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Extracting high-performance from Chip Multiprocessors (CMPs) requires that the

application be parallelized i.e., divided intothreadswhich execute concurrently on

multiple cores. To save programmer effort, difficult to parallelize program portions

are often left as serial. We show that common serial portions, i.e., non-parallel ker-

nels, critical sections, and limiter stages in a pipeline, become the critical path of

the program when the number of cores increases, thereby limiting performance and

scalability. We propose that instead of burdening the software programmers with

the task of shortening the serial portions, we can accelerate the serial portions using

hardware support. To this end, we propose theAsymmetric Chip-Multiprocessor

(ACMP)paradigm which provides one (or few) fast core(s) for accelerated execu-

tion of the serial portions and multiple slow, small cores for high throughput on

the parallel portions. We show a concrete example implementation of the ACMP

which consists of one large, high-performance core and manysmall, power-efficient

cores. We develop hardware/software mechanisms to accelerate the execution of se-

rial portions using the ACMP, and further improve the ACMP byproposing mech-

anisms to tackle common overheads incurred by the ACMP.
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Chapter 1

Introduction

1.1 The Problem

It has become difficult to build large monolithic processorsbecause of ex-

cessive design complexity and high power requirements. Consequently, industry

has shifted to Chip-Multiprocessor (CMP) architectures that tile multiple simpler

processor cores on a single chip [8, 52, 54, 79]. Industry trends show that the num-

ber of cores will increase every process generation [8, 79].However, because of

power constraints, each core on a CMP is expected to become simpler and power-

efficient, and will have lower performance. Therefore, the performance of single-

threaded applications may not increase with every process generation. To extract

high performance from such architectures, the applicationmust be divided into

multiple entities calledthreads. Threads execute concurrently on multiple cores,

thereby increasing performance.

CMPs have the potential to provide speedups proportional tothe number

of cores on the chip if the program can be parallelized completely. However, not

all portions of a program are amenable to parallel execution. Programmers either

invest the enormous effort required to parallelize these portions or save the effort

by leaving such portions as serial (single thread).

These serial portions become a major performance limiter athigh core counts.

As the number of cores increases, the time inside the parallel portions reduces while

the time spent inside the serial portions remains constant (or increases). Conse-

quently, with a large number of cores, a serial portion –no matter how small– can

form the critical path through the program. We identify three major sources of seri-

alization in multi-threaded applications:non-parallel kernels, critical sections, and
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limiter pipeline stages.

Non-Parallel Kernels: Kernels that are prohibitively difficult or impossible

to parallelize are left completely serial. We call such kernelsNon-Parallel Kernels.

Non-Parallel Kernels execute on a single core of the CMP while the other cores re-

main idle. They limit the achievable speedup. Reducing the execution time spent in

such kernels not only reduces overall execution time but also increases the achiev-

able speedup.

Critical Sections: Serialization can even occur in the parallelized portions

when threads contend for shared data. In shared memory systems, multiple threads

are not allowed to update shared data concurrently, known asthe mutual exclu-

sion principle [57]. Instead, accesses to shared data are encapsulated in regions

of code guarded by synchronization primitives (e.g. locks). Such guarded regions

of code are calledcritical sections. The semantics of a critical section dictate that

only one thread can execute it at a given time. Any other thread that requires ac-

cess to shared data must wait for the current thread to complete the critical section.

Thus, when there is contention for shared data, execution ofthreads gets serialized,

which reduces performance. As the number of threads increases, the contention

for critical sections also increases. Therefore, in applications that have significant

data synchronization (e.g. Mozilla Firefox, MySQL [2], andoperating system ker-

nels [83]), critical sections limit both performance (at a given number of threads)

and scalability. Techniques to accelerate the execution ofcritical sections can re-

duce serialization, thereby improving performance and scalability.

Limiter-stages: Pipeline parallelismis a popular software approach to split

the work in a loop among threads. In pipeline parallelism, the programmer/compiler

splits each iteration of a loop into multiple work-quanta where each work-quantum

executes in a different pipeline stage. Each pipeline stageis executed on one or

more cores. The performance of a pipeline is limited by the execution rate of the

slowest stage. When the slowest stage does not scale, the overall performance sat-

urates and more cores cannot increase performance. Thus, highest performance
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can be achieved only when the maximum possible resources areallocated for the

acceleration of the slowest stage.

1.2 Thesis Statement

Execution of serial bottlenecks can be accelerated using faster cores in an

asymmetric chip multiprocessor.

1.3 Contributions

This dissertation makes the following contributions:

1. It proposes an asymmetric multi-core paradigm which we call the Asymmetric

Chip Multiprocessor (ACMP). ACMP can run parallel program portions at

high throughput and serial bottlenecks at an accelerated execution rate. We

provide an in-depth analysis of industry trends which motivate the ACMP

paradigm and prove its feasibility using simple first-orderanalytic models.

As a concrete example of the ACMP paradigm, this thesis designs a CMP

with one fast, large core for accelerating the serial program portions; and

many slow, small cores for speedily executing the parallel program portions.

2. It proposes simple analytic models to show the importanceof the three major

sources of serialization in multi-threaded programs. Thisthesis describes in

detail the microarchitecture, OS, ISA, compiler, and library support required

for the ACMP to accelerate these serial portions.

3. It proposesAccelerated Non-Parallel Kernels (ANP), a thread scheduling

mechanism to accelerate the non-parallel kernels using theACMP.

4. It proposes theAccelerated Critical Sections (ACS)mechanism to accelerate

critical sections, thereby reducing thread serialization. We comprehensively

describe the instruction set architecture (ISA), compiler/library, hardware,

and the operating system support needed to implement ACS.
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5. It proposesAccelerated Limiter Stage (ALS), a mechanism to choose and ac-

celerate the limiter stages in pipeline (streaming) workloads. We describe

the algorithm to identify the limiter stage and the operating system/library

support for ALS in detail.

6. We further show that ACMP’s performance is limited due to the cache misses

incurred in transferring a task from a small core to the largecore. We propose

Data Marshaling (DM)to overcome the overhead of transferring data among

the cores of the ACMP.

1.4 Dissertation Organization

This dissertation is divided into nine chapters. Chapter 2 provides the back-

ground and motivation for the work. Chapter 3 presents the proposed ACMP archi-

tecture. Chapters 4, 5, and 6 describe how the ACMP can accelerate non-parallel

kernels, critical sections, and limiter pipeline stages. Chapter 7 proposes the Data

Marshaling mechanism. Chapter 8 describes the related work. Chapter 9 concludes

the dissertation.
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Chapter 2

Serial Bottlenecks

It has become difficult to build large monolithic processorsbecause of their

excessive design complexity and high power consumption. Consequently, indus-

try has shifted to Chip-Multiprocessors (CMPs) [54, 99, 103] that provide multiple

processing cores on a single chip. While CMPs are power-efficient, they do not

improve performance of legacy applications written to run on a single core. To ex-

tract performance from CMPs, programmers must split their programs into multiple

entities calledthreads. Threads operate on different portions of the same problem

concurrently, thereby improving performance. However, itis difficult or impossible

to parallelize some program portions. Such portions are often left asserial. The se-

rial portions can form the critical path through the programas the number of cores

increases. The three most common sources of serialization are non-parallel kernels,

critical sections, and limiter pipeline stages.

2.1 Non-Parallel Kernels

Program portions which are difficult or impossible to parallelize without

changing the algorithm are often left as serial to save programmer effort. Examples

of difficult to parallelize kernels include loops with dependent iterations or loops

with early exit conditions. These are classic Amdahl bottlenecks [10].

Figure 2.1(a) shows a simple program with two kernels K1 and K2. Kernel

K1 computes the minimum of two arrays A and B by comparing eachelement in A

with the corresponding element in B and choosing their minimum. K1’s iterations

are independent, i.e., they operate on different data. Kernel K2 is the code for a2-

tap averaging IIR filter. K2 sets each element in array A (A[i]) equal to the average

5



of the element itself (A[i]) and the previous element in A (A[i-1]). Note that the

kernel requires the new value of A[i] to compute A[i+1] whichmakes each iteration

dependent on the previous iteration.

Since its iterations are independent, K1 can be parallelized easily such that

each core1 executes different iterations of the loop concurrently. Incontrast, K2

cannot be parallelized because each iteration requires theresult of the previous

iteration. This makes K2 a non-parallel kernel and only one core can execute it at

a given time. Note that it may be possible to parallelize K2 ifthe algorithm can

tolerate inaccuracy. However, such algorithmic assumptions are domain-specific

and not always applicable.

t
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t
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t
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t
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t
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t
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t
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t
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t
0

t
6

LEGEND

Parallel Kernel K1

Non−Parallel Kernel K2
A

K1

Kernel computes minimum of two arrays

/*Threads execute independent iterations

for i = 1 to N1

in parallel*/

A[i] = MIN(A[i], B[i])

K2

/* Kernel is an averaging filter*/
/* Loop has Dependent Iterations so

for i = 1 to N2

difficult−to−parallelize */

A[i] = (A[i] + A[i−1])/2

LEGEND

K2:  Non−Parallel Kernel
K1:  Parallel Kernel
A: Initialization

(b)

P = 8

P = 4

P = 2

P = 1

SpawnThreads();

InitializeArrays();

(a)
Figure 2.1:Parallel and non-parallel part in a program (a) Code example(b) Execution
timeline on the baseline CMP

Figure 2.1(b) shows a simplified execution timeline of this multi-threaded

program as the number of cores (P ) increases, assuming K1 requires eight units of

time for execution and K2 requires two units of time for execution. Since K1 can be

parallelized, its work can be distributed evenly across multiple cores. Thus, whenP

is equal to 2, K1 executes on both cores and finishes in four units of time while K2

still requires two time units. Total execution time is 6 units. Similarly at 4 cores, K1

executes in only 2 time units and the execution time of K1 and K2 become equal.

1We use cores and threads interchangeably.
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Overall execution time reduces by only 33% to 4 units. If we double the number

of cores to 8, K2 begins to dominate overall execution time and the overall time

reduces by only 25%. With an infinite number of cores, K1 takeszero time but K2

still takes 2 times units. Therefore, as the number of cores increases, increasing the

number of cores becomes less beneficial for performance.

Suppose the same program executes on a hypothetical architecture which

accelerates K2 by a factor of 2. The program’s execution timewill reduce for 1,

2, 4, and 8 cores. At 8 cores, the program will finish in two timeunits compared

to the three time units in the baseline CMP. This shows that accelerating the serial

bottleneck (which is only 20% of the program) by 2x reduces overall execution

time by 33%. Furthermore, the execution time with an infinitenumber of cores

is only one time unit instead of the two time units when K2 was not accelerated.

This improvement from accelerating non-parallel kernels further increases with the

number of cores.

2.1.1 Analysis

Amdahl’s law [10] provides a simplified model to predict the performance

impact of non-parallel kernels. It assumes that as the number of processors increase,

the time taken to execute the parallel portion reduces linearly but the time taken to

execute the non-parallel portion remains unchanged. Let usassume thatSpeedupN

is the speedup achieved by N processors over a single processor and (α) is the

fraction of the application which is parallelized (and1 − α is the fraction of the

application which is not parallelized). We can defineSpeedupN using Equation 2.4.

SpeedupN =
1

α
N

+ (1 − α)
(2.1)

Equation 2.4 shows the speedup as N approaches infinity. Thisis the maxi-

mum possible speedup achievable by a program.

lim
N→∞

SpeedupN =
1

1 − α
(2.2)
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Note thatSpeedupN becomes a function ofonly the length of the non-

parallel portion (1 − α). Thus, non-parallel kernels limit the achievable speedup.

If we accelerate the execution of the non-parallel part by a factorS, the

speedup will be:

SpeedupN =
1

α
N

+ 1−α
S

(2.3)

When N approaches infinity, the speedup becomes:

lim
N→∞

SpeedupN =
S

(1 − α)
(2.4)

Thus, accelerating the non-parallel kernel can increase performance and the

achievable speedup.

2.2 Critical Sections

Accesses to shared data are encapsulated inside critical sections. Only one

thread can execute a particular critical section at any given time. Critical sections

are different from Amdahl’s serial bottleneck: during the execution of a critical

section, other threads that do not need to execute the same critical section can make

progress. In contrast, no other thread exists in Amdahl’s serial bottleneck.

Figure 2.2(a) shows the code for a multi-threaded kernel which solves the

15-puzzle problem [109]. In this kernel, each thread dequeues a work quantum

from the priority queue (PQ) and attempts to solve it. If the thread cannot solve the

problem, it divides the problem into sub-problems and inserts them into the priority

queue. While this example is from the workloadpuzzle, this is a very common

parallel implementation of many branch-and-bound algorithms [60]. The kernel

consists of three parts. The initial part A and the final part Eare the non-parallel

Amdahl’s serial bottleneck since only one thread exists in those sections. Part B is

the parallel part, executed by multiple threads. It consists of code that is both inside
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the critical section (C1 and C2, both protected by lock X) andoutside the critical

section (D1 and D2).

A

C2

C1

BD1

D2

E

C1T1 D2

C1 C2D2 D1T2

C2D1 D2T3

C2D1 D2T4
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t
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5
t

end

time

A ... E...

A ... E...

C1D2T1
C2C1D2 D1T2

C2D1 D2T3
C2D1 D2T4

t
0

t
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t
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t
3

t
4

t
begin t

5
t

6
t

end

time

A,E:  Amdahl’s serial part

C1,C2: Critical Sections
D: Outside critical section

B:  Parallel Portion

LEGENDInitPriorityQueue(PQ);  

SpawnThreads();

ForEach Thread:

Lock (X)
SubProblem = PQ.remove();

Unlock(X);

Unlock(X)
      PQ.insert(NewSubProblems);
Lock(X)

NewSubProblems = Partition(SubProblem);
If(problem solved) break;

while (problem not solved)

Solve(SubProblem);

. . .

PrintSolution();  

Idle

(a)

(b)

(c)
Figure 2.2:Serial part, parallel part, and critical section in 15-puzzle (a) Code example
(b) Execution timeline on the baseline CMP (c) Execution timeline with accelerated critical
sections.

Figure 2.2(b) shows the execution timeline of the kernel shown in Fig-
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ure 2.2(a) on a 4-core CMP. After the serial part A, four threads (T1, T2, T3, and

T4) are spawned, one on each core. Once part B is complete, theserial part E is

executed on a single core. We analyze the serialization caused by the critical sec-

tion in steady state of part B. Between timet0 andt1, all threads execute in parallel.

