
Data-Driven and Demand-Driven Computer Architecture

PHILIP C. TRELEAVEN, DAVID R. BROWNBRIDGE, AND RICHARD P. HOPKINS

Computing Laboratory, Unwerstty of Newcastle upon Tyne, Newcastle upon Tyne, NE1 7RU, England

Novel data-driven and demand-driven computer architectures are under development in a
large number of laboratories in the United States, Japan, and Europe. These computers
are not based on the tradlUonal von Neumann organization; instead, they are attempts to
identify the next generation of computer. Basmally, m data-driven (e.g., data-flow)
computers the availability of operands triggers the execution of the operation to be
performed on them, whereas in demand-driven (e.g, reduction) computers the
reqmrement for a result triggers the operation that will generate it.

Although there are these two distinct areas of research, each laboratory has developed
its own mdlvxdual model of computation, stored program representation, and machine
organization. Across this spectrum of designs there m, however, a significant sharing of
concepts. The aim of this palaer m to identify the concepts and relationships that exist
both within and between the two areas of research. It does thin by examlmng data-driven
and demand-driven architecture at three levels, computation organizatmn, (stored)
program organization, and machine organLzation. Finally, a survey of various novel
computer architectures under development is given.

Categories and Subject Descriptors: C.0 [Compute r Sys t ems Organizat ion]:
General-- hardware/software interfaces; system architectures; C.1.2 [P rocesso r
Archi tec ture] : Multiple Data Stream Architectures (Multiprocessors); C.1.3 [P rocesso r
Arch i tec ture] Other Architecture Styles--data-flow architectures; high-level language
architectures, D 3 2 [P r o g r a m m i n g Languages] Language Classifications--data-flow
languages; macro and assembly languages; very hzgh-level languages

General Terms: Design

Add~tmnal Key Words and Phrases Demand = driven architecture, data - driven
architecture

INTRODUCTION

For more than thirty years the principles of
computer architecture design have largely
remained static [ORGA79], based on the von
Neumann organization. These von Neu-
mann principles include

(1) a single computing element incorporat-
ing processor, communications, and
memory;

(2) hnear organization of fLxed-size mem-
ory cells;

(3) one-level address space of cells;
(4) low-level machine language (instruc-

tions perform simple operations on el-
ementary operands);

(5) sequential, centralized control of com-
putation.

Over the last few years, however, a num-
ber of novel computer architectures based
on new "naturally" parallel organizations
for computation have been proposed and
some computers have even been built. The
principal stimuli for these novel architec-
tures have come from the pioneering work
on data flow by Jack Dennis [DENN74a,
DENS74b], and on reduction languages and
machines by John Backus [BACK72,
BACK73] and Klaus Berkling [BERK71,
BERK75]. The resulting computer architec-
ture research can be broadly classified as
either data driven or demand driven. In
data-driven (e.g., data-flow) computers the
availability of operands triggers the execu-
tion of the operation to be performed on
them, whereas in demand-driven (e.g., re-

Permission to copy without fee all or part of this material m granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is gwen that copying m by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1982 ACM 0010-4892/82/0300-0093 $00.75

Computing Surveys, Vol. 14, No 1, March 1982

94 * P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

CONTENTS

I N T R O D U C T I O N
I BASIC C O N C E P T S

1 1 Control Flow
1 2 Da ta Flow
1 3 Reduct ion

2. C O M P U T A T I O N ORGANIZATION
2 1 Classification
2 2 Control Flow
2 3 Da ta Flow
2 4 Reduc tmn
2 5 Implications

3 P R O G R A M ORGANIZATION
3.1 Classification
3 2 Control Flow
3 3 Da ta Flow
3 4 Reduct ion
3 5 Imphcat ions

4 M A C H I N E ORGANIZATION
4 1 Classification
4 2 Control Flow
4 3 D a t a Flow
4.4 Reductmn
4 5 Implications

5 DATA-FLOW C O M P U T E R S
5 1 M I.T Data-Flow Computer
5 2 Texas Ins t ruments Distr ibuted Da ta Processor
5 3 U tah Data-Dr iven Machine (DDM1)
5 4 Irvme Data-Flow Machine
5 5 Manches ter Data-Flow Computer
5 6 Toulouse LAU System
5 7 Newcastle Data-Control Flow Computer
5.8 Other Projects

6 R E D U C T I O N C O M P U T E R S
6 1 G M D Reduct ion Machine
6 2 Newcastle Reduct ion Machine
6 3 N o r t h Carohna Cellular Tree Machine
6 4 U tah Applicative Mult lprocessmg Sys tem
6.5 S - K Reduct ion Machine
6 6 Cambridge SKIM Machine
6.7 Other Projects

7 F U T U R E DIRECTIONS
A C K N O W L E D G M E N T S
R E F E R E N C E S
BIBLIOGRAPHY

A

v

duction) computers the requirement for a
result triggers the operation that will gen-
erate it.

Although the motivations and emphasis
of individual research groups vary, there
are basically three interacting driving
forces. First, there is the desire to utilize
concurrency to increase computer perform-

ance. This is based on the continuing de-
mand from areas such as weather forecast-
ing and wind tunnel simulation for com-
puters with a higher performance. The nat-
ural physical laws place fundamental limi-
tations on the performance increases ob-
tainable from advances in technology alone.
And conventional high-speed computers
like CRAY 1 and ILLIAC IV seem unable
to meet these demands [TREL79]. Second,
there is the desire to exploit very large scale
integration (VLSI) in the design of com-
puters [SEIT79, MEAD80, TREL80b]. One
effective means of employing VLSI would
be parallel architectures composed of iden-
tical computing elements, each containing
integral capabilities for processing, com-
munication, and memory. Unfortunately
"general-purpose" organizations for inter-
connecting and programming such archi-
tectures based on the von Neumann prin-
ciples have not been forthcoming. Third,
there is the growing interest in new classes
of very high level programming languages.
The most well-developed such class of lan-
guages comprises the functional languages
such as LISP [McCA62], FP [BACK78],
LUCID [ASHC77], SASL [TURN79a], Id
[ARvI78], and VAL [ACKE79b]. Because of
the mismatch between the various princi-
ples on which these languages are based,
and those of the von Neumann computer,
conventional implementations tend to be
inefficient.

There is growing agreement, particularly
in Japan and the United Kingdom, that the
next generation of computers will be based
on non-von Neumann architecture. (A re-
port [JIPD81a] by Japan's Ministry of In-
ternational Trade and Industry contains a
good summary of the criteria for these fifth-
generation computers.) Both data-driven
and demand-driven computer architecture
are possible fifth-generation architectures.
The question then becomes, which archi-
tectural principles and features from the
various research projects will contribute to
this new generation of computers?

Work on data-driven and demand-driven
architecture falls into two principal re-
search areas, namely, data flow [DENN79b,
Gosw79a] and reduction [BERK75]. These
areas are distinguished by the way compu-
tation, stored programs, and machine re-

Comput ing Surveys, Vol 14, No. 1, March 1982

Data-Driven and Demand-Driven Computer Architecture • 95

sources are organized. Although research
groups in each area share a basic set of
concepts, each group has augmented the
concepts often by introducing ideas from
other areas {including traditional control-
flow architectures) to overcome difficulties.
The aim of this paper is to identify the
concepts and relationships that exist both
within and between these areas of research.
We start by presenting simple operational
models for control flow, data flow, and re-
duction. Next we classify and analyze the
way computation, stored programs, and
machine resources are organized across the
three groups. Finally, a survey of various
novel computer architectures under devel-
opment is given in terms of these classifi-
cations.

1. BASIC CONCEPTS

Here we present simple operational models
of control flow, data flow, and reduction. In
order to compare these three models we
discuss each in terms of a simple machine
code representation. These representations
are viewed as instructions consisting of se-
quences of arguments--operators, literal
operands, references--dehmited by paren-
theses:

(argO argl arg2 arg3 . . . a r g n - 1 argn).

However, the terms "instruction" and "ref-
erence" are given a considerably more gen-
eral meaning than their counterparts in
conventional computers. To facilitate com-
parisons of control flow, data flow, and re-
duction, simple program representations
for the statement a = (b + 1) • (b - c) are
used. Although this statement consists of
simple operators and operands, the con-
cepts illustrated are equally applicable to
more complex operations and data struc-
tures.

1.1 Control Flow

We start by examining control flow, the
most familiar model. In the control-flow
program representations shown in Figure 1,
the statement a = (b + 1)*(b - c) is
specified by a series of instructions each
consisting of an operator followed by one or
more operands, which are literals or refer-
ences. For instance, a dyadic operation such

as + is followed by three operands; the f'~rst
two, b and 1, provide the input data and
the last, t l , is the reference to the shared
memory cell for the result. Shared memory
cells are the means by which data are
passed between instructions. Each refer-
ence in Figure 1 is also shown as a unidi-
rectional arc. Solid arcs show the access to
stored data, while dotted arcs define the
flow of control.

In traditional sequential (von Neumann)
control flow there is a single thread of con-
trol, as in Figure la, which is passed from
instruction to instruction. When control
reaches an instruction, the operator is ini-
tially examined to determine the number
and usage of the following operands. Next
the input addresses are dereferenced, the
operator is executed, the result is stored in
a memory cell, and control is passed im-
plicitly to the next instruction in sequence.
Explicit control transfers are caused by op-
erators such as GOTO.

There are also parallel forms of control
flow [FARR79, HOPK79]. In the parallel form
of control flow, shown in Figure lb, the
implicit sequential control-flow model is
augmented by parallel control operators.
These parallel operators allow more than
one thread of control to be active at an
instance and also provide means for syn-
chronizing these threads. For example, in
Figure lb the FORK operator activates the
subtraction instruction at address i2 and
passes an implicit flow of control on to the
addition instruction. The addition and sub-
traction may then be executed in parallel.
When the addition finishes execution, con-
trol is passed via the GOTO i3 instruction
to the JOIN instruction. The task of the
JOIN is to synchronize the two threads of
control that are released by the addition
and subtraction instruction, and release a
single thread to activate the multiply in-
struction.

In the second parallel form of control
flow, shown in Figure lc, each instruction
explicitly specifies its successor instruc-
tions. Such a reference, il/0, defines the
specific instruction and argument position
for the control signal, or control token. Ar-
gument positions, one for each control sig-
nal required, are represented by empty
bracket symbols () , and an instruction is

Computing Surveys, Vol. 14, No 1, March 1982

96 • P.C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

() t 2 : () a : ()

..~)

(a)

s-- -~ i2:~--- -~i3:
(...FORK i2 ~ + b 1 tl GOTO i3 ~- b c t2 JOIN 2 * tl t2 a

b:(4 : tl:() t2:() a:()

(b)

. , .)

t0: (. . . il/o 12/o) bj,(4)¢,__ ¢: (2)
; \

i l : ((l~) + b 1 t l i 3 / 0) t 2 : ((4) - b c

i t

- " " t 2 : () I t l : () /

t3: ((~') (I,) t l t2 a . . .)

a : ()

(c)

t 2 i 3 / i)

Figure 1. Control~flow programs for a = (b + 1) * (b - c): (a) sequential, (b) parallel
"FORK-JOIN" ; (c) parallel "control tokens."

executed when it has received the required
control tokens. The two parallel forms of
control flow, illustrated by Figures lb and
lc, are semantically equivalent; FORKS are
equivalent to multiple successor instruction
addresses and JOINs are equivalent to mul-
tiple empty bracket arguments.

The sequential and parallel control-flow
models have a number of common features:
(1) data are passed indirectly between in-
structions via references t~ shared memory
cells; (2) literals may be stored in instruc-
tions, which can be viewed as an optimiza-
tion of using a reference to access the literal;
(3) flow of control is implicitly sequential,
but explicit control operators can be used
for parallelism, etc.; and (4) because the
flows of data and control are separate, they
can be made identical or distinct.

1.2 Data Flow

Data flow is very similar to the second form
of parallel control flow with instructions

Computing Surveys, Vol. 14, No 1, March 1982

activated by tokens and the requirement
for tokens being the indicated () symbols.
Data-flows programs are usually described
in terms of directed graphs, used to illus-
trate the flow of data between instructions.
In the data-flow program representation
shown in Figure 2, each instruction consists
of an operator, two inputs which are either
literal operands or "unknown" operands de-
fined by empty bracket () symbols, and a
reference, i3/1, defining the specific instruc-
tion and argument position for the result.
A reference, also shown as a unidirectional
arc, is used by the producer instruction to
store a data token (i.e., result) into the
consumer. Thus data are passed directly
between instructions.

An instruction is enabled for execution
when all arguments are known, that is,
when all unknowns have been replaced by
partial results made available by other in-
structions. The operator then executes, re-
moving the inputs from storage, processing
them according to the specified operation,

Data-Driven and Demand-Driven Computer Architecture

14 i 1
13:) ()~ a/l)

(a)

97

!
!

11: (+ (~) 1 13/1) 12: (-

13: (*~()

(~) (I) i3 /2)

)

(b) 10

Figure 2. D a t a - f l o w p r o g r a m for a = (b + 1) * (b - c) (a) S t a g e
1; (b) S t a g e 4.

and using the embedded reference to store
the result a t an unknown operand in a
successor instruction. In t e rms of directed
graphs, an instruct ion is enabled when a
da ta token is present on each of its input
arcs. During execution the opera tor re-
moves one da ta token f rom each input arc
and releases a set of result tokens onto the
output arcs.

Figure 2 i l lustrates the sequence of exe-
cution for the p rogram f ragment a = (b +
1) * (b - c), using a black dot on an arc to
indicate the presence of a da ta token. The
two black dots at Stage 1 in Figure 2 indi-
cate tha t the data tokens corresponding to
the values of b and c have been genera ted
by predecessor instructions. Since b is re-
quired as input for two subsequent instruc-
tions, two copies of the token are genera ted
and stored into the respective locations in
each instruction. T h e availabili ty of these
inputs completes bo th the addit ion and the
subtract ion instruction, and enables their
operators for execution. Executing com-
pletely independently, each opera tor con-
sumes its input tokens and stores its result

into the mult ipl icat ion instruct ion "i3."
This enables the multiplication, which ex-
ecutes and stores its result corresponding
to the identifier "a," shown at Stage 4.

In the data-flow model there are a num-
ber of interesting features: (1) par t ia l re-
sults are passed directly as da ta tokens
between instructions; (2) literals m a y be
embedded in an instruction tha t can be
viewed as an optimizat ion of the data token
mechanism; (3) execution uses up da ta to-
k e n s m t h e values are no longer available as
inputs to this or any o ther instruction; (4)
there is no concept of shared da ta s torage
as embodied in the t radi t ional notion of a
variable; and (5) sequencing cons t ra in t s - -
flows of con t ro l - - a re t ied to the flow of
data.

1.3 Reduction

Control-flow and data-flow programs are
built f rom fixed-size instructions whose ar-
guments are primit ive opera tors and oper-
ands. Higher level p rogram st ructures are
built f rom linear sequences of these primi-
t ive instructions.

Computing Surveys, Vol. 14, No 1, March 1982

98 ° P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

In contrast, reduction programs are built
from nested expressions. The nearest anal-
ogy to an "instruction" in reduction is a
function application, consisting of (func-
tion) (argument), which returns its result
in place. Here a (function) or (argument)
is recursively defined to be either an atom,
such as + or 1, or an expression. Likewise,
a reference may access, and function appli-
cation may return, either an atom or an
expression. Higher level program structures
are reflected in this machine representa-
tion, being themselves function applica-
tions built from more primitive functions.
In reduction, a program is mathematically
equivalent to its result in the same way that
the expression 3 + 3 is equivalent to the
number 6. Demanding the result of the
definition "a," where a -- (b + 1) * (b - c),
means that the embedded reference to "a"
is to be rewritten in a simpler form. (It may
be helpful for the reader to view this eval-
uation of a reference as calling the corre-
sponding definition, giving reduction a
CALL-RETURN pattern of control.) Be-
cause of these attributes, only one defini-
tion of "a" may occur in a program, and all
references to it give the same value, a prop-
erty known as referential transparency.
There are two forms of reduction, differ-
entiated in the way that arguments in a
program are manipulated, called string re-
duction and graph reduction.

The basis of string reduction is that each
instruction that accesses a particular defi-
nition will take and manipulate a separate
copy of the definition. Figure 3 illustrates
string manipulation for a reduction execu-
tion sequence involving the definition a --
(b + 1) • (b - c). Each instruction consists
of an operator followed by literals or
embedded references, which are used to
demand its input operands. At Stage 1 in
Figure 3 some instruction, containing the
reference "a," demands the value corre-
sponding to the definition "a." This causes
a copy of the definition to be loaded into
the instruction overwriting the reference
"a," as also shown in Figure 3. Next the
multiplication operator demands the values
corresponding to i l and i2, causing them to
be overwritten by copies of their defini-
tions. The multiplication then suspends and
the addition and subtraction operators de-

mand the values of b and c. The substitu-
tion of the values 4 and 2 is shown at Stage
3 in Figure 3. The reducible subexpressions
(+ 4 1) and (- 4 2) are then rewritten, caus-
ing the multiplication to be reenabled. Fi-
nally at Stage 5 the multiplication is re-
placed by the constant 10, which is the
value of "a."

The basis of graph reduction is that each
instruction that accesses a particular defi-
nition will manipulate references to the def-
inition. That is, graph manipulation is
based on the sharing of arguments using
pointers. Figure 4 illustrates graph reduc-
tion using the same program definition
a -- (b + 1) * (b - c) as above. At Stage 1
in Figure 4 an instruction demands the
value corresponding to "a," but instead of
a copy of the definition being taken, the
reference is traversed in order to reduce the
definition and return with the actual value.
One of the ways of identifying the original
source of the demand for "a," and thus
supporting the return, is to reverse the arcs
(as shown in Figure 4) by inserting a source
reference in the definition.

This traversal of the definition and the
reversal of the references is continued until
constant arguments, such as b and c in
Figure 4, are encountered. In Figure 4, re-
duction of the subexpressions in the defi-
nition starts with the rewriting of the ad-
dition and the subtraction as shown at
Stage 4. This proceeds until the value of
"a" is calculated and a copy is returned to
the instruction originally demanding "a."
(If there are no further references to b, c,
il, and i2, then they can be "garbage col-
lected.") Any subsequent requests for the
value of "a" will immediately receive the
constant 10--one of the major benefits of
graph reduction over string reduction.

In reduction the main points to note are
that: (1) program structures, instructions,
and arguments are all expressions; (2) there
is no concept of updatable storage such as
a variable; (3) there are no additional se-
quencing constraints over and above those
implied by demands for operands; and (4)
demands may return both simple or com-
plex arguments such as a function (as input
to a higher order function).

Control flow, data flow, and reduction
clearly have fundamental differences,

Computing Surveys, Vol. 14, No 1, March 1982

Data-Driven a n d Demand-Dr iven Computer Arch i tec ture • 99

definition

il: (+

7
a : (* t l t 2) ~ ~ c o p y

" N
I demand

(... a ...) => (. . . (*

(a)

ll i2)...)

(...(* (+ 4 i) (- 4 2))...) => (...(* 5 2)...) => (...i0...)

(b)

Figure 3. String reductlon program for a = (b + l) * (b - c) (a) Stages 1 and 3, (b)
Stages 3-5.

definition

il: (+ b ~ : (-?e)

a: (* il 12)

= > . . . =>

° , .

j: (... a ...) demand

i l : (+ b 1 a / l) i 2 : (- b / 2)

J
a: (* II i2 j/l)

Y

(a)

b: (4) c: (2)

il: (+ 4 1 a/l) 12: (- 4 2 a/2)

a: (* ii 12 j/l)

=>

b: (4) c: (2)

i l : (5) i 2 : (2)

a : (* 5 2 j / l)

, .) . J

=>Ja: (10) J

(b)

Figure 4. Graph reduction program for a = (b + 1) * (b - c): (a) Stages 1 and 3, (b) Stages
4-6.

