (I, i+I, 3+1) FI ) 

( fib (i, i+I, 3+1) ) 

( f i b  (1,  2, 4) ) 

( fib (2, 3, 5) ) ... ( fib (3, 5, 6) ) ... ( fib (5, 8, 7) ) 

Figure 11. Stnngreduc~on of Flbonacciprogram. 
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String reduction programs are expres- 
sions containing literals and values. They 
are conveniently represented as a bracketed 
expression, with parentheses indicating 
nesting, as shown in Figure 11. In Figure 11 
the initial expression (answer) is first re- 
duced using the definition fib(fl, f2, i), with 
fl ,  f2, and i replaced by 1, 1, and 3. The 
next reduction evaluates 3 > 100, giving (IF 
FALSE . . . )  followed by (fib(l, 1 + 1, 
3 + 1)) and so on. Execution terminates 
with the original expression, answer, being 
replaced by the one-hundredth Fibonacci 
number. Because the form of this function 
is tail recursive, its execution behaves like 
iteration; the final result is passed out di- 
rectly to the original computation, and no 
intermediate values are preserved. 

In Figure 11, an innermost computation 
rule (Section 2.1) was used, forcing all ar- 
guments to be evaluated before being sub- 
stituted into definitions. If another rule 
were chosen, a different sequence of reduc- 
tions would occur before the same answer 
was found. In string reduction, because a 
by-value data mechanism is used, separate 
copies of actual arguments are generated 
for each formal parameter occurrence. This 
may increase parallelism, in the sense that 
many processors can work simultaneously 
on their own copies of subexpressions. But 
most of this work may be needlessly dupli- 

cated effort as in the example above. For 
this reason, we conclude that  string manip- 
ulation is best suited to innermost compu- 
tation rules where functions are only ap- 
plied to already evaluated arguments. In 
this case work will not be duplicated. 

Graph reduction programs are expres- 
sions containing literals, values, and refer- 
ences. In graph reduction, parameters are 
substituted by reference into the body of a 
defined function. For simplicity we assume 
that the substitution occurs automatically 
when a definition is dereferenced. In prac- 
tice, a special mechanism such as lambda 
substitution or combinators [TURN79a] is 
used to achieve this formal-to-actual pa- 
rameter binding. Because of the by-refer- 
ence mechanism, in Figure 12, it is more 
suitable to use a graphic notation to repre- 
sent the Fibonacci program. Nodes of the 
graph represent a function and its argu- 
ments, while arcs represent references and 
structuring. 

Figure 12 shows a graph reduction pro- 
gram for Fibonacci. This example uses a 
parallel outermost computation rule. The 
loss of efficiency that can occur with out- 
ermost string reduction does not occur here 
because graph reduction permits sharing of 
expressions. If an innermost computation 
rule had been used, no real use would have 
been made of the graph reduction's by-ref- 
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Figure 12. Graph reduction of Flbonaccl program. 

erence data mechanism. This is because all 
subexpressions would be reduced before the 
functions referring to them. Thus the only 
references in functions would be to values, 
and there would be no sharing of subexpres- 
sions. For this reason, graph reduction is 
suited to outermost computation rules. 

3.5 Implications 

Control-flow program organizations, owing 
to the separation of flows of control from 
flows of data and the way operands are 
accessed, tend to be less efficient than, say, 
data flow when evaluating simple expres- 
sions. For example, to pass the partial result 
of a subexpression to the enclosing expres- 
sion requires three operations--store result, 
send control flow, load result--in control 
flow, but only one operation--send data 
token--in data flow. However, control flow 
has advantages when manipulating data 
structures that are to be manipulated in 
place, or where a specific pattern of control 
is required, as, for instance, with condi- 
tional evaluation of alternatives. In addi- 
tion, since instructions have both input and 
output references, the pattern of data ac- 
cesses is unconstrained, with execution ma- 
nipulating a global state composed of all 
the memory cells of a program. As a gen- 
eral-purpose program organization control 
flow is surprisingly flexible, particularly 
with respect to memory changes, interac- 
tion, and complex control structures. The 

criticisms of control-flow organizations 
have been well documented by Backus 
[BACK78]. Basically, they lack useful math- 
ematical properties for reasoning about 
programs, parallelism is in some respect 
bolted on, they are built on low-level con- 
cepts, and there is a major separation be- 
tween the representation and execution of 
simple instructions and of procedures and 
functions. 

The major advantage of data flow is the 
simplicity and the highly parallel nature of 
its program organization. This results from 
the data token scheme combining both the 
by-value data mechanism and the parallel 
control mechanism. The data-flow program 
organization is very efficient for the evalu- 
ation of simple expressions and the support 
of procedures and functions with call-by- 
value parameters. However, where shared 
data structures are to be manipulated in 
place or where specific patterns of control 
are required, such as sequential or condi- 
tional, data flow seems at a disadvantage. 
Implementation of data-flow program or- 
ganizations often separate the storage for 
data tokens and instructions, which makes 
compilation at least conceptually difficult. 
Thus as a general-purpose program orga- 
nization pure data flow is questionable, but 
for more specialist applications like process 
control or even robotics it may be highly 
suitable [JIPD81c]. 

String and graph reduction are both no- 
table for providing efficient support for 

Computing Surveys, Vol. 14, No 1, March 1982 



Data-Driven and Demand-Driven Computer Architecture • 111 

functional programming, which is growing 
in interest. Graph reduction has a by-ref- 
erence data mechanism that allows sharing 
and allows manipulation of unevaluated ob- 
jects. String reduction has a by-value data 
mechanism and so has minimal addressing 
overheads. The nature of functional pro- 
grams makes them suitable for parallel 
evaluation; referential transparency makes 
reductions independent of context and se- 
quencing. Graph manipulation allows arbi- 
trary objects to be manipulated without 
their being evaluated. This means that in- 
finite data structures can conceptually be 
used as long as only the values of some 
finite part of them are demanded. 

In graph reduction, structures are repre- 
sented by a reference until their contents 
are needed; because references are gener- 
ally smaller than structures, they are more 
efficient to manipulate. In string reduction, 
structures are represented by value, and so 
their contents are duplicated at many 
points in the program; thus their contents 
are available locally, without a referenced 
value being fetched from elsewhere. Last, 
for reduction program organizations to be- 
come candidates for general-purpose com- 
puting, it is necessary for functional pro- 
gramming language to become the most 
widely used style of programming. 

4. MACHINE ORGANIZATION 

We use the term machine organization to 
cover the way a machine's resources are 
configured and allocated to support a pro- 
gram organization. This section starts by 
classifying the machine organizations being 
used in data-driven and demand-driven 
computers. 

4.1 Classification 

An examination of the data- and demand- 
driven computer architectures under devel- 
opment reveals three basic classes of ma- 
chine organization, which we call central- 
ized, packet communication, and expres- 
sion manipulation. 

(1) Centralized. Centralized machine or- 
ganization consists of a single processor, 
communication, and memory resource, as 
shown in Figure 13. It views an executing 
program as having a single active instruc- 

communications 

processor 

memory 

i , 

D 

Figure 13. Centralized mach ine  orgamzation. 

tion, which passes execution to a specific 
successor instruction. The state of execu- 
tion is often held in registers or stacks. 

(2) Packet communication. Packet com- 
munication machine organization consists 
of a circular instruction execution pipeline 
of resources in which processors, commu- 
nications, and memories are interspersed 
with "pools of work." This is illustrated by 
Figure 14. The organization views an exe- 
cuting program as a number of independent 
information packets, all of which are active, 
and may split and merge. For a parallel 
computer, packet communication is a very 
simple strategy for allocating packets of 
work to resources. Each packet to be proc- 
essed is placed with similar packets in one 
of the pools of work. When a resource be- 
comes idle, it takes a packet from its input 
pool, processes it, places a modified packet 
in an output pool, and then returns to the 
idle state. Parallelism is obtained either by 
having a number of identical resources be- 
tween pools, or by replicating the circular 
pipelines and connecting them by the com- 
munications. 

(3) Expression manipulation. Expres- 
sion manipulation machine organization 
consists of identical resources usually or- 
ganized into a regular structure such as a 
vector or tree, as shown in Figure 15. Each 
resource contains a processor, communica- 
tion, and memory capability. The organi- 
zation views an executing program as con- 
sisting of one large nested program struc- 
ture, parts of which are active while other 
parts are temporarily suspended. In an 
expression manipulation organization the 
adjacency of items in the program structure 
is significant, and the memories in this ma- 
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chine structure maintain the adjacency of 
items in the program structure. Each re- 
source examines its part of the overall pro- 
gram structure looking for work to perform. 

Since these machine organizations relate 
closely to the way programs are represented 
and executed, the three are often equated 
and confused with, respectively, control- 
flow, data-flow, and reduction program or- 
ganizations. However, as we discuss below, 
other less obvious pairings of machine and 
program organizations are possible. 

4 , 2  C o n t r o l  F l o w  

The most obvious means of supporting con- 
trol flow is to use a centralized machine 
organization for sequential forms and either 
a packet communication or an expression 
manipulation machine organization for par- 
allel control flow. Sequential control flow 
supported by a centralized machine orga- 

nization, where the active instruction is 
specified by the program counter register, 
is clearly the basis of all traditional com- 
puters. Their  familiarity does not warrant 
further discussion, and we shall concentrate 
on the support of parallel control flow. 

For parallel control flow two basic meth- 
ods were discussed in Section 1.1 for syn- 
chronizing the execution of instructions, 
namely, FORK-JOIN control operators 
and the use of control tokens. We start by 
examining a packet communication ma- 
chine organization supporting control to- 
kens. In such a machine organization, one 
of the ways of synchronizing a set of control 
tokens activating an instruction is to use a 
matching mechanism. This matching 
mechanism intercepts tokens and groups 
them into sets with regard to their common 
consumer instruction. When a set is com- 
plete, control is released to activate the 
instruction, as, for instance, in Figure lc 
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with tokens i3/0 and i3/1, which forms a 
set destined for instruction i3. An example 
of such a matching scheme is proposed in 
FARR79 and HOPK79. 

Figure 16 illustrates a packet communi- 
cation machine organization based on token 
matching. The organization consists of four 
groups of resources: the matching unit, the 
fetch/update unit, the memory unit, and 
processing unit; and four pools of work for 
instruction addresses, executable instruc- 
tions, data to store, and control tokens. The 
task of the matching unit is to group tokens 
by taking individual tokens from the con- 
trol tokens pool and storing them in their 
respective sets in its local memory. When 
a set of tokens is complete, their common 
instruction address is placed in the output 
pool and the set is deleted. The fetch/up- 
date unit has two input pools, one contain- 
ing addresses of instructions to be activated 
and the other data to be stored. This unit 
interacts with the memory unit, which 
stores instructions and data. For each ad- 
dress consumed, the fetch/update unit 
takes a copy of the corresponding instruc- 
tion, dereferences its input arguments and 
replaces them by their corresponding val- 
ues, and outputs this executable instruc- 
tion. Last, the processing unit takes execut- 
able instructions, processes them, and out- 
puts data to store and control tokens to the 
respective pools. 