At time t1, T2 starts executing the critical section while T1, T3, and T4 continue to

execute code independent of the critical section. At timet2, T2 finishes the critical

section and three threads (T1, T3, and T4) contend for the critical section – sup-

pose T3 wins and enters the critical section. Between timet2 andt3, T3 executes

the critical section while T1 and T4 remain idle, waiting forT3 to exit the critical

section. Between timet3 andt4, T4 executes the critical section while T1 continues

to wait. T1 finally gets to execute the critical section between timet4 andt5.

This example shows that the time taken to execute a critical section sig-

nificantly affects not only the thread that executes it but also the threads that are

waiting to enter the critical section. For example, betweent2 andt3 there are two

threads (T1 and T4) waiting for T3 to exit the critical section, without performing

any useful work. Therefore, accelerating the execution of the critical section not

only improves the performance of T3 but also reduces the useless waiting time of

T1 and T4. Figure 2.2(c) shows the execution of the same kernel assuming that

critical sections take half as long to execute. Halving the time taken to execute crit-

ical sections reduces thread serialization which significantly reduces the time spent

in the parallel portion. Thus, accelerating critical sections can provide significant

performance improvement.

On average, the critical section shown in Figure 2.2(a) executes 1.5K in-

structions. When inserting a node into the priority queue, the critical section ac-

cesses multiple nodes of the priority queue (implemented asa heap) to find a suit-

able place for insertion. Due to its lengthy execution, thiscritical section incurs

high contention. Our evaluation shows that when the workload is executed with 8

threads, on average 4 threads wait for this critical section. The average number of

waiting threads increases to 16 when the workload is executed with 32 threads. In
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contrast, when this critical section is accelerated, the average number of waiting

threads reduces to 2 and 3, for 8 and 32-threaded execution respectively.

Note that critical sections can be shortened if programmerslock the shared

data at a finer-granularity, e.g., using a different lock forevery node in the data

structure. We show in Section 5.4.1.2 on page 52 that as the number of cores in-

creases, even fine-grain critical sections begin to incur contention, thereby reducing

performance.

2.2.1 Analysis

The effect of critical sections on overall performance can also be demon-

strated using simple analytic models. We broadly classify critical sections in two

categories:updateandreductioncritical sections. Update critical sections protect

shared data which is continuously read and modified by multiple threads during the

execution of a kernel. In contrast, reduction critical sections protect data which is

modified by the threads only at the end of the execution of a kernel.

Update Critical Sections:

Update critical sections occur in the midst of the parallel kernels. They pro-

tect shared data which multiple threads try to read-modify-write during the kernel’s

execution, instead of waiting till the end of the kernel’s execution. Their execution

can be overlapped with the execution of non-critical-section code. For example,

critical sections C1 and C2 from the workloadpuzzle (shown in Figure 2.2(a))

are update critical sections because they are executed every iteration of the loop

and their execution can be overlapped with the execution of non-critical section

code D1.

For simplicity, lets assume a kernel which has only one critical section. Each

iteration of the loop spends one unit of time inside the critical section and three units

of time outside the critical section. Figure 2.3 demonstrates the execution timeline

of this critical-section-intensive application. When a single thread executes, only

25% of execution time is spent executing the critical section. If the same loop is
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Figure 2.3: Example for analyzing update critical section limited systems

split across two threads, the execution time reduces by 2x. Similarly, increasing the

number of threads to four further reduces execution time. Asthe critical section is

always busy, the system becomes critical-section-limitedand further increasing the

number of threads from four to eight does not reduce the execution time.

Note that the time decreases linearly with the number of threads until the

loop becomes critical-section-limited, after which the execution time does not de-

crease. LetTCS be the time spent in the critical section andTNoCS be the time

to execute the non-critical-section part of the program. Let, (TP ) be the time to

execute the critical sections and the parallel part of the program when there areP

threads. Assuming that all loop iterations run both the critical section and the non-

critical-section code, Equation 2.5 shows the execution time,Tp, of a loop withN

iterations usingP processors.

Tp = N × MAX

(

TNoCS + TCS

P
, TCS

)

(2.5)

From the above equation, we conclude that a workload becomescritical-

section-limited when:

TCS ≥
TNoCS+TCS

P
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We compute(PCS), i.e., the number of threads required to saturate the exe-

cution time, by solving the above inequality forP :

PCS ≥
TNoCS + TCS

TCS

(2.6)

Thus, when the number of threads is greater than or equal toPCS, critical

sections form a critical path through the program, dominating the overall execution

time, and limiting scalability. Accelerating the execution of critical sections can

reclaim the performance lost due to critical sections.

Generalizing to multiple independent critical sections:To reduce the con-

tention for critical sections, many applications use different locks to protect disjoint

data. Since these critical sections are protecting disjoint data, they can execute con-

currently, thereby increasing throughput. For example, consider a loop with two

independent critical sections CS1 and CS2. Now assume that CS1 executes 25% of

the execution time and CS2 executes 12.5% of the execution time. The remaining

62.5% of time is spent executing the parallel portion.

0 24 26 28 30 324 6 8 10 12 14 16 18 20 222

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����

��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
����
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
����
��
��

��
��
����
��
��

��
��
����
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
��
�
�

�
�
���
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

���
���
���

���
���
���

P=2

P=4 and P=8 takes
same time to execute

time

P=1

P=8

P=4

LEGEND

Waiting for CS
CS2 executing
CS1 executing
Parallel Part

Figure 2.4: Example for analyzing multiple update criticalsections

Figure 2.4 demonstrates the execution timeline of this kernel at 1, 2, 4, and 8

threads. Note that the execution time decreases linearly with the number of threads
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until the loop becomes limited by CS1, after which the execution time ceases to

reduce. Further note that there is no contention for CS2 evenwith eight cores

because once the execution time stops reducing (due to the limitations caused by

CS1), the rate at which CS2 is called does not increase with more threads. The

reason CS1, not CS2, is the critical path is because CS1 is longer than CS2. Thus,

in workloads with many critical sections, the longest critical section, which always

has the highest contention, is the performance limiter.

We analyze the impact of multiple critical sections on overall execution time

using an analytic model. LetTCSall
be the sum of time spent in all critical sections,

TCSlongest
be the time spent in the longest critical section, andTNoCS be the time to

execute the parallel part of the program. Let,(TP ) be the time to execute the critical

sections and the parallel part of the program when there areP threads. Equation 2.7

shows the execution time,Tp, of a loop withN iterations usingP processors.

Tp = N × MAX

(

TNoCS + TCSall

p
, TCSlongest

)

(2.7)

Thus, once the program becomes critical-section-limited,a mechanism to

speedup the longest critical section by a factorS will provide an overall speedup

of S. Note that sometimes accelerating the longest critical sections makes it faster

than the second longest critical section. This makes the previously-second-longest

critical section the longest critical section, making it the critical path. Therefore,

acceleration is most effective if it done carefully to balance the execution rates of

critical sections.

Reduction Critical Sections:

Reduction critical sections occur at the end of kernels and are used to com-

bine the intermediate results computed by individual threads. The key difference

between update and reduction critical sections is that, unlike update critical sec-

tions, reduction critical sections occur at theendof a kernel and their execution

cannotbe overlapped with the execution of the non-critical-section code. Since
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every thread executes the critical section, the total time spent in executing the crit-

ical sections increases with the number of threads. Furthermore, as the number of

threads increase, the fraction of execution time spent in the parallelized portion of

the code reduces. Thus, as the number of threads increase, the total time spent in

the critical sections increases and the total time spent outside critical sections de-

creases. Consequently, critical sections begin to dominate the execution time and

the overall execution time starts to increase.

  /* Parallel part*/
UpdateLocalHistogram()

Each thread
GetPageHistogram(Page *P)

 Add local histogam
to global histogram

Critical Section:

Return global histogram
Barrier

Figure 2.5: A function fromPageMine that counts the occurrence of each ASCII
character on a page of text

We first show a simple example where the time inside the critical sections

increases linearly with the number of threads. Let us consider an example kernel.

Figure 2.5 shows a function fromPageMine2 that counts the number of times

each ASCII character occurs on a page of text. This function divides the work

acrossT threads, each of which gathers the histograms for its portion of the page

(PageSize/T ) and adds it to the global histogram. Updates to the local histogram

2The code forPageMine is derived from the data mining benchmarkrsearchk [70]. This
kernel generates a histogram, which is used as a signature tofind a page similar to a query page.
This kernel is called iteratively until the distance between the signatures of the query page and a
page in the document is less than the threshold. In our experiments, we assume a page-size of 5280
characters (66 lines of 80 characters each) and the histograms consists of 128 integers, one for each
ASCII character.
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can execute in parallel without requiring data-synchronization. On the other hand,

updates to the global histogram, which is a shared data-structure, are guarded by

a critical section. Therefore, one and only one thread can update the global his-

togram at a given time. As the number of threads increase, thefraction of execution

time spent in gathering local histograms decreases becauseeach thread has to pro-

cess a smaller fraction of the page. Whereas, the number of updates to the global

histogram increases, which increases the total time spent in updating the global

histogram.

Figure 2.6 shows the execution of a program which spends 20% of its exe-

cution time in the critical section and the remaining 80% in the parallel part. The

overall execution time with one thread is 10 units.
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LEGEND

Critical Section
Waiting for 
Critical Section
Parallel Portion

P=1
P=2

P=4

P=8

time

Figure 2.6: Example for analyzing impact of critical sections

When the program is executed with two threads, the time takento execute

the parallel part is reduced to four units while the total time to execute the critical

section increases from two to four units. Therefore, the total execution time reduces

from 10 units to 8 units. However, overall execution time reduces with additional

threads only when the benefit from reduction in the parallel part is more than the

increase in the critical section. For example, increasing the number of threads to
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four reduces the time for the parallel part from four to two units but increases the

time for the critical section from four to eight units. Therefore, increasing the num-

ber of threads from two to four increases the overall execution time from 8 units to

10 units. Similarly, increasing the number of threads to eight further increases the

overall execution time to 17 units.

We can analyze the impact of critical sections on overall execution time

using an analytical model. LetTCS be the time spent in the critical section and

TNoCS be the time to execute theparallel part of the program. Let,(TP ) be the

time to execute the critical sections and the parallel part of the program when there

areP threads. Then,TP can be computed as:

TP =
TNoCS

P
+ P · TCS (2.8)

The number of threads(PCS) required to minimize the execution time can

be obtained by differentiating Equation 2.8 with respect toP and equating it to zero.

d

dP
TP = −

TNoCS

P 2
+ TCS (2.9)

PCS =

√

TNoCS

TCS

(2.10)

Equation 2.10 shows that(PCS) increases only as thesquare-rootof the ratio

of time outside the critical section to the time inside the critical section. Therefore,

even if the critical section is small, the system can become critical section limited

with just a few threads. For example, if the critical sectionaccounts for only 1% of

the overall execution time, the system becomes critical section limited with just 10

threads. Therefore, reducingTCS by accelerating critical sections will significantly

reduce overall execution time and increase scalability.

Note that the time inside the reduction critical sections does not always in-

creaselinearly with the number of threads, which was the case in our previous

example. Sometimes, the programmers are able to partially parallelize reduction by
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splitting it into steps. For example, when the kernel fromPageMine is running on

four cores, the global histogram can be computed in two steps(steps I and II). In

step I, thread 0 adds the local histograms computed by threads 0 and 1 in the parallel

program portion, and thread 2 adds the local histograms computed by threads 2 and

3 in the parallel program portion. In step II, thread 0 adds the temporary histograms

computed by threads 0 and 2 in step I, thus computing the final global histogram.

Notice that this does not eliminate the critical section butonly shortens it: step II

is still a critical section that only one thread can execute at a given time. As shown

previously, when the number of cores increases, even a shortcritical section can

begin to limit overall performance.

2.3 Limiter stage in a pipeline

Pipeline parallelismis a popular software approach to split the work in a

loop among threads. In pipeline parallelism, the programmer/compiler splits each

iteration of a loop into multiple work-quanta where each work-quantum executes

in a different pipeline stage. Recent research has shown that pipeline parallelism is

applicable to many different types of workloads, e.g, streaming [100], recognition-

mining-synthesis workloads [15], compression/decompression [47], etc. In pipeline

parallel workloads, each stage is allocated one or moreworker threads and anin-

queuewhich stores the work quanta to be processed by the stage. A worker thread

pops a work quanta from the in-queue of the stage it is allocated to, processes the

work, and pushes the work on the in-queue of the next stage.

Figure 2.7(a) shows a loop which has N iterations. Each iteration is split

into 3 stages: A, B, and C. Figure 2.7(b) shows a flow chart of the loop. The three

stages of theith iteration are labeled Ai, Bi, and Ci. Figure 2.7(c) shows how

this loop gets executed sequentially on a single processor.The timet0 is the start

of iteration 0 of the loop. The timet3 is the end of iteration 0, and the start of

iteration 1, and so on. Figure 2.7(d) shows how this program gets executed using

pipeline parallelism on three processors. Each core works on a separate part of the
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iteration (P0 executes stage A, P1 executes stage B, and P2 executes stage C), and

the iteration gets completed as it traverses from left to right, and top to bottom.

Note that we show for simplicity that each stage has one core but it is possible to

allocate multiple cores per stage or share a core among stages.

time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

...P0

time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

for i = 1 to N

...  // code in stage B

...  // code in stage C

...  // code in stage A

(a) (c) 

...

...

...

P0

P1

P2

(d) (b) 

A0 B0 0C A1 B1 1C A2 B2 2C A3 B3 3C

Ai

Bi

Ci

A3A2A1A0 A4 5A

B3B2B1B0 B4 B5

C3C2C1C0 C4 C5

Figure 2.7: (a) The code of a loop, (b) Each iteration is splitinto 3 pipeline stages:
A, B, and C. Iteration i comprises Ai, Bi, Ci. (c) Sequential execution of 4 itera-
tions. (d) Parallel execution of 6 iterations using pipeline parallelism on a three-core
machine. Each stage executes on one core.

Consider a kernel from the workloadcompress. This kernel compresses

the data in an input file and writes it to an output file. Each iteration of this kernel

reads a block from the input file, compresses the block, and writes the compressed

block to the output file. Figure 2.8 shows the pipeline of thiskernel. Stage S1

allocates the space to save the uncompressed and the compressed block. S2 reads

the input and S3 compresses the block. When multiple threads/cores are allocated

to each stage, iterations in a pipeline can get out of order. Since blocks must be

written to the file in-order, S4 re-orders the quanta and writes them to the output

file. S5 deallocates the buffers allocated by S1. This kernelcan execute on a 5-core

CMP such that each stage executes on one core. At any point in time, cores will

be busy executing different portions of five different iterations, thereby increasing
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performance. In reality, when the pipeline executes, coresexecuting different stages

of a pipeline often wait on other cores and remain idle. This limits concurrency and

reduces performance.