Computing Surveys, Vol 14, No 1, March 1982

100 • P.C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

which relate to their advantages and dis-
advantages for representing programs.
However, they also have interesting under-
lying similarities. In the next two sections
on computation organization and program
organization we attempt to identify and
classify these underlying concepts.

2. COMPUTATION ORGANIZATION

In this section we examine, at an abstract
level, the way computation progresses. This
progress takes the form of successive
changes in the state of the computation
brought about by executing instructions.
Computation organization describes how
these state changes come to take place by
describing the sequencing and the effect of
instructions. We describe the rules deter-
mining which instructions are selected for
execution and how far reaching the effects
of their execution may be.

This abstract level of classification en-
ables a clear distinction to be drawn be-
tween the terms: control driven, data
driven, and demand driven. These three
classes are often identified with, respec-
tively, the operational models control flow,
data flow, and reduction. Here we define
the notions of control-driven, data-driven,
and demand-driven computation organiza-
tions and identify their relationships to the
three operational models.

2.1 Classification

Computation organizations may be classi-
fied by considering computation to be a
continuous repetition of three phases: se-
lect, examine, and execute. It needs to be
emphasized that this description does not
necessarily reflect the way in which partic-
ular computer implementations operate but
rather that it is a logical description of the
affects achieved.

(1) Select. At the select phase a set of
instructions is chosen for possible execu-
tion. The rule for making this choice is
called a computation rule. The computa-
tion rule selects a subset of instructions in
the program. Only instructions chosen by
the select phase may be executed, but se-
lection does not guarantee execution. Three
of the computational rules used in this clas-

sification are imperative, innermost, and
outermost. The imperative computation
rule selects the instructions indicated by,
for example, a special ("program counter")
register or the presence of control tokens.
This selection is made regardless of the
position of the instruction in the program
structure. Innermost and outermost com-
putation rules select, respectively, the in-
structions most deeply nested and least
deeply nested in the program structure. An
innermost instruction has no instructions
as arguments to it (only values). An outer-
most instruction is not nested as an argu-
ment of any other instruction. The instruc-
tions selected by the three rules are illus-
trated in Figure 5.

(2) Examine. At the examine phase,
each of the instructions previously chosen
in the select phase is examined to see if it
is executable. The decision is based on ex-
amination of each instruction's actual ar-
guments. The rule for making this decision
is called a firing rule. For instance, the
firing rule may require all operands to be
data values, or it may require only one
operand to be a value as, for example, in a
conditional. If an instruction is executable,
it is passed on to the next phase for execu-
tion; otherwise, the examine phase may
take some action, such as delaying the in-
struction or attempting to coerce argu-
ments so as to allow execution.

(3) Execute. At the execute or "target"
phase, which is broadly similar in all com-
putation organizations, instructions are ac-
tually executed. The result of execution is
to change the state of the computer. Results
are made available and are passed to other
parts of the program. Execution may pro-
duce globally perceived changes, perhaps
by changing the state of a globally shared
memory, or it may produce localized
changes as when an expression is replaced
by its value.

2.2 Control Flow

The select phase of control-flow computa-
tion corresponds to the fetch part of the
fetch-execute control cycle. Each control-
flow computing element has a program
counter naming the next instruction to ex-
ecute. In the select phase, the program

Computing Surveys, Vol. 14, No. 1, March 1982

Data-Driven and Demand-Driven Computer Architecture

The e x p r e s s i o n d e n o t e s t h e p r o d u c t o f two complex number s :
(a , b) * (c , d)

101

Imperatlve
((a ' c) - (b~d) , (a ' d) + (b ~ c))

?

PC

Instructions selected depending on the value o f PC

Innermost

Instructions selected are the most deeply nested

Outermost
((a-c) r (b'd) , (a'd) + (b~c))

Instructions selected are those un-nested

Figure 5. Three computation rules applied to an expression.

counter is used to choose the instructions
to be used. Once chosen by select, instruc-
tions are not checked by an examine phase,
but are automatically passed on to execu-
tion. The execute phase of control-flow in-
structions is allowed to change any part of
the state. Control flow uses a shared mem-
ory to communicate results. The state of
computation is represented by the contents
of this shared memory and of the pro-
gram counter register(s). A program
counter is updated at the end of each cycle
either implicitly or, in the case of GOTOs,
explicitly.

We define the term control driven to
denote computation organizations in which
instructions are executed as soon as they
are selected. The select phase alone deter-
mines which instructions are to be exe-
cuted. For all computation organizations in
this class the examine phase is redundant,
and instruction sequencing is independent
of program structure.

2.3 Data Flow

There are many varieties of data-flow com-
puters; here we restrict ourselves to "pure"
data-flow computation as described in Sec-
tion 1.2. In pure data flow, instructions are
executed as soon as all their arguments are

available. Logically at least, each instruc-
tion has a computing element allocated to
it continuously, just waiting for arguments
to arrive. So the select phase of data-flow
computation may be viewed as logically
allocating a computing element to every
instruction. The examine phase implements
the data-flow firing rule, which requires all
arguments to be available before execution
can take place. Arguments must be data
items, not unevaluated expressions. If val-
ues are not yet available, the computing
element will not try to execute the instruc-
tion but will remain dormant during the
execute phase. The execute phase in data
flow changes a local state consisting of the
executing instruction and its set of succes-
sor instructions. The instruction consumes
its arguments and places a result in each
successor instruction.

We define the term data driven to denote
computation organizations where instruc-
tions passively wait for some combination
of their arguments to become available.
This implies a select phase, which (logi-
cally) allocates computing elements to all
instructions, and an examine phase, which
suspends nonexecutable instructions. In
data-driven computation organizations, the
key factor governing execution is the avail-
ability of data. For this reason "data
driven" is the same as "availability driven."

Computing Surveys, Vol. 14, No. 1, March 1982

102

2.4 Reduction

Reduction computers each have different
rules embodied in their select phase. The
choice of computation rule is a design
choice for a particular reduction computer.
The commonest rules used are innermost
and outermost (see Figure 5), and in fact
the discussion of reduction in Section 1 was
restricted to outermost reduction. The
computation rule in a reduction computer
determines the allocation of computing ele-
ments at the beginning of each computation
cycle. In the examine phase the arguments
are examined to see whether execution is
possible. If it is, the instruction is executed.
Otherwise, the computing element tries to
coerce the arguments into the required pat-
tern. This coercion demands the evaluation
of argument(s) until sufficient are available
for execution. Logically, this demand con-
sists of spawning one or more subcompu-
tations to evaluate operands and waiting
for them to return with a value. The in-
struction set of a reduction computer may
contain many different firing rules, each
instruction having the rule most suited to
it. For example, all arithmetic operations
will have a firing rule that forces their ar-
guments to be values. The execute phase in
a reduction machine involves rewriting an
instruction in situ. The instruction is re-
placed by its result where it stands. Only
the local state consisting of the instruction
itself and those instructions that use its
results are changed. Execution may thus
also enable another instruction.

We define the term demand driven to
denote a computation organization where
instructions are only selected when the
value they produce is needed by another,
already selected instruction. All outermost
reduction architectures fall into this cate-
gory but innermost reduction architectures
do not. The essence of a demand-driven
computation organization is that an in-
struction is executed only when its result is
demanded by some other instruction and
the arguments may be recursively evalu-
ated where necessary. In reduction com-
puters with an innermost computation rule,
instructions are never chosen by select until
their arguments are available. This restric-
tion means that all arguments reaching the

• P.C. Treleaven, D. R. Brownbrtdge, and R. P. Hopkins

examine stage are preevaluated and hence
no coercions need ever take place. It also
means that all instructions have all their
arguments evaluated whether or not this is
necessary, exactly as occurs in data flow.
Thus we believe innermost computation
organizations are data driven.

2.5 Implications

The implications of the computation orga-
nization classification can now be summa-
rized. Control-flow computers have a con-
trol-driven computation organization; in-
structions are arbitrarily selected, and once
selected they are immediately executed.
Data-flow computers have a data-driven
computation organization; all instructions
are in principle active, but only execute
when their arguments become available.
Some reduction computers are demand
driven and some are data driven.

Control-flow computers all have a con-
trol-driven computation organization. The
control-driven organization is characterized
by the lack of an examine stage, and by a
computation rule that selects instructions
independently of their place in the pro-
gram's structure. This implies that the pro-
gram has complete control over instruction
sequencing. Once selected, instructions will
always be executed regardless of the state
of their operands. There is no wait for ar-
guments, or demand for arguments, apart
from the dereferencing of an address. It is
up to the programmer to ensure that argu-
ments are set up before control reaches an
instruction. The advantage of control-
driven computation is full control over se-
quencing. The corresponding disadvantage
is the programming discipline needed to
avoid run-time errors. These errors are
harder to prevent and detect than excep-
tions (overflow, etc.), which occur at the
execute phase in all computation organiza-
tions. A typical example of the twin gener-
alities and dangers of control-driven com-
putation organization is the ability to exe-
cute data as a program.

Data-flow computers have a data-driven
computation organization that is character-
ized by a passive examine stage. Instruc-
tions are examined, and if they do not pass
the firing rule, no action is taken to force

Computing Surveys, Vol 14, No 1, March 1982

Data-Driven and Demand-Driven Computer Architecture

them to become executable. The data-flow
firing rule requires all arguments to arrive
before an instruction will execute. However,
some data-flow implementations have
found this too restrictive and have added
non-data-driven instructions to provide
some degree of explicit control. The advan-
tage of data-driven computation is that in-
structions are executed as soon as their
arguments are available, giving a high de-
gree of implicit parallelism. The disadvan-
tages are that instructions may waste time
waiting for unneeded arguments. This be-
comes increasingly apparent when the im-
plementation of data-flow procedures is
considered. In addition, operators such as
an if-then-else operator, which will use
only two of its three arguments, discarding
the other, will always be forced to wait for
all three. In the worst case this can lead to
nontermination through waiting for an un-
needed argument, which is, for example, an
infinite iteration.

A reduction computer having a demand-
driven organization is characterized by an
outermost computation rule coupled with
the ability to coerce arguments at the ex-
amine stage. Instruction sequencing is
driven by the need to produce a result at
the outermost level, rather than to insist on
following a set pattern. Each instruction
chosen by the outermost select can decide
to demand further instructions. Instruc-
tions actively coerce their arguments to the
required form if they are not already in it.
Reduction computers not possessing (1) an
outermost select and (2) a coercing examine
phase cannot be classified as demand
driven. The advantage of the demand-
driven computation organization is that
only instructions whose result is needed are
executed. A procedure-calling mechanism
is built in, by allowing the operator of an
instruction to be defined as a block of in-
structions. The disadvantage of demand-
driven computation is in processing, say,
arithmetic expressions, where every in-
struction (+, *, etc.) always contributes to
the final result. Propagating demand from
outermost to innermost is wasted effort;
only operator precedence will determine
sequencing, and every instruction must be
activated. In these cases, data-driven com-
putation organization is better since the

• 103

sequencing is determined solely by operator
priorities. Demand driven is superior only
for "nonstrict" operators such as "if-then-
else," which do not require all their argu-
ments.

Last, the execute phase of any computa-
tion organization has important conse-
quences for the underlying implementation.
Global changes may have far-reaching ef-
fects, visible throughout the computer. Lo-
cal changes can only alter the state of a
small part of the computation. To support
a computation organization allowing global
state changes, some form of global com-
munications between instructions is re-
quired. On the other hand, if only local
changes are to be supported, this locality
can be exploited in a distributed architec-
ture. In general, data-flow and reduction
programs are free from side effects, another
feature making them suitable for distrib-
uted implementation.

3. PROGRAM ORGANIZATION

We use the term program organization to
cover the way machine code programs are
represented and executed in a computer
architecture. This section starts by classi-
fying the underlying mechanisms of pro-
gram organization for control-flow, data-
flow, and reduction models.

3.1 Classification

Two computational mechanisms, which we
refer to as the data mechanism and the
control mechanism, seem fundamental to
these three groups of models. The data
mechanism defines the way a particular
argument is used by a number of instruc-
tions. There are three subclasses:

(1) by hteral--where an argument is
known at compile time and a separate
copy is placed in each accessing instruc-
tion {found in all the operational
models);

(2) by value--where an argument, gener-
ated at run time, is shared by replicat-
ing it and giving a separate copy to each
accessing instruction, this copy being
stored as a value in the instruction (as
seen in data flow and string reduction};

Computing Surveys, VoL 14, No. 1, March 1982

104 P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

Data Mechanisms

by va lue by r e f e r e n c e
(& literal) (& literal)

Control

Mechanisms

sequential

parallel

recurslve

yon Neumann
control flow

parallel
data flow control flow

string graph
reduction reduction

Figure 6. Computational models: control and data mechamsms.

(3) by reference--where an argument is
shared by having a reference to it stored
in each accessing instruction (as seen in
control flow and graph reduction).

The control mechanism defines how one
instruction causes the execution of another
instruction, and thus the pattern of control
within the total program. There are again
three subclasses:

(1) sequential--where a single thread of
control signals an instruction to execute
and passes from one instruction to an-
other (as seen in traditional sequential
control flow);

(2) parallel--where control signals the
availability of arguments and an in-
struction is executed when all its argu-
ments (e.g., input data) are available
(as seen in data flow and parallel con-
trol flow);

(3) recursive--where control signals the
need for arguments and an instruction
is executed when one of the output
arguments it generates is required by
the invoking instruction. Having exe-
cuted, it returns control to the invoking
instruction (as seen in string reduction
and graph reduction).

The relationship of these data and con-
trol mechanisms to the three groups of op-
erational model is summarized in Figure 6.
Using this classification as a basis, we now
examine the advantages and disadvantages
for program representation and execution
of control flow, data flow, and reduction.

3.2 Control Flow

Control flow is based on a "sequential" or
"parallel" control mechanism. Flow of con-
trol is implicitly sequential with explicit
sequential and parallel patterns of control
being obtained from, respectively, GOTO
and FORK-JOIN style control operators.
The basic data mechanism of control flow
is a by-reference mechanism, with refer-
ences embedded in instructions being used
to access shared memory cells. This form
of data sharing is shared update, in which
the effects of changing the contents of a
memory cell are immediately available to
other users.

In computers based on parallel program
organizations such as parallel control flow,
special precautions must be taken in a pro-
gram's representation (style of machine
code generated) to ensure that the natural
asynchronous execution does not lead to
unwanted indeterminacy. This is basically
a problem of synchronizing the usage of
shared resources, such as a memory cell
containing an instruction or data. It is ap-
propriate to examine the support in parallel
control-flow computers of two important
programming mechanisms--iteration and
procedures--because they illustrate how
these synchronization problems are con-
trolled and also the style of program rep-
resentation used.

Iteration becomes a potential problem
for parallel control flow because program
fragments with loops may lead to logically
cyclic graphs in which each successive it-

Computing Surveys, Vol. 14, No. I, March 1982

Data-Driven and Demand-Dr iven Computer Arch i tec ture • 105

I I
I I
I I

I

(fl'f2):= 1
(1,1)

-- - _>_-"~~_~ -- --.

I
~k

true IIF i > i00 J
l I

' false I +

!

| ~ , ~

I answer : - I I I (f l , f 2) : =
f2 I',l (f2,fl+f2)[

' I J q,

I

F i g u r e 7. Control-flow i terat ion us ing feedback.

erat ion of a loop could execute concur-
rently, giving the possibility, for instance,
of mul t ip le-data i tems being stored in the
same m e m o r y cell. Two possible schemes
may, in general, be used to control poten-
tially concurrent iteration. The first uses
the feedback of control to synchronize ref-
erence usage and the second represents it-
erat ion by the equivalent recursion, thereby
creating unique contexts for references.

To il lustrate these two schemes for rep-
resenting iteration, we use as an example a
p rogram f ragment tha t calculates the one-
hundred th number in the Fibonacci series:

(fl, f2) := (1, 1);
FORi = 3 TO 100 DO

(fl, f2) := (f2, f l + f2) OD;
answer := f2;

This fragment , using concurrent assign-
ment , consists of two calculations, one pro-
ducing the Fibonacci series as successive
values of f2, and the other increment ing the
i teration count i. Since i is not used within
the D O . . . OD, these two calculations m a y
execute in parallel.

The first scheme for support ing i terat ion
based on the feedback of control to syn-
chronize resource usage is shown in Figure
7. This ensures tha t only a single copy of
an instruction can be active or tha t a single
data i tem m a y occupy a m e m o r y cell, at an
instant. This synchronizat ion is achieved

by the J O I N instruction. Next the IF in-
struction, if false, per forms a new i terat ion
or, if true, t ransfers the value of f2 to m e m -
ory cell "answer." Since m e m o r y cells are
continually upda ted in this i terat ion
scheme, it m a y be necessary in specific
implementa t ions to execute the concurrent
ass ignment (fl , f2) := (f2, f l + f2) sequen-
tially to exclude indeterminacy. T h e second
i terat ion scheme makes use of the proce-
dure mechan i sm to provide separa te con-
texts for each iteration, by t ransforming the
i terat ive p rogram into the equivalent recur-
sion:

fib(f1, f2, i) := IF i > 100
THEN f2
ELSE fib(f2, f l + f2, i + 1) FI;

answer := fib(l, 1, 3);

Each t ime a new call of the function fib is
made, a new process, with a separa te con-
text, is created.

At a logical level there are two instruc-
tions involved in procedure invocation.
(Figure 8 i l lustrates this procedure mecha-
nism.) In a calling process P1, there is a
CALL instruct ion tha t first obtains a new
(globally unique) process identifier P2 and
then changes the context of the input pa-
ramete rs f rom P1 to the new context P2. At
the end of the called procedure, there mus t
be a R E T U R N instruct ion t ha t changes
the context of the computed results back to

Computing Surveys, Vol 14, No 1, March 1982

106 P. C. Treleaven, D. R.

f
I

Brownbridge, and R. P. Hopkins

I
P1/fib

, ,

I I false

,1 flb(f2,fl+fl,l+l

I

P1 / r e su l t : - I P1/ resul t := I
f2 [[P2 / resu l r J

I

I
I
I i
, P2/fib ,
!

, I

I
I I

I
I I

t
I _ I

F i g u r e 8 . Control-flow iteration using recursion.

the calling context P1. To achieve this, the
CALL instruction must pass the caller's
process identifier P1 to the RETURN.
When all the results have been returned to
the calling process, the called process P2 is
deleted by the RETURN instruction.

3 . 3 D a t a F l o w

Data flow is based on a by-value data mech-
anism and a parallel control mechanism,
supported by data tokens. Thus flows of
data and control are identical in data flow.
A data token is used to pass a copy of a
partial result directly from the producer to
the consumer instruction. This form of data
sharing is that of independent copies, in
which the effect of a consumer instruction
accessing the contents of a received data
token is hidden from other instructions.

When an instruction is executed, the role
of an embedded reference is to specify the
consumer instruction and argument posi-
tion for a data token. In terms of directed
graphs, the role of the reference is to pro-
vide a "name" that identifies uniquely a
particular data token generated by a pro-
gram at an instant, by specifying the arc on
which it is traveling and the node to which
it is destined. Unfortunately the two-field
(instruction/argument position) name for-

mat does not provide such uniqueness. For
instance, more than one copy of a particular
instruction may be executing in parallel.
Thus tokens are no longer uniquely named,
leading to the possibility of tokens being
inserted in the wrong instruction. To distin-
guish the separate contexts of instances of
a procedure, an additional "process" field is
logically appended to a reference. In sum-
mary, the basic format of a reference is
[ARvI77a, TREL78]

• A > {P / N /
process I I
instruction {node)
argument {arc)

and the fields are used for the following:

(1) The process (P) field distinguishes sep-
arate instances of an instruction N that
may be executing in parallel, either
within a single program or within dis-
tinct programs.