For parallel control flow supported by 
an expression manipulation organization, 

we consider a control mechanism using 
FORK-JOIN control operators, as shown 
in Figure lb. With this scheme each flow of 
control is represented by a processor exe- 
cuting instructions sequentially in its local 
memory. When a processor executes a 
FORK operator, it activates another proc- 
essor whose local memory contains the ad- 
dressed instruction. If this processor is al- 
ready busy, then the FORK is delayed until 
the destination processor becomes idle. 
On completion, the processor issuing the 
FORK resumes sequential execution. JOIN 
operators synchronize execution by logi- 
cally consuming flows of control. The pro- 
cessor executing the JOIN n must be reac- 
tivated n times before it resumes sequential 
execution. The memories of an expression 
manipulation organization, as shown in Fig- 
ure 15, maintain the adjacency of instruc- 
tions in the program structure. Thus a proc- 
essor sequentially executing instructions 
may run off the end of its memory. In 
this case control is passed, in the same 
way as a FORK operator, to the adjacent 
processor. 

4.3 Data Flow 

Since a data-flow computer needs to record 
the large set of potentially executable in- 
structions, it is difficult to conceive of sup- 
porting data flow with a centralized ma- 
chine organization. We therefore proceed 
to examine packet communication, the 
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Figure 18. Data-flow packet communication with token matching 

most obvious machine organization for sup- 
porting data flow. 

Instruction execution in data-flow com- 
puters is, in general, controlled by either of 
two synchronization schemes [DENN79b], 
which we refer to as token storage and 
token matching. In the first scheme data 
tokens are actually stored into an instruc- 
tion or a copy of the instruction, and an 
instruction executes when it has received 
all its inputs. Examples of this scheme in- 
clude the Massachusetts Institute of Tech- 
nology [DENN79a] and Texas Instruments 
[CORN79] data-flow computers. In the sec- 
ond scheme a token-matching mechanism, 
as described above, is employed. When a 
set of data tokens is complete, the set is 
released to activate the consumer instruc- 
t ion-as ,  for instance, in Figure 2, with 
i 2 /1 : -4  and i2/2:ffi2, which form a set of 
tokens (4, 2) for instruction i2. Examples of 
this scheme include Irvine Data Flow 
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[ARVIS(}a], the Manchester Data Flow Sys- 
tem [WATS79], and the Newcastle Data- 
Control Flow Computer [HoPK79]. 

Packet communication organizations 
based on these two schemes for synchroniz- 
ing instruction execution are illustrated by 
Figures 17 and 18. A point of commonality 
in the two organizations is the processing 
unit consisting of a number of independent 
processing elements that asynchronously 
evaluate the executable instruction pack- 
ets. Such a packet contains all the infor- 
mation required to process the instruction 
and distribute the results: the operation 
code, the input values, and the references 
for the result tokens. 

In Figure 17 the data token packets are 
in the input pool of the update unit. This 
unit takes in single data tokens and stores 
them in the memory unit. Certain of these 
data tokens may complete the inputs for an 
instruction, thus enabling it for execution. 



Data-Driven and Demand-Driven Computer Architecture • 115 

For these instructions the update unit 
places their addresses in its output pool. 
The fetch unit uses these instruction ad- 
dresses to retrieve the corresponding in- 
structions and place them in its output pool 
for execution. 

In Figure 18, where synchronization is 
based on a matching mechanism, data to- 
ken packets form the input pool of the 
matching unit. This unit forms them into 
sets, temporarily storing the set until com- 
plete, whereupon the set is released to the 
fetch/update unit. This unit forms execut- 
able instructions by merging the values 
from a set of tokens with a copy of their 
consumer instruction. 

When a data-flow program organization 
is supported by an expression manipulation 
machine organization, each of the identical 
resources must combine the role of the four 
units (memory, update, fetch, processing) 
of the packet communication organization 
with token storage. When a processing ele- 
ment receives a data token over the com- 
munications medium from some other re- 
source, it updates the consumer instruction. 
The element then inspects the instruction 
to see if all the inputs are present; if not, it 
returns to the idle state. If all the inputs are 
present, the processing element performs 
the operation and deletes the inputs from 
its memory. Next it passes the data tokens 
containing the results to their consumer 
instructions and returns to the idle state. 
We place the Utah Data-Driven Machine 
[DAvI78] in this category. 

4.4 Reduction 

In reduction computers instruction execu- 
tion is based on the recognition of reducible 
expressions and the transformation of these 
expressions. Execution is by a substitution 
process, which traverses the program struc- 
ture and successively replaces reducible 
expressions by others that have the same 
meaning, until a constant expression rep- 
resenting the result of the program is 
reached. There are two basic problems in 
supporting this reduction on a machine or- 
ganization: first, managing dynamically the 
memory of the program structure being 
transformed and, second, keeping control 
information about the state of the transfor- 
mation. Solutions to the memory manage- 

ment problem include (1) representing the 
program and instructions as strings, for ex- 
ample, "((*) ((+) (b) (1)) ((-) (b) (c)))," 
which can be expanded and contracted 
without altering the meaning of the sur- 
rounding structure, and (2) representing the 
program as a graph structure with pointers, 
and using garbage collection. Solutions to 
the control problem are (1) to use control 
stacks, which record, for example, the 
ancestors of an instruction, that  is, those 
instructions that demanded its execution; 
and (2) pointer reversal, where the ancestor 
is defined by a reversed pointer stored in 
the instruction. 

Expression manipulation organizations 
seem most applicable to supporting the re- 
duction form of program organization. 
However, the computational rules (e.g., in- 
nermost and outermost) discussed above 
provide us with schemes for sequentially 
executing reduction programs that  may be 
supported by centralized machine organi- 
zations. Examples of such centralized or- 
ganizations includes the GMD reduction 
machine [KLUG79], which uses seven spe- 
cialized stacks for manipulating strings, and 
the Cambridge SKIM machine [CLAR80], 
which supports graph structures. 

Packet communication organizations are 
also being used to support reduction. 
An example of such an organization is the 
Utah Applicative Multiprocessing System 
[Kv, LL79]. In these organizations, which 
support demand-driven graph reduction, 
instruction execution is controlled by two 
types of token. A consumer instruction dis- 
patches a demand token (containing a re- 
turn reference) to a producer instruction 
signaling it to execute and return its results. 
This producer instruction returns the result 
in a result token, which is basically a data 
token as in data flow. Two synchronization 
schemes are required for reduction to be 
supported by packet communication. The 
first ensures that only a single demand to- 
ken for a particular instruction can actually 
activate the instruction, while the second 
provides synchronization for result tokens, 
as was provided for data tokens in data 
flow. 

The final machine organization discussed 
here is the support of reduction by expres- 
sion manipulation. Examples of such orga- 
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Figure 19. Reduction expression mampulatmn. 

nizations are the Newcastle Reduction Ma- 
chine [TREL80a] and the North Carolina 
Cellular Tree Machine [MAGo79a]. The ex- 
ample expression manipulation organiza- 
tion we shall examine [WILNS0] is one in 
which the program structure is represented 
as nested delimited strings and each mem- 
ory in the machine is connected to its two 
adjacent memories to form what may be 
viewed as a large bidirectional shift register. 
Substitution of an expression into a mem- 
ory causes the adjacent information to shift 
apart, which may cause its migration into 
adjacent memory elements. Figure 19 illus- 
trates this migration of instructions. 

To find work each processing element Pi 
traverses the subexpression in its memory 
Mi, looking for a reducible expression. Since 
the "window" of a processing element into 
the overall expression under evaluation is 
limited to the contents of its own memory 
element, it is not possible for two processing 
elements to attempt simultaneously to re- 
duce the same subexpression--one of the 
key implementation problems of expression 
manipulation machines. When a processing 
element locates a reference to be replaced 
by its corresponding definition, it sends a 
request to the communications unit via its 
communications element Ci. The commu- 
nications units in such a computer are fre- 
quently organized as a tree-structured net- 
work on the assumption that the majority 
of communications will exhibit properties 
of locality of reference. Concurrency in such 
reduction computers is related to the num- 
ber of reducible subexpressions at any in- 
stant and also to the number of processing 
elements to traverse these expressions. Ad- 
ditional concurrency is obtained by increas- 

ing the number of Mi-PioCi elements, and 
also by reducing the size of each memory 
element, thus increasing the physical dis- 
tribution of the expressions. 

4.5 Implications 
From the above discussions of control flow, 
data flow, and reduction, it is clear that 
they gravitate toward, respectively, cen- 
tralized, packet communications and ex- 
pression manipulation organizations. How- 
ever, we have also shown, and the fact is 
being demonstrated by various research 
groups, that other pairings of program or- 
ganizations and machine organizations are 
viable. 

Control flow can be efficiently supported 
by either of the three machine organiza- 
tions. A centralized organization is most 
suited to sequential control flow. The ad- 
vantage of this organization is its simplicity, 
both for resource allocation and implemen- 
tation; its disadvantage is the lack of par- 
allelism. A packet communication organi- 
zation favors a parallel "control token" 
form of control flow. Although relatively 
simple, it lacks the concept of an implicit 
next instruction, thereby incurring addi- 
tional explicit references in instructions and 
extra resource allocation. Last, an expres- 
sion manipulation machine organization is 
most suited to a parallel FORK-JOIN style 
of control flow. This organization combines 
the advantages of the above two by being 
parallel but  also supports the concept of an 
implicit next instruction. It does, however, 
incur additional FORK and JOIN style con- 
trol operators. 

For data flow it is difficult to envisage a 
centralized machine organization because 
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of the need to record a large number of 
potentially executable instructions. How- 
ever, packet communication provides two 
alternative organizations for the efficient 
support of data flow. The first packet com- 
munication scheme is based on storing data 
tokens into an instruction and executing 
the instruction when it is complete. This 
form of machine organization may be 
viewed as supporting self-modifying pro- 
grams and has the advantage of concep- 
tually allowing one data-flow program to 
generate another for execution. The second 
packet communication scheme is based on 
matching data tokens. This form of orga- 
nization has the advantage of supporting 
reentrant code, but the disadvantage of 
being conceptually difficult to generate 
code for. Data flow may also be supported 
by expression manipulation, but it is diffi- 
cult to assess the advantages and disadvan- 
tages of this approach. 