Deallocate Buffers

QUEUE3 QUEUE4QUEUE2

COMPRESS

Compress Q

QUEUE3.Push(Q)

Q = QUEUE2.Pop()

STAGE S3

READ INPUT

STAGE S2

Input
File

ALLOCATE

Allocate buffers

QUEUE1.Push(Buf)

QUEUE1

WRITE OUTPUT

STAGE S4

QUEUE4.Push(Q)

Write oldest Q to File

Q = QUEUE3.Pop()

QUEUE2.Push(Buf)

Read file to Buf

Q = QUEUE1.Pop()

STAGE S1

DEALLOCATE

STAGE S5

Q = QUEUE4.Pop()

Figure 2.8: File compression algorithm executed using pipeline parallelism

2.3.1 Analysis

We definethroughputof a pipeline stage as the number of iterations pro-

cessed in a given amount of time. Thus, the throughputτi of a pipeline stagei can

be defined as:

τi =
Num Iterations Processed

T ime
(2.11)

The overall throughput,τ , of the whole pipeline is limited by the throughput

of the slowest stage of the pipeline. Therefore:

τ = MIN(τ0, τ1, τ2, ...) = τmin (2.12)

Thus, for example, if the slowest stage of the pipeline for compression

shown in Figure 2.8 is S3 (compress), then performance will be solely determined

by the throughput of S3. LetLIMITER be the stage with the lowest throughput.

Then stages other than the LIMITER will wait on the LIMITER stage and their

cores will be under-utilized.

A common method used to increase the throughput of the LIMITER stage

is to increase the number of cores allocated to it. However, more cores help if

and only if the LIMITER stage scales with the number of cores (increasing the
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number of allocated cores increases its throughput). Unfortunately, the throughput

of a stage does not always increase with the number of cores due to contention for

shared data and resources (i.e. data-synchronization, cache-coherence). When a

stage does not scale, allocating more cores to the stage either does not improve its

throughput or can in some scenarios reduce its throughput [95]. Thus, once the

pipeline becomes limited by a non-scalable LIMITER, performance saturates. The

only way to further improve its performance is by accelerating the LIMITER stage.

Accelerating the LIMITER stage can increase the throughputof the LIM-

ITER. This can either change the LIMITER or increase the overall throughput of

the pipeline as much as the speedup from acceleration.

Conclusions: Non-parallel kernels, critical sections, and limiter pipeline

stages can form the critical path through the program as the number of cores in-

creases. When performance is limited by a serial portion, adding more cores does

not improve overall performance. This creates the need to reduce the execution

time inside the serial portion.
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Chapter 3

Asymmetric Chip Multiprocessor

3.1 Current CMP Architectures

Industry is using two common approaches when designing chipmultipro-

cessors:

Tile-Large Approach: The most popular approach is to tile a few large

cores(Figure 5.1(a)). This provides high single-thread performance but low parallel

throughput. Examples of this approach are AMD Opteron [8], Intel Core2Duo [79],

and IBM Power5 [52]. They primarily target multiple single-threaded programs.

Tile-Small Approach: Sun Microsystem’s Niagara [54] and Intel’s

Larrabee [86] processor has taken a different approach(Figure 5.1(b)). Since each

small core is more area-efficient than the large core, it provides high parallel

throughput but low single thread performance. These chips are designed for work-

loads with massive amount of parallelism, e.g., server and graphics workloads.

Neither of the two approaches will be best suited for future applications.

Since the motivation exists, programmers are likely to parallelize some portions

of their programs which makes the Tile-Large approach low-performance. Taking

advantage of Tile-Small requires the application to be completely parallel. It is

unreasonable to expect that common programmers will be ablewrite massively
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Figure 3.1:CMP Architecture approaches. (a) Tile-Large (b) Tile-Small (c) Asymmetric
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parallel programs like the sever and graphics programmers.There are three reasons:

lack of domain specific knowledge, variations in target platforms, and time/financial

constratins. We demonstrate this with some examples and facts.

• We describe a real-world example of the MySQL database. The stan-

dard MySQL database engine is known to have poor scalability(its per-

formance saturates between 10-20 threads) [5, 6]. Yet, it isbeing used

in large scale systems such as the social networking website, Facebook

(wwww.facebook.con) [87]. The reason is that Facebook has specialized

MySQL to their specific domain. They call is Facebook SQL (FQL) [1].

FQL is different from MySQL in two ways. First, unlike MySQL,FQL no

longer guarantees that updates to the shared data (about users) are visible to

all users immediately. For example, when a user changes his/her profile on

Facebook, it is not guaranteed that the change will be visible to all Facebook

users instantaneously. Second, FQL does not assign a uniqueID to every

entry in their database, a feature supported by the baselineMySQL. Both

these changes eliminate major critical sections. Facebookfurther replicates

their databases in data centers all over the world and use caching extensively,

which incurs a large cost. Thus, MySQL’s scaling was only made possible by

programmer effort and substantial financial support.

• Recall the kernel K2 in Figure 2.1(b). This kernel does not exhibit any par-

allelism as-is. Now suppose that we know that the kernel willbe used to

smooth the pixels in a video frame. With the domain-specific knowledge that

inaccuracies in pixel values are tolerable, we can re-factor the kernel where

each pixel can be computed as the weighted mean of the old values of the

last k pixels. This will break the inter-iteration dependency, thereby mak-

ing the kernel parallelizable. Such optimizations are onlymade possible by

domain-specific knowledge.

• Experts in graphics programming [7] shows that it is often necessary to em-

ploy hardware-specific and input-set-specific optimizations to extract paral-
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lelism out of programs. This is because factors like cache sizes, communi-

cation latencies, lock handling operations, all have high impact on parallel

program performance. General purpose programmers are often unfamiliar

with their target hardware platforms and input sets. For example, a video

player can be run on many different systems with a large variety of videos as

the input. Thus, general purpose programmers are forced to take conservative

approaches and it is difficult for them to optimize the programs in the same

way other the game programmers can.

• General purpose programmers are often under time and resource constraints.

Discussions with IBM Blue Gene software team reveals that just optimizing

the performance of a functionally correct Blue Gene programcan take several

man years. Unavailability of time and resources also reduces the ability of

programmers to fully tune their code.

• Despite the challenges, general-purpose programmers are being burdened

with the task of identifying parallelism. Further expecting programmers to

fully optimize their code often leads to infeasible results. For example, Mi-

rano et al. [66] show how attempts to shorten critical sections have led to

data-race bugs in common programs such as Mozilla Firefox and several Mi-

crosoft products.

We conclude that future workloads will require CMP architectures which

can shorten serial portions, without requiring programmereffort. Such mechanisms

can improve performance of existing programs, provide higher performance for

sub-optimized code, and make parallel programming more available to the average

programmer.

3.2 Our Solution

For high-performance execution of multithreaded programs, we propose the

Asymmetric Chip Multiprocessor (ACMP)paradigm. ACMP paradigm offers two
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types of cores: fast cores for speedy execution of the serialportions and an array

of power-efficient, small cores for high-throughput on the parallel portions. Note

that the central idea behind the ACMP paradigm is that the future CMPs shall pro-

vide asymmetric performance characteristics. This performance asymmetry can be

created in multiple ways, e.g., by making a core more agressive or by increasing a

core’s frequency [24]. This thesis develops an example implementation where the

faster cores are implemented by making them larger and more-powerful compared

to the other small cores. To make the design pragmatic, we chose cores similar to

current and past Intel cores.

3.3 ACMP Architecture

The Asymmetric Chip Multi-processor (ACMP) is a shared memory and

homogeneous ISA CMP. It provides one or a few large cores and many small cores.

3.3.1 ISA

All cores support all instructions and software is unable todistinguished

between a large core and a small core functionality-wise. The ISA supports one

new instruction which can be used by software to query the type (whether small or

large) of the core it is running on. Similar instructions, which provide information

about the underlying microarchitecture, already exist in modern ISAs, e.g., CPUID

instruction in x86 [46]. We envision that core-type can be anadditional field in the

output of the CPUID instruction.

3.3.2 Interconnect

All cores, both small and large, share the same interconnectfor high

bandwidth, low-latency communication. Our example implementation uses a bi-

directional ring interconnect with seperate control and data lines. The width of the

interconnect is 512 bits, which is exactly one cache line.
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3.3.3 Caches

The cache hierarchy is the same as any symmetric CMP and can include

multiple levels of private and/or shared caches. In our example, each core has its

private L1 and L2 caches. To further increase the large core’s performance, the

large core is given a larger cache than the L2 cache of the smaller cores (1MB for

the large core vs. 256KB each for the small cores). All cores share an L3 cache.

3.3.4 Cache Coherence

ACMP supports shared memory and any private caches must be kept coher-

ent using a hardware cache coherence protocol. In our implementation, the private

L1s are write-through and L2s are kept coherent using a coherence directory-based

MOESI protocol.

3.3.5 Large core

The large core’s purpose is to provide a high single-thread IPC. It has the

characteristics of an aggressive state-of-the-art core. It has a wide issue width, a

deep pipeline, out of order execution, several ALUs, a powerful branch predictor,

an aggressive prefetcher, a powerful indirect-branch predictor, etc. In our example

implementation, we use a 4-wide out-of-order machine similar to each core in the

Intel Core2 Quad.

3.3.6 Small core

The small core’s purpose is to run code power-efficiently. Ithas a shallow

in-order pipeline, a small branch predictor, a simpler prefetcher, and it does not

have a dedicated indirect branch predictor. In our implementation, each small core

is similar to a Pentium core [44]. It is 2-wide with a 5-stage pipeline with a 4KB

GSHARE branch predictor.
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3.4 Design Trade-offs in ACMP

There are two key trade-offs which impact the design and use of the ACMP.

1. Area vs. Performance: The large core is less area-efficient: it takes the

same area as four small cores but provides a lower throughputthan four small cores.

Thus, in serial regions of code, while the large core of the ACMP executes faster, it

consumes more power compared to a small core. This increasedenergy is tolerable

if the increase in performance is substantial.

2. Hardware Cost vs. Software Cost: The ACMP requires two differ-

ent types of cores to be integrated on the same chip. This may increase design

costs. However, industry is already building chips with different types of execution

units e.g. the IBM Cell Processor [40] and numerous system-on-chip designs. By

integrating the large core, the ACMP provides higher performance in the serial bot-

tlenecks which makes overall performance more tolerant to the length of the serial

portion. Consequently, programmer effort can be saved by parallelizing only the

easier to parallelize kernels. Thus, the hardware cost can be amorized.

The next four chapters describes mechanisms to identify andaccelerate non-

parallel kernels, critical sections, and limiter stages using the ACMP..
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Chapter 4

ACMP for Accelerating Non-Parallel Kernels

Non-parallel kernels execute as single threads. Such regions of code often

occur at the beginning of the program when no threads have been spawned or at

the end when all threads have finished their work. In some cases, such regions

are also interleaved with parallel kernels. We propose a mechanism to accelerate

the execution of non-parallel kernels using the ACMP. We call it Accelerated Non-

Parallel Kernels (ANP).

4.1 Architecture

Accelerating Non-Parallel kernels (ANP) requires a simplechange in the

thread scheduler: any time there is only one active thread, it must execute on the

large core. The operating system uses the newly added CPUID instruction to iden-

tify the large core and stores this information. Figure 4.1 shows the thread schedul-

ing algorithm. The list of active threads is initially empty. The master thread, which

is the first entry in the list, is spawned on the large core. Themaster thread spawns

additional worker threads and either waits for the worker threads or executes a por-

tion of the work itself. The worker threads execute the parallel region. As the

worker threads finish their work and exit, they remove themselves from the list of

active threads. When the second last thread exits and the parallel region finishes,

the single remaining thread, if not already on the large core, is migrated to the large

core.
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On creation of thread t:
Add thread t to thread list
If thread t is the only thread

Spawn it on the large core
Else

Spawn it on a free small core

On exit of thread t:
Delete thread t from thread list
If thread list has only only one thread

and that thread is not on the large core
Move it to the large core

Figure 4.1: Scheduling algorithm for accelerating non-parallel kernels.

4.2 Performance Trade-offs in ANP

Accelerating the non-parallel kernels using the ACMP involves three per-

formance trade-offs:

1. Peak Parallel Throughput vs. Serial Thread Performance: ACMP re-

places a few small cores with one large core. This reduces peak parallel throughput.

However, this reduction in throughput is compensated by theaccelerated execution

of the non-parallel region. Figure 4.2 shows how the ACMP, Tile-Small, and Tile-

Large compare as degree of parallelism increases. We assumea large core takes the

area of four small cores. Note that Tile-Small outperforms the ACMP at higher par-

allelism while the ACMP outperforms both competing approaches for a wide range

of parallelism. Moreover, the fraction of parallel throughput lost due to the large

core reduces as the total number of cores increase. For example, replacing four

small cores with one large core reduces throughput by 50% in an 8-core CMP but

by only 6.25% in a 64-core CMP. Therefore, the ACMP approach becomes more

and more feasible as we are able to increase the number of cores on the chip.

Figure 4.2 plots the parallelism required for Tile-Small tooutperform

ACMP as a function of chip area. The cut-off point moves higher and higher as

chip area increases. We conclude that ACMP will become applicable to more and

more workloads in the future.

2. Thread migration overhead vs. Accelerated Execution: When a thread
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is migrated from a small core to a large core or vice versa, theACMP incurs the

overhead of sending the register values, the program counter, and the stack pointer.

However, such data migrations are rare and only occur when a parallel region begins

and ends. This overhead can get amortized due to the accelerated execution of the

serial bottleneck. ACMP can reduce performance if either the non-parallel regions

are very small or the large core does not accelerate the execution. We find that not

to be case across our benchmarks.

3. Cache locality in the ACMP is similar to that of the baseline CMP. The

reason is that the data generated in the parallel region is spread evenly across cores.

In the baseline CMPs, when one of the regular cores execute the serial portion, it

gathers the required data from other cores. In the ACMP, the scenario does not
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change. The large core incurs the same number of cache missesto gather the data

from the small cores. If a serial portion requires data from the previous serial por-

tion, the ACMP performs exactly the same as the baseline.

4.3 Evaluation Methodology

Table 4.1 shows the configuration of the simulated CMPs, using our in-

house cycle-level x86 simulator. The large core occupies the same area as four

smaller cores: the smaller cores are modeled after the IntelPentium processor [44],

which requires 3.3 million transistors, and the large core is modeled after the Intel

Pentium-M core, which requires 14 million transistors [30]. We evaluate two differ-

ent CMP architectures: a symmetric CMP (SCMP) consisting ofall small cores; and

an asymmetric CMP (ACMP) with one large core with 2-way SMT and remaining

small cores which accelerates the non-parallel kernels. Unless specified otherwise,

all comparisons are done at equal area budget. We specify thearea budget in terms

of number of small cores.