(2) The instruction (N) field identifies the
consuming instruction to which the
data token is being passed.

(3) The argument (A) field identifies in
which argument position in the instruc-
tion N the token is to be stored.

Computing Surveys, Vol. 14, No. 1, March 1982

Data-Driven and Demand-Driven Computer Architecture

fl f2 i

+ ~. T.~

answer

÷
() > 10o I

!
t r u e / f a l s e

Figure 9. Data-f low i terat ion using feedback of tokens.

• 1 0 7

In the machine code of a data-flow com-
puter, the values of the N and the A fields
are usually statically embedded in the code
at compile time, whereas the value of the P
is dynamically generated at run time by the
system.

Recall in our discussion of parallel con-
trol flow that special precautions need to
be taken in the style of machine code gen-
erated for a program to exclude unwanted
indeterminacy. Similar precautions must be
taken for data flow. Here we examine data-
flow program representations for iteration
and procedures, using the two schemes for
iteration previously discussed for control
flow. Again, the program fragment that cal-
culates the one-hundredth number in the
Fibonacci series is used for examples. It is
interesting to compare these examples with
those previously given for control flow.

The first scheme for supporting iteration
is illustrated by Figure 9. Here the feedback
of data tokens synchronizes the usage of
references, thereby ensuring that only a
single data token can ever be on a logical
arc at an instant. At the start of each iter-
ation the IF instruction releases a true/false
data token, a copy of which is passed to
each SWITCH. A SWITCH takes two
types of inputs: one being a true/false to-
ken, which selects either the true or the
false outputs, and the other the data token
to be switched. If the token is false, the
other tokens are fed into the iteration,

whereas a true token causes the data token
corresponding to f2 to be routed to answer
and the other tokens to be discarded, as
shown by the "earth" symbols. To ensure
that all calculations within the loop have
terminated before feeding back the tokens
into the next iteration, a SYNCHronizer
instruction is used. The SYNCH fires when
all inputs are present and releases them
onto the corresponding output arcs.

The second scheme for supporting itera-
tion is based on a data-flow procedure
mechanism [ARvI78, MmA77, HOPK79],
which allows concurrent invocations of a
single procedure through the use of the
process (P) field. This mechanism is essen-
tial to provide distinct naming contexts for
each procedure invocation, thus isolating
the data tokens from those belonging to
any other invocation. The second iteration
scheme that represents iteration by the
equivalent recursion is shown in Figure 10.
In this example parallelism is only obtained
when a new invocation of the procedure fib
is to be used, by calculating the value pa-
rameters (f2, f l + f2, i + 1) concurrently.
As in the control-flow procedure mecha-
nism, discussed above, the CALL instruc-
tion creates a new process and inserts the
parameters, and the RETURN changes
back the context of the results and deletes
the invoked process.

There is, in fact, a third scheme for sup-
porting iteration in use in data-flow corn-

Computing Surveys, Vol 14, No. 1, March 1982

108 • P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

i t i
P 1 / f l P1/f2 P1/

I r
t r u e / f a l s e

P 2 / f l P2]f2 P2 / i

PO

Figure 10. Data-flow iteration using recursion.

puters, based on an additional iteration
number field [ARvI77a, TREL78] in each
reference, for example, P /N/A/ I . This it-
eration number field distinguishes individ-
ual data tokens, logically flowing on a par-
ticular arc, by giving each token a unique I
value, for example, 1, 2, 3 Using this
third scheme for the Fibonacci example,
basically three sequences of data tokens
would be generated: f2/1, f2/2, . . . ; f l /1 ,
f l / 2 ; and i/1, i/2 Some of the
data-flow computer designs [ARvI77a,
WATS79] support this concept of an itera-
tion number field, but the field is only di-
rectly applicable for a single level of itera-
tion. Using only iteration numbers for
nested iterations such as

FORx ffi 1 TO 3 DO
FORy = 1 TO 3 DO

FOR z = 1 TO 3 DO
. - . N . , ,

OD
OD

OD

it would be necessary to provide three it-
eration number fields in a reference to give
unique names for the 27 tokens for, say,
argument A of N, that is, P / N / A / I / I / 1
. . . P / N / A / I / 2 / 3 . . . P /N/A/3/3 /3 . (In
fact, this case can be avoided by treating

each FOR . . . OD as a procedure with a
unique process number and using a single
iteration number for its one level of internal
iteration.)

3.4 Reduction

Reduction is based on a recursive control
mechanism and either a by-value or a by-
reference data mechanism. String reduction
has a by-value data mechanism, and graph
reduction has a by-reference data mecha-
nism. Reduction programs are essentially
expressions that are rewritten in the course
of execution. They are built (as described
in Section 1.3) from functions applied to
arguments. Recall that both functions and
arguments can be simple values or sub-
expressions. In string reduction, copies of
expressions are reduced. In graph reduc-
tion, subexpressions are shared using ref-
erences. Referential transparency (see Sec-
tion 1.3) means that a reduction program
will give the same result whether data are
copied or shared. Below, string reduction
and graph reduction are described in more
detail. Note that because reduction is in-
herently recursive, we only show a recursive
version of the Fibonacci program. In reduc-
tion programs iteration is represented as
tail recursion.

Computing Surveys, VoL 14, No 1, March 1982

Data-Driven a n d Demand-Dr iven Computer Arch i tec ture •

Initial Expression:

(answer) WHERE
answer - f ib (i, I, 3);

fib (fl, f2, i) " IF I > i00 THEN f2
ELSE fib (f2, fl+f2, l+l) FI;

First Reduction:

(IF 3 > I00 THEN 1
ELSE fib (I, I+i, 3+1) FI)

Next Reductions:

(IF FALSE THEN I
ELSE fib (I, i+I, 3+1) FI)

(fib (i, i+I, 3+1))

(f i b (1, 2, 4))

(fib (2, 3, 5)) ... (fib (3, 5, 6)) ... (fib (5, 8, 7))

Figure 11. Stnngreduc~on of Flbonacciprogram.

109

String reduction programs are expres-
sions containing literals and values. They
are conveniently represented as a bracketed
expression, with parentheses indicating
nesting, as shown in Figure 11. In Figure 11
the initial expression (answer) is first re-
duced using the definition fib(fl, f2, i), with
fl , f2, and i replaced by 1, 1, and 3. The
next reduction evaluates 3 > 100, giving (IF
FALSE . . .) followed by (fib(l, 1 + 1,
3 + 1)) and so on. Execution terminates
with the original expression, answer, being
replaced by the one-hundredth Fibonacci
number. Because the form of this function
is tail recursive, its execution behaves like
iteration; the final result is passed out di-
rectly to the original computation, and no
intermediate values are preserved.

In Figure 11, an innermost computation
rule (Section 2.1) was used, forcing all ar-
guments to be evaluated before being sub-
stituted into definitions. If another rule
were chosen, a different sequence of reduc-
tions would occur before the same answer
was found. In string reduction, because a
by-value data mechanism is used, separate
copies of actual arguments are generated
for each formal parameter occurrence. This
may increase parallelism, in the sense that
many processors can work simultaneously
on their own copies of subexpressions. But
most of this work may be needlessly dupli-

cated effort as in the example above. For
this reason, we conclude that string manip-
ulation is best suited to innermost compu-
tation rules where functions are only ap-
plied to already evaluated arguments. In
this case work will not be duplicated.

Graph reduction programs are expres-
sions containing literals, values, and refer-
ences. In graph reduction, parameters are
substituted by reference into the body of a
defined function. For simplicity we assume
that the substitution occurs automatically
when a definition is dereferenced. In prac-
tice, a special mechanism such as lambda
substitution or combinators [TURN79a] is
used to achieve this formal-to-actual pa-
rameter binding. Because of the by-refer-
ence mechanism, in Figure 12, it is more
suitable to use a graphic notation to repre-
sent the Fibonacci program. Nodes of the
graph represent a function and its argu-
ments, while arcs represent references and
structuring.

Figure 12 shows a graph reduction pro-
gram for Fibonacci. This example uses a
parallel outermost computation rule. The
loss of efficiency that can occur with out-
ermost string reduction does not occur here
because graph reduction permits sharing of
expressions. If an innermost computation
rule had been used, no real use would have
been made of the graph reduction's by-ref-

Computing Surveys, Vol. 14, No. I, March 1982

110 • P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

answer
W

DEF (f l , f2, t) @ ~

Figure 12. Graph reduction of Flbonaccl program.

erence data mechanism. This is because all
subexpressions would be reduced before the
functions referring to them. Thus the only
references in functions would be to values,
and there would be no sharing of subexpres-
sions. For this reason, graph reduction is
suited to outermost computation rules.

3.5 Implications

Control-flow program organizations, owing
to the separation of flows of control from
flows of data and the way operands are
accessed, tend to be less efficient than, say,
data flow when evaluating simple expres-
sions. For example, to pass the partial result
of a subexpression to the enclosing expres-
sion requires three operations--store result,
send control flow, load result--in control
flow, but only one operation--send data
token--in data flow. However, control flow
has advantages when manipulating data
structures that are to be manipulated in
place, or where a specific pattern of control
is required, as, for instance, with condi-
tional evaluation of alternatives. In addi-
tion, since instructions have both input and
output references, the pattern of data ac-
cesses is unconstrained, with execution ma-
nipulating a global state composed of all
the memory cells of a program. As a gen-
eral-purpose program organization control
flow is surprisingly flexible, particularly
with respect to memory changes, interac-
tion, and complex control structures. The

criticisms of control-flow organizations
have been well documented by Backus
[BACK78]. Basically, they lack useful math-
ematical properties for reasoning about
programs, parallelism is in some respect
bolted on, they are built on low-level con-
cepts, and there is a major separation be-
tween the representation and execution of
simple instructions and of procedures and
functions.

The major advantage of data flow is the
simplicity and the highly parallel nature of
its program organization. This results from
the data token scheme combining both the
by-value data mechanism and the parallel
control mechanism. The data-flow program
organization is very efficient for the evalu-
ation of simple expressions and the support
of procedures and functions with call-by-
value parameters. However, where shared
data structures are to be manipulated in
place or where specific patterns of control
are required, such as sequential or condi-
tional, data flow seems at a disadvantage.
Implementation of data-flow program or-
ganizations often separate the storage for
data tokens and instructions, which makes
compilation at least conceptually difficult.
Thus as a general-purpose program orga-
nization pure data flow is questionable, but
for more specialist applications like process
control or even robotics it may be highly
suitable [JIPD81c].

String and graph reduction are both no-
table for providing efficient support for

Computing Surveys, Vol. 14, No 1, March 1982

Data-Driven and Demand-Driven Computer Architecture • 111

functional programming, which is growing
in interest. Graph reduction has a by-ref-
erence data mechanism that allows sharing
and allows manipulation of unevaluated ob-
jects. String reduction has a by-value data
mechanism and so has minimal addressing
overheads. The nature of functional pro-
grams makes them suitable for parallel
evaluation; referential transparency makes
reductions independent of context and se-
quencing. Graph manipulation allows arbi-
trary objects to be manipulated without
their being evaluated. This means that in-
finite data structures can conceptually be
used as long as only the values of some
finite part of them are demanded.

In graph reduction, structures are repre-
sented by a reference until their contents
are needed; because references are gener-
ally smaller than structures, they are more
efficient to manipulate. In string reduction,
structures are represented by value, and so
their contents are duplicated at many
points in the program; thus their contents
are available locally, without a referenced
value being fetched from elsewhere. Last,
for reduction program organizations to be-
come candidates for general-purpose com-
puting, it is necessary for functional pro-
gramming language to become the most
widely used style of programming.

4. MACHINE ORGANIZATION

We use the term machine organization to
cover the way a machine's resources are
configured and allocated to support a pro-
gram organization. This section starts by
classifying the machine organizations being
used in data-driven and demand-driven
computers.

4.1 Classification

An examination of the data- and demand-
driven computer architectures under devel-
opment reveals three basic classes of ma-
chine organization, which we call central-
ized, packet communication, and expres-
sion manipulation.

(1) Centralized. Centralized machine or-
ganization consists of a single processor,
communication, and memory resource, as
shown in Figure 13. It views an executing
program as having a single active instruc-

communications

processor

memory

i ,

D

Figure 13. Centralized mach ine orgamzation.

tion, which passes execution to a specific
successor instruction. The state of execu-
tion is often held in registers or stacks.

(2) Packet communication. Packet com-
munication machine organization consists
of a circular instruction execution pipeline
of resources in which processors, commu-
nications, and memories are interspersed
with "pools of work." This is illustrated by
Figure 14. The organization views an exe-
cuting program as a number of independent
information packets, all of which are active,
and may split and merge. For a parallel
computer, packet communication is a very
simple strategy for allocating packets of
work to resources. Each packet to be proc-
essed is placed with similar packets in one
of the pools of work. When a resource be-
comes idle, it takes a packet from its input
pool, processes it, places a modified packet
in an output pool, and then returns to the
idle state. Parallelism is obtained either by
having a number of identical resources be-
tween pools, or by replicating the circular
pipelines and connecting them by the com-
munications.

(3) Expression manipulation. Expres-
sion manipulation machine organization
consists of identical resources usually or-
ganized into a regular structure such as a
vector or tree, as shown in Figure 15. Each
resource contains a processor, communica-
tion, and memory capability. The organi-
zation views an executing program as con-
sisting of one large nested program struc-
ture, parts of which are active while other
parts are temporarily suspended. In an
expression manipulation organization the
adjacency of items in the program structure
is significant, and the memories in this ma-

Computing Surveys, Vol 14, No 1, March 1982

112 P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

U . _ j I c l . . . c c I" " - J
Figure 14. Packet commumcat ion machine orgamzation.

communications-

processors

meMor i e s

Figure 15,

, I F i l

(a) (b)

Expresston manipulat ion machine orgamzation: (a) vector; (b) tree

chine structure maintain the adjacency of
items in the program structure. Each re-
source examines its part of the overall pro-
gram structure looking for work to perform.

Since these machine organizations relate
closely to the way programs are represented
and executed, the three are often equated
and confused with, respectively, control-
flow, data-flow, and reduction program or-
ganizations. However, as we discuss below,
other less obvious pairings of machine and
program organizations are possible.

4 , 2 C o n t r o l F l o w

The most obvious means of supporting con-
trol flow is to use a centralized machine
organization for sequential forms and either
a packet communication or an expression
manipulation machine organization for par-
allel control flow. Sequential control flow
supported by a centralized machine orga-

nization, where the active instruction is
specified by the program counter register,
is clearly the basis of all traditional com-
puters. Their familiarity does not warrant
further discussion, and we shall concentrate
on the support of parallel control flow.

For parallel control flow two basic meth-
ods were discussed in Section 1.1 for syn-
chronizing the execution of instructions,
namely, FORK-JOIN control operators
and the use of control tokens. We start by
examining a packet communication ma-
chine organization supporting control to-
kens. In such a machine organization, one
of the ways of synchronizing a set of control
tokens activating an instruction is to use a
matching mechanism. This matching
mechanism intercepts tokens and groups
them into sets with regard to their common
consumer instruction. When a set is com-
plete, control is released to activate the
instruction, as, for instance, in Figure lc

Cornputmg Surveys, Vol 14, No. 1, March 1982

Data-Driven and Demand-Driven Computer Architecture

Matching I
Unlt I

T
control
tokens)

[

I Memory]
Unlt

MI...Mm

-/qnstructlon~ J Fetch/ [
"'addresses J "I Update I

l ata t° |
s t o r e ~ff . ~ ~.

~'executable~
/ k nstructl°nsJ

t I

Figure 16. Control-flow packet commumcatlons.

• 113

with tokens i3/0 and i3/1, which forms a
set destined for instruction i3. An example
of such a matching scheme is proposed in
FARR79 and HOPK79.

Figure 16 illustrates a packet communi-
cation machine organization based on token
matching. The organization consists of four
groups of resources: the matching unit, the
fetch/update unit, the memory unit, and
processing unit; and four pools of work for
instruction addresses, executable instruc-
tions, data to store, and control tokens. The
task of the matching unit is to group tokens
by taking individual tokens from the con-
trol tokens pool and storing them in their
respective sets in its local memory. When
a set of tokens is complete, their common
instruction address is placed in the output
pool and the set is deleted. The fetch/up-
date unit has two input pools, one contain-
ing addresses of instructions to be activated
and the other data to be stored. This unit
interacts with the memory unit, which
stores instructions and data. For each ad-
dress consumed, the fetch/update unit
takes a copy of the corresponding instruc-
tion, dereferences its input arguments and
replaces them by their corresponding val-
ues, and outputs this executable instruc-
tion. Last, the processing unit takes execut-
able instructions, processes them, and out-
puts data to store and control tokens to the
respective pools.

For parallel control flow supported by
an expression manipulation organization,

we consider a control mechanism using
FORK-JOIN control operators, as shown
in Figure lb. With this scheme each flow of
control is represented by a processor exe-
cuting instructions sequentially in its local
memory. When a processor executes a
FORK operator, it activates another proc-
essor whose local memory contains the ad-
dressed instruction. If this processor is al-
ready busy, then the FORK is delayed until
the destination processor becomes idle.
On completion, the processor issuing the
FORK resumes sequential execution. JOIN
operators synchronize execution by logi-
cally consuming flows of control. The pro-
cessor executing the JOIN n must be reac-
tivated n times before it resumes sequential
execution. The memories of an expression
manipulation organization, as shown in Fig-
ure 15, maintain the adjacency of instruc-
tions in the program structure. Thus a proc-
essor sequentially executing instructions
may run off the end of its memory. In
this case control is passed, in the same
way as a FORK operator, to the adjacent
processor.

4.3 Data Flow

Since a data-flow computer needs to record
the large set of potentially executable in-
structions, it is difficult to conceive of sup-
porting data flow with a centralized ma-
chine organization. We therefore proceed
to examine packet communication, the

Computmg Surveys, Vol. 14, No 1, March 1982

114 P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

Update
Unit

tokens
PI. • .Pp

J Memory [
Unit (-I [

.(Instructlon h .I Fetch I
"~addresses] 7 Unit

Processing L fexecutable h
Unit ~Instructlon]

Figure 17. Data-flow packet communwation with token storage.

Matching] ./¢ sets of ~'~
Unit ["~,~ tokens ~)

]
data

tokens >
Processing
Unit

PI...Pn

Memory I Unit
Ml...~

J Fetch/ [
l Update

unit

1 ~_._~ executable~
~nstructiou~

Figure 18. Data-flow packet communication with token matching

most obvious machine organization for sup-
porting data flow.

Instruction execution in data-flow com-
puters is, in general, controlled by either of
two synchronization schemes [DENN79b],
which we refer to as token storage and
token matching. In the first scheme data
tokens are actually stored into an instruc-
tion or a copy of the instruction, and an
instruction executes when it has received
all its inputs. Examples of this scheme in-
clude the Massachusetts Institute of Tech-
nology [DENN79a] and Texas Instruments
[CORN79] data-flow computers. In the sec-
ond scheme a token-matching mechanism,
as described above, is employed. When a
set of data tokens is complete, the set is
released to activate the consumer instruc-
t ion-as , for instance, in Figure 2, with
i 2 /1 : -4 and i2/2:ffi2, which form a set of
tokens (4, 2) for instruction i2. Examples of
this scheme include Irvine Data Flow

Computing Surveys, Vol. 14, No 1, March 1982

[ARVIS(}a], the Manchester Data Flow Sys-
tem [WATS79], and the Newcastle Data-
Control Flow Computer [HoPK79].