Finally, we consider machine organiza- 
tion for reduction. Because of the various 
computational rules for reduction, it can be 
efficiently supported by any of the three 
machine organizations. For all these orga- 
nizations, the two basic problems are, first, 
managing dynamically the memory and, 
second, managing the control information. 
A centralized organization is best suited to 
a sequential form of reduction. It can im- 
plement with reasonable efficiency either 
string or graph manipulation. A packet 
communication and expression manipula- 
tion organization favor a parallel computa- 
tional rule. 

5. DATA-FLOW COMPUTERS 

The number of extremely interesting data- 
driven and demand-driven computer archi- 
tectures under investigation has made our 
task of choosing the set to survey particu- 
larly difficult. Since this paper is concerned 
with identifying related concepts rather 
than describing implementations, we have 
chosen to give brief overviews of a number 
of architecture schemes, described in the 
open literature, whose concepts seem par- 
ticularly interesting. Our examination of 
data-driven computers clearly must start 
with the Massachusetts Institute of Tech- 
nology architecture. 

• 1 1 7  

5.1 M.I.T. Data-Flow Computer 

The contribution of the M.I.T. project to 
data-flow research has been significant, 
forming the basis for most other data- 
flow projects. There are extensive refer- 
ences to this M.I.T. work, which covers 
data-flow graphs [RODR69, DENN71, 
DENS72, DESN74a], computer archi- 
tecture [DENN74b, DENN75b, RUMB77, 
DENS79a], and the design of high-level pro- 
gramming languages [WENG75, ACKE79a], 
including the single-assignment language 
VAL [ACKE79b], based on the abstract- 
data-type language CLU. (Data-flow lan- 
guages are in general based on the single- 
assignment principle [TESL68, C~IAM71].) 
This description of the M.I.T. work concen- 
trates on the computer architecture and is 
based on a description given in Dm~N79a. 

The program organization used in the 
M.I.T. computer is clearly data flow; how- 
ever, only one token may occupy an arc at 
an instance. This leads to a fwing rule which 
states that an instruction is enabled if a 
data token is present on each of its input 
arcs and no token is present on any of its 
output arcs. Thus the M.I.T. program or- 
ganization contains control tokens, as well 
as data tokens, that contribute to the ena- 
bling of an instruction but  do not contribute 
any input data. These control tokens act as 
acknowledge signals when data tokens are 
removed from output arcs. In the program, 
organization values from data tokens are 
stored into locations in an instruction and 
control tokens signal to a producer instruc- 
tion when particular locations become un- 
occupied. 

The M.I.T. organization is what we term 
a packet communication organization with 
token storage. This organization is shown 
in Figure 20. It consists of five major units 
connected by channels through which in- 
formation packets are sent using an asyn- 
chronous transmission protocol. The five 
units are (1) the Memory Section, consist- 
ing of Instruction Cells that hold the in- 
structions and their operands; (2) the Proc- 
essing Section, consisting of specialist proc- 
essing elements that perform operations on 
data values; (3) the Arbitration Network, 
delivering executable instruction packets 
from the Memory Section to the Processing 
Section; (4) the Control Network, deliver- 
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Figure 20.  M I.T. data-flow computer .  

ing control packets from the Processing 
Section to the Memory Section; and (5) the 
Distribution Network, delivering data 
packets from the Processing Section to the 
Memory Section. 

Instructions held in the Memory Section 
are enabled for execution by the arrival of 
their operands in data packets from the 
Distribution Network and in control pack- 
ets from the Control Network. Each In- 
struction Cell in the Memory Section holds 
one instruction of the data-flow program 
and is identified by a unique address. When 
occupied, an Instruction Cell holds an in- 
struction consisting of an operation code 
and several references (i.e., destination ad- 
dresses) for results and contains, in addi- 
tion, three registers, which await the arrival 
of values for use as operands by the instruc- 
tion. Once an Instruction Cell has received 
the necessary operand values and acknowl- 
edge signals, the cell becomes enabled. 

Enabled instructions together with their 
operands are sent as operation packets to 
the Processing Section through the Arbitra- 
tion Network. This network provides a path 
from each Instruction Cell to each specialist 
element in the Processing Unit and sorts 
the operation packets among its output 
ports according to the operation codes of 
the instructions they contain. The results 
of instruction execution are sent through 
the Distribution and Control Networks to 

the Memory Section, where they become 
operands of other instructions. 

Each result packet consists of a result 
value and a reference derived from the in- 
struction by the processing element. There 
are two kinds of result packet: (1) control 
packets containing Boolean values (Boo- 
lean data tokens) and acknowledge signals 
(control tokens), which are sent through 
the Control Network; and (2) data packets 
(data tokens) containing integer or complex 
values, which are sent through the Distri- 
bution Network. The two networks deliver 
result packets to the Instruction Cells spec- 
ified by their destination field and a cell 
becomes enabled when all result packets 
have been received. 

The current status of the M.I.T. data- 
flow project is that hardware for the above 
computer architecture is under develop- 
ment and a compiler is being written for 
the VAL programming language. A number 
of supportive projects on fault tolerance, 
hardware description languages, etc. are 
also in progress. 

5.2 Texas Instruments Distributed Data 
Processor 

The Distributed Data Processor (DDP) is 
a system designed by Texas Instruments to 
investigate the potential of data flow as the 
basis of a high-performance computer, con- 
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structed using only off-the-shelf technol- 
ogy. This project [CORN79, JOHN79] began 
in mid-1976, and DDP plus its supporting 
software has been operational since Sep- 
tember 1978. A most interesting aspect of 
the DDP project is that the computer is 
largely programmed in FORTRAN 66. A 
cross compiler, based on the Texas Instru- 
ments Advanced Scientific Computer's op- 
timizing FORTRAN compiler, translates 
FORTRAN subprograms separately into 
directed graph representations and a link- 
age editor combines them into a single pro- 
gram [JOHN79]. The following description 
of DDP is largely taken from the paper by 
Cornish [CORN79]. 

Conceptually, DDP and'the M.I.T. com- 
puter discussed above are based on a simi- 
lar data-flow program organization. An in- 
struction is enabled if a data token is pres- 
ent on each of its input arcs and no token 
is present on any of its output arcs. Only 
one token may occupy an arc at an instance. 
In addition, control tokens are used as ac- 
knowledge signals, for instance, to handle 
FORTRAN language constructs that are 
resistant to representation by "pure" data- 
flow code. 

A DDP instruction consists of the follow- 
ing fields: (1) an operation code, (2) a so- 
called predecessor count of the input tokens 
yet to arrive, (3) a field reserved for a 
hardware-maintained linked list of instruc- 
tions ready for execution, (4) an original 
count of tokens used to restore the prede- 
cessor count after the instruction executes, 
(5) an operand list with space reserved for 
incoming token operands, and finally (6) a 

successor list containing the destination in- 
struction addresses for the result tokens. 
The size of instructions and whether they 
are of fixed or variable length are unclear 
from the references. 

The DDP machine organization is what 
we term a packet communication organi- 
zation with token storage, because oper- 
ands are stored into unoccupied locations 
in an instruction. Although this is the same 
class of machine organization as the M.I.T. 
computer, the computer architecture of 
DDP is significantly different. A block dia- 
gram of the DDP system is shown in Figure 
21. It consists of five independent comput- 
ing elements: four identical data-flow com- 
puters that  cooperate in the execution of a 
computation and a Texas Instruments 
990/10 minicomputer, acting as a front-end 
processor for input/output, providing op- 
erating system support, and handling the 
collection of performance data. (A data- 
flow program to be executed is statistically 
partitioned and allocated among the four 
data-flow computers.) These five comput- 
ing elements in the DDP are connected 
together by a variable-length, word-wide, 
circular shift register known formally as a 
DCLN ring. This shift register is daisy 
chained through each element and may 
therefore carry up to five variable-length 
packets in parallel. 

Each data-flow computer consists of four 
principle units. These units are (1) the 
Arithmetic Unit, which processes executa- 
ble instructions and outputs tokens; (2) the 
Program Memory, built out of standard 
random-access-memory (RAM) chips and 
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holding the data-flow instructions; (3) the 
Update Controller, which updates instruc- 
tions with tokens; and (4) the Pending In- 
struction Queue, which holds executable 
instructions that have been enabled. Exe- 
cutable instructions are removed from this 
queue by the Arithmetic Unit and proc- 
essed. When an instruction completes exe- 
cution, a series of token packets are re- 
leased to the Update Controller. Using the 
address in a packet the Update Controller 
stores the token operand in the instruction 
and decrements by one its predecessor 
count. If this count is zero, the instruction 
is ready to execute; a copy is placed on the 
Pending Instruction Queue and the stored 
version of the instruction is reinitialized. It 
is unclear whether the Pending Instruction 
Queue may contain more than one execut- 
able instruction. However, when the capac- 
ity of the queue is exceeded, the enabled 
instructions are linked, in memory, to the 
Pending Instruction Queue via their link 
field already reserved for this purpose. This 
method has the advantage that  no amount 
of program parallelism overflows the capac- 
ity of the hardware resource. 

DDP is implemented in transistor-tran- 
sistor logic (TTL) on wire-wrap boards and 
chassis from Texas Instruments 990 mini- 
computer components. Each data-flow 
computer contains 32K words of metal-ox- 
ide-semiconductor (MOS) memory with 
each word divided as a 32-bit data field and 
a 4-bit tag field holding the predecessor 
count. Each of these computers contains 
about the same number of components as 
a minicomputer and provides approxi- 
mately the same raw processing power. 
Thus, as remarked by Cornish [CORN79, 
pp. 19-25], "data flow designs place no par- 
ticular burden on the implementation other 
than using more memory for program stor- 
age." 

5.3 Utah Data-Driven Machine 

Data-Driven Machine #1 (DDM1) is a 
computing element of a recursively struc- 
tured data-flow architecture designed by A1 
Davis and his colleagues while working at 
Burroughs Interactive Research Center in 
La Jolla, California. DDM1 [DAvI78, 
DAVI79a, DAvI79b] was completed in July 
1976 and now resides at the University of 

Utah, where the project is continuing under 
support from Burroughs Corporation. Here 
we examine the structure of this recursive 
architecture and the operation of DDM1, 
descriptions primarily taken from Davis 
[DAvI78]. 

The program and machine organization, 
both based on the concept of recursion, 
contrasts markedly with the previous data- 
flow systems we have examined. The com- 
puter is composed of a hierarchy of com- 
puting elements (processor-memory pairs), 
where each element is logically recursive 
and consists of further inferior elements. 
Physically the computer architecture is tree 
structured, with each computing element 
being connected to a superior element 
(above) and up to eight inferior elements 
(below), which it supervises. Only recently 
have other groups come to recognize the 
fundamental importance of hierarchy for 
decentralized systems, particularly those 
exploiting VLSI [SEIT79, MEAD80, 
TREL80b], since it is able to utilize locality 
of reference to reduce the critical problems 
of system-wide communication and control. 