4.3.1 Workloads

Table 4.2 shows our benchmarks. We divide these workloads into two cat-

egories: workloads with coarse-grained locking and workloads with fine-grained

locking. All workloads were simulated to completion.

The database workloadsoltp-1, oltp-2, andsqlite were compiled

with gcc 4.1 using -O3 flag. The number of threads were set by changing the num-

ber of clients in the input set. specjbb was compiled using gcj 4.1. The number of

threads were set by changing the number of warehouses. All other workloads were

compiled with the Intel C Compiler [43] using the-O3 flag and were simulated to

completion. Foris andep, we use the reference OpenMP implementation with

the input sets as shown. We acknowledge that these workloadscan be optimized by

investing more programmer effort. However, we use them as-is to make a point that

ACMP is very effective at improving performance of sub-optimal code.
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Table 4.1:Configuration of the simulated machines
Small core 2-wide In-order, 2GHz, 5-stage. L1: 32KB

write-through. L2: 256KB write-back, 8-
way, 6-cycle access

Large core 4-wide Out-of-order, 2GHz, 2-way SMT,
128-entry ROB, 12-stage, L1: 32KB write-
through. L2: 1-MB write-back, 16-way, 8-
cycle

Interconnect 64-bit wide bi-directional ring, all queuing
delays modeled, ring hop latency of 2 cycles
(latency between one cache to the next)

Coherence MESI, On-chip distributed directory similar
to SGI Origin [59], cache-to-cache transfers.
# of banks = # of cores, 8K entries/bank. We
the delay and contention of all transactions to
and from the directory.

L3 Cache 8MB, shared, write-back, 20-cycle, 16-way
Memory 32 banks, bank conflicts and queuing delays

modeled. Row buffer hit: 25ns, Row buffer
miss: 50ns, Row buffer conflict: 75ns

Memory bus 4:1 cpu/bus ratio, 64-bit wide, split-
transaction, pipelined bus

Area-equivalent CMPs where area is equal to
N small cores. We vary N from 1 to 32

SCMP N small cores, One small core runs serial
part, all N cores run parallel part, conven-
tional locking (Max. concurrent threads = N)

ACMP 1 large core and N-4 small cores; large core
runs serial part, 2-way SMT on large core
and small cores run parallel part, conven-
tional locking (Maximum number of concur-
rent threads = N-2)

We briefly describe the benchmarks whose source code is not publicly avail-

able.iplookup is an Internet Protocol (IP) packet routing algorithm [105]. Each

thread maintains a private copy of the routing table, each with a separate lock. On

a lookup, a thread locks and searches its own routing table. On an update, a thread

locks and updates all routing tables. Thus, the updates, although infrequent, cause

substantial serialization and disruption of data locality.

puzzle solves a 15-Puzzle problem [109] using a branch-and-bound algo-

rithm. There are two shared data structures: a work-list implemented as a priority

heap and a memoization table to prevent threads from duplicating computation.

Priority in the work-list is based on the Manhattan distancefrom the final solution.

The work-list (heap) is traversed every iteration, which makes the critical sections

long and highly contended for.

webcache implements a shared software cache used for caching “pages”
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Table 4.2:Simulated workloads
Locks Workload Description Source Input set # of disjoint crit-

ical sections
What is Pro-
tected by CS?

Coarse

ep Random num-
ber generator

NAS
suite [13]

262144 nums. 3 reduction into
global data

is Integer sort NAS
suite [13]

n = 64K 1 buffer of keys to
sort

pagemine Data mining
kernel

MineBench [70] 10Kpages 1 global histogram

puzzle 15-Puzzle
game

[109] 3x3 2 work-heap,
memoization
table

qsort Quicksort OpenMP
SCR [27]

20K elem. 1 global work
stack

sqlite sqlite3 [3]
database en-
gine

SysBench [4] OLTP-simple 5 database tables

tsp Traveling sales-
man prob.

[55] 11 cities 2 termination
cond., solution

Fine

iplookup IP packet rout-
ing

[105] 2.5K queries # of threads routing tables

oltp-1 MySQL
server [2]

SysBench [4] OLTP-simple 20 meta data, tables

oltp-2 MySQL
server [2]

SysBench [4] OLTP-complex 29 meta data, tables

specjbb JAVA business
benchmark

[90] 5 seconds 39 counters, ware-
house data

webcache Cooperative
web cache

[101] 100K queries 33 replacement pol-
icy

of files in a multi-threaded web server. Since, a cache accesscan modify the con-

tents of the cache and the replacement policy, it is encapsulated in a critical section.

One lock is used for every file with at least one page in the cache. Accesses to

different files can occur concurrently.

pagemine is derived from the data mining benchmarkrsearchk [70].

Each thread gathers a local histogram for its data set and adds it to the global his-

togram inside a critical section.

4.4 Evaluation

Recall that accelerating non-parallel kernels using the ACMP makes a trade-

off: it provides increased serial performance at the expense of peak parallel through-

put. Thus, ACMP improves performance if the benefit obtainedby accelerating the

non-parallel portion is more than the loss in throughput dueto replacing four small

cores with a single large core. ACMP’s benefit will be higher for the workloads
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with longer non-parallel portions. ACMP’s cost, the loss ofpeak parallel through-

put, will be most noticeable for workloads which scale well but it will matter less for

workloads with poor scalability. Furthermore, the loss in peak parallel throughput

will be lower as the area budget of the chip increases. Thus, at small area bud-

gets, ACMP is expected to perform best for non-scalable workloads. At high area

budgets, ACMP should be effective for both scalable and non-scalable workloads.

4.4.1 Performance with Number of Threads Set Equal to the Number of
Available Thread Contexts

Figure 4.4 shows the execution time of the ACMP normalized tothe SCMP,

both at an area-budget of 8 cores. The ACMP significantly reduces execution time

in workloads which have significant non-parallel kernels. For example, ACMP im-

proves performance ofis by 2x becauseis spends 84% of its instructions in the

non-parallel portion of the program. Recall that the implementation ofis that we

use is the reference implementation, where minimal programmer effort has been

invested in optimizing the code. Thus, ACMP is providing a much higher perfor-

mance at lower programmer effort compared to the SCMP. Similarly, in programs

ep andqsort, ACMP outperforms the SCMP by accelerating the long serial bot-

tleneck. In contrast, ACMP reduces performance forsqlite, tsp, iplookup,

mysql-1, mysql-2, webcache, andspecjbb. These workloads have scal-

able parallel portions and small serial portions. Most noticeably, ACMP increases

the execution time ofiplookup by almost 2x compared to SCMP. This is because

in iplookup the serial part is practically non-existent (only 0.1% of all dynamic

instructions) and, as we show in Section 5.4.1.2, the parallel code is very scalable

as it uses fine-grain locking. On average, ACMP and SCMP perform similar when

area budget is 8 cores.

Systems area-equivalent to 16 and 32 small cores:As the chip area

increases, ACMP’s cost reduces since the fractional reduction in peak parallel

throughput due to the big core reduces. Furthermore, ACMP’sbenefit increases

since the parallel portion gets faster as it is split across alarger number number of
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Figure 4.4:Normalized execution time of ACMP at an area budget of 8 cores.

cores, thereby making the serial portion a larger fraction of the execution time.

Figure 4.5 shows the execution time of ACMP normalized to an equal-area

SCMP, both with an area budget of 16. ACMP begins to outperform SCMP in some

of the workloads where it performed worse than the SCMP when the area budget

was 8. For example, ACMP increased the execution time ofsqlite at an area

budget 8 but reduces its execution time at an area budget of 16. tsp is the only

workload where ACMP’s benefit reduces when the area budget increases. This is

not because of a property of the ACMP or SCMP but becausetsp takes a different

path through the algorithm when more threads are available.In all other workloads,

having a larger area budget helps the ACMP.
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Figure 4.5:Normalized execution time of ACMP at an area budget of 16 cores.

Figure 4.6 shows the execution time of ACMP, normalized to SCMP, when

the area budget is 32. Increasing the area budget to 32 further increases the ACMP’s

35



benefit. For all workloads, the ACMP either reduces the execution time or does not

impact it by more than 1%. Overall, when area is 32, ACMP reduces execution

time by 19% compared to the equal area SCMP.

We conclude that ACMP, when accelerating only the serial portions, can

significantly improve performance of multi-threaded workload for today’s CMP.

Furthermore, its benefit increases with the number of cores.
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Figure 4.6:Normalized execution time of ACMP at an area budget of 32 cores.

4.4.2 Scalability

Figure 4.7 shows the speedup of SCMP and ACMP over a single small core

as the chip area increases. The performance benefit of ACMP increases as chip area

increases. Note that the peak performance with the ACMP (marked with a filled dot)

is always higher or very similar to that of the SCMP. To explain the results, we split

our workloads into three categories:

(1) Workloads which are non-scalable and have long non-parallel kernels,

e.g.,is, qsort. ACMP consistently improves their performance as they do not

suffer from the loss in throughput due the ACMP but they benefit from the higher

serial thread performance provided by the ACMP.

(2) Workloads which are non-scalable but do not have long non-parallel

kernels, e.g.,ep, pagemine,sqlite, tsp, oltp-1,oltp-2. Such workloads

should remain unaffected by the ACMP as they do not suffer dueto the reduced
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Figure 4.7:Speedup over a single small core. Y-axis is the speedup over asingle small
core and X-axis is the chip area in terms of small cores.

throughput (since they are non-scalable) and also do not benefit from the large cores

due to absence of non-parallel kernels.

(3) Workloads which are scalable with but do not have non-parallel kernels

(e.g.,iplookup, specjbb, webcache). ACMP reduces their performance as

ACMP’s benefit of having accelerated non-parallel kernels is unable to outweigh

ACMP’s cost of having fewer threads. In such workloads, ACMP’s benefit will

increase as the chip area increases.

In summary, ACMP is able to improve (or not impact) performance of most

workloads; and ACMP is expected to improve performance of other workloads in

the future when chip area increases.
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4.4.3 ACMP with Best Number of Threads

Unless otherwise specified, most systems set the number of threads equal to

the number of available thread contexts. This is not always optimal for performance

as having more threads than required can degrade performance [95]. Instead, the

number of threads must be chosen such that the execution timeis minimized. Fig-

ure 4.8 shows the execution time of ACMP normalized to the SCMP where for each

configuration-workload pair, the number of threads is set tothe number of threads

required to minimize the execution time for that configuration-workload pair. We

choose the best threads for each workload-configuration pair by simulating all pos-

sible number of threads and choosing the number of threads atwhich execution

time is minimized. ACMP effectively reduces the execution time on all workloads

and on average the ACMP reduces execution time by 17%.
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Figure 4.8:Normalized execution time of ACMP at Best Threads.
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Chapter 5

ACMP for Accelerating Critical Sections

To overcome the performance bottleneck of critical sections, we propose

Accelerated Critical Sections (ACS)[97]. In ACS, both the critical sections and the

serial part of the program execute on a large core, whereas the remaining parallel

parts execute on the small cores. Executing the critical sections on a large core

reduces the execution latency of the critical section, thereby improving performance

and scalability.

5.1 Architecture

Figure 5.1 shows an example ACS architecture implemented onan ACMP

consisting of one large core (P0) and 12 small cores (P1-P12). ACS executes the

serial part of the program on the large core P0 and parallel part of the program on

the small cores P1-P12. When a small core encounters a critical section, it sends

a “critical section execution” request to P0. P0 buffers this request in a hardware

structure called theCritical Section Request Buffer (CSRB). When P0 completes the

execution of the requested critical section, it sends a “done” signal to the requesting

core. To support such accelerated execution of critical sections, ACS requires sup-

port from the ISA (i.e., new instructions), from the compiler, and from the on-chip

interconnect. We describe these extensions in detail next.

5.1.1 ISA Support

ACS requires two new instructions:CSCALLandCSRET. CSCALL is sim-

ilar to a traditional CALL instruction, except it is used to execute critical section

code on a remote, large processor. When a small core executesa CSCALL in-
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Figure 5.1: ACS on
ACMP with 1 large core
and 12 small cores

On small core:
Retire CSCALL

Release lock at LOCK_ADDR
Send CSDONE to REQ_CORE

Enqueue in CSRB
Wait until HEAD ENTRY in CSRB
Acquire lock at LOCK_ADDR
SP <− STACK_PTR
PC <− TARGET_PC

CSCALL LOCK_ADDR, TARGET_PC LOCK_ADDRCSRET

On large core:

On large core:

On small core:
STACK_PTR <− SP

TARGET_PC, STACK_PTR, CORE_ID
Stall until CSDONE signal received

with Arguments: LOCK_ADDR
Send CSCALL Request to large core

Figure 5.2:Format and operation semantics of new ACS
instructions

struction, it sends a request for the execution of critical section to P0 and waits

until it receives a response. CSRET is similar to a traditional RET instruction, ex-

cept that it is used to return from a critical section executed on a remote processor.

When P0 executes CSRET, it sends a CSDONE signal to the small core so that it

can resume execution. Figure 5.2 shows the semantics of CSCALL and CSRET.

CSCALL takes two arguments: LOCKADDR and TARGETPC. LOCK ADDR

is the memory address of the lock protecting the critical section and TARGETPC

is the address of the first instruction in the critical section. CSRET takes one argu-

ment, LOCKADDR corresponding to the CSCALL.

5.1.2 Compiler/Library Support

The CSCALL and CSRET instructions encapsulate a critical section.

CSCALL is inserted before the “lock acquire” and CSRET is inserted after the

“lock release.” The compiler/library inserts these instructions automatically with-

out requiring any modification to the source code. The compiler must also remove

any register dependencies between the code inside and outside the critical section.

This avoids transferring register values from the small core to the large core and vice

versa before and after the execution of the critical section. To do so, the compiler

performsfunction outlining[111] for every critical section by encapsulating the crit-

ical section in a separate function and ensuring that all input and output parameters

of the function are communicated via the stack. Several OpenMP compilers already
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do function outlining for critical sections [20, 62, 85]. Therefore, compiler modifi-

cations are limited to the insertion of CSCALL and CSRET instructions. Figure 5.3

shows the code of a critical section executed on the baseline(a) and the modified

code executed on ACS (b).