Packet communication organizations
based on these two schemes for synchroniz-
ing instruction execution are illustrated by
Figures 17 and 18. A point of commonality
in the two organizations is the processing
unit consisting of a number of independent
processing elements that asynchronously
evaluate the executable instruction pack-
ets. Such a packet contains all the infor-
mation required to process the instruction
and distribute the results: the operation
code, the input values, and the references
for the result tokens.

In Figure 17 the data token packets are
in the input pool of the update unit. This
unit takes in single data tokens and stores
them in the memory unit. Certain of these
data tokens may complete the inputs for an
instruction, thus enabling it for execution.

Data-Driven and Demand-Driven Computer Architecture • 115

For these instructions the update unit
places their addresses in its output pool.
The fetch unit uses these instruction ad-
dresses to retrieve the corresponding in-
structions and place them in its output pool
for execution.

In Figure 18, where synchronization is
based on a matching mechanism, data to-
ken packets form the input pool of the
matching unit. This unit forms them into
sets, temporarily storing the set until com-
plete, whereupon the set is released to the
fetch/update unit. This unit forms execut-
able instructions by merging the values
from a set of tokens with a copy of their
consumer instruction.

When a data-flow program organization
is supported by an expression manipulation
machine organization, each of the identical
resources must combine the role of the four
units (memory, update, fetch, processing)
of the packet communication organization
with token storage. When a processing ele-
ment receives a data token over the com-
munications medium from some other re-
source, it updates the consumer instruction.
The element then inspects the instruction
to see if all the inputs are present; if not, it
returns to the idle state. If all the inputs are
present, the processing element performs
the operation and deletes the inputs from
its memory. Next it passes the data tokens
containing the results to their consumer
instructions and returns to the idle state.
We place the Utah Data-Driven Machine
[DAvI78] in this category.

4.4 Reduction

In reduction computers instruction execu-
tion is based on the recognition of reducible
expressions and the transformation of these
expressions. Execution is by a substitution
process, which traverses the program struc-
ture and successively replaces reducible
expressions by others that have the same
meaning, until a constant expression rep-
resenting the result of the program is
reached. There are two basic problems in
supporting this reduction on a machine or-
ganization: first, managing dynamically the
memory of the program structure being
transformed and, second, keeping control
information about the state of the transfor-
mation. Solutions to the memory manage-

ment problem include (1) representing the
program and instructions as strings, for ex-
ample, "((*) ((+) (b) (1)) ((-) (b) (c))),"
which can be expanded and contracted
without altering the meaning of the sur-
rounding structure, and (2) representing the
program as a graph structure with pointers,
and using garbage collection. Solutions to
the control problem are (1) to use control
stacks, which record, for example, the
ancestors of an instruction, that is, those
instructions that demanded its execution;
and (2) pointer reversal, where the ancestor
is defined by a reversed pointer stored in
the instruction.

Expression manipulation organizations
seem most applicable to supporting the re-
duction form of program organization.
However, the computational rules (e.g., in-
nermost and outermost) discussed above
provide us with schemes for sequentially
executing reduction programs that may be
supported by centralized machine organi-
zations. Examples of such centralized or-
ganizations includes the GMD reduction
machine [KLUG79], which uses seven spe-
cialized stacks for manipulating strings, and
the Cambridge SKIM machine [CLAR80],
which supports graph structures.

Packet communication organizations are
also being used to support reduction.
An example of such an organization is the
Utah Applicative Multiprocessing System
[Kv, LL79]. In these organizations, which
support demand-driven graph reduction,
instruction execution is controlled by two
types of token. A consumer instruction dis-
patches a demand token (containing a re-
turn reference) to a producer instruction
signaling it to execute and return its results.
This producer instruction returns the result
in a result token, which is basically a data
token as in data flow. Two synchronization
schemes are required for reduction to be
supported by packet communication. The
first ensures that only a single demand to-
ken for a particular instruction can actually
activate the instruction, while the second
provides synchronization for result tokens,
as was provided for data tokens in data
flow.

The final machine organization discussed
here is the support of reduction by expres-
sion manipulation. Examples of such orga-

Computing Surveys, Vol 14, No 1, March 1982

116 ° P.C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

Memories
Stage

Ml M2 M3 M4 M5 M6

1 (* t l t 2) - - t l : (+ b l) t 2 : (- b c) b : (4) c : (2)

2 (* (+ b 1) i 2)

3 (* (+ b 1) (-bc))

4 (, (+ 4 1) (- 4 2))

5 (* 5 2)

Figure 19. Reduction expression mampulatmn.

nizations are the Newcastle Reduction Ma-
chine [TREL80a] and the North Carolina
Cellular Tree Machine [MAGo79a]. The ex-
ample expression manipulation organiza-
tion we shall examine [WILNS0] is one in
which the program structure is represented
as nested delimited strings and each mem-
ory in the machine is connected to its two
adjacent memories to form what may be
viewed as a large bidirectional shift register.
Substitution of an expression into a mem-
ory causes the adjacent information to shift
apart, which may cause its migration into
adjacent memory elements. Figure 19 illus-
trates this migration of instructions.

To find work each processing element Pi
traverses the subexpression in its memory
Mi, looking for a reducible expression. Since
the "window" of a processing element into
the overall expression under evaluation is
limited to the contents of its own memory
element, it is not possible for two processing
elements to attempt simultaneously to re-
duce the same subexpression--one of the
key implementation problems of expression
manipulation machines. When a processing
element locates a reference to be replaced
by its corresponding definition, it sends a
request to the communications unit via its
communications element Ci. The commu-
nications units in such a computer are fre-
quently organized as a tree-structured net-
work on the assumption that the majority
of communications will exhibit properties
of locality of reference. Concurrency in such
reduction computers is related to the num-
ber of reducible subexpressions at any in-
stant and also to the number of processing
elements to traverse these expressions. Ad-
ditional concurrency is obtained by increas-

ing the number of Mi-PioCi elements, and
also by reducing the size of each memory
element, thus increasing the physical dis-
tribution of the expressions.

4.5 Implications
From the above discussions of control flow,
data flow, and reduction, it is clear that
they gravitate toward, respectively, cen-
tralized, packet communications and ex-
pression manipulation organizations. How-
ever, we have also shown, and the fact is
being demonstrated by various research
groups, that other pairings of program or-
ganizations and machine organizations are
viable.

Control flow can be efficiently supported
by either of the three machine organiza-
tions. A centralized organization is most
suited to sequential control flow. The ad-
vantage of this organization is its simplicity,
both for resource allocation and implemen-
tation; its disadvantage is the lack of par-
allelism. A packet communication organi-
zation favors a parallel "control token"
form of control flow. Although relatively
simple, it lacks the concept of an implicit
next instruction, thereby incurring addi-
tional explicit references in instructions and
extra resource allocation. Last, an expres-
sion manipulation machine organization is
most suited to a parallel FORK-JOIN style
of control flow. This organization combines
the advantages of the above two by being
parallel but also supports the concept of an
implicit next instruction. It does, however,
incur additional FORK and JOIN style con-
trol operators.

For data flow it is difficult to envisage a
centralized machine organization because

Computing Surveys, Vol. 14, No. 1, March 1982

Data-Driven and Demand-Driven Computer Architecture

of the need to record a large number of
potentially executable instructions. How-
ever, packet communication provides two
alternative organizations for the efficient
support of data flow. The first packet com-
munication scheme is based on storing data
tokens into an instruction and executing
the instruction when it is complete. This
form of machine organization may be
viewed as supporting self-modifying pro-
grams and has the advantage of concep-
tually allowing one data-flow program to
generate another for execution. The second
packet communication scheme is based on
matching data tokens. This form of orga-
nization has the advantage of supporting
reentrant code, but the disadvantage of
being conceptually difficult to generate
code for. Data flow may also be supported
by expression manipulation, but it is diffi-
cult to assess the advantages and disadvan-
tages of this approach.

Finally, we consider machine organiza-
tion for reduction. Because of the various
computational rules for reduction, it can be
efficiently supported by any of the three
machine organizations. For all these orga-
nizations, the two basic problems are, first,
managing dynamically the memory and,
second, managing the control information.
A centralized organization is best suited to
a sequential form of reduction. It can im-
plement with reasonable efficiency either
string or graph manipulation. A packet
communication and expression manipula-
tion organization favor a parallel computa-
tional rule.

5. DATA-FLOW COMPUTERS

The number of extremely interesting data-
driven and demand-driven computer archi-
tectures under investigation has made our
task of choosing the set to survey particu-
larly difficult. Since this paper is concerned
with identifying related concepts rather
than describing implementations, we have
chosen to give brief overviews of a number
of architecture schemes, described in the
open literature, whose concepts seem par-
ticularly interesting. Our examination of
data-driven computers clearly must start
with the Massachusetts Institute of Tech-
nology architecture.

• 1 1 7

5.1 M.I.T. Data-Flow Computer

The contribution of the M.I.T. project to
data-flow research has been significant,
forming the basis for most other data-
flow projects. There are extensive refer-
ences to this M.I.T. work, which covers
data-flow graphs [RODR69, DENN71,
DENS72, DESN74a], computer archi-
tecture [DENN74b, DENN75b, RUMB77,
DENS79a], and the design of high-level pro-
gramming languages [WENG75, ACKE79a],
including the single-assignment language
VAL [ACKE79b], based on the abstract-
data-type language CLU. (Data-flow lan-
guages are in general based on the single-
assignment principle [TESL68, C~IAM71].)
This description of the M.I.T. work concen-
trates on the computer architecture and is
based on a description given in Dm~N79a.

The program organization used in the
M.I.T. computer is clearly data flow; how-
ever, only one token may occupy an arc at
an instance. This leads to a fwing rule which
states that an instruction is enabled if a
data token is present on each of its input
arcs and no token is present on any of its
output arcs. Thus the M.I.T. program or-
ganization contains control tokens, as well
as data tokens, that contribute to the ena-
bling of an instruction but do not contribute
any input data. These control tokens act as
acknowledge signals when data tokens are
removed from output arcs. In the program,
organization values from data tokens are
stored into locations in an instruction and
control tokens signal to a producer instruc-
tion when particular locations become un-
occupied.

The M.I.T. organization is what we term
a packet communication organization with
token storage. This organization is shown
in Figure 20. It consists of five major units
connected by channels through which in-
formation packets are sent using an asyn-
chronous transmission protocol. The five
units are (1) the Memory Section, consist-
ing of Instruction Cells that hold the in-
structions and their operands; (2) the Proc-
essing Section, consisting of specialist proc-
essing elements that perform operations on
data values; (3) the Arbitration Network,
delivering executable instruction packets
from the Memory Section to the Processing
Section; (4) the Control Network, deliver-

Computing Surveys, Vol 14, No 1, March 1982

118 P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

p

Distribution
Network

Processing Section

Control i
Network

~ ins t ruct ton |
c e l l]

tnstructton;
cel l I

Memory Section

J
I Arbitration

Network
¢i

Figure 20. M I.T. data-flow computer .

ing control packets from the Processing
Section to the Memory Section; and (5) the
Distribution Network, delivering data
packets from the Processing Section to the
Memory Section.

Instructions held in the Memory Section
are enabled for execution by the arrival of
their operands in data packets from the
Distribution Network and in control pack-
ets from the Control Network. Each In-
struction Cell in the Memory Section holds
one instruction of the data-flow program
and is identified by a unique address. When
occupied, an Instruction Cell holds an in-
struction consisting of an operation code
and several references (i.e., destination ad-
dresses) for results and contains, in addi-
tion, three registers, which await the arrival
of values for use as operands by the instruc-
tion. Once an Instruction Cell has received
the necessary operand values and acknowl-
edge signals, the cell becomes enabled.

Enabled instructions together with their
operands are sent as operation packets to
the Processing Section through the Arbitra-
tion Network. This network provides a path
from each Instruction Cell to each specialist
element in the Processing Unit and sorts
the operation packets among its output
ports according to the operation codes of
the instructions they contain. The results
of instruction execution are sent through
the Distribution and Control Networks to

the Memory Section, where they become
operands of other instructions.

Each result packet consists of a result
value and a reference derived from the in-
struction by the processing element. There
are two kinds of result packet: (1) control
packets containing Boolean values (Boo-
lean data tokens) and acknowledge signals
(control tokens), which are sent through
the Control Network; and (2) data packets
(data tokens) containing integer or complex
values, which are sent through the Distri-
bution Network. The two networks deliver
result packets to the Instruction Cells spec-
ified by their destination field and a cell
becomes enabled when all result packets
have been received.

The current status of the M.I.T. data-
flow project is that hardware for the above
computer architecture is under develop-
ment and a compiler is being written for
the VAL programming language. A number
of supportive projects on fault tolerance,
hardware description languages, etc. are
also in progress.

5.2 Texas Instruments Distributed Data
Processor

The Distributed Data Processor (DDP) is
a system designed by Texas Instruments to
investigate the potential of data flow as the
basis of a high-performance computer, con-

Computing Surveys, Vol 14, No 1, March 1982

Data-Driven and Demand-Dr iven Computer Arch i tec ture • 119

Data
Flow

Computer

(

D a t a
Flow

Computer
Data I Flow

omputer

D C L N R i n g

r

D a t a
Flow

Computer

L l [1

Front End TI 990/10
Interface 19x96K

Memory

Figure 21. Texas I n s t r u m e n t s d is t r ibuted da ta processor

)

structed using only off-the-shelf technol-
ogy. This project [CORN79, JOHN79] began
in mid-1976, and DDP plus its supporting
software has been operational since Sep-
tember 1978. A most interesting aspect of
the DDP project is that the computer is
largely programmed in FORTRAN 66. A
cross compiler, based on the Texas Instru-
ments Advanced Scientific Computer's op-
timizing FORTRAN compiler, translates
FORTRAN subprograms separately into
directed graph representations and a link-
age editor combines them into a single pro-
gram [JOHN79]. The following description
of DDP is largely taken from the paper by
Cornish [CORN79].

Conceptually, DDP and'the M.I.T. com-
puter discussed above are based on a simi-
lar data-flow program organization. An in-
struction is enabled if a data token is pres-
ent on each of its input arcs and no token
is present on any of its output arcs. Only
one token may occupy an arc at an instance.
In addition, control tokens are used as ac-
knowledge signals, for instance, to handle
FORTRAN language constructs that are
resistant to representation by "pure" data-
flow code.

A DDP instruction consists of the follow-
ing fields: (1) an operation code, (2) a so-
called predecessor count of the input tokens
yet to arrive, (3) a field reserved for a
hardware-maintained linked list of instruc-
tions ready for execution, (4) an original
count of tokens used to restore the prede-
cessor count after the instruction executes,
(5) an operand list with space reserved for
incoming token operands, and finally (6) a

successor list containing the destination in-
struction addresses for the result tokens.
The size of instructions and whether they
are of fixed or variable length are unclear
from the references.

The DDP machine organization is what
we term a packet communication organi-
zation with token storage, because oper-
ands are stored into unoccupied locations
in an instruction. Although this is the same
class of machine organization as the M.I.T.
computer, the computer architecture of
DDP is significantly different. A block dia-
gram of the DDP system is shown in Figure
21. It consists of five independent comput-
ing elements: four identical data-flow com-
puters that cooperate in the execution of a
computation and a Texas Instruments
990/10 minicomputer, acting as a front-end
processor for input/output, providing op-
erating system support, and handling the
collection of performance data. (A data-
flow program to be executed is statistically
partitioned and allocated among the four
data-flow computers.) These five comput-
ing elements in the DDP are connected
together by a variable-length, word-wide,
circular shift register known formally as a
DCLN ring. This shift register is daisy
chained through each element and may
therefore carry up to five variable-length
packets in parallel.

Each data-flow computer consists of four
principle units. These units are (1) the
Arithmetic Unit, which processes executa-
ble instructions and outputs tokens; (2) the
Program Memory, built out of standard
random-access-memory (RAM) chips and

Computing Surveys, Vol. 14, No. 1, March 1982

120 • P.C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

holding the data-flow instructions; (3) the
Update Controller, which updates instruc-
tions with tokens; and (4) the Pending In-
struction Queue, which holds executable
instructions that have been enabled. Exe-
cutable instructions are removed from this
queue by the Arithmetic Unit and proc-
essed. When an instruction completes exe-
cution, a series of token packets are re-
leased to the Update Controller. Using the
address in a packet the Update Controller
stores the token operand in the instruction
and decrements by one its predecessor
count. If this count is zero, the instruction
is ready to execute; a copy is placed on the
Pending Instruction Queue and the stored
version of the instruction is reinitialized. It
is unclear whether the Pending Instruction
Queue may contain more than one execut-
able instruction. However, when the capac-
ity of the queue is exceeded, the enabled
instructions are linked, in memory, to the
Pending Instruction Queue via their link
field already reserved for this purpose. This
method has the advantage that no amount
of program parallelism overflows the capac-
ity of the hardware resource.

DDP is implemented in transistor-tran-
sistor logic (TTL) on wire-wrap boards and
chassis from Texas Instruments 990 mini-
computer components. Each data-flow
computer contains 32K words of metal-ox-
ide-semiconductor (MOS) memory with
each word divided as a 32-bit data field and
a 4-bit tag field holding the predecessor
count. Each of these computers contains
about the same number of components as
a minicomputer and provides approxi-
mately the same raw processing power.
Thus, as remarked by Cornish [CORN79,
pp. 19-25], "data flow designs place no par-
ticular burden on the implementation other
than using more memory for program stor-
age."

5.3 Utah Data-Driven Machine

Data-Driven Machine #1 (DDM1) is a
computing element of a recursively struc-
tured data-flow architecture designed by A1
Davis and his colleagues while working at
Burroughs Interactive Research Center in
La Jolla, California. DDM1 [DAvI78,
DAVI79a, DAvI79b] was completed in July
1976 and now resides at the University of

Utah, where the project is continuing under
support from Burroughs Corporation. Here
we examine the structure of this recursive
architecture and the operation of DDM1,
descriptions primarily taken from Davis
[DAvI78].

The program and machine organization,
both based on the concept of recursion,
contrasts markedly with the previous data-
flow systems we have examined. The com-
puter is composed of a hierarchy of com-
puting elements (processor-memory pairs),
where each element is logically recursive
and consists of further inferior elements.
Physically the computer architecture is tree
structured, with each computing element
being connected to a superior element
(above) and up to eight inferior elements
(below), which it supervises. Only recently
have other groups come to recognize the
fundamental importance of hierarchy for
decentralized systems, particularly those
exploiting VLSI [SEIT79, MEAD80,
TREL80b], since it is able to utilize locality
of reference to reduce the critical problems
of system-wide communication and control.

In the Utah data-flow program organi-
zation, referred to as Data-Driven Nets
[DAvI79a], data tokens provide all com-
munication between instructions--there
are no control tokens. In addition, the arcs
of the directed graph are viewed as first-in/
first-out (FIFO) queues, a model that is
supported by the architecture. The actual
program representation corresponding to
these Data-Driven Nets consists of hierar-
chically nested structure of variable-length
character strings. A data-flow program, its
subprograms, and their individual instruc-
tions are each viewed as a parenthesized
string, for example,

"(() (() . . .) . . .) ."

The notion of an arc being a FIFO queue is
supported by storing the data tokens that
have arrived but have not been consumed
with the instruction in the program struc-
ture. Each instruction therefore consists of
an operation code and a list of destination
addresses for the results, together with a
variable number of sets of data tokens wait-
ing either for a set to be complete or for
consumption by the instruction. An advan-

Computing Surveys, Vol 14, No. 1, March 1982

Data-Driven and Demand-Driven Computer Architecture

Input
Queue

[%, I

i

EIII
Atomic

Processor
(AP)

~T ~T ir tt
0 1 2 - . - 7

I ,

8 Son E~ements

Output
Queue

Atomic I Storage
(ASU)

F,gure 22. U tah data-driven machine (DDM1).