In the Utah data-flow program organi- 
zation, referred to as Data-Driven Nets 
[DAvI79a], data tokens provide all com- 
munication between instructions--there 
are no control tokens. In addition, the arcs 
of the directed graph are viewed as first-in/ 
first-out (FIFO) queues, a model that is 
supported by the architecture. The actual 
program representation corresponding to 
these Data-Driven Nets consists of hierar- 
chically nested structure of variable-length 
character strings. A data-flow program, its 
subprograms, and their individual instruc- 
tions are each viewed as a parenthesized 
string, for example, 

"( ( ) ( ( ) . . . )  . . . ) ."  

The notion of an arc being a FIFO queue is 
supported by storing the data tokens that  
have arrived but have not been consumed 
with the instruction in the program struc- 
ture. Each instruction therefore consists of 
an operation code and a list of destination 
addresses for the results, together with a 
variable number of sets of data tokens wait- 
ing either for a set to be complete or for 
consumption by the instruction. An advan- 
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tage of the parenthesized string form of 
representation is that it supports dynamic, 
and localized, variation of the program 
structure. Because of the nature of this 
program representation and the method of 
allocating work to resources, discussed be- 
low, we classify the Utah architecture as an 
expression manipulation machine organi- 
zation. 

A block diagram of the computing ele- 
ment DDM1 is shown in Figure 22. DDM1 
consists of six major units: (1) the Atomic 
Storage Unit (ASU) provides the program 
memory; (2) the Atomic Processor (AP} 
executes the instructions; (3) the Agenda 
Queue (AQ) stores messages for the local 
Atomic Storage Unit; (4) the Input Queue 
(IQ) buffers messages from the superior 
computing element; (5) the Output Queue 
(OQ) buffers messages to the superior ele- 
ment; and finally (6) the SWITCH connects 
the computing element with up to eight 
inferior elements. All paths between these 
units, except for that between the Atomic 
Storage Unit and Atomic Processor are six 
wire paths (a two-wire request-acknowl- 
edge control link and the four-wire, char- 
acter-width data bus}. The units commu- 
nicate asynchronously using a four-phase 
request-acknowledge protocol. 

Work in the form of a program fragment 
is allocated to a computing element by its 

superior, being placed as a message in the 
Input Queue. The action taken by the com- 
puting element depends on the structure of 
the fragment and whether there are further 
inferior elements. If there exists some set of 
concurrent subprograms and the comput- 
ing element has substructure, then it will 
decompose and allocate the subprograms 
to its inferior elements. Otherwise, the pro- 
gram fragment is placed in the element's 
own Atomic Storage Unit. The Atomic 
Storage Unit of DDM1 contains a 4K × 4- 
bit character store, using RAM devices, and 
also performs storage management func- 
tions on the variable-length parenthesized 
strings, such as initialize, read, write, insert, 
and delete. All target locations in the store 
are found by an access vector into the tree- 
organized storage structure. Free space is 
managed automatically. 

When a data token arrives as a message, 
for example, in the Input Queue, it is either 
passed on via the appropriate queue to a 
computing element at some other level, or 
if the program fragment is in the local 
Atomic Storage Unit, it is inserted into the 
instruction. When such an instruction be- 
comes enabled, it is executed immediately 
by the Atomic Processor and the result 
tokens distributed. These are placed in the 
Output Queue or SWITCH, or if the receiv- 
ing instruction is in the local Atomic Stor- 
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age Unit, they are placed in the Agenda 
Queue. After the processor has generated 
all the result tokens, it will service messages 
from the SWITCH, the Agenda Queue, and 
the Input Queue, in descending order of 
priority. 

Current status of the project is that 
DDM1 is operational and communicates 
with a DEC-20/40, which is used for soft- 
ware support of compilers, simulators, and 
performance measurement programs. The 
current programming language is a state- 
ment description of the directed graph; 
however, an interactive graphical program- 
ming language is also under development. 

5.4 Irvine Data Flow Machine 

The Irvine data-flow (Id) machine is moti- 
vated by the desire to exploit the potential 
of VLSI and to provide a high-level, highly 
concurrent program organization. This pro- 
ject originated at the University of Cali- 
fornia at Irvine [ARvI75, ARVI77a, ARVI77b, 
GOST79a, GOST79b] and now continues at 
the Massachusetts Institute of Technology 
[ARvI80a, ARvI80b]. It has made significant 
contributions to data-flow research, in par- 
ticular the Id language [ARVI78]. The de- 
scription given here is principally based on 
ARVI80a. 

The program organization used in the Id 
machine is pure data flow, with an instruc- 
tion being enabled when all its input tokens 
are available. Each instruction may have 
one or two inputs and any number of out- 
puts. There are a number of interesting 
features in the Id program organization. 
The first feature is the sophisticated token 
identification scheme, similar to the 
P / N / A / I  format discussed in Section 3.3. A 
token identifier consists of (1) a code block 
name identifying a particular-procedure or 
loop; (2) a statement number within the 
code block; (3) an initiation number for the 
loop; and (4) a context name identifying the 
activity invoking this procedure or loop. 
The second interesting feature is its support 
for data structures, such as arrays, by the 
inclusion of I structures [ARvI80b]. An I 
structure is a set of components, with each 
component having a unique selector (for an 
array the selectors are the indexing inte- 
gers) and being either a value or an un- 

known if the value is not yet available. This 
feature uses the by-reference mechanism of 
control flow. Two further features are that 
Id supports the nondeterminism required 
for implementing resource managers and, 
by treating procedure definitions as ma- 
nipulable values, supports higher order 
functions, abstract data types, and operator 
extensibility. These features are discussed 
in detail in ARVI78. 

The Id machine has a packet communi- 
cation organization with token matching. It 
consists of N processing elements and an 
N × N communications network for routing 
a token from the processing element gen- 
erating it to the one consuming the token. 
This machine organization attempts to 
minimize communications overhead in two 
ways. First, the matching unit for tokens 
destined for a particular instruction is in 
the same processing element as is the stor- 
age holding that instruction. Second, there 
is a short-circuit path from a processing 
element to itself so that there is no need to 
use the full N × N network if a token is 
destined for the same processing element 
as generated it. The mapping algorithm, 
determining in which processing element 
an instruction is stored, is intended to ob- 
tain maximum usage of this short circuit, 
while still giving good processor utilization. 

Figure 23 illustrates a processing element 
of the proposed Irvine data-flow machine. 
Each processing element is essentially a 
complete computer with an instruction set, 
up to 16K words each of program storage 
and data structure storage, and certain spe- 
cial elements. These specialist elements in- 
clude: (1) the input section, which accepts 
inputs from other processing elements; (2) 
the waiting-matching section, which forms 
data tokens into sets for a consumer in- 
struction; (3) the instruction fetch section, 
which fetches executable instructions from 
the local program memory; (4) the service 
section, that is, a floating-point arithmetic- 
logic unit (ALU) (e.g., Intel 8087); and (5) 
the output section, which routes data to- 
kens containing results to the destination- 
processing element. 

The current status of the project is that 
a computer with 64 processing elements is 
currently being designed at the Massachu- 
setts Institute of Technology and is ex- 
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pected to be ready for MOS fabrication by 
the end of 1982. 

5.5 Manchester Data-Flow Computer 

The data-flow project at Manchester Uni- 
versity, like a number of other projects, is 
investigating the use of data flow as the 
basis for a high-performance computer. 
This project, starting in 1975, has included 
the design of a high-level, single-assignment 
programming language LAPSE, the imple- 
mentation of translators for LAPSE and a 
subset of PASCAL, and the production of 
a detailed stimulator for the Manchester 
computer architecture. Currently the group 
is implementing a 20-processor data-flow 
computer prototype. Early ideas on this 
design are given in TREL78; this description 
of the computer is based on WATS79. 

The program organization used by the 
Manchester computer is pure data flow, 
with an instruction being enabled when all 
its input arcs contain tokens (its output 
arcs may also contain unconsumed data 
tokens), and an arc is viewed as a FIFO 
queue providing storage for tokens. The 
program representation is based on a two- 
address format, with an instruction consist- 
ing of an operation code, a destination in- 

struction address for a data token, and 
either a second destination address or an 
embedded literal. Each instruction con- 
sumes either one or two data tokens, and 
emits either one or two tokens. A token 
consists of three fields: the value field hold- 
ing the operand, an instruction address field 
defining the destination instruction, and 
last a label field. This label is used for 
matching tokens into sets and provides 
three types of information, identifying the 
process to which the token belongs, the arc 
on which it is traveling, and also an itera- 
tion number specifying which particular to- 
ken on an arc this is. Thus tokens have a 
four-field name, as discussed in Section 3.3, 
serving a number of roles in the architec- 
ture, including supporting the notion of arcs 
being FIFO queues, allowing tokens to be 
matched into sets, and allowing a program's 
instructions to be used reentrantly. 

The machine organization of the com- 
puter is a packet communication organiza- 
tion with token matching. Figure 24 shows 
a block diagram of the Manchester data- 
flow computer. It consists of five principal 
units: (1) the Switch provides input-output 
for the system; (2) the Token Queue is a 
FIFO buffer providing temporary storage 
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for tokens; (3) the Matching Store matches 
pairs of tokens; (4) the Instruction Store is 
the memory holding the data-flow pro- 
grams; and (5) the Processing Unit, consist- 
ing of a number of identical processing ele- 
ments, executes the instructions. The 
Switch is used for passing data tokens into 
or out of the computer, either communicat- 
ing with peripherals or other, possibly data- 
flow, computers. To start execution of a 
program fragment, initialization tokens are 
inserted at the Switch and directed by their 
labels to the starting instructions of the 
computation. A special destination address 
in the final instructions of the program 
fragment allows tokens to be output. 

A token ~.. r~-~cb~ng the front of the 
Token Queue can access (if one of a pair) 
or bypass (if a single input) the Matching 
Store, depending on information in the to- 
ken label. An access to the Matching Store 
will cause a search of the store. The Match- 
ing Store is associative in nature, although 
it is implemented using RAM with hard- 
ware hashing techniques, and is based on 
the work of Goto and Ida [GOTo77]. If a 
token is found with the same label and 
instruction address, it is removed to form a 
token pair. If no match is found, the incom- 
ing token is written to the store. Token 
pairs from the Matching Store, or single 
tokens that  have bypassed it, are routed to 
the Instruction Store. At this store, which 
is a RAM addressed by the contents of the 
instruction address field, the tokens are 
combined with a copy of the destination 
instruction to form an executable instruc- 

Computing Surveys, Vol. 14, No. 1, March 1982 

tion that is released to the Processing Unit. 
This unit consists of a distribution and ar- 
bitration system, and a group of micropro- 
grammed microprocessors. The distribu- 
tion system, on receipt of an executable 
instruction, will select any processor that  is 
free and allocate the instruction. After ex- 
ecution, the arbitration system controls the 
output of result tokens from the processing 
elements. 