TPC:  
result = CS(A)
PUSH result
CSRET X

POP A

print result
POP result

A = compute();

Small Core

PUSH A
CSCALL X, TPC

A = compute();
LOCK X

Small Core

UNLOCK X

CSCALL Request

send X, TPC,
STACK_PTR, CORE_ID

(b)(a)

CSDONE Response

result = CS(A);

print result

Large Core

Figure 5.3:Source code and its execution: (a) baseline (b) with ACS

5.1.3 Hardware Support

5.1.3.1 Modifications to the small cores

When a CSCALL is executed, the small core sends a CSCALL request

along with the stack pointer (STACKPTR) and its core ID (COREID) to the large

core and stalls, waiting for the CSDONE response. The CSCALLinstruction is

retired when a CSDONE response is received. Such support forexecuting certain

instructions remotely already exists in current architectures: for example, all 8 cores

in Sun Niagara-1 [54] execute floating point (FP) operationson a common remote

FP unit.

5.1.3.2 Critical Section Request Buffer

The Critical Section Request Buffer (CSRB), located at the large core,

buffers the pending CSCALL requests sent by the small cores.Figure 5.4 shows

the structure of the CSRB. Each entry in the CSRB contains a valid bit, the ID

of the requesting core (REQCORE), the parameters of the CSCALL instruction,

LOCK ADDR and TARGETPC, and the stack pointer (STACKPTR) of the re-

questing core. The number of entries in the CSRB is equal to the maximum possible

number of concurrent CSCALL instructions. Because each small core can execute
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at most one CSCALL instruction at any time, the number of entries required is

equal to the number of small cores in the system (Note that thelarge core does not

send CSCALL requests to itself). For a system with 12 small cores, the CSRB has

12 entries, 25-bytes1 each. Thus, the storage overhead of the CSRB is 300 bytes.

The circuit for CSRB includes the logic to insert/remove entries from the

CSRB in FIFO order and a state machine which works as follows.When a CSCALL

request is received, the CSRB enqueues the incoming request. When the large

core is idle, the CSRB supplies the oldest CSCALL request in the buffer to the

core. When the large core completes the critical section, the CSRB dequeues the

corresponding entry and sends a CSDONE signal to the requesting core. Due to the

simplicity of the logic, reading/writing from the buffer inFIFO takes a single cycle.

The CSRB has a single read/write port. Two entities can contend for this

port: the large core (to dequeue a request) or the interconnect (to insert a CSCALL

in the CSRB). When there is contention, we always give priority to the large core

because delaying the large core extends critical section execution but delaying the

CSCALL insertion has no performance impact as the CSCALL request would have

waited in the CSRB anyways. Note that this wastes a cycle if the CSRB is empty

and the large core is idle. However, wasting a cycle in this case does not degrade

performance because if the CSRB is empty, there is low contention for the critical

sections and hence critical section performance is less critical. Further note that

the likelihood that both an incoming CSCALL request and the large core attempt

to access the CSRB concurrently is extremely low because accesses to CSRB only

happen at the start and finish of critical sections, which areinfrequent events (usu-

ally hundreds of cycles apart).

1Each CSRB entry has one valid bit, 4-bit REQCORE, 8 bytes each for LOCKADDR, TAR-
GET PC, and STACKPTR.
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HEAD ENTRY

CSCALL Requests from small cores

Figure 5.4:Critical Section Request Buffer (CSRB)

5.1.3.3 Modifications to the large core

When the large core receives an entry from the CSRB, it loads its

stack pointer register with STACKPTR and acquires the lock corresponding to

LOCK ADDR (as specified by program code). It then redirects the program counter

to TARGET PC and starts executing the critical section. When the core retires the

CSRET instruction, it releases the lock corresponding to LOCK ADDR and re-

moves the HEAD ENTRY from the CSRB. Thus, ACS executes a critical section

similar to a conventional processor by acquiring the lock, executing the instructions,

and releasing the lock. However, it does so at a higher performance because of the

aggressive configuration of the large core.

5.1.3.4 Interconnect Extensions

ACS introduces two new transactions on the on-chip interconnect: CSCALL

and CSDONE. The interconnect transfers the CSCALL request (along with its argu-

ments) from the smaller core to the CSRB and the CSDONE signalfrom the CSRB

to the smaller core. Similar transactions already exist in the on-chip interconnects

of current processors. For example, Sun Niagara-1 [54] usessuch transactions to

interface cores with the shared floating point unit.

5.1.4 Operating System Support

ACS requires modest support from the operating system (OS).When exe-

cuting on an ACS architecture, the OS allocates the large core to a single appli-

cation and does not schedule any threads onto it. Additionally, the OS sets the

control registers of the large core to the same values as the small cores executing

the application. As a result, the program context (e.g. processor status registers,
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and TLB entries) of the application remains the coherent in all cores, including the

large core. Note that ACS does not require any special modifications because such

support already exists in current CMPs to execute parallel applications [46].

5.1.5 Reducing False Serialization in ACS

Critical sections that are protected by different locks canbe executed con-

currently in a conventional CMP. However, in ACS, their execution gets serialized

because they are all executed sequentially on the single large core. This “false

serialization” reduces concurrency and degrades performance. We reduce false

serialization using two techniques. First, we make the large core capable of ex-

ecuting multiple critical sections concurrently2, using simultaneous multithread-

ing (SMT) [104]. Each SMT context can execute CSRB entries with different

LOCK ADDR. Second, to reduce false serialization in workloads where a large

number of critical sections execute concurrently, we proposeSelective Acceleration

of Critical Sections (SEL). The key idea of SEL is to estimate the occurrence of

false serialization and adaptively decide whether or not toexecute a critical section

on the large core. If SEL estimates false serialization to behigh, the critical section

is executed locally on the small core, which reduces contention on the large core.

Implementing SEL requires two modifications: 1) a bit vectorat each small

core that contains the ACSDISABLE bits and 2) logic to estimate false serial-

ization. For the purpose of making our explanation simple, we assume that the

ACS DISABLE bit vector contains one bit per critical section andis indexed us-

ing the LOCKADDR (we later show how a practical design can use a very small

16-bit vector). When the smaller core encounters a CSCALL, it first checks the

corresponding ACSDISABLE bit. If the bit is 0 (i.e., false serialization is low), a

CSCALL request is sent to the large core. Otherwise, the CSCALL and the critical

section is executed locally.

2Another possible solution to reduce false serialization isto add additional large cores and dis-
tribute the critical sections across these cores. However,further investigation of this solution is an
interesting research direction, but is beyond the scope of this thesis.
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False serialization is estimated at the large core by augmenting the CSRB

with a table of saturating counters, which track the false serialization incurred by

each critical section. We quantify false serialization by counting the number of

critical sections present in the CSRB for which the LOCKADDR is different from

the LOCK ADDR of the incoming request. If this count is greater than 1 (i.e. if

there are at least two independent critical sections in the CSRB), the estimation

logic adds the count to the saturating counter corresponding to the LOCKADDR

of the incoming request. If the count is 1 (i.e. if there is exactly one critical section

in the CSRB), the corresponding saturating counter is decremented. If the counter

reaches its maximum value, the ACSDISABLE bit corresponding to that lock is

set by sending a message to all small cores. Since ACS is disabled infrequently,

the overhead of this communication is negligible. To adapt to phase changes, we

reset the ACSDISABLE bits for all locks and halve the value of the saturating

counters periodically (every 10 million cycles). We reducethe hardware overhead

of SEL by hashing lock address into a small number of sets. Ourimplementation

of SEL hashes lock addresses into 16 sets and uses 6-bit counters. The total storage

overhead of SEL is 36 bytes: 16 counters of 6-bits each and 16 ACS DISABLE bits

for each of the 12 small cores.

5.2 Performance Trade-offs in ACS

There are three key performance trade-offs in ACS that determine overall

system performance:

1. Faster critical sections vs. Fewer threads: ACS executes selected critical

sections on a large core, the area dedicated to which could otherwise be used for

executing additional threads. ACS could improve performance if the performance

gained by accelerating critical sections (and serial program portions) outweighs the

loss of throughput due to the unavailability of additional threads.

ACS’s performance improvement becomes more likely when thenumber

of cores on the chip increases. There are two reasons. First,the marginal loss in
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parallel throughput due to the large core becomes relatively small (for example, if

the large core replaces four small cores, then it reduces 50%of the smaller cores

in a 8-core system but only 12.5% of cores in a 32-core system)Second, more

cores allow concurrent execution of more threads, which increases contention by

increasing the probability of each thread waiting to enter the critical section [83].

When contention is high, faster execution of a critical section reduces not only

critical section execution time but also the contending threads’ waiting time.

2. CSCALL/CSDONE signals vs. Lock acquire/release: To execute a crit-

ical section, ACS requires the communication of CSCALL and CSDONE transac-

tions between a small core and a large core. This communication over the on-chip

interconnect is an overhead of ACS, which the conventional lock acquire/release

operations do not incur. On the other hand, a lock acquire operation often incurs

cache misses [76] because the lock needs to be transferred from one cache to an-

other. Each cache-to-cache transfer requires two transactions on the on-chip inter-

connect: a request for the cache line and the response, whichhas similar latency

to the CSCALL and CSDONE transactions. ACS can reduce such cache-to-cache

transfers by keeping the lock at the large core, which can compensate for the over-

head of CSCALL and CSDONE. ACS actually has an advantage in that the latency

of CSCALL and CSDONE can be overlapped with the execution of another instance

of the same critical section. On the other hand, in conventional locking, a lock can

only be acquired after the critical section has been completed, whichalwaysadds a

delay before critical section execution.

3. Cache misses due to private data vs. cache misses due to shared data:

In ACS, private data that is referenced in the critical section needs to be transferred

from the cache of the small core to the cache of the large core.Conventional locking

does not incur this cache-to-cache transfer overhead because critical sections are

executed at the local core and private data is often present in the local cache. On

the other hand, conventional systems incur overheads in transferring shared data: in

such systems, shared data “ping-pongs” between caches as different threads execute

the critical section and reference the shared data. ACS eliminates the transfers of
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shared data by keeping it at the large core,3 which can offset the misses it causes

to transfer private data into the large core. In fact, ACS candecrease cache misses

if the critical section accesses more shared data than private data. Note that ACS

can improve performance even if there are equal or more accesses to private data

than shared data because the large core can still 1) improve performance of other

instructions and 2) hide the latency of some cache misses using latency tolerance

techniques like out-of-order execution.

In summary, ACS can improve overall performance if its performance ben-

efits (faster critical section execution, improved lock locality, and improved shared

data locality) outweigh its overheads (reduced parallel throughput, CSCALL and

CSDONE overhead, and reduced private data locality).

5.3 Evaluation Methodology

Table 5.1 shows the configuration of the simulated CMPs, using our in-

house cycle-accurate x86 simulator. We evaluate three different CMP architec-

tures: a symmetric CMP (SCMP) consisting of all small cores;an asymmetric CMP

(ACMP) with one large core with 2-way SMT and remaining smallcores; and an

ACMP augmented with support for the ACS mechanism (ACS). Unless specified

otherwise, all comparisons are done at equal area budget. Wespecify the area bud-

get in terms of the number of small cores. Unless otherwise stated, the number of

threads for each application is set equal to the number of threads that minimizes

the execution time for the particular configuration; e.g. ifthe best performance of

an application is obtained on an 8-core SCMP when it runs with3 threads, then

we report the performance with 3 threads. In both ACMP and SCMP, conventional

lock acquire/release operations are implemented using theMonitor/Mwait instruc-

tions, part of the SSE3 extensions to the x86 ISA [45]. In ACS,lock acquire/release

3By keeping all shared data in the large core’s cache, ACS reduces the cache space available to
shared data compared to conventional locking (where shareddata can reside in any on-chip cache).
This can increase cache misses. However, we find that such cache misses are rare and do not degrade
performance because the private cache of the large core is large enough.
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instructions are replaced with CSCALL/CSRET instructions.

Small
core

2-wide In-order, 2GHz, 5-stage. L1: 32KB write-through.
L2: 256KB write-back, 8-way, 6-cycle access

Large
core

4-wide Out-of-order, 2GHz, 2-way SMT, 128-entry ROB,
12-stage, L1: 32KB write-through. L2: 1-MB write-back,
16-way, 8-cycle

Interconnect64-bit wide bi-directional ring, all queuing delays mod-
eled, ring hop latency of 2 cycles (latency between one
cache to the next)

Coherence MESI, On-chip distributed directory similar to SGI Ori-
gin [59], cache-to-cache transfers. # of banks = # of cores,
8K entries/bank

L3 Cache 8MB, shared, write-back, 20-cycle, 16-way
Memory 32 banks, bank conflicts and queuing delays modeled.

Row buffer hit: 25ns, Row buffer miss: 50ns, Row buffer
conflict: 75ns

Memory
bus

4:1 cpu/bus ratio, 64-bit wide, split-transaction, pipelined
bus.

Area-equivalent CMPs. Area = N small cores. N varies from 1 to32

SCMP N small cores, One small core runs serial part, all N cores
run parallel part, conventional locking (Max. concurrent
threads = N)

ACMP 1 large core and N-4 small cores; large core runs serial
part, 2-way SMT on large core and small cores run paral-
lel part, conventional locking (Maximum number of con-
current threads = N-2)

ACS 1 large core and N-4 small cores; (N-4)-entry CSRB on
the large core, large core runs the serial part, small cores
run the parallel part, 2-way SMT on large core runs critical
sections using ACS (Max. concurrent threads = N-4)

Table 5.1:Configuration of the simulated machines

5.3.1 Workloads

Our main evaluation focuses on 12 critical-section-intensive workloads

shown in Table 5.2. We define a workload to be critical-section-intensive if at least

1% of the instructions in the parallel portion are executed within critical sections.

We divide these workloads into two categories: workloads with coarse-grained

locking and workloads with fine-grained locking. We classify a workload as us-

ing coarse-grained locking if it has at most 10 critical sections. Based on this

classification, 7 out of 12 workloads use coarse-grain locking and the remaining

5 use fine-grain locking. All workloads were simulated to completion. Refer to

Section 4.3 for a detailed description of simulated workloads.

In the ensuing discussion, we refer to Table 5.3, which showsthe character-
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Locks Workload Description Source Input set

Coarse

ep Random number generator [13] 262144 nums.
is Integer sort [13] n = 64K

pagemine Data mining kernel [70] 10Kpages
puzzle 15-Puzzle game [109] 3x3
qsort Quicksort [27] 20K elem.
sqlite sqlite3 [3] database engine [4] OLTP-simple
tsp Traveling salesman prob. [55] 11 cities

Fine

iplookup IP packet routing [105] 2.5K queries
oltp-1 MySQL server [2] [4] OLTP-simple
oltp-2 MySQL server [2] [4] OLTP-complex

specjbb JAVA business benchmark [90] 5 seconds
webcache Cooperative web cache [101] 100K queries

Table 5.2:Simulated workloads

istics of each application, to provide insight into the performance results.