• 1 2 1

tage of the parenthesized string form of
representation is that it supports dynamic,
and localized, variation of the program
structure. Because of the nature of this
program representation and the method of
allocating work to resources, discussed be-
low, we classify the Utah architecture as an
expression manipulation machine organi-
zation.

A block diagram of the computing ele-
ment DDM1 is shown in Figure 22. DDM1
consists of six major units: (1) the Atomic
Storage Unit (ASU) provides the program
memory; (2) the Atomic Processor (AP}
executes the instructions; (3) the Agenda
Queue (AQ) stores messages for the local
Atomic Storage Unit; (4) the Input Queue
(IQ) buffers messages from the superior
computing element; (5) the Output Queue
(OQ) buffers messages to the superior ele-
ment; and finally (6) the SWITCH connects
the computing element with up to eight
inferior elements. All paths between these
units, except for that between the Atomic
Storage Unit and Atomic Processor are six
wire paths (a two-wire request-acknowl-
edge control link and the four-wire, char-
acter-width data bus}. The units commu-
nicate asynchronously using a four-phase
request-acknowledge protocol.

Work in the form of a program fragment
is allocated to a computing element by its

superior, being placed as a message in the
Input Queue. The action taken by the com-
puting element depends on the structure of
the fragment and whether there are further
inferior elements. If there exists some set of
concurrent subprograms and the comput-
ing element has substructure, then it will
decompose and allocate the subprograms
to its inferior elements. Otherwise, the pro-
gram fragment is placed in the element's
own Atomic Storage Unit. The Atomic
Storage Unit of DDM1 contains a 4K × 4-
bit character store, using RAM devices, and
also performs storage management func-
tions on the variable-length parenthesized
strings, such as initialize, read, write, insert,
and delete. All target locations in the store
are found by an access vector into the tree-
organized storage structure. Free space is
managed automatically.

When a data token arrives as a message,
for example, in the Input Queue, it is either
passed on via the appropriate queue to a
computing element at some other level, or
if the program fragment is in the local
Atomic Storage Unit, it is inserted into the
instruction. When such an instruction be-
comes enabled, it is executed immediately
by the Atomic Processor and the result
tokens distributed. These are placed in the
Output Queue or SWITCH, or if the receiv-
ing instruction is in the local Atomic Stor-

Computing Surveys, Vol 14, No. 1, March 1982

122 • P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

age Unit, they are placed in the Agenda
Queue. After the processor has generated
all the result tokens, it will service messages
from the SWITCH, the Agenda Queue, and
the Input Queue, in descending order of
priority.

Current status of the project is that
DDM1 is operational and communicates
with a DEC-20/40, which is used for soft-
ware support of compilers, simulators, and
performance measurement programs. The
current programming language is a state-
ment description of the directed graph;
however, an interactive graphical program-
ming language is also under development.

5.4 Irvine Data Flow Machine

The Irvine data-flow (Id) machine is moti-
vated by the desire to exploit the potential
of VLSI and to provide a high-level, highly
concurrent program organization. This pro-
ject originated at the University of Cali-
fornia at Irvine [ARvI75, ARVI77a, ARVI77b,
GOST79a, GOST79b] and now continues at
the Massachusetts Institute of Technology
[ARvI80a, ARvI80b]. It has made significant
contributions to data-flow research, in par-
ticular the Id language [ARVI78]. The de-
scription given here is principally based on
ARVI80a.

The program organization used in the Id
machine is pure data flow, with an instruc-
tion being enabled when all its input tokens
are available. Each instruction may have
one or two inputs and any number of out-
puts. There are a number of interesting
features in the Id program organization.
The first feature is the sophisticated token
identification scheme, similar to the
P / N / A / I format discussed in Section 3.3. A
token identifier consists of (1) a code block
name identifying a particular-procedure or
loop; (2) a statement number within the
code block; (3) an initiation number for the
loop; and (4) a context name identifying the
activity invoking this procedure or loop.
The second interesting feature is its support
for data structures, such as arrays, by the
inclusion of I structures [ARvI80b]. An I
structure is a set of components, with each
component having a unique selector (for an
array the selectors are the indexing inte-
gers) and being either a value or an un-

known if the value is not yet available. This
feature uses the by-reference mechanism of
control flow. Two further features are that
Id supports the nondeterminism required
for implementing resource managers and,
by treating procedure definitions as ma-
nipulable values, supports higher order
functions, abstract data types, and operator
extensibility. These features are discussed
in detail in ARVI78.

The Id machine has a packet communi-
cation organization with token matching. It
consists of N processing elements and an
N × N communications network for routing
a token from the processing element gen-
erating it to the one consuming the token.
This machine organization attempts to
minimize communications overhead in two
ways. First, the matching unit for tokens
destined for a particular instruction is in
the same processing element as is the stor-
age holding that instruction. Second, there
is a short-circuit path from a processing
element to itself so that there is no need to
use the full N × N network if a token is
destined for the same processing element
as generated it. The mapping algorithm,
determining in which processing element
an instruction is stored, is intended to ob-
tain maximum usage of this short circuit,
while still giving good processor utilization.

Figure 23 illustrates a processing element
of the proposed Irvine data-flow machine.
Each processing element is essentially a
complete computer with an instruction set,
up to 16K words each of program storage
and data structure storage, and certain spe-
cial elements. These specialist elements in-
clude: (1) the input section, which accepts
inputs from other processing elements; (2)
the waiting-matching section, which forms
data tokens into sets for a consumer in-
struction; (3) the instruction fetch section,
which fetches executable instructions from
the local program memory; (4) the service
section, that is, a floating-point arithmetic-
logic unit (ALU) (e.g., Intel 8087); and (5)
the output section, which routes data to-
kens containing results to the destination-
processing element.

The current status of the project is that
a computer with 64 processing elements is
currently being designed at the Massachu-
setts Institute of Technology and is ex-

Computing Surveys, Vol. 14, No. 1, March 1982

Data-Drwen and Demand-Driven Computer Architecture

i n.u' I Section

Walt ing-Mat chlng
Section

L Instruction
Fetch
Section

Service
Section

Output]
Section

I Program
Memory

DataMemoryStructure]

123

Figure 23. Irvme data-flow processing element

pected to be ready for MOS fabrication by
the end of 1982.

5.5 Manchester Data-Flow Computer

The data-flow project at Manchester Uni-
versity, like a number of other projects, is
investigating the use of data flow as the
basis for a high-performance computer.
This project, starting in 1975, has included
the design of a high-level, single-assignment
programming language LAPSE, the imple-
mentation of translators for LAPSE and a
subset of PASCAL, and the production of
a detailed stimulator for the Manchester
computer architecture. Currently the group
is implementing a 20-processor data-flow
computer prototype. Early ideas on this
design are given in TREL78; this description
of the computer is based on WATS79.

The program organization used by the
Manchester computer is pure data flow,
with an instruction being enabled when all
its input arcs contain tokens (its output
arcs may also contain unconsumed data
tokens), and an arc is viewed as a FIFO
queue providing storage for tokens. The
program representation is based on a two-
address format, with an instruction consist-
ing of an operation code, a destination in-

struction address for a data token, and
either a second destination address or an
embedded literal. Each instruction con-
sumes either one or two data tokens, and
emits either one or two tokens. A token
consists of three fields: the value field hold-
ing the operand, an instruction address field
defining the destination instruction, and
last a label field. This label is used for
matching tokens into sets and provides
three types of information, identifying the
process to which the token belongs, the arc
on which it is traveling, and also an itera-
tion number specifying which particular to-
ken on an arc this is. Thus tokens have a
four-field name, as discussed in Section 3.3,
serving a number of roles in the architec-
ture, including supporting the notion of arcs
being FIFO queues, allowing tokens to be
matched into sets, and allowing a program's
instructions to be used reentrantly.

The machine organization of the com-
puter is a packet communication organiza-
tion with token matching. Figure 24 shows
a block diagram of the Manchester data-
flow computer. It consists of five principal
units: (1) the Switch provides input-output
for the system; (2) the Token Queue is a
FIFO buffer providing temporary storage

Computing Surveys, Vol. 14, No l, March 1982

124 P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

J Hatching
i 1 ,:ore 1

I Instruction
Store

Token [
Queue

output~ I [

Processing
Unit

PO...P19

Figure 24. Manchester data-flow computer.

for tokens; (3) the Matching Store matches
pairs of tokens; (4) the Instruction Store is
the memory holding the data-flow pro-
grams; and (5) the Processing Unit, consist-
ing of a number of identical processing ele-
ments, executes the instructions. The
Switch is used for passing data tokens into
or out of the computer, either communicat-
ing with peripherals or other, possibly data-
flow, computers. To start execution of a
program fragment, initialization tokens are
inserted at the Switch and directed by their
labels to the starting instructions of the
computation. A special destination address
in the final instructions of the program
fragment allows tokens to be output.

A token ~.. r~-~cb~ng the front of the
Token Queue can access (if one of a pair)
or bypass (if a single input) the Matching
Store, depending on information in the to-
ken label. An access to the Matching Store
will cause a search of the store. The Match-
ing Store is associative in nature, although
it is implemented using RAM with hard-
ware hashing techniques, and is based on
the work of Goto and Ida [GOTo77]. If a
token is found with the same label and
instruction address, it is removed to form a
token pair. If no match is found, the incom-
ing token is written to the store. Token
pairs from the Matching Store, or single
tokens that have bypassed it, are routed to
the Instruction Store. At this store, which
is a RAM addressed by the contents of the
instruction address field, the tokens are
combined with a copy of the destination
instruction to form an executable instruc-

Computing Surveys, Vol. 14, No. 1, March 1982

tion that is released to the Processing Unit.
This unit consists of a distribution and ar-
bitration system, and a group of micropro-
grammed microprocessors. The distribu-
tion system, on receipt of an executable
instruction, will select any processor that is
free and allocate the instruction. After ex-
ecution, the arbitration system controls the
output of result tokens from the processing
elements.

The current status of the project is that
a 20-processing-element computer is under
construction. Each processing element is
built from Schottky bit-slice microproces-
sors and is estimated to give an average
instruction execution time of 3 microsec-
onds for the data-flow arithmetic opera-
tions. If all 20 processing elements can be
utilized fully, this will give an approxi-
mately 6-million-instruction-per-second
rate for the computer as a whole. To sup-
port this rate, the following operation times
[WATS79] are required: (1) Token Queue
read 202 nanoseconds; (2) Matching Store
access 303 nanoseconds; (3) Instruction
Store read 303 nanoseconds; (4) SWITCH
operation 202 nanoseconds; and (5) Token
Queue write 202 nanoseconds. These speeds
require a storage access time of the order
of 200 nanoseconds, which is achievable
with low-cost MOS storage devices.

5.6 Toulouse LAU System

"Language d assignation unique" is the
French translation for the phrase "single-
assignment language." The LAU system
[CoMT76, GELL76, PLAS76, S¥RE77,

Data-Driven and Demand-Driven Computer Architecture

Input
I Queue 1

Control [. instructions ready 1 Memory
Unit ~Instructlons Unit

k::::::::::! Processing Unit e °
PO...P31

descriptor

Figure 25. LAU system.

• 125

COMT79b] is a data-driven computer de-
signed to execute such languages. The LAU
project is based at the CERT Laboratory
in Toulouse. Notably this extensive project,
starting in 1976, initially designed the LAU
high-level language, which was used to pro-
gram a large number of problems. Subse-
quently, the group implemented a compiler
for the language and a detailed simulator,
which yielded a large number of simulation
data [PLAs76]. This led to the design and
current construction of a powerful 32-proc-
essor data-driven computer. The descrip-
tion of the LAU computer given here is
based on the paper by Comte and Hifdi
[CoMT79b].

The LAU programming language has a
data-flow model, but the computer's pro-
gram organization is in fact based on con-
trol-flow concepts. In the computer data
are passed via sharable memory cells that
are accessed through addresses embedded
in instructions, and separate control signals
are used to enable instructions. However, it
should be stressed that, as in data flow, the
flow of control is tied to the flow of data
(i.e., the control graph and the data graph
are identical).

Program representation is based on three
logical types of memory, for instructions,
for data, and for control information. An
instruction (66 bits in length) has a three-
address format and consists of an operation
code, two data memory addresses for input
operands, and a data memory address for
the result operand. Following conventional
practice, if an input operand is a literal, it

replaces the address in the instruction.
Each cell in the data memory consists of a
value field providing storage for the oper-
and and of two link fields that contain
instruction memory addresses of instruc-
tions using the operand as an input.

Corresponding to each instruction and
data operand are sets of control bits which
synchronize execution. Three control bits
referred to as C0,C1, and C2 denote the
state of an instruction. C1 and C2 define
whether the two corresponding input op-
erands are available, while CO provides en-
vironment control, as, for instance, for in-
structions within loops. An instruction is
enabled when COC1C2 match the value
111. A final control bit, referred to as Cd, is
associated with each data operand and
specifies if the operand is available. Exe-
cution of an enabled instruction consists of
fetching the two input operands from the
data memory using the embedded operand
addresses, and performing the specified op-
eration. Next, the result operand is written
to the data memory using the result ad-
dress, which causes the corresponding link
addresses to be returned to the processor,
and is used to update the corresponding C1
and C2 of instructions using the result as
inputs.

The LAU machine organization is a
packet communication organization with
token storage, owing to the form of program
organization, notably the association of
CO C1 C2 control bits with each instruction.
Figure 25 illustrates the system organiza-
tion of the LAU computer. It comprises the

Computmg Surveys, Vol. 14, No 1, March 1982

126 • P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

memory unit providing storage for instruc-
tions and data, the control unit maintaining
the control memory, and the processing
unit consisting of 32 identical processing
elements. Each element is a 16-bit micro-
programmed processor built around the
AMD 2900 bit-slice microprocessor. Per-
haps the most interesting part is the control
unit, where the von Neumann program
counter is replaced by two memories: the
Instruction Control Memory (ICM) and the
Data Control Memory (DCM). ICM han-
dles the three control bits CO C1 C2 associ-
ated with each instruction and DCM man-
ages the Cd bit associated with each data
operand.

As an illustration of the operation of the
LAU computer let us consider the process-
ing of an enabled instruction. Processing
starts in the control unit at the Instruction
Control Memory. ICM is composed of 32K
three-bit-wide words, with the control bits
in word i corresponding to the instruction
in word i in the memory unit. Two proces-
sors scan this memory: the Update Pro-
cessor sets particular bits of CO C1 C2, and
the Instruction Fetch Processor associa-
tively accesses the memory for 111 pat-
terns. When an enabled instruction is
found, its address is sent to the memory
unit and the control bits are reset to 011.

The address of the enabled instruction is
queued, if necessary, in a 16-bit × 64-word
FIFO queue, which is a pool of work for the
memory unit. This unit consumes the ad-
dress and places the corresponding instruc-
tion on the instruction bus, which is also a
64-bit × 128-word FIFO queue, where it is
eventually accessed by an idle processing
element. Once in a processing element, the
instructioff is decoded and the input ad-
dresses are dispatched to the memory unit
to access the data operands. When the in-
puts return, the operation is performed and
the result generated. Next the processing
element issues a write-read request to the
memory unit giving the result and its ad-
dress. The result will be stored in the value
field and the contents of the two link fields
will be returned to the element. Once the
link fields have been returned, the process-
ing element sends the links to the Update
Processor, which uses them to set the cor-
responding C1 or C2 bits in the instruction

control memory. In parallel to the storing
of the result, the processing element sends
the result address to the data control mem-
ory where the Cd bit is set. This memory is
n 1-bit words. Like the ICM, the DCM is
served by two processors, one that updates
the Cd bits and the other that checks that
accesses to operands in the memory unit
are in fact available (i.e., the Cd bit is set).

Regarding the status of the LAU project,
the first of the 32 processors became oper-
ational in September 1979, and the remain-
der have been constructed since then. Pre-
dicted performance figures for this hard-
ware are given in COMT79b.

5.7 Newcastle Data-Control Flow Computer

Most of the data-driven projects discussed
above are based on a single program orga-
nization and are concerned, specifically,
with studying its embodiment in a suitable
machine organization. In contrast, the
group at the University of Newcastle upon
Tyne are interested in the actual program
organizations, their suitability for a general-
purpose decentralized computer, and the
possibilities for combining them. In this
respect the group has investigated, using
software and hardware simulators, data
flow [TREL78], "multithread" control flow
[FARR79], and reduction [TREL80a] orga-
nizations, and also combinations of more
than one organization in a single computer.
Here we describe the JUMBO computer
architecture [HoPK79, TREL82] built to
study the integration of data-flow and con-
trol-flow computation.

The program organization has both data
tokens and control tokens, and some spe-
cific combination of tokens causes the en-
abling of a particular instruction. In the
organization there are two ways in which
an instruction may obtain its input oper-
ands, namely, (1) by receiving data tokens,
which may carry a value or an address of
the stored value; or (2) by means of embed-
ded inputs stored in the instruction, which,
like the contents of data tokens, may be
literal values or addresses. When an in-
struction is enabled, the token inputs and
embedded inputs are merged to produce a
set of values and addresses. The addresses
of inputs are then dereferenced and re-

Computing Surveys, Vol. 14, No. 1, March 1982

Data-Driven and Demand-Driven Computer Architecture

Matching
Unit

T
token
packets

I ----------~ token set~-~ Memory
k , ~ packets j] ~ Unit

(s t o r e d da t a~
~.~ packets j]

T
Processlng ~(executable)

Units instruction
packets

Figure 26. Newcastle data-control flow computer.

* 1 2 7

placed by their corresponding values from
memory. The resulting executable instruc-
tion then has a complete set of value argu-
ments on which to compute.

An instruction consists of an operation
code and up to eight arguments, certain
arguments being embedded in the stored
instruction and others being supplied by
data tokens at run time. Each operation
code uses arguments in specific positions
for inputs and places its results in other
positions. A stored instruction therefore
consists of (1) an operation code, (2) up to
eight embedded arguments, (3) a position
field defining those arguments that are
present, (4) an input mode field defining
which of the merged token and embedded
arguments are to be dereferenced, and (5)
an output mode field specifying which ar-
guments and results are to be combined to
produce the outputs of the instruction after
execution. Three types of output may be
produced by an instruction, namely, data
to store in memory, data tokens, and con-
trol tokens. Each consists of a reference and
a value. For data to store, the name gives
the address of the memory cell; for tokens
it gives the address of the destination in-
struction and information to control the
token's matching with other tokens in the
set, such as the count of tokens. In the
computer up to four tokens may be grouped
together in a set.

The machine organization of the
JUMBO computer is a packet communcia-
tion organization with token matching. A
block diagram of the computer, as shown in
Figure 26, consists of three principal units
interconnected by FIFO buffers. The
Matching Unit controls the enabling of in-

structions by matching sets of tokens,
which are released to the Memory Unit
when complete. The Memory Unit provides
storage for data and instructions. It places
the contents of stored data packets in the
appropriate memory cell, and for token set
packets it constructs executable instruc-
tions, which are released to the Processing
Unit. Finally, the Processing Unit supports
instruction execution and the distribution
of results.

When a token set packet is released by
the Matching Unit, it contains between zero
and four input arguments supplied by data
tokens. Using the destination instruction
address in the packet, the Memory Unit
takes a copy of the target instruction and
merges the token arguments with those
already embedded in the instruction. The
copy of the instruction now has a complete
set of arguments. Next, the input mode
field, which is an 8 × 1-bit vector, is ex-
tracted, and for each bit set the correspond-
ing argument is assumed to be a memory
address and is dereferenced and replaced
by its corresponding value to give an exe-
cutable instruction.

Each of the three units of the JUMBO
computer is built from a Motorola M6800
microcomputer system. Storage in the
JUMBO computer is divided into 1-kbyte
pages. Each process executing in the com-
puter has three pages, one for its tokens in
the Matching Unit, and one each for its
code and data in the Memory Unit. Pro-
cesses can be dynamically created and
killed, and the token page can be reallo-
cated, implicitly deleting residual tokens so
that graphs do not have to be self-cleaning
as on other data-driven computers.