The current status of the project is that  
a 20-processing-element computer is under 
construction. Each processing element is 
built from Schottky bit-slice microproces- 
sors and is estimated to give an average 
instruction execution time of 3 microsec- 
onds for the data-flow arithmetic opera- 
tions. If all 20 processing elements can be 
utilized fully, this will give an approxi- 
mately 6-million-instruction-per-second 
rate for the computer as a whole. To sup- 
port this rate, the following operation times 
[WATS79] are required: (1) Token Queue 
read 202 nanoseconds; (2) Matching Store 
access 303 nanoseconds; (3) Instruction 
Store read 303 nanoseconds; (4) SWITCH 
operation 202 nanoseconds; and (5) Token 
Queue write 202 nanoseconds. These speeds 
require a storage access time of the order 
of 200 nanoseconds, which is achievable 
with low-cost MOS storage devices. 

5.6 Toulouse LAU System 

"Language d assignation unique" is the 
French translation for the phrase "single- 
assignment language." The LAU system 
[CoMT76, GELL76, PLAS76, S¥RE77, 



Data-Driven and Demand-Driven Computer Architecture 

Input 
I Queue 1 

Control [. instructions ready 1 Memory 
Unit ~Instructlons Unit 

k::::::::::! Processing Unit e ° 
PO...P31 

descriptor 

Figure 25. LAU system. 

• 125 

COMT79b] is a data-driven computer de- 
signed to execute such languages. The LAU 
project is based at the CERT Laboratory 
in Toulouse. Notably this extensive project, 
starting in 1976, initially designed the LAU 
high-level language, which was used to pro- 
gram a large number of problems. Subse- 
quently, the group implemented a compiler 
for the language and a detailed simulator, 
which yielded a large number of simulation 
data [PLAs76]. This led to the design and 
current construction of a powerful 32-proc- 
essor data-driven computer. The descrip- 
tion of the LAU computer given here is 
based on the paper by Comte and Hifdi 
[CoMT79b]. 

The LAU programming language has a 
data-flow model, but the computer's pro- 
gram organization is in fact based on con- 
trol-flow concepts. In the computer data 
are passed via sharable memory cells that 
are accessed through addresses embedded 
in instructions, and separate control signals 
are used to enable instructions. However, it 
should be stressed that, as in data flow, the 
flow of control is tied to the flow of data 
(i.e., the control graph and the data graph 
are identical). 

Program representation is based on three 
logical types of memory, for instructions, 
for data, and for control information. An 
instruction (66 bits in length) has a three- 
address format and consists of an operation 
code, two data memory addresses for input 
operands, and a data memory address for 
the result operand. Following conventional 
practice, if an input operand is a literal, it 

replaces the address in the instruction. 
Each cell in the data memory consists of a 
value field providing storage for the oper- 
and and of two link fields that  contain 
instruction memory addresses of instruc- 
tions using the operand as an input. 

Corresponding to each instruction and 
data operand are sets of control bits which 
synchronize execution. Three control bits 
referred to as C0,C1, and C2 denote the 
state of an instruction. C1 and C2 define 
whether the two corresponding input op- 
erands are available, while CO provides en- 
vironment control, as, for instance, for in- 
structions within loops. An instruction is 
enabled when COC1C2 match the value 
111. A final control bit, referred to as Cd, is 
associated with each data operand and 
specifies if the operand is available. Exe- 
cution of an enabled instruction consists of 
fetching the two input operands from the 
data memory using the embedded operand 
addresses, and performing the specified op- 
eration. Next, the result operand is written 
to the data memory using the result ad- 
dress, which causes the corresponding link 
addresses to be returned to the processor, 
and is used to update the corresponding C1 
and C2 of instructions using the result as 
inputs. 

The LAU machine organization is a 
packet communication organization with 
token storage, owing to the form of program 
organization, notably the association of 
CO C1 C2 control bits with each instruction. 
Figure 25 illustrates the system organiza- 
tion of the LAU computer. It comprises the 
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memory unit providing storage for instruc- 
tions and data, the control unit maintaining 
the control memory, and the processing 
unit consisting of 32 identical processing 
elements. Each element is a 16-bit micro- 
programmed processor built around the 
AMD 2900 bit-slice microprocessor. Per- 
haps the most interesting part is the control 
unit, where the von Neumann program 
counter is replaced by two memories: the 
Instruction Control Memory (ICM) and the 
Data Control Memory (DCM). ICM han- 
dles the three control bits CO C1 C2 associ- 
ated with each instruction and DCM man- 
ages the Cd bit associated with each data 
operand. 

As an illustration of the operation of the 
LAU computer let us consider the process- 
ing of an enabled instruction. Processing 
starts in the control unit at the Instruction 
Control Memory. ICM is composed of 32K 
three-bit-wide words, with the control bits 
in word i corresponding to the instruction 
in word i in the memory unit. Two proces- 
sors scan this memory: the Update Pro- 
cessor sets particular bits of CO C1 C2, and 
the Instruction Fetch Processor associa- 
tively accesses the memory for 111 pat- 
terns. When an enabled instruction is 
found, its address is sent to the memory 
unit and the control bits are reset to 011. 

The address of the enabled instruction is 
queued, if necessary, in a 16-bit × 64-word 
FIFO queue, which is a pool of work for the 
memory unit. This unit consumes the ad- 
dress and places the corresponding instruc- 
tion on the instruction bus, which is also a 
64-bit × 128-word FIFO queue, where it is 
eventually accessed by an idle processing 
element. Once in a processing element, the 
instructioff is decoded and the input ad- 
dresses are dispatched to the memory unit 
to access the data operands. When the in- 
puts return, the operation is performed and 
the result generated. Next the processing 
element issues a write-read request to the 
memory unit giving the result and its ad- 
dress. The result will be stored in the value 
field and the contents of the two link fields 
will be returned to the element. Once the 
link fields have been returned, the process- 
ing element sends the links to the Update 
Processor, which uses them to set the cor- 
responding C1 or C2 bits in the instruction 

control memory. In parallel to the storing 
of the result, the processing element sends 
the result address to the data control mem- 
ory where the Cd bit is set. This memory is 
n 1-bit words. Like the ICM, the DCM is 
served by two processors, one that updates 
the Cd bits and the other that checks that 
accesses to operands in the memory unit 
are in fact available (i.e., the Cd bit is set). 

Regarding the status of the LAU project, 
the first of the 32 processors became oper- 
ational in September 1979, and the remain- 
der have been constructed since then. Pre- 
dicted performance figures for this hard- 
ware are given in COMT79b. 

5.7 Newcastle Data-Control Flow Computer 

Most of the data-driven projects discussed 
above are based on a single program orga- 
nization and are concerned, specifically, 
with studying its embodiment in a suitable 
machine organization. In contrast, the 
group at the University of Newcastle upon 
Tyne are interested in the actual program 
organizations, their suitability for a general- 
purpose decentralized computer, and the 
possibilities for combining them. In this 
respect the group has investigated, using 
software and hardware simulators, data 
flow [TREL78], "multithread" control flow 
[FARR79], and reduction [TREL80a] orga- 
nizations, and also combinations of more 
than one organization in a single computer. 
Here we describe the JUMBO computer 
architecture [HoPK79, TREL82] built to 
study the integration of data-flow and con- 
trol-flow computation. 

The program organization has both data 
tokens and control tokens, and some spe- 
cific combination of tokens causes the en- 
abling of a particular instruction. In the 
organization there are two ways in which 
an instruction may obtain its input oper- 
ands, namely, (1) by receiving data tokens, 
which may carry a value or an address of 
the stored value; or (2) by means of embed- 
ded inputs stored in the instruction, which, 
like the contents of data tokens, may be 
literal values or addresses. When an in- 
struction is enabled, the token inputs and 
embedded inputs are merged to produce a 
set of values and addresses. The addresses 
of inputs are then dereferenced and re- 
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placed by their corresponding values from 
memory. The resulting executable instruc- 
tion then has a complete set of value argu- 
ments on which to compute. 

An instruction consists of an operation 
code and up to eight arguments, certain 
arguments being embedded in the stored 
instruction and others being supplied by 
data tokens at run time. Each operation 
code uses arguments in specific positions 
for inputs and places its results in other 
positions. A stored instruction therefore 
consists of (1) an operation code, (2) up to 
eight embedded arguments, (3) a position 
field defining those arguments that are 
present, (4) an input mode field defining 
which of the merged token and embedded 
arguments are to be dereferenced, and (5) 
an output mode field specifying which ar- 
guments and results are to be combined to 
produce the outputs of the instruction after 
execution. Three types of output may be 
produced by an instruction, namely, data 
to store in memory, data tokens, and con- 
trol tokens. Each consists of a reference and 
a value. For data to store, the name gives 
the address of the memory cell; for tokens 
it gives the address of the destination in- 
struction and information to control the 
token's matching with other tokens in the 
set, such as the count of tokens. In the 
computer up to four tokens may be grouped 
together in a set. 

The machine organization of the 
JUMBO computer is a packet communcia- 
tion organization with token matching. A 
block diagram of the computer, as shown in 
Figure 26, consists of three principal units 
interconnected by FIFO buffers. The 
Matching Unit controls the enabling of in- 

structions by matching sets of tokens, 
which are released to the Memory Unit 
when complete. The Memory Unit provides 
storage for data and instructions. It places 
the contents of stored data packets in the 
appropriate memory cell, and for token set 
packets it constructs executable instruc- 
tions, which are released to the Processing 
Unit. Finally, the Processing Unit supports 
instruction execution and the distribution 
of results. 

When a token set packet is released by 
the Matching Unit, it contains between zero 
and four input arguments supplied by data 
tokens. Using the destination instruction 
address in the packet, the Memory Unit 
takes a copy of the target instruction and 
merges the token arguments with those 
already embedded in the instruction. The 
copy of the instruction now has a complete 
set of arguments. Next, the input mode 
field, which is an 8 × 1-bit vector, is ex- 
tracted, and for each bit set the correspond- 
ing argument is assumed to be a memory 
address and is dereferenced and replaced 
by its corresponding value to give an exe- 
cutable instruction. 

Each of the three units of the JUMBO 
computer is built from a Motorola M6800 
microcomputer system. Storage in the 
JUMBO computer is divided into 1-kbyte 
pages. Each process executing in the com- 
puter has three pages, one for its tokens in 
the Matching Unit, and one each for its 
code and data in the Memory Unit. Pro- 
cesses can be dynamically created and 
killed, and the token page can be reallo- 
cated, implicitly deleting residual tokens so 
that graphs do not have to be self-cleaning 
as on other data-driven computers. 