Table 5.3:Benchmark Characteristics. Shared/Private is the ratio ofshareddata (cache
lines that are transferred from other cores) toprivatedata (cache lines that hit in the private
cache) accessed inside a critical section. Contention is the average number of threads wait-
ing for critical sections when the workload is executed with4, 8, 16, and 32 threads on the
SCMP.

Workload % of Non- % of parallel instr. # of disjoint Avg. instr. in Shared/ Contention
parallel instr. in critical sections critical sections critical section Private 4 8 16 32

ep 13.3 14.6 3 620618.1 1.0 1.4 1.8 4.0 8.2
is 84.6 8.3 1 9975.0 1.1 2.3 4.3 8.1 16.4

pagemine 0.4 5.7 1 531.0 1.7 2.3 4.3 8.2 15.9
puzzle 2.4 69.2 2 926.9 1.1 2.2 4.3 8.3 16.1
qsort 28.5 16.0 1 127.3 0.7 1.1 3.0 9.6 25.6
sqlite 0.2 17.0 5 933.1 2.4 1.4 2.2 3.7 6.4
tsp 0.9 4.3 2 29.5 0.4 1.2 1.6 2.0 3.6

iplookup 0.1 8.0 4 683.1 0.6 1.2 1.3 1.5 1.9
oltp-1 2.3 13.3 20 277.6 0.8 1.2 1.2 1.5 2.2
oltp-2 1.1 12.1 29 309.6 0.9 1.1 1.2 1.4 1.6

specjbb 1.2 0.3 39 1002.8 0.5 1.0 1.0 1.0 1.2
webcache 3.5 94.7 33 2257.0 1.1 1.1 1.1 1.1 1.4

5.4 Evaluation

We make three comparisons between ACMP, SCMP, and ACS. First, we

compare their performance on systems where the number of threads is set equal to

the optimal number of threads for each application under a given area constraint.

Second, we compare their performance assuming the number ofthreads is set equal

to the number of cores in the system, a common practice employed in many existing

systems. Third, we analyze the impact of ACS on application scalability i.e., the

number of threads over which performance does not increase.
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5.4.1 Performance with the Optimal Number of Threads

Systems sometimes use profile or run-time information to choose the num-

ber of threads that minimizes execution time [95]. We first analyze ACS with re-

spect to ACMP and SCMP when the optimal number of threads are used for each

application on each CMP configuration.4 We found that doing so provides the best

baseline performance for ACMP and SCMP, and a performance comparison results

in the lowest performance improvement of ACS. Hence, this performance compar-

ison penalizes ACS (as our evaluations in Section 5.4.2 withthe same number of

threads as the number of thread contexts will show). We show this performance

comparison separately on workloads with coarse-grained locks and those with fine-

grained locks.

5.4.1.1 Workloads with Coarse-Grained Locks

Figure 5.5 shows the execution time of each application on SCMP and ACS

normalized to ACMP for three different area budgets: 8, 16, and 32. Recall that

when area budget is equal to N, SCMP, ACMP, and ACS can executeup to N, N-2,

and N-4 parallel threads respectively.

Systems area-equivalent to 8 small cores:When area budget equals 8,

ACMP significantly outperforms SCMP for workloads with highpercentage of in-

structions in the serial part (85% inis and 29% inqsort as Table 5.3 shows).

In puzzle, even though the serial part is small, ACMP improves performance be-

cause it improves cache locality of shared data by executingtwo of the six threads

on the large core, thereby reducing cache-to-cache transfers of shared data. SCMP

outperforms ACMP forsqlite andtsp because these applications spend a very

small fraction of their instructions in the serial part and sacrificing two threads for

improved serial performance is not a good trade-off. Since ACS devotes the two

4We determine the optimal number of threads for an application by simulating all possible num-
ber of threads and using the one that minimizes execution time. The interested reader can obtain
the optimal number of threads for each benchmark and each configuration by examining the data in
Figure 6.11. Due to space constraints, we do not explicitly quote these thread counts.
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(a) Area budget=8 small cores
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(b) Area budget=16 small cores
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(c) Area budget=32 small cores

Figure 5.5:Execution time of workloads with coarse-grained locking onACS and SCMP
normalized to ACMP

SMT contexts on the large core to accelerate critical sections, it can execute only

four parallel threads (compared to 6 threads of ACMP and 8 threads of SCMP). De-

spite this disadvantage, ACS reduces the average executiontime by 22% compared

to SCMP and by 11% compared to ACMP. ACS improves performanceof five out

of seven workloads compared to ACMP. These five workloads have two common

characteristics: 1) they have high contention for the critical sections, 2) they access

more shared data than private data in critical sections. Dueto these characteristics,

ACS reduces the serialization caused by critical sections and improves locality of

shared data.

Why does ACS reduce performance inqsort andtsp? The critical sec-

tion in qsort protects a stack that contains indices of the array to be sorted. The

insert operation pushes two indices (private data) onto thestack by changing the

stack pointer (shared data). Since indices are larger than the stack pointer, there are

51



more accesses to private data than shared data. Furthermore, contention for critical

sections is low. Therefore,qsort can take advantage of additional threads in its

parallel portion and trading off several threads for fasterexecution of critical sec-

tions lowers performance. The dominant critical section intsp protects a FIFO

queue where an insert operation reads the node to be inserted(private data) and

adds it to the queue by changing only the head pointer (shareddata). Since private

data is larger than shared data, ACS reduces cache locality.In addition, contention

is low and the workload can effectively use additional threads.

Systems area-equivalent to 16 and 32 small cores:Recall that as the area

budget increases, the overhead of ACS decreases. This is dueto two reasons. First,

the parallel throughput reduction caused by devoting a large core to execute crit-

ical sections becomes smaller, as explained in Section 5.2.Second, more threads

increases contention for critical sections because it increases the probability that

each thread is waiting to enter the critical section. When the area budget is 16,

ACS improves performance by 32% compared to SCMP and by 22% compared to

ACMP. When the area budget is 32, ACS improves performance by42% compared

to SCMP and by 31% compared to ACMP. In fact, the two benchmarks (qsort and

tsp) that lose performance with ACS when the area budget is 8 experience signif-

icant performance gains with ACS over both ACMP and SCMP for an area budget

of 32. For example, ACS with an area budget of 32 provides 17% and 22% perfor-

mance improvement forqsort andtsp respectively over an equal-area ACMP.

With an area budget of at least 16, ACS improves the performance ofall applica-

tions with coarse-grained locks. We conclude that ACS is an effective approach

for workloads with coarse-grained locking even at small area budgets. However,

ACS becomes even more attractive as the area budget in terms of number of cores

increases.

5.4.1.2 Workloads with Fine-Grained Locks

Figure 5.6 shows the execution time of workloads with fine-grained lock-

ing for three different area budgets: 8, 16, and 32. Comparedto coarse-grained
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locking, fine-grained locking reduces contention for critical sections and hence the

serialization caused by them. As a result, critical sectioncontention is negligible at

low thread counts, and the workloads can take significant advantage of additional

threads executed in the parallel section. When the area budget is 8, SCMP provides

the highest performance (as shown in Figure 5.6(a)) for all workloads because it

can execute the most number of threads in parallel. Since critical section con-

tention is very low, ACS essentially wastes half of the area budget by dedicating it

to a large core because it is unable to use the large core efficiently. Therefore, ACS

increases execution time compared to ACMP for all workloadsexceptiplookup.

In iplookup, ACS reduces execution time by 20% compared to ACMP but in-

creases it by 37% compared to SCMP. The critical sections iniplookup access

more private data than shared data, which reduces the benefitof ACS. Hence, the

faster critical section execution benefit of ACS is able to overcome the loss of 2

threads (ACMP) but is unable to provide enough improvement to overcome the loss

of 4 threads (SCMP).

As the area budget increases, ACS starts providing performance improve-

ment over SCMP and ACMP because the loss of parallel throughput due to the

large core reduces. With an area budget of 16, ACS performs similarly to SCMP

(within 2%) and outperforms ACMP (by 6%) on average. With an area budget of

32, ACS’s performance improvement is the highest: 17% over SCMP and 13%

over ACMP; in fact, ACS outperforms both SCMP and ACMP on all workloads.

Hence, we conclude that ACS provides the best performance compared to the al-

ternative chip organizations, even for critical-section-intensive workloads that use

fine-grained locking.

Depending on the scalability of the workload and the amount of contention

for critical sections, the area budget required for ACS to provide performance im-

provement is different. Table 5.4 shows the area budget required for ACS to out-

perform an equivalent-area ACMP and SCMP. In general, the area budget ACS re-

quires to outperform SCMP is higher than the area budget it requires to outperform

ACMP. However,webcache andqsort have a high percentage of serial instruc-
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(a) Area budget=8 small cores
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(b) Area budget=16 small cores
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(c) Area budget=32 small cores

Figure 5.6: Execution time of workloads with fine-grained locking on ACSand SCMP
normalized to ACMP

tions; therefore ACMP becomes significantly more effectivethan SCMP for large

area budgets. For all workloads with fine-grained locking, the area budget ACS re-

quires to outperform an area-equivalent SCMP or ACMP is lessthan or equal to 24

small cores. Since chips with 8 and 16 small cores are alreadyin the market [54],

and chips with 32 small cores are being built [86, 103], we believe ACS can be

a feasible and effective option to improve the performance of workloads that use

fine-grained locking in near-future multi-core processors.
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ACMP 6 6 6 4 12 6 10 6 14 10 18 24
SCMP 6 4 6 4 8 6 18 14 14 16 18 14

Table 5.4: Area budget (in terms of small cores) required for ACS to outperform an
equivalent-area ACMP and SCMP
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Summary: Based on the observations and analyses we made above for workloads

with coarse-grained and fine-grained locks, we conclude that ACS provides signifi-

cantly higher performance than both SCMP and ACMP for both types of workloads,

except for workloads with fine-grained locks when the area budget is low. ACS’s

performance benefit increases as the area budget increases.In future systems with a

large number of cores, ACS is likely to provide the best system organization among

the three choices we examined. For example, with an area budget of 32 small cores,

ACS outperforms SCMP by 34% and ACMP by 23% averaged across all work-

loads, including both fine-grained and coarse-grained locks.

5.4.2 Performance with Number of Threads Set Equal to the Number of
Available Thread Contexts

In the previous section, we used the optimal number of threads for each

application-configuration pair. When an estimate of the optimal number of threads

is not available, many current systems use as many threads asthere are available

thread contexts [47, 73]. We now evaluate ACS assuming the number of threads is

set equal to the number of available contexts. Figure 6.11 shows the speedup curves

of ACMP, SCMP, and ACS over one small core as the area budget isvaried from 1

to 32. The curves for ACS and ACMP start at 4 because they require at least one

large core which is area-equivalent to 4 small cores.

Number of threads No. of max. thread contexts Optimal
Area Budget 8 16 32 8 16 32

SCMP 0.93 1.04 1.18 0.94 1.05 1.15
ACS 0.97 0.77 0.64 0.96 0.83 0.77

Table 5.5:Average execution time normalized to area-equivalent ACMP

Table 5.5 summarizes the data in Figure 6.11 by showing the average ex-

ecution time of ACS and SCMP normalized to ACMP for area budgets of 8, 16,

and 32. For comparison, we also show the data with optimal number of threads.

With an area budget of 8, ACS outperforms both SCMP and ACMP on5 out of

12 benchmarks. ACS degrades average execution time compared to SCMP by 3%

and outperforms ACMP by 3%. When the area budget is doubled to16, ACS out-
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Figure 5.7:Speedup over a single small core
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performs both SCMP and ACMP on 7 out of 12 benchmarks, reducing average

execution time by 26% and 23%, respectively. With an area budget of 32, ACS out-

performs both SCMP and ACMP on all benchmarks, reducing average execution

time by 46% and 36%, respectively. Note that this performance improvement is

significantly higher than the performance improvement ACS provides when the op-

timal number of threads is chosen for each configuration (34%over SCMP and 23%

over ACMP). Also note that when the area budget increases, ACS starts to consis-

tently outperform both SCMP and ACMP. This is because ACS tolerates contention

among threads better than SCMP and ACMP. Table 5.6 compares the contention of

SCMP, ACMP, and ACS at an area budget of 32. Forep, on average more than 8

threads wait for each critical section in both SCMP and ACMP.ACS reduces the

waiting threads to less than 2, which improves performance by 44% (at an area

budget of 32).
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SCMP 8.2 16.4 15.9 16.1 25.6 6.4 3.6 1.9 2.2 1.6 1.2 1.4
ACMP 8.1 14.9 15.5 16.1 24.0 6.2 3.7 1.9 1.9 1.5 1.2 1.4
ACS 1.5 2.0 2.0 2.5 1.9 1.4 3.5 1.8 1.4 1.3 1.0 1.2

Table 5.6: Contention (see Table 3 for definition) at an area budget of 32(Number of
threads set equal to the number of thread contexts)

We conclude that, even if a developer is unable to determine the optimal

number of threads for a given application-configuration pair and chooses to set the

number of threads at a point beyond the saturation point, ACSprovides significantly

higher performance than both ACMP and SCMP. In fact, ACS’s performance ben-

efit is even higher in systems where the number of threads is set equal to number

of thread contexts because ACS is able to tolerate contention for critical sections

significantly better than ACMP or SCMP.

5.4.3 Application Scalability

We examine the effect of ACS on the number of threads requiredto mini-

mize the execution time. Table 5.7 shows number of threads that provides the best
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performance for each application using ACMP, SCMP, and ACS.The best num-

ber of threads were chosen by executing each application with all possible threads

from 1 to 32. For 7 of the 12 applications (is, pagemine, puzzle, qsort,

sqlite, oltp-1, andoltp-2) ACS improves scalability: it increases the num-

ber of threads at which the execution time of the applicationis minimized. This

is because ACS reduces contention due to critical sections as explained in Sec-

tion 5.4.2 and Table 5.6. For the remaining applications, ACS does not change

scalability.5 We conclude that if thread contexts are available on the chip, ACS uses

them more effectively compared to ACMP and SCMP.
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SCMP 4 8 8 8 16 8 32 24 16 16 32 32
ACMP 4 8 8 8 16 8 32 24 16 16 32 32
ACS 4 12 12 32 32 32 32 24 32 24 32 32

Table 5.7:Best number of threads for each configuration

5.4.4 Performance of ACS on Critical Section Non-IntensiveBenchmarks

We also evaluated all 16 benchmarks from the NAS [13] and SPLASH [110]

suites that are not critical-section-intensive. These benchmarks contain regular

data-parallel loops and execute critical sections infrequently (less than 1% of the

executed instructions). Detailed results of this analysisare presented in [94]. We

find that ACS does not significantly improve or degrade the performance of these

applications. When area budget is 32, ACS provides a modest 1% performance im-

provement over ACMP and 2% performance reduction compared to SCMP. As area

budget increases, ACS performs similar to (within 1% of) SCMP. We conclude that

ACS will not significantly affect the performance of critical section non-intensive

workloads in future systems with large number of cores.