Computing Surveys, Vol 14, No. 1, March 1982

128 • P . (7. Treleaven, D. R. Brownbridge, and R. P. Hopkins

5.8 Other Projects

Research into data flow is a rapidly expand-
ing area in the United States, Japan, and
Europe. Besides the projects briefly de-
scribed above, there are a number of other
interesting data-flow projects worthy of de-
scription in this survey. These include: the
MAUD single-assignment system at the
University of Lille, France [LEco79]; work
at the Mathematical Center, Amster-
dam on compiling conventional languages
for data-flow machines [VEEN80]; the
PLEXUS project at the University of
Tampere, Finland JERK180]; the FLO pro-
ject at the University of Manchester, Eng-
land [EGAN79]; work on a hierarchical data-
flow system at the Clarkson Coll~ge of
Technology, New York [SHRO77]; and a
number of machines that have been built
or are under development in Japan
[JIPD81b] such as a high-speed, data-flow
machine being developed at Nippon Tele-
graph and Telephone [AMAM80, JIPD81b].

6. REDUCTION COMPUTERS

Apart from the pioneering work of Klaus
Berkling, the stage of development of re-
duction computers somewhat lags behind
that of data-flow computers. This is prob-
ably due to reduction semantics being an
unfamiliar form of program execution for
most computer architects.

6.1 GMD Reduction Machine

The reduction machine project based on
the GMD (Gesellschaft fur Mathematik
und Datenverarbeitung) Laboratory in
Bonn, West Germany, aimed to demon-
strate that reduction machines are a prac-
tical alternative to conventional architec-
tures. In particular, the aim was to build a
computer easy to program directly in a
high-level, functional language based on the
lambda calculus. Early ideas on this theme
are given in BERK71 and consolidated in
BERK75. This description of the GMD re-
duction machine is based on the account in
KLUG79, supplemented by information
from HOMM79 and KLUG80.

The GMD machine's program organiza-
tion is string reduction. A design objective
was the elimination of addresses entirely,
and this is achieved by always using substi-

Computing Surveys, Vol 14, No 1, March 1982

tution copies of code and data instead of
sharing by using addresses. In the machine
a program is represented as a prefix expres-
sion, the binary tree structuring being
uniquely exhibited by a string of symbols.
These expressions may be atoms--single
symbols or values--or may themselves be
strings. Each subtree consists of three parts,
namely, a constructor, a function, and its
argument.

One task of the constructor is to indicate
which of its offspring in the tree is the
function and which the argument. Since the
reduction machine is designed to traverse
expression trees in preorder (i.e., left sub-
tree before the right), it is necessary to
know whether the function or the argument
should be reduced first, and the order in
which they occur in the expression. This is
provided by two types of constructor rep-
resented by the symbols ":" and "(--." The
constructor ":", used in the format ": argu-
ment function", evaluates the argument
expression, by reduction to a constant
expression, before the function is applied to
it. The constructor "~-", used in the form
"(-- function argument", applies (reduces)
the function expression before the argu-
ment is evaluated.

Expressions may in general be built from
either constructor and identical constant
expressions obtained. For instance, the
arithmetic expression 4 + 2 can be repre-
sented either as : 2 : 4 + or as (-- (-- + 4 2. Dif-
ferences arise when constructors are ap-
plied to function bodies as they give rise to
by-value and by-name parameter substitu-
tion. Special symbols for function-argu-
ment binding are also provided in the form
of a pair of constructors lambda and alpha.
The former implements standard lambda
substitution, while the latter is used to im-
plement recursion. Lambda simply causes
the actual parameter to be substituted for
a formal parameter in an expression (the
operation being known in lambda calculus
as a beta reduction). Alpha is used to bind
function bodies to occurrences of the func-
tion name in recursive expressions, with
occurrences of the name being replaced by
a new application of alpha, for example,

ALPHA.f{. . . f . . .)
reduces to f (. . . ALPHA.f . . .)

Obviously the bracketed body of f must

Data-Driven and Demand-Driven Computer Architecture

INPUT/
OUTPUT

Figure 27. G M D reduct ion machine .

• 1 2 9

contain a terminating condition to prevent
the recursion's being infinite.

The GMD machine organization is clas-
sified as a centralized organization, partic-
ularly by the way it represents and executes
programs. A block diagram of the machine
architecture is shown in Figure 27. It con-
sists of the reduction unit (comprising four
subunits named TRANS, REDREC, RE-
DEX, and ARITH), a set of seven 4-kbyte
push-down stacks (of which E, A, B, U, V,
and M are used to process expressions, and
S serves as the system control stack), and
a 1-byte-wide bus system for communica-
tion between the various units. In the re-
duction unit the four subunits perform the
following tasks. TRANSport performs all
traversal algorithms; REDuction-RECog-
nition looks for an instance of a reducible
expression during traversal and, upon find-
ing one, halts the TRANS unit and passes
control to the REDEX unit. REDuction-
EXecution essentially provides a fast con-
trol memory containing all the control pro-
grams to perform the reductions. In this
task it is assisted by the ARITHmetic unit,
which performs all the arithmetic and log-
ical operations.

In the traversal of an expression by the
machine, three principal stacks are used.
These are E, M, and A, referred to as
source, intermediate, and sink. The source
stack holds the tree expression to be re-
duced with the root constructor on top of
the stack. As the expression is traversed, a
succession of pop operations moves the
symbols off the source stack onto the sink
stack. For reasons of consistency, the
expression ending up on the sink stack must
appear with the constructors on top of their
respective subtrees. To accomplish this, the
third intermediate stack is used as tempo-
rary storage for constructors that emerge

from the source stack ahead of their sub-
expressions, but must enter the sink stack
after them.

The GMD reduction machine has been
built and is connected to a microcomputer
system supporting a library and program-
ming tools. The whole system has been
operational since 1978. An attempt has also
been made to implement Backus' FP lan-
guage [BACK78], but in general this is less
successful than the original lambda calculus
language for which the machine was de-
signed. The main contribution of the GMD
project is to demonstrate that there is suf-
ficient understanding of reduction to imple-
ment a workable machine. The project has
also shown that string manipulation is a
useful technique but may be inefficient
when adhered to rigorously.

6.2 Newcastle Reduction Machine

The Newcastle reduction machine project
aimed to investigate the use of parallelism
in such machines and also explore the fea-
sibility of basing these designs on a few
replicated large-scale integrated (LSI)
parts. This project resulted in the design
and simulation of a parallel string reduction
machine, the major feature of the design
being the use of state-table-driven proces-
sors that allowed the computer to be used
as a vehicle for testing different reduction
(language) schemes. The presentation
given here is based on TREL80a and uses an
example reduction language described
there.

The program organization uses string
manipulation; references may occur in a
string, and these are substituted by the
corresponding definition at run time. A par-
allel innermost computation rule is used.
An expression in the program representa-

Computing Surveys, Vol. 14, No 1, March 1982

130

!
P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

L
" ~ Backing Store r

dlrec. state

|
Memory U n i t (D e f i n i t i o n s)

Figure 28. Newcast le reduct ion machine .

tion is delimited by left bracket "(" and
right bracket ")" symbols, and consists of a
function followed by a list of arguments
"(function arg 1 arg 2 . . .) . " Here function
is a simple operator, but an argument may
be a literal value, a reference to a definition,
or a bracketed expression to be reduced.

Besides the normal arithmetic, logical,
and conditional operators, there are LOAD,
STORE, and APPLY operators used to
access definitions explicitly. LOAD is used
for dereferencing and replaces the reducible
expression (LOAD ref) by the definition
corresponding to ref. STORE is used
(STORE ref def) to create or update stored
definitions and can, if not used carefully,
violate the referential transparency prop-
erty of reduction machines. APPLY is used
to bind arguments to a parameterized
function.

The machine organization, an expression
manipulation type, of the Newcastle reduc-
tion machine is shown in Figure 28. It con-
sists of three major parts: (1) a common
memory unit containing the definitions; (2)
a set of identical, asynchronous processing
units (PU); and (3) a segmented shift reg-
ister containing the expression being eval-
uated. This shift register comprises a num-
ber of double-ended queues (DEQ) contain-
ing the parts of the expression being tra-
versed, and a backing store to hold the
inactive parts of the expression. Each proc-
essing unit has direct access to the whole

Computing Surveys, Vol 14, No. 1, March 1982

memory unit and two double-ended queues.
Figure 28 also shows the architecture of an
individual processing unit. It consists of
four registers containing information on the
subexpression being traversed, the reduc-
tion table that contains the user-defined
state transition table controlling the eval-
uation, an action unit performing the ac-
tions specified by the reduction table, and
the operation store holding user-defined
code for the action unit.

The basic aim of each processing unit is
to build up a reducible expression "(opera-
tor cons tant . . .) " in its buffer register and
then rewrite it. Each processing unit can
read or write to either of its double-ended
queues, the current direction being main-
tained by the direction register. When an
item is read and removed from a DEQ, it is
transferred into the input register. Associ-
ated with each item is a type field (e.g.,
operator, operand, left bracket, right
bracket, empty), which is used in conjunc-
tion with the current state, held in the state
register, to index into the reduction table.
The selected reduction table entry defines
an action to be performed, such as move
item to buffer register and new values for
the state and direction registers. For in-
stance, the registers of a processing unit
might contain the following--buffer:"(+ 4
2" ; input")"; direction: "right"; state: "3"--
when reading from the right and a right
bracket is encountered. For the example

Data-Driven a n d Demand-Dr iven Computer Archi tec ture • 131

reduction language the action selected in
the state transition table would reduce the
expression. Had a left bracket been input
instead, the selected action would have
emptied the contents of the buffer register
into the left-hand DEQ, and attempted to
find a new innermost reducible expression.

The asynchronous operation of the proc-
essing units and their parallel traversal of
the expression clearly provide scope for
deadlock and starvation. For example, two
adjacent units might be attempting to re-
duce simultaneously the same innermost,
reducible expression. To avoid problems
such as these, the state transition table
obeys certain protocols; in this instance the
processing unit on the right reading an
empty DEQ would output the contents of
its buffer register and reverse direction. To
enforce the use of these protocols, a soft-
ware package called the reduction table
generator is used to automatically generate
a consistent reduction table for a user's
language, input as a Backus-Naur Form
(BNF) syntax. This package employs ideas
similar to compiler-compilers that are used
to generate table-driven LR parsers.

For this proposed reduction machine de-
sign, the novel features stated are the use
made of state tables to support a class of
user-defined reduction schemes and the use
made of parser generator concepts for gen-
erating these tables. The main disadvan-
tages of the proposal seem to be the normal
ones of innermost reduction, such as cor-
rectly handling conditionals, and the global
memory unit, which is a bottleneck.

6.3 North Carolina Cellular Tree Machine

The cellular computer architecture project
[MAGo79a, MAGO79b, MAGO80] at the Uni-
versity of North Carolina, Chapel Hill, is
strongly influenced both by VLSI and func-
tional programming. Specifically, the com-
puter has the following four properties: (1)
it has a cellular construction, that is, the
machine is obtained by interconnecting
large numbers of a few kinds of chip in a
regular pattern; (2) it executes Backus' FP
class of languages [BACK78]; (3) it auto-
matically exploits the parallelism present
in FP programs; and (4) its machine lan-
guage is, in fact, the FP language. Extensive
simulation studies of the computer archi-

tecture have been carried out and are ref-
erenced in Mago's papers. This brief de-
scription of the architecture is based on
M A G O 8 0 .

Since the cellular computer is based on
FP, its program organization is string re-
duction with a parallel innermost compu-
tation rule. The program representation in
the computer is the symbols of the FP
language. In this language, a program is an
expression consisting of nested applications
and sequences. Each application is com-
posed of an operator and an operand. For
example, the expression (7, (+ : (2, 5))) is a
sequence of two elements, the first being
the number 7 and the second being an
application. In the application the operator
is the + and the operand is the sequence of
two numbers (2, 5).

An FP machine program is a linear string
of symbols that are mapped into a vector
of memory cells in the computer one sym-
bol per cell, possibly with empty cells inter-
spersed. This is illustrated by Figure 29.
Some of the symbols used to separate
expressions in the written form of FP pro-
grams are omitted in the machine represen-
tation, since their function is served by cell
boundaries. In addition, to simplify the op-
eration of the computer, closing application
and sequencing brackets are omitted and
instead an integer is stored with every re-
maining FP symbol, indicating the nesting
level of that symbol. This is also shown in
Figure 29.

The cellular computer's machine organi-
za t ion -an expression manipulation type--
is a binary tree structure with two different
kinds of cell. Leaf cells (called L cells) serve
as memory units, and nonleaf ones (called
T cells) provide a dual processing/commu-
nication capability. An FP expression is
mapped onto this tree structure, each FP
symbol being stored in an L cell and a
subtree of symbols (i.e., a subexpression)
being linked by some dedicated T cells, as
shown in Figure 29. A particular set of L
and T cells will be dedicated to a subtree
for at least the duration of one machine
cycle.

Having partitioned the expression to be
executed into a collection of cells, itself a
cellular computer, the interaction of these
cells in the reduction of an innermost ap-

Computing Surveys, VoL 14, No 1, March 1982

132 • P C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

T Cells
(processors/

c o m m u n i c a t i o n s)

L Cells

(memories) i
)

application application

Figure 29. Cellular tree machine .

plication is handled by microprograms. Mi-
croprograms normally reside outside the
network of cells and are brought in on de-
mand. Once a microprogram is demanded,
it is placed in registers in the L cells, each
cell receiving a fraction of the micropro-
gram, that part necessary to make its con-
tribution to the total reduction. For exam-
ple, if one of the L cells wants to broad-
cast some information to all other L
cells involved in reducing a subexpression,
it executes a SEND microinstruction
[MAGo79a], explicitly identifying the infor-
mation item to be broadcast. As a result,
this information is passed to the root of the
subexpression and broadcast to all appro-
priate L cells.

It often happens that the result expres-
sion is too large to be accommodated in the
L cells that held the initial expression. In
such a case, if the required number of L
cells are available elsewhere, then cell con-
tents are repositioned. This storage man-
agement is the only kind of resource man-
agement needed in the processor because
whenever an expression has all the L cells
needed, it is guaranteed to have the neces-
sary T cells.

The operation of the cells in the network
is coordinated, not by a central clock, but
by endowing each cell with a finite-state
control, and letting the state changes sweep

up and down the tree. This allows global
synchronization, even though the individ-
ual cells work asynchronously and only
communicate with their immediate neigh-
bors.

For a detailed description of the cellular
computer's structure and operation the
reader should consult Parts 1 and 2 of
MAGO79a. Last, a particularly interesting
claim made by Mag6 [MAGO80] is that par-
allelism in the computer overcomes the
overheads associated with copying in a
string reduction machine.

6.4 Utah Applicative Multiprocessing System
The Applicative Multiprocessing System
(AMPS) is a loosely coupled, tree-struc-
tured computer architecture designed to
incorporate a large number (say 1000) of
processors. The project [KELL78, KELL79]
under investigation at the University of
Utah aims to increase the programmability
of this parallel computer by basing its ma-
chine language on a dialect of LISP em-
ploying lenient CONS [FreE76, HEND76].
AMPS uses dynamic strategies for allocat-
ing work to processors and also attempts to
exploit locality of reference in its programs.
This description of AMPS is taken from
KELL79.

AMPS is based on a parallel graph re-
duction program organization, with paral-

Computing Surveys, Vol 14, No 1, March 1982

Data-Driven a n d Demand-Dr iven Computer Arch i tec ture • 133

Processing/
Memory
Units ILl

Communications/
Load Balancing

Nodes Figure 30. Applicative multiproc-
essing system

(
m

lelism being obtained by demanding both
arguments of dyadic operators, such as
PLUS, concurrently. The program organi-
zation also updates evaluated structures in
place but copies subgraphs before applying
them. This is necessary because execution
overwrites an expression, and unless a copy
is taken, a definition would be lost the first
time it was used.

Program representation in AMPS is a
compiled dialect of LISP called FGL {Flow
Graph LISP). A program in FGL consists
of a main function graph, together with
what are called productions for program-
mer-defined functions. These productions
specify how a node containing a function
reference (the antecedent of the produc-
tion) is to be replaced by a function graph
(the consequent of the production). FGL
provides a repertoire of basic operators
{e.g., the primitive functions of LISP) that
may be used in constructing graphs.

Programs are divided into "blocks," a
block being either a code block or a data
block. The contents of a code block form a
linear representation of an FGL graph,
which is copied as the source of initial code
to be stored in a newly allocated data block.
This copying may be viewed as the appli-
cation of an FGL production, that is, re-
placing the antecedent node with its con-
sequent graph. Each entry in a data block
is either a literal value or an instruction,
defining an operator and its arguments. In
detail an instruction may contain four types
of argument, namely, (1) an operator, (2)
references to input operands, (3) so-called
notifiers, which are references to instruc-
tions that have demanded this instruction's
value, and (4) a single global reference pro-
viding linkage across blocks.

The machine organization of the AMPS
computer is based on packet communica-
tion, in particular, what may be viewed as
a token-matching variety. When an instruc-
tion is invoked, demand packets are dis-
patched for the input operands, and the
instruction suspends execution. The in-
struction is reenabled by the arrival of re-
sult packets on which it executes. The phys-
ical arrangement of components in AMPS,
shown in Figure 30, is a binary tree struc-
ture with two types of node. Combined
processing/memory units are attached as
leaf nodes, while the internal nodes of the
tree structure are dual communication and
load-balancing units.

The packet-switched communication
network in AMPS is designed to take ad-
vantage of locality of information flow, to
reduce communication costs. Information
first travels up the tree toward the root
node until it encounters a node that spans
the destination leaf, at which point it pro-
ceeds down the tree. Thus relatively local
communication is separated from more
global flows and takes less time. In its load-
balancing role, a node periodically obtains
load-monitoring signals from its subordi-
nates, which it uses to reallocate work to
underutilized nodes, while attempting to
maintain physical locality of references.

A processing unit, roughly the size of a
conventional microcomputer, is able to ex-
ecute program tasks sequentially and also
to allocate storage in response to the exe-
cution of invoke instructions. An invoke
instruction creates a task, which is then
executed in the local processing unit or in
another unit, as dictated by system loading.
Execution of an invoke causes the alloca-
tion of storage for a data block, the copying

Computing Surveys, Vol. 14, No. 1, March 1982

134 • P.C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

of a code block into the storage, and the
initialization of various linkage instruc-
tions. These provide linkage between the
nodes of the graph containing the anteced-
ent of the production and those of the con-
sequent.

Tasks to be executed (i.e., operators with
their associated arguments) are placed in
pools of work. There are two classes of
pools:

(1) demand--containing references to op-
erators for which evaluation is to be
attempted;

(2) result--containing references to opera-
tors, along with their corresponding
values after evaluation.

Each processing unit has its own demand
pool, called the invoke list, but it is unclear
from KELL79 whether the result pool is also
distributed.

At the start of executing a program, a
reference to the instruction producing the
result is placed on an invoke list and the
instruction is then fetched. If the arguments
of the instruction are ready, then the in-
struction is executed; otherwise, a reference
to each argument, together with a notifier
so it may return the result, is placed on the
invoke list. These notifiers support graph
reduction by the reversal of pointers, as
discussed in Section 1.4. Several notifiers
may be contained in an entry in an invoke
list, defining all the instructions that have
demanded the result. Once evaluated, a
result value replaces the instruction that
calculates it. Via the result list, any instruc-
tions that were specified by notifiers as
awaiting this result as an argument are then
notified by being placed on an invoked list
to be retried.