Computing Surveys, Vol 14, No. 1, March 1982 



128 • P .  (7. Treleaven, D. R. Brownbridge, and R. P. Hopkins 

5.8 Other Projects 

Research into data flow is a rapidly expand- 
ing area in the United States, Japan, and 
Europe. Besides the projects briefly de- 
scribed above, there are a number of other 
interesting data-flow projects worthy of de- 
scription in this survey. These include: the 
MAUD single-assignment system at the 
University of Lille, France [LEco79]; work 
at the Mathematical Center, Amster- 
dam on compiling conventional languages 
for data-flow machines [VEEN80]; the 
PLEXUS project at the University of 
Tampere, Finland JERK180]; the FLO pro- 
ject at the University of Manchester, Eng- 
land [EGAN79]; work on a hierarchical data- 
flow system at the Clarkson Coll~ge of 
Technology, New York [SHRO77]; and a 
number of machines that  have been built 
or are under development in Japan 
[JIPD81b] such as a high-speed, data-flow 
machine being developed at Nippon Tele- 
graph and Telephone [AMAM80, JIPD81b]. 

6. REDUCTION COMPUTERS 

Apart from the pioneering work of Klaus 
Berkling, the stage of development of re- 
duction computers somewhat lags behind 
that of data-flow computers. This is prob- 
ably due to reduction semantics being an 
unfamiliar form of program execution for 
most computer architects. 

6.1 GMD Reduction Machine 

The reduction machine project based on 
the GMD (Gesellschaft fur Mathematik 
und Datenverarbeitung) Laboratory in 
Bonn, West Germany, aimed to demon- 
strate that reduction machines are a prac- 
tical alternative to conventional architec- 
tures. In particular, the aim was to build a 
computer easy to program directly in a 
high-level, functional language based on the 
lambda calculus. Early ideas on this theme 
are given in BERK71 and consolidated in 
BERK75. This description of the GMD re- 
duction machine is based on the account in 
KLUG79, supplemented by information 
from HOMM79 and KLUG80. 

The GMD machine's program organiza- 
tion is string reduction. A design objective 
was the elimination of addresses entirely, 
and this is achieved by always using substi- 
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tution copies of code and data instead of 
sharing by using addresses. In the machine 
a program is represented as a prefix expres- 
sion, the binary tree structuring being 
uniquely exhibited by a string of symbols. 
These expressions may be atoms--single 
symbols or values--or may themselves be 
strings. Each subtree consists of three parts, 
namely, a constructor, a function, and its 
argument. 

One task of the constructor is to indicate 
which of its offspring in the tree is the 
function and which the argument. Since the 
reduction machine is designed to traverse 
expression trees in preorder (i.e., left sub- 
tree before the right), it is necessary to 
know whether the function or the argument 
should be reduced first, and the order in 
which they occur in the expression. This is 
provided by two types of constructor rep- 
resented by the symbols ":" and "(--." The 
constructor ":", used in the format ": argu- 
ment function", evaluates the argument 
expression, by reduction to a constant 
expression, before the function is applied to 
it. The constructor "~-", used in the form 
"(-- function argument", applies (reduces) 
the function expression before the argu- 
ment is evaluated. 

Expressions may in general be built from 
either constructor and identical constant 
expressions obtained. For instance, the 
arithmetic expression 4 + 2 can be repre- 
sented either as : 2 : 4 + or as (-- (-- + 4 2. Dif- 
ferences arise when constructors are ap- 
plied to function bodies as they give rise to 
by-value and by-name parameter substitu- 
tion. Special symbols for function-argu- 
ment binding are also provided in the form 
of a pair of constructors lambda and alpha. 
The former implements standard lambda 
substitution, while the latter is used to im- 
plement recursion. Lambda simply causes 
the actual parameter to be substituted for 
a formal parameter in an expression (the 
operation being known in lambda calculus 
as a beta reduction). Alpha is used to bind 
function bodies to occurrences of the func- 
tion name in recursive expressions, with 
occurrences of the name being replaced by 
a new application of alpha, for example, 

ALPHA.f{. . .  f . . .  ) 
reduces to f ( . . .  ALPHA.f . . .  ) 

Obviously the bracketed body of f must 
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contain a terminating condition to prevent 
the recursion's being infinite. 

The GMD machine organization is clas- 
sified as a centralized organization, partic- 
ularly by the way it represents and executes 
programs. A block diagram of the machine 
architecture is shown in Figure 27. It con- 
sists of the reduction unit (comprising four 
subunits named TRANS, REDREC, RE- 
DEX, and ARITH), a set of seven 4-kbyte 
push-down stacks (of which E, A, B, U, V, 
and M are used to process expressions, and 
S serves as the system control stack), and 
a 1-byte-wide bus system for communica- 
tion between the various units. In the re- 
duction unit the four subunits perform the 
following tasks. TRANSport performs all 
traversal algorithms; REDuction-RECog- 
nition looks for an instance of a reducible 
expression during traversal and, upon find- 
ing one, halts the TRANS unit and passes 
control to the REDEX unit. REDuction- 
EXecution essentially provides a fast con- 
trol memory containing all the control pro- 
grams to perform the reductions. In this 
task it is assisted by the ARITHmetic unit, 
which performs all the arithmetic and log- 
ical operations. 

In the traversal of an expression by the 
machine, three principal stacks are used. 
These are E, M, and A, referred to as 
source, intermediate, and sink. The source 
stack holds the tree expression to be re- 
duced with the root constructor on top of 
the stack. As the expression is traversed, a 
succession of pop operations moves the 
symbols off the source stack onto the sink 
stack. For reasons of consistency, the 
expression ending up on the sink stack must 
appear with the constructors on top of their 
respective subtrees. To accomplish this, the 
third intermediate stack is used as tempo- 
rary storage for constructors that  emerge 

from the source stack ahead of their sub- 
expressions, but must enter the sink stack 
after them. 

The GMD reduction machine has been 
built and is connected to a microcomputer 
system supporting a library and program- 
ming tools. The whole system has been 
operational since 1978. An attempt has also 
been made to implement Backus' FP lan- 
guage [BACK78], but in general this is less 
successful than the original lambda calculus 
language for which the machine was de- 
signed. The main contribution of the GMD 
project is to demonstrate that  there is suf- 
ficient understanding of reduction to imple- 
ment a workable machine. The project has 
also shown that string manipulation is a 
useful technique but may be inefficient 
when adhered to rigorously. 

6.2 Newcastle Reduction Machine 

The Newcastle reduction machine project 
aimed to investigate the use of parallelism 
in such machines and also explore the fea- 
sibility of basing these designs on a few 
replicated large-scale integrated (LSI) 
parts. This project resulted in the design 
and simulation of a parallel string reduction 
machine, the major feature of the design 
being the use of state-table-driven proces- 
sors that allowed the computer to be used 
as a vehicle for testing different reduction 
(language) schemes. The presentation 
given here is based on TREL80a and uses an 
example reduction language described 
there. 

The program organization uses string 
manipulation; references may occur in a 
string, and these are substituted by the 
corresponding definition at run time. A par- 
allel innermost computation rule is used. 
An expression in the program representa- 
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tion is delimited by left bracket "(" and 
right bracket ")" symbols, and consists of a 
function followed by a list of arguments 
"(function arg 1 arg 2 . . . ) . "  Here function 
is a simple operator, but an argument may 
be a literal value, a reference to a definition, 
or a bracketed expression to be reduced. 

Besides the normal arithmetic, logical, 
and conditional operators, there are LOAD, 
STORE, and APPLY operators used to 
access definitions explicitly. LOAD is used 
for dereferencing and replaces the reducible 
expression (LOAD ref) by the definition 
corresponding to ref. STORE is used 
(STORE ref def) to create or update stored 
definitions and can, if not used carefully, 
violate the referential transparency prop- 
erty of reduction machines. APPLY is used 
to bind arguments to a parameterized 
function. 

The machine organization, an expression 
manipulation type, of the Newcastle reduc- 
tion machine is shown in Figure 28. It con- 
sists of three major parts: (1) a common 
memory unit containing the definitions; (2) 
a set of identical, asynchronous processing 
units (PU); and (3) a segmented shift reg- 
ister containing the expression being eval- 
uated. This shift register comprises a num- 
ber of double-ended queues (DEQ) contain- 
ing the parts of the expression being tra- 
versed, and a backing store to hold the 
inactive parts of the expression. Each proc- 
essing unit has direct access to the whole 
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memory unit and two double-ended queues. 
Figure 28 also shows the architecture of an 
individual processing unit. It consists of 
four registers containing information on the 
subexpression being traversed, the reduc- 
tion table that  contains the user-defined 
state transition table controlling the eval- 
uation, an action unit performing the ac- 
tions specified by the reduction table, and 
the operation store holding user-defined 
code for the action unit. 

The basic aim of each processing unit is 
to build up a reducible expression "(opera- 
tor cons tant . . . ) "  in its buffer register and 
then rewrite it. Each processing unit can 
read or write to either of its double-ended 
queues, the current direction being main- 
tained by the direction register. When an 
item is read and removed from a DEQ, it is 
transferred into the input register. Associ- 
ated with each item is a type field (e.g., 
operator, operand, left bracket, right 
bracket, empty), which is used in conjunc- 
tion with the current state, held in the state 
register, to index into the reduction table. 
The selected reduction table entry defines 
an action to be performed, such as move 
item to buffer register and new values for 
the state and direction registers. For in- 
stance, the registers of a processing unit 
might contain the following--buffer:"(+ 4 
2" ; input")"; direction: "right"; state: "3"-- 
when reading from the right and a right 
bracket is encountered. For the example 
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reduction language the action selected in 
the state transition table would reduce the 
expression. Had a left bracket been input 
instead, the selected action would have 
emptied the contents of the buffer register 
into the left-hand DEQ, and attempted to 
find a new innermost reducible expression. 

The asynchronous operation of the proc- 
essing units and their parallel traversal of 
the expression clearly provide scope for 
deadlock and starvation. For example, two 
adjacent units might be attempting to re- 
duce simultaneously the same innermost, 
reducible expression. To avoid problems 
such as these, the state transition table 
obeys certain protocols; in this instance the 
processing unit on the right reading an 
empty DEQ would output the contents of 
its buffer register and reverse direction. To 
enforce the use of these protocols, a soft- 
ware package called the reduction table 
generator is used to automatically generate 
a consistent reduction table for a user's 
language, input as a Backus-Naur Form 
(BNF) syntax. This package employs ideas 
similar to compiler-compilers that are used 
to generate table-driven LR parsers. 