5Note that Figure 6.11 provides more detailed information onACS’s effect on the scalability
of each application. However, unlike Table 7, the data shownon the x-axis is area budget and not
number of threads.
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5.5 Sensitivity of ACS to System Configuration

5.5.1 Effect of SEL

ACS uses the SEL mechanism (Section 5.1.5) to selectively accelerate crit-

ical sections to reduce false serialization of critical sections. We evaluate the per-

formance impact of SEL. Since SEL does not affect the performance of workloads

that have negligible false serialization, we focus our evaluation on the three work-

loads that experience false serialization:puzzle, iplookup, andwebcache.

Figure 5.8 shows the normalized execution time of ACS with and without SEL for

the three workloads when the area budget is 32. Foriplookup andwebcache,

which has the highest amount of false serialization, using SEL improves perfor-

mance by 11% and 5% respectively over the baseline. The performance improve-

ment is due to acceleration ofsomecritical sections which SEL allows to be sent

to the large core because they do not experience false serialization. Inwebcache,

multiple threads access pages of different files stored in a shared cache. Pages from

each file are protected by a different lock. In a conventionalsystem, these critical

sections can execute in parallel, but ACS without SEL serializes the execution of

these critical sections by forcing them to execute on a single large core. SEL dis-

ables the acceleration of 17 out of the 33 locks, which eliminates false serialization

and reduces pressure on the large core. Iniplookup, multiple copies of the rout-

ing table (one for each thread) are protected by disjoint critical sections that get

serialized without SEL.puzzle contains two critical sections protecting a heap

object (PQ) and a memoization table. Accesses to PQ are more frequent than to the

memoization table, which results in false serialization for the memoization table.

SEL detects this serialization and disables the acceleration of the critical section

for the memoization table. On average, across all 12 workloads, ACS with SEL

outperforms ACS without SEL by 15%. We conclude that SEL can successfully

improve the performance benefit of ACS by eliminating false serialization without

affecting the performance of workloads that do not experience false serialization.
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Figure 5.8:Impact of SEL.

5.5.2 Effect of using SMT on the Large Core

We have shown that ACS significantly improves performance over SCMP

and ACMP when the large core provides support for SMT. The added SMT context

provides ACS with the opportunity to concurrently execute critical sections that are

protected by different locks on the high performance core. When the large core

does not support SMT, contention for the large core can increase and lead to false

serialization. Since SMT is not a requirement for ACS, we evaluate ACS on an

ACMP where the large core does not support SMT and executes only one thread.

Figure 5.9 shows the execution time of ACS without SMT normalized to ACMP

without SMT when the area budget is 32. On average, ACS without SMT reduces

execution time by 22% whereas ACS with SMT by 26%. Thus, SMT provides 4%

performance benefit by reducing false serialization of critical sections.
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Figure 5.9:Impact of SMT.
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5.5.3 ACS on Symmetric CMPs: Effect of Only Data Locality

Part of the performance benefit of ACS is due to improved locality of shared

data and locks. This benefit can be realized even in the absence of a large core. A

variant of ACS can be implemented on a symmetric CMP, which wecall symmACS.

In symmACS, one of the small cores is dedicated to executing critical sections.

This core is augmented with a CSRB and can execute the CSCALL requests and

CSRET instructions. Figure 5.10 shows the execution time ofsymmACS and ACS

normalized to SCMP when area budget is 32. SymmACS reduces execution time

by more than 5% compared to SCMP inis, puzzle, sqlite, andiplookup

because more shared data is accessed than private data in critical sections.6 In ep,

pagemine, qsort, andtsp, the overhead of CSCALL/CSRET messages and

transferring private data offsets the shared data/lock locality advantage of ACS.

Thus, overall execution time increases. On average, symmACS reduces execution

time by only 4% which is much lower than the 34% performance benefit of ACS.

Since the performance gain due to improved locality alone isrelatively small, we

conclude that most of the performance improvement of ACS comes from accelerat-

ing critical section execution using the large core.
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Figure 5.10:ACS on symmetric CMP.

6Note that these numbers do not correspond to those shown in Table 5.3 on page 49. The
Shared/Private ratio reported in Table 5.3 is collected by executing the workloads with 4 threads.
On the other hand, in this experiment, the workloads were runwith the optimal number of threads
for each configuration.
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5.5.4 Interaction of ACS with Hardware Prefetching

Part of the performance benefit of ACS comes from improving shared

data/lock locality, which can also be partially improved bydata prefetching [81,

102]. To study the effect of prefetching, we augment each core with a L2 stream

prefetcher [99] (32 streams, up to 16 lines ahead).
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Figure 5.11:Impact of prefetching

Figure 5.11 shows the execution time of ACMP with a prefetcher, ACS

(with and without a prefetcher), all normalized to an ACMP without a prefetcher

(area budget is 32). On all benchmarks, prefetching improves the performance

of both ACMP and ACS, and ACS with a prefetcher outperforms ACMP with

a prefetcher. However, inpuzzle, qsort, tsp, andoltp-2, ACMP bene-

fits more from prefetching than ACS because these workloads contain shared data

structures that lend themselves to prefetching. For example, in tsp, one of the

critical sections protects an array. All elements of the array are read, and often up-

dated, inside the critical section which leads to cache misses in ACMP. The stream

prefetcher successfully prefetches this array, which reduces the execution time of

the critical sections. As a result, ACMP with a prefetcher is28% faster. Because

ACS already reduces the misses for the array by keeping it at the large core, the

improvement from prefetching is modest compared to ACMP (4%). On average,

ACS with prefetching reduces execution time by 18% comparedto ACMP with

prefetching and 10% compared to ACS without prefetching. Thus, ACS interacts

positively with a stream prefetcher and both schemes can be employed together.
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Chapter 6

ACMP for Accelerating the Limiter Stage

The overall throughput of a kernel with pipeline parallelism is dictated by

the pipeline stage which has the lowest throughput. We call this the LIMITER

stage. It is desirable to run the LIMITER as fast as possible.The large core in the

ACMP can be used to accelerate the execution of the LIMITER, thereby increasing

its throughput. To this end, we proposeAccelerated Limiter Stage (ALS). Similar

to the Accelerating Critical Sections (ACS) mechanism, ALSalso runs the non-

parallel part of the program on the large core.

6.1 Key Insights

We develop two key insights. First, the large core is less power-efficient

than the small cores and thus it should never be assigned to the non-LIMITER,

non-critical, stages as it will waste power but not improve performance. Second,

the LIMITER stage –scalable or non-scalable– can always benefit from running at

the large core. For a scalable stage, having the large core increases the throughput

fractionally. For example, let us assume an ACMP with a single large core. Suppose

that each small core has an IPC of 1 and the large core’s IPC is 2. Let us consider

a LIMITER which scales up to 5 cores. With 5 small cores, it will be running at an

aggregate IPC of 5 (5×1). Whereas, with four small cores and one large core, it will

run at an aggregate IPC of 6 (4 × 1 + 2). Thus, a 20% increase in throughput. For

non-scalable stages, having the large cores increases the LIMITER’s throughput by

as much as the speedup of the large core over a small core. For example, ACS can

increase the throughput of a non-scalable LIMITER by up to 2x.
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6.2 Overview

Implementing ALS on an ACMP does not require any hardware support and

only requires modifications to the run-time library. We implement ALS in two steps.

First, we maximize the performance of the pipeline workloadon the small cores of

the ACMP by choosing the best core-to-stage allocation. Once performance has

been maximized on the small cores, we assign the large core tothe stage with the

lowest throughput.

To choose the best core-to-stage allocation, we proposeFeedback-Driven

Pipelining (FDP). FDP identifies the limiter by choosing a core-to-stage allocation

at run-time such that execution time is minimized. Section 6.4 describes the support

required to accelerate the limiter stage using ACMP.

6.3 Feedback-Driven Pipelining: Optimizing the pipeline

Choosing the core-to-stage allocation which maximizes performance is a

well-known challenge. The programmer is often assigned thetask of choosing the

best core-to-stage allocation. This is infeasible as it burdens the programmers and

also leads to sub-optimal performance in case the LIMITER stage changes at run-

time due a variation in input set or machine configuration. Tominimize the effect of

this problem, we propose an automated mechanism to choose the LIMITER stage.

We call it Feedback-Driven Pipelining (FDP). By choosing the best stage-to-core

allocation at run-time, FDP saves programmer effort, is more robust to changes

in input set and machine configuration, and saves power by combining the stages

which are much faster than the LIMITER on a single core.

6.3.1 Overview

FDP uses runtime information to choose core-to-stage allocation for best

overall performance and power-efficiency. Figure 6.1 showsan overview of the

FDP framework.
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Try to increase throughput
of LIMITER stage

If not possible

Try to combine two stages
with lowest utilization
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ENFORCE

ALLOCATION

OPTIMIZE POWEROPTIMIZE PERF

Mode=?

INIT

Mode=Optimize−Perf

Mode = Optimize−Power

If already tried or not possible
Mode = Optimize−Perf

Figure 6.1: Overview of FDP.

FDP operates in two modes: one that optimizes performance

(Optimize-Perf) and other that optimizes power (Optimize-Power). Ini-

tially, each stage in the pipeline is allocated one small core. FDP first tries to achieve

the highest performance, and then it tries to optimize power. FDP is an iterative

technique that contains three phases: training, re-allocation of cores to stages, and

enforcement of the new allocation. The training phase gathers runtime information

for each stage of the pipeline, and is helpful in determiningthe throughput and core

utilization of each stage. Based on this information, the performance-optimization

mode identifies the LIMITER stage and tries to increase its throughput by allocating

more cores to it. When it can no longer improve performance (as there may be no

spare cores or adding cores does not help improve performance) FDP switches to

power-optimization mode. In this mode, FDP tries to assign the stages with lowest

utilization to one core, as long as the combined stage does not become the LIM-

ITER stage. The core thus saved can be used to improve performance or turned off

to save power. Every time FDP chooses a new core-to-stage allocation, it enforces

the new allocation on the pipeline at the end of the iteration.
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Stages: P0 P1 P2 Avg. Execution Time Throughput

S0 : (3K,3) 1K 1/1K
S1 : (12K, 3) 4K 1/4K
S2: (9K, 1) (21K,2) 10K 1/5K

Figure 6.2: Sample output from Train for a pipeline with three stages (S0, S1, S2)
on a 3-core machine. Each entry is a 2-tuple: (the sum of time measurements, the
number of time measurements) taken for each core-stage pair. Blank entries contain
(0,0).

6.3.2 Train

The goal of the training phase is to gather runtime statistics about each stage.

To measure execution time of each stage, the processor’s cycle count register is

read at the beginning and end of each stage. Instructions to read the cycle count

register already exist in current ISAs, e.g., therdtsc instruction in the x86 ISA.

The difference between the two readings at the start and end of the stage is the

execution time of the stage. This timing information is stored in a two-dimensional

table similar to the one shown in Figure 6.2. The rows in the table represent stages

(S0-S2) and columns represent cores (P0-P2). Each entry in this table is a 2-tuple:

the sum and the number of time measurements taken for the corresponding core-

stage pair. For each measurement taken, Train adds the measured time to the sum

of measured times of the core-stage pair and increments the corresponding number

of measurements. For example, if Train measures that executing S0 on P0 took

4K cycles, then it will modify the entry corresponding to S0 and P0 in Table 5 to

(7K,4) i.e. (3K+4K, 3+1). Note that if a stage is not assignedto a core, the entry

corresponding to the core-stage pair remains (0,0). For example, since S1 is only

assigned to P1 and not to P0 and P2, its entries for P0 and P2 are0. We limit the

overhead of measuring the timing information via sampling:we measure it once

every 128th work-quanta processed by the stage.
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6.3.3 Performance-Optimization

The goal of the performance-optimization mode is to change the core-to-

stage allocation in order to improve overall performance. When the mode of opera-

tion is performance-optimization, one of the threads invokes this phase once every

2K iterations or 100K processor cycles, whichever is earlier1. The phase takes as

its input the information collected during training, a table similar to Figure 6.2. The

phase first computes the average execution time of all stages. The average execu-

tion time of a stage is the sum of all timing measurements recorded in the table for

that stage divided by the total number of measurements for that stage. For example,

for the table shown in Figure 6.2, the average execution timeof stage S2 is 10K

cycles computed as (9K+21K)/(1+2). The phase next computesthe throughput of

each stage as the number of cores assigned to the stage divided by the stage’s aver-

age execution time (e.g., throughput of S2, which runs on twocores, is 2/10K, i.e.,

1/5K). The stage with the lowest throughput is identified as the LIMITER (S2 is the

LIMITER stage in our example). If there are free small cores in the system, FDP

allocates one of them to the LIMITER. The cores assigned to the LIMITER stage

execute in parallel and feed from the in-queue assigned to the LIMITER stage.

To converge to the best decision, it is important that the core-to-stage allo-

cations, that have already been tried, are not re-tried. FDPfilters the allocations by

maintaining the set of all allocations which have been tried. A new allocation is

only enforced if it has not been tried before except when FDP is reverting back to

a previous allocation that is known to perform similar to (orbetter than) the current

allocation, while using fewer cores.

FDP increases the number of cores of the LIMITER stage with animplicit

assumption that more cores lead to higher throughput. Unfortunately, this assump-

tion is not always true; performance of a stage can saturate at a certain number of

cores and further increasing cores wastes power without improving performance.

To avoid allocating cores that do not improve performance, FDP always measures

1We choose these values empirically.
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and stores the performance of the previous allocation. Every time FDP assigns a

new core to the LIMITER stage, it compares the new performance with the perfor-

mance of the previous allocation. If the new performance is higher than the per-

formance with the previous allocation, FDP allocates another core to the LIMITER

stage. However, if the new performance is lower than the performance with the

previous allocation, FDP reverts to the previous allocation and switches to power-

mode.

6.3.4 Power-Optimization

The goal of this mode is to reduce the number of active cores, while main-

taining similar performance. When the mode of operation is power-optimization,

this phase is invoked once every 2K iterations or 100K processor cycles whichever

is earlier. This phase uses the information collected during training to compute the

throughput of each stage. To improve power-efficiency, the two stages with the

highest throughput that are each allocated to a separate core can be combined to

execute on a single core, as long as the resulting throughputis not less than the

throughput of the LIMITER stage. This optimization frees upone core which can

be used by another stage for performance improvement or turned off for saving

power. This process is repeated until no more cores can be setfree. At this point,

FDP reverts to performance mode.