Current status of the project is that a
simulator for the program organization has
been written in PASCAL and another one,
in SIMULA-67, is being written to evaluate
the tree architecture. Apparently [KELL79]
there are no immediate plans for construc-
tion of a physical realization of the machine.

6.5 S -K Reduction Machine

T u r n e r ' s S - K r e d u c t i o n m a c h i n e
[TuRN79a, TURN79b], unlike the other
projects we have examined, is not strictly a
proposal for a new computer architecture;

instead, it is a novel implementation tech-
nique for functional languages. This work
has attracted considerable attention and
is sufficiently relevant to warrant discus-
sion here. Using a result of Schonfinkel
[SCHO24] from combinatory logic, Turner
has devised a variable free representation
for programs which contain bound vari-
ables. He has also designed a graph reduc-
tion machine that efficiently executes that
representation as machine code. Our dis-
cussion of the S-K reduction machine and
its use of combinators is taken from
TURN79a.

The program organization of the S-K
reduction machine is lazy evaluation
[HEND76], based on graph manipulation
with a leftmost outermost computation
rule. However, the central feature of the
machine design is its use of combinators,
special operators that serve the role of
bound variables in a program and hence
allow them to be removed from the code.
Let us consider the role of bound variables.
A bound variable in a programming lan-
gnage and a corresponding reference in the
machine code provide access to an object.
The logical role of this reference is to as-
sociate or bring together some operand and
operator at run time, since it is not physi-
cally possible to place each operand next to
its operator.

Compilation into combinators removes
bound variables from the program. Execu-
tion of the resulting machine code routes
actual values back into the places in the
program where bound variables formerly
occurred. Compilation and execution are
thus symmetric. The following illustrates
the combinators and their transformations
in the S-K machine:

Combinators Transformations

S f g x fx (gx)
K x y x
C f g x (fx) g
B f g x f(gx)
Ix x
COND TRUE x y x
COND FALSE x y y

For example, the definition "DEF fac" will
be represented as

DEF fac ffi S(C(B COND(EQ 0))1)
(S TIMES(B fac(C MINUS 1))).

Computing Surveys, Vol. 14, No. 1, March 1982

Data-Driven and Demand-Driven Computer Architecture

The compiler transforms each incoming
expression into a variable free machine
code. Code is stored as a binary tree whose
internal nodes represent function applica-
tions and whose leaves will be constants
such as 1, PLUS, or S. The trees are built
using references, and these references may
be manipulated at run time without the
contents of the corresponding subtree being
known. Recursive definitions are handled
using an additional Y combinator. Execu-
tion of Y produces a cyclic reference at run
time.

The run-time system consists of a reduc-
tion machine {currently implemented in
software), which progressively transforms
the combinator code as discussed above. To
schedule the sequence of leftmost reduc-
tions, a left ancestor stack, which initially
contains only (a pointer to) the expression
to be evaluated, is used. This is illustrated
by Figure 31. As long as the expression at
the front of the stack is an application, the
machine continues to take its left subtree
(the function of the function-argument
pair), pushing it onto the stack. Eventually
an atom is at the front of the stack. If it is
a combinator, then the appropriate trans-
formation rule is applied, using the pointers
on the stack to gain access to the arguments
where necessary. Figure 31 shows the state
of the stack before and after applyng the C
transformation. All structures manipulated
by the run-time system are built out of two-
field cells, and a LISP-style storage alloca-
tion scheme is used with mark bits and a
garbage collector.

Turner has compared his S-K reduction
machine with the more conventional SECD
machine of Landin [LAND64] used for im-
plementing functional languages and has
noted the following [TuRN79a]. First, the
object code of the S-K machine seems to
be consistently twice as compact as the
SECD code. Second, the execution speed of
the S-K machine is slightly slower than a
nonlazy SECD machine, but much superior
when a lazy (evaluation) SECD machine is
used. Further details of these comparisons
are given in TURN79a.

6.6 Cambridge SKIM Machine

The SKIM reduction machine [CLAR80] at
Cambridge University is, to our knowledge,

• 1 3 5

Stack
Before

Stack

~ ~ S ~ - ~] Af t e r

. . . .

Figure 31. The S-K reduction machine's stack
behavior

the first hardware graph reduction machine
to be built. A conventional microprocessor
is microcoded to emulate combinators as
used above in the S-K reduction machine.
The technique of using combinators to sup-
port applicative programming was first de-
veloped by Turner in his software reduction
machine, which is described above. The
SKIM machine is fully operational, and
some interesting performance measure-
ments have been obtained. This present
account of the machine is based in infor-
mation from Clark et al. [CLAR80].

SKIM employs lazy evaluation. Pro-
grams are evaluated outermost first and,
wherever possible, common subexpressions
are shared. The instruction set is similar to
that of the S-K reduction machine, con-
taining combinators (S, K, I), list op-
erators (HD, TL, . . .) , and standard opera-
tors (% - , . . .) . Programs in SKIM are rep-
resented by a graph built of two element
cells. In SKIM, these are implemented by
dividing the memory into two banks,
HEAD and TAIL, and using a microcoded
garbage collector to handle memory man-
agement. SKIM has no stacks; instead, pro-
grams are traversed by pointer reversal.

SKIM is driven by a combinator reducer
that scans down the leftmost branch of the
program tree to find an operator (combi-
nator) at the leaf. When a pointer has been
used to go down one level in the tree, it is
reversed to indicate the return route back
up the tree. Eventually a sequence of
pointers from root to leaf is transformed
into a sequence of pointers from leaf to root
(see Figure 32). The leaf operator is now
executed, using the back pointers to access
its arguments in a way analogous to access-
ing the top few elements of a stack.

Computing Surveys, Vol. 14, No 1, March 1982

136 P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

, (2)

Isl J
) S

(3)

> f

Figure 32. Pointer-reversing traversal and execution

Some operators (mainly the arithmetic
and Boolean ones) are strict. That is, their
arguments must be reduced to values be-
fore being used. For instance, if we wish to
add together two arithmetic expressions
E1 + E2, both E1 and E2 must be reduced
to their values nl, n2 before the operator
+ can be executed. This case arises as a
consequence of the outermost computation
rule of lazy evaluation, which means an
operator is always reached before its argu-
ments. SKIM handles this recursive evalu-
ation of arguments by simulating a stack by
a linked list in the main HEAD-TAIL
memory. This mechanism, coupled with the
pointer-reversing traversal, means that no
special fixed storage area is set aside for
evaluation stacks.

The SKIM machine organization (see
Figure 33) consists of 16 internal registers
and 32K words of 16-bit memory. Only
three microinstruction types are provided:
memory read, memory write, and ALU op-
erations. The microinstruction cycle time is
given as 600 nanoseconds. As mentioned
above, memory is divided into two banks,
HEAD and TAIL. These are accessed by
15-bit addresses, one bit being used to select
the appropriate bank.

The SKIM experiment has demonstrated
that combinators form a simple elegant ma-
chine code to support functional program-
ming. The main difference between SKIM
and a conventional microcomputer is that
it is a reduction machine. Execution pro-
gresses by rewriting the program. The per-
formance measures obtained indicate that
SKIM compares favorably with conven-

Computing Surveys, Vol 14, No 1, March 1982

tional architectures. For example, in com-
parison with BASIC on a microprocessor,
SKIM was about twice as fast as inter-
preted BASIC and a little slower than com-
piled BASIC. In comparison with LISP
running on a large IBM/370 mainframe,
SKIM was found to be about half as fast as
interpreted LISP and eight times slower
than compiled LISP. The performance fig-
ures seem to justify their claim that mini-
computer performance was obtained at mi-
crocomputer cost simply by using an in-
struction set suited to the application.

6.7 Other Projects

Research into reduction machines, al-
though not as firmly established as data-
flow computers, is starting to expand rap-
idly. Besides the projects described above,
there are a number of others worthy of
description, including those of Darlington
[DARL81] at Imperial College, London, and
Sleep [SLEE80, SLEE81] at the University
of East Anglia, who are both investigating
interesting packet communication machine
organizations that support parallel graph
reduction.

7. FUTURE DIRECTIONS

The research described above into data-
driven and demand-driven computer archi-
tecture is motivated by the growing belief
[JIPD81c] that the next, the fifth, genera-
tion of computers will not be based on the
traditional von Neumann organization. The
question we have been addressing is: Which
architectural principles and features from

Data-Driven and Demand-Driven Computer Architecture

Main Bus
(16 bits)

A
i

I I

l

R0: 13 general
... purpose
RI2: registers
RI3: PC
RI4: Immediate data
RIS: I/0

ALU [
(4x74S281)

'l HD 16Kx16 I ~ flag
TL 16Kx16 bits

from PC: 12/ i MicrOcOde4Kx32 ROM I

[' { ipe l ine Regis te ; ' I

t 32

Figure 33. SKIM machme block diagram.

• 1 3 7

the various research projects will contrib-
ute to this future general-purpose com-
puter?

One means of evaluating the potential of
the various control-flow, data-flow, and re-
duction approaches is to compare them to
the motivations for data-driven and de-
mand-driven computing discussed in the
introduction. These are

(1) utilization of concurrency;
(2) exploitation of VLSI;
(3) new forms of programming.

For the computation organization it is
clear that the sequential control-driven
model, which has long been predominant,
has not encouraged the use of highly con-
current programs. (However, parallel con-
trol-driven computation organizations are
possible.) It is also clear that the new forms
of programming, such as functional lan-
guages, are naturally matched with data-
driven and demand-driven computation or-
ganizations, and that these models allow
utilization of concurrency. The differences
between data-driven and demand-driven

computation organizations are still being
explored.

For the program organization it is signifi-
cant that control flow, data flow, and re-
duction regard the by-value and by-refer-
ence data mechanisms and the sequential,
parallel, and recursive control mechanisms
as sets of alternatives. This results in each
program organization having specific ad-
vantages and disadvantages for program
representation and execution. For example,
in comparing by-value and by-reference
data mechanisms, the former is more effec-
tive when manipulating integers and the
latter is more effective when manipulating
arrays. Each program organization is suited
to a particular form of programming lan-
guage. Thus each program organization is,
although "universal" in the sense of a Tur-
ing machine, somewhat restricted in the
classes of computation it can efficiently
support. We may speculate that it should
be possible and indeed desirable for gen-
eral-purpose computing to design computer
architectures whose program organization
is a synthesis of both sets of data and con-
trol mechanisms [TREL81b].

Computing Surveys, Vol 14, No 1, March 1982

138 • P.C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

For the machine organization it is clear
that centralized, packet communication,
and expression manipulation gravitate to-
ward, respectively, control flow, data flow,
and reduction. However, we have shown
that other pairings of the machine organi-
zations and the program organizations are
viable. When evaluating the three machine
organizations against the motivations for
data-driven and demand-driven computers
listed above, the utilization of concurrency
would seem to preclude centralized organi-
zations in favor of the other two organiza-
tions. In addition, VLSI requires an orga-
nization in which a replication of identical
computing elements can be plugged to-
gether to form a larger parallel computer.
But it is also necessary for a computing
element to have a centralized organization
so that it can function independently. Thus
the three machine organizations, instead of
being competitive, seem in fact to be com-
plementary organizations. Each organiza-
tion is based on a sequential building block:
a computing element containing a proces-
sor, communications, and memory. The
centralized organization defines how a sin-
gle computing element must be able to
function as a self-contained computer. The
packet communication organization shows
how concurrency within a computing ele-
ment may be increased by replicating re-
sources. Last, the expression manipulation
organization specifies how a group of com-
puting elements may be interconnected, at
a system level, to satisfy the VLSI attri-
butes of replication.

In conclusion, having examined the com-
putation organizations, program organiza-
tions, and machine organizations for control
flow, data flow, and reduction, and also the
approaches taken by the individual re-
search groups, it is regrettably impossible
at this time to identify the future "yon
Neumann." We were, however, able to an-
alyze the advantages and disadvantages of
the various approaches. Using such knowl-
edge it is even possible to "engineer" new
program organizations and machine orga-
nizations [WILN80 , TREL81a].

ACKNOWLEDGMENTS

In acknowledging all the people who have contributed
to the writing of this paper it is difficult not to list a
significant proportion of the computing science com-
munity. First, let us thank those people investigating
data-driven and demand-driven computing, whose
work was discussed above, for taking tLme to read this
document and comment on our description of their
work Second, we express our gratitude to Klaus Ber-
kling, Jean-Pierre Banatra, A1 Davis, Honan Sleep,
and Graham Wood for their detailed comments on an
early version of this paper. Third, we would like to
thank our colleagues at the University of Newcastle
upon Tyne, in particular, current and past members
of the Computer Architecture Group. Fourth, we
thank the referees for their helpful comments. Finally,
we wish to thank the Distributed Computing Systems
Panel (its current and past members) of the United
Kingdom Science and Engineering Research Council,
which not only funds our research but has also been
largely responsible for estabhshmg and encouraging
data-driven and demand-driven computing research in
the Umted Kingdom.

ACKE79a

ACKE79h

AMAM80

ARVI75

ARvi77a

ARvI77b

REFERENCES

ACKERMAN, W. B. "Data flow lan-
guages," in Proc. 1979 Nat. Computer
Conf. (New York, N.Y., June 4-7), vol.
48, AFIPS Press, Arlington, Va, 1979, pp.
1087-1095.
ACKERMAN, W B., AND DENNIS, J.
B. "VAL--A value oriented algo-
rithmic language, preliminary reference
manual," Tech. Rep. TR-218, Lab. for
Computer Science, Massachusetts Insti-
tute of Technology, June 1979.
AMAMIYA, M., HASEGAWA, R., AND MI-
KAMI, H. "List processing and data flow
machine," Lecture Note Series, No. 436,
Research Institute for Mathematical
Sciences, Kyoto Unw., Sept 1980.
ARVIND AND GOSTELOW, K.P. "A new
interpreter for dataflow and its implica-
tions for computer architecture," Tech.
Rep. 72, Dep Information and Computer
Science, Univ. of California, Irvme, Oct.
1975.
AEVIND AND GOSTELOW, K. P. "A
computer capable of exchanging proces-
sors for time," m Proc IFIP Congress
(1977), 849-854.
ARVIND AND GOSTELOW, K P. "Some
relationships between asynchronous in-
terpreters of a dataflow language," in
Proc. IFIP Working Conf. Formal De-
scription of Programming Languages

Computing Surveys, Vol 14, No. 1, March 1982

ARVI78

ARvI80a

AavI80b

ASHC77

BACK72

BACK73

BACK78

BERK71

BERK75

CHAM71

CLARS0

COMT76

Data-Driven and Demand-Driven Computer Archi tecture • 139

(Aug. 1977), E. J. Neuhold, Ed., Elsevier
North-Holland, New York, 1977.
ARVIND, GOSTELOW, K. P., AND PLOUFFE,
W. "An asynchronous programming
language and computing machine,"
Tech. Re/). 114a, Dep. Information and
Computer Scmnce, Univ. of California, CORN79
Irvme, Dec. 1978.
ARVIND, KATHAIL, V., AND PINGALI,
K. "A processing element for a large
multiprocessor dataflow machine," in
Proc. Int. Conf Cwcmts and Computers
(New York, Oct. 1980), IEEE, New York, DARL81
1980.
ARVIND AND THOMAS, R E. "I-struc-
tures: An efficient data type for func-
tional languages," Rep. LCS/TM-178,
Lab. for Computer Science, Massachu-
setts Institute of Technology, June 1980.
ASHCROFT, E. A, AND WADGE, W.
W "LUCID, a nonprocedural language DAV178
with iteration," Commun. ACM 20, 7
(July 1977), 519-526
BACKUS, J. "Reductmn languages and
variable free programming," Rep. RJ
1010, IBM Thomas J Watson Research
Center, Yorktown Heights, N Y., Apr.
1972.
BACKUS, J. "Programming languages
and closed applicative languages," m
Proc. ACM Symp Principles of Pro-
grammmg Languages, ACM, New
York, 1973, pp 71-86.
BACKUS, J. "Can programming be lib-
erated from the von Neumann style 9 A
functional style and its algebra of pro-
grams," Commun. ACM 21, 8 (Aug. DENN71
1978), 613-641.
BERKLING, K. J. "A computing ma-
chine based on tree structures," IEEE
Trans. Comput. C-20, 4 (Jan 1971), 404-

418. DENN72
BERKLING, K. "Reductmn languages
for reduction machines," in Proc. 2rid
Int. Symp Computer Architecture
(Houston, Tex., Jan. 1975), IEEE, New
York, 1975, pp. 133-140.
CHAMBERLIN, D. D. "The single as-
signment approach to parallel process-
rag," in Proc Nat. Computer Conf. (Las
Vegas, Nev., Nov. 16-18), vol. 39, AFIPS
Press, Arlington, Va., 1971, pp. 263-269.
CLARKE, T. J. W., GLADSTONE, P. J S ,
MACLEAN, C. D., AND NORMAN, A.
C. "SKIM--The S, K, I reduction ma-
chine," in Proc. LISP-80 Conf. (Stan-
ford, Calif., Aug. 1980), pp. 128-135
COMTE, D., DURRIEU, A., GELLY, O.,
PLAS, A., AND SYRE, J C. "TEAU 9/7:
SYSTEME LAU--Summary m Eng-
lish," CERT Tech. Rep. #1/3059, Centre
d'l~tudes et de Recherches de Toulouse,
Oct. 1976.

COMT79b

DAV179a

DAV179b

DENN 74a

DENN 74b

DENN75b

COMTE, D., AND HIFDI, N. "LAU Mul-
tiprocessor. Microfunctional description
and technological choices," in Proc. 1st
European Conf. Parallel and D~str~b-
uted Processing (Toulouse, France, Feb.
1979), pp. 8-15.
CORNISH, M. "The TI data flow archi-
tectures: The power of concurrency for
avionics," in Proc. 3rd Conf. Digital
Avlonws Systems {Fort Worth, Tex.,
Nov. 1979), IEEE, New York, 1979, pp.
19-25
DARLINGTON, J., AND REEVE, M.
"ALICE" A multiprocessor reduction
machine for the parallel evaluation of
applicative languages," in Proc Int.
Syrup Funetmnal Programming Lan-
guages and Computer Architecture
(Goteburg, Sweden, June 1981), pp. 32-
62.
DAVIS, A. L. "The architecture and
system method of DDMI: A recursively
structured data driven machine," in
Proc. 5th Annu. Syrup. Computer Archi-
tecture (Palo Alto, Calif., Apr. 3-5),
ACM, New York, 1978, pp. 210-215.
DAVIS, A.L. "DDN's- -A low level pro-
gram schema for fully distributed sys-
tems," m Proc. 1st European Conf. Par-
allel and D~stributed Processing (Tou-
louse, France, Feb. 1979), pp. 1-7.
DAVIS, A. L. "A data flow evaluation
system based on the concept of recursive
locality," in Proc. 1979 Nat. Computer
Conf. (New York, N.Y., June 4-7), vol.
48, AFIPS Press, Arlington, Va., 1979,
pp. 1079-1086
DENNIS, J .B. "On the design and spec-
ification of a common base language," in
Proc. Symp Computers and Automata,
Polytechnic Institute of Brooklyn,
Brooklyn, N.Y, 1971.
DENNIS, J. B., FOSSEEN, J. B., AND LIN-
DERMAN, J .P . "Data flow schemas," m
Int. Symp. on Theoretwal Program-
ming, A. Ershov and V. A. Nepomnia-
scuy, Eds., Lecture notes m computer
scwnce, vol. 5, 1972, Sprmger-Verlag,
New York, pp. 187-216.
DENNIS, J . B . "First version of a data
flow procedure language," in Program-
mmg Syrup.: Proc. Colloque sur la Pro-
grammation (Paris, France, Apr. 1974),
B Robinet, Ed., Lecture notes zn com-
puter science, vol. 19, Spnnger-Verlag,
New York, 1974, pp. 362-376.
DENNIS, J. B., AND MISUNAS, D.P. "A
computer architecture for highly parallel
signal processing," m Proc. 1974 Nat.
Computer Conf., AFIPS Press, Arling-
ton, Va, 1974, pp. 402-409.
DENNIS, J. B., AND MISUNAS, D. P "A
prelnninary architecture for a basic data
flow processor," in Proc. 2nd Int Syrup.