For this proposed reduction machine de- 
sign, the novel features stated are the use 
made of state tables to support a class of 
user-defined reduction schemes and the use 
made of parser generator concepts for gen- 
erating these tables. The main disadvan- 
tages of the proposal seem to be the normal 
ones of innermost reduction, such as cor- 
rectly handling conditionals, and the global 
memory unit, which is a bottleneck. 

6.3 North Carolina Cellular Tree Machine 

The cellular computer architecture project 
[MAGo79a, MAGO79b, MAGO80] at the Uni- 
versity of North Carolina, Chapel Hill, is 
strongly influenced both by VLSI and func- 
tional programming. Specifically, the com- 
puter has the following four properties: (1) 
it has a cellular construction, that is, the 
machine is obtained by interconnecting 
large numbers of a few kinds of chip in a 
regular pattern; (2) it executes Backus' FP 
class of languages [BACK78]; (3) it auto- 
matically exploits the parallelism present 
in FP programs; and (4) its machine lan- 
guage is, in fact, the FP language. Extensive 
simulation studies of the computer archi- 

tecture have been carried out and are ref- 
erenced in Mago's papers. This brief de- 
scription of the architecture is based on 
M A G O 8 0 .  

Since the cellular computer is based on 
FP, its program organization is string re- 
duction with a parallel innermost compu- 
tation rule. The program representation in 
the computer is the symbols of the FP 
language. In this language, a program is an 
expression consisting of nested applications 
and sequences. Each application is com- 
posed of an operator and an operand. For 
example, the expression (7, (+ : (2, 5)) ) is a 
sequence of two elements, the first being 
the number 7 and the second being an 
application. In the application the operator 
is the + and the operand is the sequence of 
two numbers (2, 5). 

An FP machine program is a linear string 
of symbols that  are mapped into a vector 
of memory cells in the computer one sym- 
bol per cell, possibly with empty cells inter- 
spersed. This is illustrated by Figure 29. 
Some of the symbols used to separate 
expressions in the written form of FP pro- 
grams are omitted in the machine represen- 
tation, since their function is served by cell 
boundaries. In addition, to simplify the op- 
eration of the computer, closing application 
and sequencing brackets are omitted and 
instead an integer is stored with every re- 
maining FP symbol, indicating the nesting 
level of that symbol. This is also shown in 
Figure 29. 

The cellular computer's machine organi- 
za t ion -an  expression manipulation type--  
is a binary tree structure with two different 
kinds of cell. Leaf cells (called L cells) serve 
as memory units, and nonleaf ones (called 
T cells) provide a dual processing/commu- 
nication capability. An FP expression is 
mapped onto this tree structure, each FP 
symbol being stored in an L cell and a 
subtree of symbols (i.e., a subexpression) 
being linked by some dedicated T cells, as 
shown in Figure 29. A particular set of L 
and T cells will be dedicated to a subtree 
for at least the duration of one machine 
cycle. 

Having partitioned the expression to be 
executed into a collection of cells, itself a 
cellular computer, the interaction of these 
cells in the reduction of an innermost ap- 
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Figure  29.  Cellular tree machine .  

plication is handled by microprograms. Mi- 
croprograms normally reside outside the 
network of cells and are brought in on de- 
mand. Once a microprogram is demanded, 
it is placed in registers in the L cells, each 
cell receiving a fraction of the micropro- 
gram, that  part necessary to make its con- 
tribution to the total reduction. For exam- 
ple, if one of the L cells wants to broad- 
cast some information to all other L 
cells involved in reducing a subexpression, 
it executes a SEND microinstruction 
[MAGo79a], explicitly identifying the infor- 
mation item to be broadcast. As a result, 
this information is passed to the root of the 
subexpression and broadcast to all appro- 
priate L cells. 

It often happens that the result expres- 
sion is too large to be accommodated in the 
L cells that held the initial expression. In 
such a case, if the required number of L 
cells are available elsewhere, then cell con- 
tents are repositioned. This storage man- 
agement is the only kind of resource man- 
agement needed in the processor because 
whenever an expression has all the L cells 
needed, it is guaranteed to have the neces- 
sary T cells. 

The operation of the cells in the network 
is coordinated, not by a central clock, but 
by endowing each cell with a finite-state 
control, and letting the state changes sweep 

up and down the tree. This allows global 
synchronization, even though the individ- 
ual cells work asynchronously and only 
communicate with their immediate neigh- 
bors. 

For a detailed description of the cellular 
computer's structure and operation the 
reader should consult Parts 1 and 2 of 
MAGO79a. Last, a particularly interesting 
claim made by Mag6 [MAGO80] is that par- 
allelism in the computer overcomes the 
overheads associated with copying in a 
string reduction machine. 

6.4 Utah Applicative Multiprocessing System 
The Applicative Multiprocessing System 
(AMPS) is a loosely coupled, tree-struc- 
tured computer architecture designed to 
incorporate a large number (say 1000) of 
processors. The project [KELL78, KELL79] 
under investigation at the University of 
Utah aims to increase the programmability 
of this parallel computer by basing its ma- 
chine language on a dialect of LISP em- 
ploying lenient CONS [FreE76, HEND76]. 
AMPS uses dynamic strategies for allocat- 
ing work to processors and also attempts to 
exploit locality of reference in its programs. 
This description of AMPS is taken from 
KELL79. 

AMPS is based on a parallel graph re- 
duction program organization, with paral- 
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lelism being obtained by demanding both 
arguments of dyadic operators, such as 
PLUS, concurrently. The program organi- 
zation also updates evaluated structures in 
place but copies subgraphs before applying 
them. This is necessary because execution 
overwrites an expression, and unless a copy 
is taken, a definition would be lost the first 
time it was used. 

Program representation in AMPS is a 
compiled dialect of LISP called FGL {Flow 
Graph LISP). A program in FGL consists 
of a main function graph, together with 
what are called productions for program- 
mer-defined functions. These productions 
specify how a node containing a function 
reference (the antecedent of the produc- 
tion) is to be replaced by a function graph 
(the consequent of the production). FGL 
provides a repertoire of basic operators 
{e.g., the primitive functions of LISP) that 
may be used in constructing graphs. 

Programs are divided into "blocks," a 
block being either a code block or a data 
block. The contents of a code block form a 
linear representation of an FGL graph, 
which is copied as the source of initial code 
to be stored in a newly allocated data block. 
This copying may be viewed as the appli- 
cation of an FGL production, that is, re- 
placing the antecedent node with its con- 
sequent graph. Each entry in a data block 
is either a literal value or an instruction, 
defining an operator and its arguments. In 
detail an instruction may contain four types 
of argument, namely, (1) an operator, (2) 
references to input operands, (3) so-called 
notifiers, which are references to instruc- 
tions that have demanded this instruction's 
value, and (4) a single global reference pro- 
viding linkage across blocks. 

The machine organization of the AMPS 
computer is based on packet communica- 
tion, in particular, what may be viewed as 
a token-matching variety. When an instruc- 
tion is invoked, demand packets are dis- 
patched for the input operands, and the 
instruction suspends execution. The in- 
struction is reenabled by the arrival of re- 
sult packets on which it executes. The phys- 
ical arrangement of components in AMPS, 
shown in Figure 30, is a binary tree struc- 
ture with two types of node. Combined 
processing/memory units are attached as 
leaf nodes, while the internal nodes of the 
tree structure are dual communication and 
load-balancing units. 

The packet-switched communication 
network in AMPS is designed to take ad- 
vantage of locality of information flow, to 
reduce communication costs. Information 
first travels up the tree toward the root 
node until it encounters a node that spans 
the destination leaf, at which point it pro- 
ceeds down the tree. Thus relatively local 
communication is separated from more 
global flows and takes less time. In its load- 
balancing role, a node periodically obtains 
load-monitoring signals from its subordi- 
nates, which it uses to reallocate work to 
underutilized nodes, while attempting to 
maintain physical locality of references. 

A processing unit, roughly the size of a 
conventional microcomputer, is able to ex- 
ecute program tasks sequentially and also 
to allocate storage in response to the exe- 
cution of invoke instructions. An invoke 
instruction creates a task, which is then 
executed in the local processing unit or in 
another unit, as dictated by system loading. 
Execution of an invoke causes the alloca- 
tion of storage for a data block, the copying 
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of a code block into the storage, and the 
initialization of various linkage instruc- 
tions. These provide linkage between the 
nodes of the graph containing the anteced- 
ent of the production and those of the con- 
sequent. 

Tasks to be executed (i.e., operators with 
their associated arguments) are placed in 
pools of work. There are two classes of 
pools: 

(1) demand--containing references to op- 
erators for which evaluation is to be 
attempted; 

(2) result--containing references to opera- 
tors, along with their corresponding 
values after evaluation. 

Each processing unit has its own demand 
pool, called the invoke list, but it is unclear 
from KELL79 whether the result pool is also 
distributed. 

At the start of executing a program, a 
reference to the instruction producing the 
result is placed on an invoke list and the 
instruction is then fetched. If the arguments 
of the instruction are ready, then the in- 
struction is executed; otherwise, a reference 
to each argument, together with a notifier 
so it may return the result, is placed on the 
invoke list. These notifiers support graph 
reduction by the reversal of pointers, as 
discussed in Section 1.4. Several notifiers 
may be contained in an entry in an invoke 
list, defining all the instructions that  have 
demanded the result. Once evaluated, a 
result value replaces the instruction that  
calculates it. Via the result list, any instruc- 
tions that  were specified by notifiers as 
awaiting this result as an argument are then 
notified by being placed on an invoked list 
to be retried. 

Current status of the project is that  a 
simulator for the program organization has 
been written in PASCAL and another one, 
in SIMULA-67, is being written to evaluate 
the tree architecture. Apparently [KELL79] 
there are no immediate plans for construc- 
tion of a physical realization of the machine. 

6.5 S -K  Reduction Machine 

T u r n e r ' s  S - K  r e d u c t i o n  m a c h i n e  
[TuRN79a, TURN79b], unlike the other 
projects we have examined, is not strictly a 
proposal for a new computer architecture; 

instead, it is a novel implementation tech- 
nique for functional languages. This work 
has attracted considerable attention and 
is sufficiently relevant to warrant discus- 
sion here. Using a result of Schonfinkel 
[SCHO24] from combinatory logic, Turner 
has devised a variable free representation 
for programs which contain bound vari- 
ables. He has also designed a graph reduc- 
tion machine that  efficiently executes that 
representation as machine code. Our dis- 
cussion of the S-K reduction machine and 
its use of combinators is taken from 
TURN79a. 