Computing Surveys, Vol 14, No 1, March 1982

1 4 0 •

DENN79a

DENN79b

EGAN 79

ERIK80

FARR79

FRIE76

GELL76

GOST79a

GosT79b

GOTO77

fiEND76

HOMM79

HOPK79

P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins

Computer Architecture (Houston, Tex,
Jan. 20-22), IEEE, New York, 1975, pp
126-132.
DENNIS, J. B., LEUNG, C. K. C., AND
MISUNAS, D P. "A highly parallel
processor using a data flow machine lan-
guage," Tech. Rep. CSG Memo 134-1,
Lab. for Computer Science, Massachu-
setts Institute of Technology, June 1979
DENNIS, J B. "The varieties of data
flow computers," in Proc 1st Int. Conf
D~str~buted Computing Systems (Tou-
louse, France, Oct. 1979), pp. 430-439.
EGAN, G. K. "FLO: A deeentralmed
data-flow system," Dep. Computer Sci-
ence, Univ. of Manchester, England, Oct.
1979

ERIKIO, L., HEIMONEN, J HIETALA, P., JOHN79
AND KURKI-SUONIO, R. "PLEXUS
II - -A data flow system," Tech. Rep.
A43, Dep. Mathematical Sciences, Univ.
of Tampere, Finland, Apr. 1980.
FARRELL, E. P., GHANI, N., AND TRE-
LEAVEN, P. C ~A concurrent computer KELL78
architecture and a ring based Lmplemen-
tatlon," In Proc. 6th Int. Syrup. Com-
puter Architecture (April 23-25), IEEE,
New York, 1979, pp. 1-11.
FRIEDMAN, D. P., AND WISE, D. KELL79
S. "CONS should not evaluate its ar-
guments." in Automata, languages and
programming, S. Michaelson and R.
Mflner, Eds., Edinburgh Univ. Press,
Edinburgh, U. K., 1976, pp. 257-284.

KLU679 GELLY, O, et al. "LAU software sys-
tem. A high level data driven language
for parallel programming," m Proc. 1976
Int. Conf. Parallel Processing (Aug
1976), p. 255
GOSTELOW, K P., AND THOMAS, R. KLUG80
E. "A wew of dataflow," m Proc. Nat
Computer Conf (New York, N.Y., June
4-7), vol 48, AFIPS Press, Arlington,
Va., 1979, pp. 629-636.
GOSTELOW, K. P., AND THOMAS, a
E "Performance of a dataflow com-
puter," Tech. Rep. 127a, Dep Informa- LAND64
tIon and Computer Science, Univ. of Cal-
ifornia, Irvine, Oct. 1979
GOTO, E., AND IDA, T. "Parallel hash- LECO79
mg algorithms" Inf Process Lett. 6, 1
(Feb. 1977), pp 8-13.
HENDERSON, P., AND MORRIS, J
M. "A lazy evaluator," in Proc 3rd
Syrup Pnnctples of Programming Lan-
guages (Atlanta, Ga., Jan. 19-21), ACM,
New York, 1976, pp. 95-103.
HOMMES, F., AND SCHLUTTER, H
"Reduction machine system User's MAGO80
guide," Tech. Rep. ISF--Rep. 79, Ge-
sellschaft fur Mathematlk und Daten-
verarbeItung MBH Bonn, Dec. 1979.
HOPKINS, R. P., RAUTENBACH, P .W. , MCCA62
AND TRELEAVEN, P C "A computer
supporting data flow, control flow and

JIPD81a

JIPD81b

JIPD81c

MAGO79a

updateable memory," Tech. Rep. 156,
Computing Lab., Univ. Newcastle upon
Tyne, Sept. 1979.

JIPDC. "PrelLmmary report on study
and research on fifth-generation com-
puters 1970-1980," Japan Information
Processing Development Center, Tokyo,
Japan, 1981.

JIPDC. "Research reports in Japan,"
Japan Information Processing Develop-
ment Center, Tokyo, Japan, Fall 1981

JIPDC. in Proc. Int. Conf. F~fth Gen-
erat$on Computer Systems, Japan Infor-
mation Processmg Development Center,
1981

JOHNSON, D., et al "Automatic parti-
tioning of programs m multiprocessor
systems," in Proc. IEEE COMPCON 80
(Feb. 1980), IEEE, New York, pp 175-
178

KELLER, R. M., PATIL, S , AND LIND-
STROM, G. "An architecture for a
loosely coupled parallel processor,"
Tech. Rep. UUCS-78-105, Dep. Com-
puter Science, Univ. of Utah, Oct. 1978.

KELLER, R. M, et al. "A loosely cou-
pled applicative multlprocessing sys-
tem," in Proc. Nat Computer Conf.,
AFIPS Press, Arlington, Va., 1978, pp.
861-870.

KLUGE, W . E . "The architecture of a
reduction language machme hardware
model," Tech. Rep. ISF--Rep 79.03, Ge-
sellschaft fur Mathematik und Daten-
verarbeltung MBH Bonn, Aug. 1979.

KLUGE, W. E., AND SCHLUTTER, H
"An architecture for the direct execution
of reduction languages," in Proc. Int
Workshop H~gh-Level Language Com-
puter Archttecture (Fort Lauderdale,
Fla., May 1980), Univ of Maryland and
Office of Naval Research, pp. 174-180.
LANDIN, P. J "The mechanical evalu-
ation of expressions," Comput J. 6 (Jan.
1964), 308-320.
LECOUFFE, M.P. "MAUD. A dynamic
single-assignment system," IEE Corn-
put D~gttal Tech. 2, 2 (Apr 1979), 75-
79.

MAG6, G. A. "A network of micro-
processors to execute reduction lan-
guages," Int. J Comput. Inform. Sc~. 8,
5 (1979), 349-385, 8, 6 (1979), 435-471.
MAG6, G. A "A cellular computer ar-
chitecture for functional programming,"
in Proc. IEEE COMPCON 80 (Feb.
1980), IEEE, New York, pp 179-187.
MCCARTHY, J., et al. LISP 1 5 pro-
grammers manual, M.I.T. Press, Cam-
bridge, Mass., 1962

Computing Surveys, Vol 14, No 1, March 1982

D a t a - D r i v e n a n d D e m a n d - D r i v e n C o m p u t e r A r c h i t e c t u r e • 141

MEAD80

MIRA77

ORGA 79

PLAS76

RODR69

nUMB77

SCHO24

SEIT79

SHRO77

SLEE80

SLEE81

SYRE76

SYRE77

TESL68

TREL78

TREL79

MEAD, C A, AND CONWAY, L. A
Introductmn to VLSI systems, Addison-
Wesley, Reading, Mass., 1980.
MIRANKER, G. S "Implementation of
procedures on a class of data flow proc-
essors," in Proc. 1977Int. Conf. Parallel
Processing (Aug. 1977), J. L. Baer, Ed.,
IEEE, New York, pp 77-86
ORGANICK, E. I. "New directions m
computer system architecture," Euro-
m~cro J 5, 4 (July 1979), 190-202.
PLAS, A., et al "LAU system architec-
ture" A parallel data driven processor
based on single assignment," in Proc.
1976 Int. Conf. Parallel Processing
(Aug. 1976), pp. 293-302.
RODRIGUEZ, J . E . "A graph model for
parallel computatmn," Tech. Rep. ESL-
R-398, MAC-TR-64, Lab for Computer
Science, Massachusetts Institute of
Technology, Sept 1969.
RUMBAUGH, J. E "A data flow mulh-
processor," IEEE Trans. Comput. C-26,
2 (Feb 1977), 138-146.
SCHONFINKEL, M. "Uber die Bausteine TREL82
der Mathematmchen Loglk," Math. Ann
92, 305 (1924).
SEITZ, C. (Ed) Proc. Conf Very Large
Scale Integratmn (Pasadena, Cahf., Jan.
1979).
SHROEDER, M. A., AND MEYER, R. A
"A distributed computer system using a
data flow approach," Proc. 1977 Int.
Conf Parallel Processing (Aug. 1977),

p. 93. VEEN80
SLEEP, M R "Applicative languages,
dataflow and pure combmatory code,"
Proc IEEE COMPCON 80 (Feb. 1980),
IEEE, New York, pp. 112-115. WATS79
SLEEP, M. R , AND BURTON, F. W.
"Towards a zero asmgnment parallel
processor," m Proc. 2nd Int Conf. Dts-
tr~buted Computing (Apr. 1981)
SYRE, J. C , et al. "Parallelism, control
and synchronization expression in a sin-
gle assignment language" (abstract), in
Proc. 4th Annu. A CM Computer Sctence
Conf. (Feb 1976), ACM, New York.
SYRE, J. C., COMTE, D., AND HIFDI,
N. "Pipehnmg, parallelism and asyn- WILN80
chromsm m the LAU system," m Proc
1977 Int Conf Parallel Processing
(Aug. 1977), pp. 87-92.
TESLER, L. G., AND ENEA, H. J. "A
language design for concurrent proc-
esses," in Proc. Nat. Computer Conf ADAM68
(Atlantic City, N.J., April 30-May 2),
vol 32, AFIPS Press, Arhngton, Va,
1968, 403-408.
TRELEAVEN, P. C "Prmciple compo-
nents of a data flow computer," Proc ARVI77C
1978 Euromwro Syrup. (Munich, W. Ger-
many, Oct 1978), pp. 366-374.
TRELEAVEN, P. C. "Exploiting pro-
gram concurrency in computing sys-

TREL80a

TREL80b

TREL81a

TREL81b

TURN79a

TURN79b

WENG75

tems," Computer 12, 1 (Jan. 1979), 42-
49
TRELEAVEN, P C, AND MOLE, G. F.
"A multi-processor reduction machine
for user-defined reduction languages," in
Proc. 7th Int. Syrup. Computer Arch~tec-
ture (May 6-8), IEEE, New York, 1980,
pp. 121-130.
TKELEAVEN, P. C (Ed) "VLSI: Ma-
chine architecture and very high level
languages," Tech. Rep. 156, Computing
Lab, Umv. of Newcastle upon Tyne,
Dec. 1980 (summary in SIGARCH Corn-
put. Arch~t News 8, 7, 1980).
TRELEAVEN, P. C., AND HOPKINS, R.
P. "A recursive (VLSI) computer ar-
chitecture," Tech. Rep. 161, Computing
Lab., Univ. of Newcastle upon Tyne,
Mar. 1981.
TRELEAVEN, P. C., AND HOPKINS, R.
P. "Decentralised computation," in
Proc. 8th Int. Symp. Computer Architec-
ture (Minneapolis, Minn., May 12-14),
ACM, New York, 1981, pp. 279-290.
TRELEAVEN, P. C., HOPKINS, R. P., AND
RAUTENBACH, P W. "Combining data
flow and control flow computing," Corn-
put. J. 25, 1 (Feb 1982).
TURNER, D. A. "A new Implementa-
tion technique for applicative lan-
guages," Soft. Pract. Exper. 9 (Sept,
1979), 31-49.
TURNER, D.A. "Another algorithm for
bracket abstraction," J. Symbol Logw
44, 2 (June 1979), 267-270.
VEEN, A. H. "Reconciling data flow
machines and conventional languages,"
Tech. Rep 1W 146/80, Mathematical
Center, Amsterdam, Sept 1980.
WATSON, I., AND GURD, J "A proto-
type data flow computer with token la-
behng," m Proc Nat Computer Conf.
(New York, N.Y., June 4-7), vol. 48,
AFIPS Press, Arlington, Va., 1979, pp.
623-628.
WENO, K. S. "Stream-oriented com-
putatlon in recursive data flow schemas,"
Tech. Rep TM-68, Lab. for Computer
Science, Massachusetts Institute of
Technology, Oct 1975
WILNER, W "Recursive machines," In-
tern. Rep., Xerox PARC, Palo Alto,
Calif., 1980.

BIBLIOGRAPHY

ADAMS, D .A . "A computation model
with data flow sequencing," Tech. Rep.
CS 117, Computer Science Dep., Stan-
ford Univ, Stanford, Calif., December
1968
ARVIND, GOSTELOW, K. P., AND PLOUPFE,
W. "Indeterminacy, monitors and da-
taflow," in Proc. 6th ACM Syrup Oper-
ating Systems Principles (Nov. 1977),
ACM, New York, pp. 159-169.

Computing Surveys, Vol. 14, No. 1, March 1982

142 * P. C. Tre leaven, D. R. Brownbr idge , a n d R. P. H o p k i n s

BAHR72 BAHRS, A. "Operatmnal patterns: An
extensible model of an extensible lan-
guage," in Lecture notes in computer HEWI77
science, vol. 5, Springer-Verlag, New
York, 1972, pp. 217-246.

BANA79 BANATRE, J. P., ROUTEAU, J. P., AND
TRILLING, L. "An event-driven compil-
ing technique," Commun. ACM 22, 1
(Jan. 1979), 34-42.

BOLE80 BOLEY, H. "A preliminary survey of KARP66
artificial intelligence machines," RuRal-
brief der Fachgruppe Kunstliche Intelli-
genz in der Gesellschaft fur Informatik,
Universitat Hamburg, 1980.

BURG75 BURGE, W. H. Recursive program. KARP69
ruing techniques, Addison-Wesley,
Reading, Mass., 1975.

CHUR41 CHURCH, A. "The calcuh of lambda-
conversion," Princeton Univ. Press, KosI73a
Princeton, N.J, 1941.

DARL82 DARLINGTON, J., HENDERSON, P., AND
TURNER, A., EDS. Functional pro-
gramming and its applicatmns, Cam- KosI73b
bridge Univ. Press, in preparation.

DAVI80 DAVIS, A. L, AND DRONGOWSKI, P.
J. "Dataflow computers: A tutorial and
survey," Tech. Rep. UUCS-80-109, Dep. KoTo80
Computer Science, Univ. of Utah, July
1980.

DAvI81 DAVIS, A. L., AND LOWER, S. A. "A
sample management application pro- KowA79
gram in a graphical data-driven pro-
gramming language," in Proc. IEEE
COMPCON 81 (Feb. 1981), IEEE, New MAGO79b
York, pp. 162-165.

DENN75a DENNIS, J .B. "Packet communication
architecture," m Proc. 1975 Computer
Conf. ParallelProcessmg, 1975, pp. 224-
229. MAGO81 DENN77 DENNIS, J B., AND WENG, K.-
S. "Application of data flow computa-
tion to the weather problem." in Proc.
Syrup. H~gh Speed Computer and Algo-
rithm Organzsation, 1977, pp 143-157.

DENN80 DENNIS, J. B. "Data-flow supercom- MANN74
puters," Computer 13, 11 (Nov. 1980),
48-56.

DOMA81 DOMAN, A. "PARADOCS: A highly
parallel dataflow computer and its data- MEYE76
flow language," Euromiero J. 7 (1981),
20-31

FRIE77 FRIEDMAN, D. P., AND WISE, D.
S. "Aspects of applicative program-
ming for file systems," ACM SIGPLAN MILL72
Not. 12, 3 (Mar. 1977), 41-55.

FRIE78 FRIEDMAN, D. P., AND WISE, D.
S. "Aspects of applicative program-
ming for parallel processing," IEEE
Trans. Comput. C-27, 4 (Apr. 1978), 289- MIsu75a
296.

GAJS81 GAJSKI, D. D., et al. "Dependence
driven computation," in Proc. IEEE
COMPCON 81 (Feb. 1981), IEEE, New MlSu75b
York, pp. 156-161.

GURD78 GURD, J., AND WATSON, I. "A multi-
layered data flow architecture," in Proc.

1977 Int. Conf Parallel Processmg
(Aug. 1977), p. 94.
HEWITT, C. E., AND BAKER, H. "Actors
and continuous functionals," in Proc.
IFIP Working Conf Formal Descrtp-
tion of Programming Concepts (St. An-
drews, N. B., Canada, Aug 1977), E J.
Neuhold, Ed., Elsevier North-Holland,
New York, 1977, pp. 16.1-16.21.
KARP, R. M., AND MILLER, R.
E. "Properties of a model for parallel
computations: Determinacy, termina-
tion and queuing," SIAM J. Appl. Math.
11, 6 (Nov. 1966), 1390-1411.
KARP, R. M., AND MILLER, R.
E. "Parallel program schemata," J.
Comput. Syst. Sc~. 3, 4 (May 1969), 147-
195.
KOSINSKI, P.R. "A data flow program-
ming language," Tech. Rep. RC 4264,
IBM T. J. Watson Research Center,
Yorktown Heights, N.Y., Mar. 1973.
KOSINSKI, P.R. "A data flow language
for operating system programming,"
ACM SIGPLAN Not 8, 9 (Sept. 1973),
89-94.
KoTov, V. E. "On basic parallel lan-
guage," in Proc. IFIP 80 Congr. (Tokyo,
Japan and Melbourne, Australia), Elsev-
ier North-Holland, New York, 1980.
KOWALSKI, R. "Algorithms ffi logic +
control," Commun. ACM 22, 7 (July
1979), 424-436
MAGG, G A. "A cellular, language di-
rected computer architecture," in Proc.
Conf. Very Large Scale Integration
(Pasadena, Calif., Jan. 1979), pp. 447-
452.
MAG0, G. A., STANAT, D. E., AND KOS-
TER, A. "Program execution on a cel-
lular computer Some matrix algo-
rithms," Tech. Rep., Dep. Computer Sci-
ence, Univ. of North Carolina, Chapel
Hill, May 1981.
MANNA, Z. Mathematwal theory of
computatton, McGraw-Hill, New York,
1974.
MEYER, S.C. "An analytic approach to
performance analysis for a class of data
flow processors," m Proc 1976 Int. Conf.
Parallel Processing (Aug. 1976), pp.
106-115.
MILLER, R. E., AND COCKE, J.
"Configurable computers' A new class of
general purpose machines," in Lecture
notes m computer scwnce, vol. 5, Sprin-
ger-Verlag, New York, 1972, pp. 285-298.
MISUNAS, D.P. "Deadlock avoidance
in a data-flow architecture," in Proc.
Symp. Automatw Computation and
Control (Milwaukee, Wis., Apr. 1975).
MISUNAS, D. P "Structure processing
in a data flow computer," in Proc. 1975
Int. Conf Parallel Processing (Aug.
1975), pp. 230-234.

Computing Surveys, Vol. 14, No 1, March 1982

Data-Driven a n d Demand-Dr iven Computer Arch i tec ture • 143

Mmu76 MISUNAS, D. P. "Error detection and
recovery in a data-flow computer," in
Proc. 1976 Int. Conf. Parallel Process-
mg (Aug. 1976), pp. 117-122.

SHAR80 SHARP, J .A . "Some thoughts on data
flow architectures." SIGARCH Comput
Arch~t News (ACM) 8, 4 (June 1980),
11-21

SHRI78 SHRIVER, B. D., AND LANDRY, S.

WENG79

P. "An overview of dataflow related re-
search," Tech. Rep. Dep. Computer Sci-
ence, Univ of Southwestern Louisiana,
1978
WENG, K .S . "An abstract nnplemen-
tatlon for a generalized data flow lan-
guage," Tech. Rep. TR-228, Lab. for
Computer Science, Massachusetts Insh-
tute of Technology, May 1979

Received June 1981 ; final rewsion accepted November 1981

Computing Surveys, Vol. 14, No. 1, March 1982

\

L