The program organization of the S-K 
reduction machine is lazy evaluation 
[HEND76], based on graph manipulation 
with a leftmost outermost computation 
rule. However, the central feature of the 
machine design is its use of combinators, 
special operators that serve the role of 
bound variables in a program and hence 
allow them to be removed from the code. 
Let us consider the role of bound variables. 
A bound variable in a programming lan- 
gnage and a corresponding reference in the 
machine code provide access to an object. 
The logical role of this reference is to as- 
sociate or bring together some operand and 
operator at run time, since it is not physi- 
cally possible to place each operand next to 
its operator. 

Compilation into combinators removes 
bound variables from the program. Execu- 
tion of the resulting machine code routes 
actual values back into the places in the 
program where bound variables formerly 
occurred. Compilation and execution are 
thus symmetric. The following illustrates 
the combinators and their transformations 
in the S-K machine: 

Combinators Transformations 

S f g x  fx (gx) 
K x y  x 
C f g x  (fx) g 
B f g x  f(gx) 
Ix  x 
COND TRUE x y x 
COND FALSE x y y 

For example, the definition "DEF fac" will 
be represented as 

DEF fac ffi S(C(B COND(EQ 0))1) 
(S TIMES(B fac(C MINUS 1))). 
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The compiler transforms each incoming 
expression into a variable free machine 
code. Code is stored as a binary tree whose 
internal nodes represent function applica- 
tions and whose leaves will be constants 
such as 1, PLUS, or S. The trees are built 
using references, and these references may 
be manipulated at run time without the 
contents of the corresponding subtree being 
known. Recursive definitions are handled 
using an additional Y combinator. Execu- 
tion of Y produces a cyclic reference at run 
time. 

The run-time system consists of a reduc- 
tion machine {currently implemented in 
software), which progressively transforms 
the combinator code as discussed above. To 
schedule the sequence of leftmost reduc- 
tions, a left ancestor stack, which initially 
contains only (a pointer to) the expression 
to be evaluated, is used. This is illustrated 
by Figure 31. As long as the expression at 
the front of the stack is an application, the 
machine continues to take its left subtree 
(the function of the function-argument 
pair), pushing it onto the stack. Eventually 
an atom is at the front of the stack. If it is 
a combinator, then the appropriate trans- 
formation rule is applied, using the pointers 
on the stack to gain access to the arguments 
where necessary. Figure 31 shows the state 
of the stack before and after applyng the C 
transformation. All structures manipulated 
by the run-time system are built out of two- 
field cells, and a LISP-style storage alloca- 
tion scheme is used with mark bits and a 
garbage collector. 

Turner has compared his S-K reduction 
machine with the more conventional SECD 
machine of Landin [LAND64] used for im- 
plementing functional languages and has 
noted the following [TuRN79a]. First, the 
object code of the S-K machine seems to 
be consistently twice as compact as the 
SECD code. Second, the execution speed of 
the S-K machine is slightly slower than a 
nonlazy SECD machine, but much superior 
when a lazy (evaluation) SECD machine is 
used. Further details of these comparisons 
are given in TURN79a. 

6.6 Cambridge SKIM Machine 

The SKIM reduction machine [CLAR80] at 
Cambridge University is, to our knowledge, 
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Figure 31. The S-K reduction machine's stack 
behavior 

the first hardware graph reduction machine 
to be built. A conventional microprocessor 
is microcoded to emulate combinators as 
used above in the S-K reduction machine. 
The technique of using combinators to sup- 
port applicative programming was first de- 
veloped by Turner in his software reduction 
machine, which is described above. The 
SKIM machine is fully operational, and 
some interesting performance measure- 
ments have been obtained. This present 
account of the machine is based in infor- 
mation from Clark et al. [CLAR80]. 

SKIM employs lazy evaluation. Pro- 
grams are evaluated outermost first and, 
wherever possible, common subexpressions 
are shared. The instruction set is similar to 
that  of the S-K reduction machine, con- 
taining combinators (S, K, I . . . .  ), list op- 
erators (HD, TL, . . . ) ,  and standard opera- 
tors ( % - , . . . ) .  Programs in SKIM are rep- 
resented by a graph built of two element 
cells. In SKIM, these are implemented by 
dividing the memory into two banks, 
HEAD and TAIL, and using a microcoded 
garbage collector to handle memory man- 
agement. SKIM has no stacks; instead, pro- 
grams are traversed by pointer reversal. 

SKIM is driven by a combinator reducer 
that scans down the leftmost branch of the 
program tree to find an operator (combi- 
nator) at the leaf. When a pointer has been 
used to go down one level in the tree, it is 
reversed to indicate the return route back 
up the tree. Eventually a sequence of 
pointers from root to leaf is transformed 
into a sequence of pointers from leaf to root 
(see Figure 32). The leaf operator is now 
executed, using the back pointers to access 
its arguments in a way analogous to access- 
ing the top few elements of a stack. 
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Figure 32. Pointer-reversing traversal and execution 

Some operators (mainly the arithmetic 
and Boolean ones) are strict. That  is, their 
arguments must be reduced to values be- 
fore being used. For instance, if we wish to 
add together two arithmetic expressions 
E1 + E2, both E1 and E2 must be reduced 
to their values nl,  n2 before the operator 
+ can be executed. This case arises as a 
consequence of the outermost computation 
rule of lazy evaluation, which means an 
operator is always reached before its argu- 
ments. SKIM handles this recursive evalu- 
ation of arguments by simulating a stack by 
a linked list in the main HEAD-TAIL 
memory. This mechanism, coupled with the 
pointer-reversing traversal, means that  no 
special fixed storage area is set aside for 
evaluation stacks. 

The SKIM machine organization (see 
Figure 33) consists of 16 internal registers 
and 32K words of 16-bit memory. Only 
three microinstruction types are provided: 
memory read, memory write, and ALU op- 
erations. The microinstruction cycle time is 
given as 600 nanoseconds. As mentioned 
above, memory is divided into two banks, 
HEAD and TAIL. These are accessed by 
15-bit addresses, one bit being used to select 
the appropriate bank. 

The SKIM experiment has demonstrated 
that  combinators form a simple elegant ma- 
chine code to support functional program- 
ming. The main difference between SKIM 
and a conventional microcomputer is that 
it is a reduction machine. Execution pro- 
gresses by rewriting the program. The per- 
formance measures obtained indicate that 
SKIM compares favorably with conven- 
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tional architectures. For example, in com- 
parison with BASIC on a microprocessor, 
SKIM was about twice as fast as inter- 
preted BASIC and a little slower than com- 
piled BASIC. In comparison with LISP 
running on a large IBM/370 mainframe, 
SKIM was found to be about half as fast as 
interpreted LISP and eight times slower 
than compiled LISP. The performance fig- 
ures seem to justify their claim that mini- 
computer performance was obtained at mi- 
crocomputer cost simply by using an in- 
struction set suited to the application. 

6.7 Other Projects 

Research into reduction machines, al- 
though not as firmly established as data- 
flow computers, is starting to expand rap- 
idly. Besides the projects described above, 
there are a number of others worthy of 
description, including those of Darlington 
[DARL81] at Imperial College, London, and 
Sleep [SLEE80, SLEE81] at the University 
of East Anglia, who are both investigating 
interesting packet communication machine 
organizations that  support parallel graph 
reduction. 

7. FUTURE DIRECTIONS 

The research described above into data- 
driven and demand-driven computer archi- 
tecture is motivated by the growing belief 
[JIPD81c] that the next, the fifth, genera- 
tion of computers will not be based on the 
traditional von Neumann organization. The 
question we have been addressing is: Which 
architectural principles and features from 
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the various research projects will contrib- 
ute to this future general-purpose com- 
puter? 

One means of evaluating the potential of 
the various control-flow, data-flow, and re- 
duction approaches is to compare them to 
the motivations for data-driven and de- 
mand-driven computing discussed in the 
introduction. These are 

(1) utilization of concurrency; 
(2) exploitation of VLSI; 
(3) new forms of programming. 

For the computation organization it is 
clear that the sequential control-driven 
model, which has long been predominant, 
has not encouraged the use of highly con- 
current programs. (However, parallel con- 
trol-driven computation organizations are 
possible.) It is also clear that the new forms 
of programming, such as functional lan- 
guages, are naturally matched with data- 
driven and demand-driven computation or- 
ganizations, and that these models allow 
utilization of concurrency. The differences 
between data-driven and demand-driven 

computation organizations are still being 
explored. 

For the program organization it is signifi- 
cant that control flow, data flow, and re- 
duction regard the by-value and by-refer- 
ence data mechanisms and the sequential, 
parallel, and recursive control mechanisms 
as sets of alternatives. This results in each 
program organization having specific ad- 
vantages and disadvantages for program 
representation and execution. For example, 
in comparing by-value and by-reference 
data mechanisms, the former is more effec- 
tive when manipulating integers and the 
latter is more effective when manipulating 
arrays. Each program organization is suited 
to a particular form of programming lan- 
guage. Thus each program organization is, 
although "universal" in the sense of a Tur- 
ing machine, somewhat restricted in the 
classes of computation it can efficiently 
support. We may speculate that it should 
be possible and indeed desirable for gen- 
eral-purpose computing to design computer 
architectures whose program organization 
is a synthesis of both sets of data and con- 
trol mechanisms [TREL81b]. 
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For the machine organization it is clear 
that centralized, packet communication, 
and expression manipulation gravitate to- 
ward, respectively, control flow, data flow, 
and reduction. However, we have shown 
that other pairings of the machine organi- 
zations and the program organizations are 
viable. When evaluating the three machine 
organizations against the motivations for 
data-driven and demand-driven computers 
listed above, the utilization of concurrency 
would seem to preclude centralized organi- 
zations in favor of the other two organiza- 
tions. In addition, VLSI requires an orga- 
nization in which a replication of identical 
computing elements can be plugged to- 
gether to form a larger parallel computer. 
But it is also necessary for a computing 
element to have a centralized organization 
so that it can function independently. Thus 
the three machine organizations, instead of 
being competitive, seem in fact to be com- 
plementary organizations. Each organiza- 
tion is based on a sequential building block: 
a computing element containing a proces- 
sor, communications, and memory. The 
centralized organization defines how a sin- 
gle computing element must be able to 
function as a self-contained computer. The 
packet communication organization shows 
how concurrency within a computing ele- 
ment may be increased by replicating re- 
sources. Last, the expression manipulation 
organization specifies how a group of com- 
puting elements may be interconnected, at 
a system level, to satisfy the VLSI attri- 
butes of replication. 

In conclusion, having examined the com- 
putation organizations, program organiza- 
tions, and machine organizations for control 
flow, data flow, and reduction, and also the 
approaches taken by the individual re- 
search groups, it is regrettably impossible 
at this time to identify the future "yon 
Neumann." We were, however, able to an- 
alyze the advantages and disadvantages of 
the various approaches. Using such knowl- 
edge it is even possible to "engineer" new 
program organizations and machine orga- 
nizations [WILN80 ,  TREL81a]. 
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