6.3.5 Enforcement of Allocation

FDP changes the allocation of cores to stages dynamically. To facilitate

dynamic allocation we add a data structure which stores for each core the list of

stages allocated to it. The core processes the stages allocated to it in a round-robin

fashion. FDP can modify the allocation in three ways. First,when a free core is

allocated to the LIMITER stage, the LIMITER stage is added tothe list of the free

core. Second, when a stage is removed from a core, it is deleted from the core’s list.

Third, when stages on two different cores are combined on to asingle core, the list

of one of the cores is merged with the list of other core and emptied.
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6.3.6 Programming Interface for FDP

The FDP library contains the code for measuring and recording the execu-

tion time of each stage. It also maintains sampling countersfor each allocation to

limit instrumentation overhead. It automatically invokesperformance-optimization

or power-optimization phases at appropriate times withoutprogrammer interven-

tion. To interface with this library, the programmer must insert in the code the four

library calls shown in Figure 6.3.

void FDP Init (num stages)
void FDP BeginStage (stage id)
void FDP EndStage (stage id)
int FDP GetNextStage ()

Figure 6.3: FDP library interface.

The FDP Init routine initializes storage for FDP and sets the mode to

optimize performance. The training phase of FDP reads the processor’s cycle

count register at the start and end of every stage. To facilitate this, a call to

FDP BeginStage is inserted after the work-quanta is read from the respective

queue and before it is processed. Also, a call toFDP EndStage is inserted after

the processing of the quanta is complete but before it is pushed to the next stage.

The arguments of both function calls is the stage id. Once a core completes a work-

quanta, it needs to know which stage it should process next. This is done by calling

theFDP GetNextStage function. FDP obtains the id of the core executing an

FDP function by invoking a system call.

FDP only requires modifications to the code of the worker thread in a

pipeline program, not the code which does the actual computation for the stage.

Thus, FDP can be implemented in the infrastructures commonly used as foundation

for implementing pipeline programs, e.g., Intel ThreadingBuilding Blocks [47].

Figure 6.4 shows how the code of the worker loop is modified to in-

terface with the FDP library. The four function calls are inserted as follows.
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1: FDP Init ()
2: while (!DONE)
3: stage id = FDP GetNextStage ()
4: Pop an iteration i from the stage’s in-queue
5: FDP BeginStage (stage id)
6: Run the the stage of that iteration
7: FDP EndStage (stage id)
8: Push the iteration to the in-queue of its next stage

Figure 6.4: Modified worker loop (additions/modifications are shown in bold)

FDP Init is called before the worker loop begins. Inside the loop the thread

callsFDP GetNextStage to get the ID of the next stage to process. The worker

thread then pops an entry from the in-queue of the chosen stage. Before executing

the computation in stage, it calls the instrumentation routineFDP BeginStage.

It then runs the computation and after the computation it calls the instrumentation

functionFDP EndStage. It then pushes the iteration to the in-queue of the next

iteration.

6.3.7 Overheads

FDP is a pure software mechanism and does not requireany changes to

the hardware. FDP only incurs minor latency and software storage overhead. The

latency overhead is incurred due to instrumentation and execution of the optimiza-

tion phases. These overheads are significantly reduced because we only instrument

0.7% (1/128) iterations. The software storage overhead comprises the storage re-

quired for the current core-to-stage allocation, the list of previously tried core-to-

stage allocations, the table to store execution latencies of each stage, and counters

to support sampling. The total storage overhead is less than4KB in a system with

16 cores and 16 stages. Note that this storage is allocated inthe global memory and

does not require separate hardware support.
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6.4 Accelerating the Limiter Stage

Once FDP has optimized the pipeline using the small cores, ALS can accel-

erate the stage which is limiting performance by assigning it the large core. Recall

that performance with FDP saturates when either the LIMITERstage stops scaling

or FDP runs out of cores to assign. When accelerating with theACMP, these two

cases are handled differently.

1. LIMITER stops scaling:Since the LIMITER’s throughput has saturated,

we know that increasing the number of cores assigned to the LIMITER will only

waste power, without providing any performance benefit. Thus, our goal is to in-

crease its throughput without increasing the number of cores assigned to the LIM-

ITER. Thus, when we add the large core to the LIMITER to increase its throughput,

we must remove a small core to keep the number of threads the same.

When the LIMITER ceases to scale, ALS assigns the large core to the LIM-

ITER and removes one of the small cores from the LIMITER’s core allocation.

ALS removes a small core because adding the large core, without removing the

small core, will increase the number of parallel threads forthe LIMITER; this will

be wasteful because we know that the LIMITER cannot leverageany more cores

(as its scalability has been saturated). We remove only a single small core (and no

additional small cores) because our goal is to improve the LIMITER throughput as

much as possible.

We further explain this with an example. Consider a LIMITER which can

scale up to three cores. Once three small cores have been assigned to this LIMITER,

ALS realizes that more cores cannot be assigned. At this point, ALS adds the large

core to LIMITER’s allocation. Now, the LIMITER has four cores assigned to it

(one large and three small) which is wasteful. To save the power, without reducing

performance, ALS removes one of the small cores from the LIMITER’s allocation

as soon as it assigns the large core to the LIMITER.

2. No more small cores to assign:In case the LIMITER continues to scale

and FDP runs out of free small cores to assign, ALS assigns thelarge core to the
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LIMITER but does not remove a small core from the LIMITER’s core assignment.

Removing a small core is unnecessary in this case because theLIMITER is still

scalable and it can leverage the additional core.

How does ALS Identify the large core? The initialization code of each

worker threads runs the CPUID instruction upfront and reports the type (small or

large) of the core it is running on to the run-time. When FDP finds a stage which

deserves the large core, it queries the run-time for the core-id of the large core and

assigns the identified stage to the large core.

6.5 Performance Trade-offs in ALS

The ACMP replaces four small cores with one large core which makes its

peak throughput lower than that of the SCMP. If the LIMITER stage in a workload

is scalable then it can benefit more from the four small cores,than the one large

core. For such workloads, the ACMP can reduce performance compared to an

SCMP. However, this negative effect of the ACMP will reduce in the future as more

cores will become available on the chip.

6.6 Evaluation

We partition our evaluation into two parts. First, we show the working of

FDP and evaluate its effectiveness at choosing the best core-to-stage allocation.

Second, we show how ACMP can improve performance by accelerating the limiter

stage identified by FDP.

6.6.1 Effectiveness of FDP

6.6.1.1 Evaluation Methodology

We evaluate FDP using a very different approach than the restof this thesis.

This is because evaluating FDP requires extensive experiments (multiple thousand

runs of each workloads). Doing this many experiments on a simulator requires a

72



long time. Instead of using the simulator, we evaluate FDP byrunning the work-

loads on real Intel and AMD machines.

Configurations Our baseline system is a Core2Quad SMP that contains

2 Xeon Chips of four cores each. To show scalability of our technique, we also

conduct experiments with an AMD Barcelona SMP machine with four Quad-core

chips (results for this machine will be reported in Section 6.6.1.6). Configuration

details for both machines are shown in Table 7.1 on page 100. Each system has

sufficient memory to accommodate the working set of each of the workloads used

in our study.

Table 6.1: System Configuration

Name Core2Quad (Baseline) Barcelona

System 8-cores, 2 Intel Xeon Core2Quad pack-
ages

16-cores, 4 AMD Barcelona packages

Frequency2 GHz 2.2 GHz
L1 cache 32 KB Private 32 KB Private
L2 cache Shared; 6MB/2-cores Private; 512KB/core
L3 cache None Shared; 8MB/4-cores
DRAM 8 GB 16 GB
OS Linux CentOS 5 Linux CentOS 5

Workloads: We use 9 workloads from various domains in our evaluation

(including 2 from PARSEC benchmark suite [15]2). Table 7.7 describes each work-

load and its input set.MCarlo, BScholes, mtwister, andpagemine were

modified from original code to execute in pipeline fashion.

Measurements: We run all benchmarks to completion and measure the

overall execution time of each workload using the GNU time utility. To measure the

fine-grained timings, such as, spent inside a particular section of a program, we use

the read timestamp-counter instruction (rdtsc). We compute the average number

of active cores by counting the number of cores that are active at a given time

2The remaining PARSEC workloads are data-parallel (not pipelined) and FDP does not increase
or decrease their performance

73



and averaging this value over the entire execution time. We run each experiment

multiple times and use the average to reduce the effect of OS interference.

Table 6.2: Workload characteristics.

WorkloadDescription (No. of pipeline stages) Input

MCarlo MonteCarlo simulation of stock options [74](6) N=400K
compressFile compression using bzip2 algorithm [47](5) 4MB text file
BScholesBlackScholes Financial Kernel [74](6) 1M opts
pagemineDerived from rsearchk[70] and computes a histogram(7) 1M pages
image Coverts an RGB image to gray-scale(5) 100M pixels
mtwister Mersenne-Twister PRNG [74](5) path=200M
rank Rank strings based on their similarity to an input string(3) 800K strings
ferret Content based similarity search from PARSEC suite[15](8) simlarge
dedup Data stream compression using deduplication algorithm

from PARSEC suite[15](7)
simlarge

Evaluated Schemes:We evaluate FDP in terms of performance, power

consumption, and robustness. We evaluate three core-to-stage allocation schemes.

First, theOne Core Per Stage (1CorePS)scheme which allocates one core to each

stage. Second, theProportional Core Allocation (Prop)scheme which allocates

cores to stages based on their relative execution rates. Prop runs the application

once with 1CorePS and calculates the throughput of each stage. The cores are then

allocated in inverse proportion to the throughput of each stage, thus giving more

cores to slower stages and vice versa. Third, theProfile-Basedscheme which allo-

cates cores using static profiling. The Profile-Based schemeruns the program for

all possible allocations which assign anintegernumber of cores to each stage and

chooses the allocation which minimizes execution time. Note that while the abso-

lute best profile algorithm can try even non-integer allocations by allowing stages to

share cores, the number of combinations with such an approach quickly approaches

into millions, which makes it impractical for us to quantitatively evaluate such a

scheme.

6.6.1.2 Case Studies

FDP optimizes performance as well as power for pipelined workloads at

runtime. We now show the working of FDP on both scalable and non-scalable
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workloads with the help of in-depth case studies that provide insights on how FDP

optimizes execution.

Scalable Workload: Compress

The workloadcompress implements a parallel pipelined bzip2 compres-

sion algorithm. It takes a file as input, compresses it, and writes the output to a

file. To increase concurrency, it divides the input file into equal size blocks and

compresses them independently. It allocates the storage for the compressed and

uncompressed data, reads a block from the file, compresses the block, re-order any

work quanta which may have become out of order, writes the compressed block

to the output file, and deallocates the buffers. Figure 2.8 shows the pipeline of

compress. Each iteration incompress has 5 stages(S1-S5). Each stage can

execute concurrently on separate cores, thereby improvingperformance.

Table 6.3 shows the throughput of each stage when each stage is allocated

one core (the allocation 1-1-1-1-1). The throughput of stage S3, which compresses

the block, is significantly lower than the other stages. Thus, the overall perfor-

mance is dominated by S3 (the LIMITER stage). Table 6.3 also shows the through-

put when one of the stage receives four cores and all other receive one core. For

example, with the 4-1-1-1-1 allocation S1 receives four cores and all other stages

get one core. Threads in S1 allocate buffers in the shared heap and contend for the

memory allocator, thereby loosing concurrency, hence throughput of S1 improves

by only 2.4x with 4x the cores. Whereas, when 4 cores are givento Stage S3, its

throughput improves almost linearly by 3.9x because S3 compresses independent

blocks without requiring any thread communication.

Table 6.3 also shows the overall execution time with different core alloca-

tions. As S3 is the LIMITER stage, increasing the number of cores for other stages

does not help reduce the overall execution time. However, when S3 receives more

cores, the throughput of S3 increases by 3.9x and overall execution time reduces

form 55 seconds to 14 seconds (a speedup of 3.9x). Therefore,to improve perfor-

mance more execution resources must be invested in the LIMITER stage.

75



Table 6.3: Throughput of different stages as core allocation is varied. Throughput
is measured as iterations/1M cycles.

Core Alloc. S1 S2 S3 S4 S5 Exec. Time

1-1-1-1-1 284 49 0.4 34 8K 55 sec.

4-1-1-1-1 698 44 0.4 33 6K 55 sec.
1-4-1-1-1 294 172 0.4 35 7K 55 sec.
1-1-4-1-1 304 52 1.5 37 7K 14 sec.
1-1-1-4-1 279 49 0.4 135 8K 55 sec.
1-1-1-1-4 282 51 0.4 33 31K 55 sec.

We modify the source code ofcompress to include library calls to FDP.

FDP measures the throughput of each stage at runtime and regulates the core-to-

stage allocation to maximize performance and power-efficiency. Figure 6.5 shows

the overall throughput as FDP adjusts the core-to-stage allocation.

Optimized Execution
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S3=2cores
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Figure 6.5: Overall throughput ofcompress as FDP adjusts core-to-stage alloca-
tion

FDP initially allocates one core to each stage. As executioncontinues, FDP

trains and identifies S3 to be the LIMITER stage. To improve performance FDP

increases the number of cores allocated to S3, until it runs out of cores. For our

8-core system, this happens when S3 is allocated 4 cores, andthe remaining 4 cores

are allocated one each to S1, S2, S4, and S5. After it runs out of cores, FDP begins

to operate in power-optimization mode. In the first invocation of this mode, the
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INSERT STR

QUEUE2

STAGE S3STAGE S2

Input

QUEUE1

STAGE S1

Read Next String

QUEUE1.Push(Str)Strings
Q = QUEUE1.Pop()

Compare String 

QUEUE2.Push(Str)

Q = QUEUE2.Pop()

Insert in Heap

Delete tail on overflow

READ COMPARE STR

Figure 6.6: Pipeline for matching a stream of strings with a given string

stages with the highest throughput, S1 and S5, are combined to execute on a single

core, thereby freeing one core. In the next invocation, FDP combines S1 and S5

with S2 which frees up another core. FDP continues this untilall four stages S1,

S2, S4, and S5 get combined to execute on a single core. With noopportunity left

to reduce power, FDP switches back to performance optimization mode. FDP again

identifies S3 as the LIMITER and allocates the 3 free cores to S3. Thus, 7 out of

the 8 cores are allocated to S3, and a single core is shared among all other stages.

FDP converges in 10 invocations and executes the workload in9.7 seconds, which

is much lower than with the static-best integer allocation (1-1-4-1-1) that requires

14 seconds.

Non-Scalable Workload: Rank

Therank program ranks a list of strings based on their similarity to an input

string. It returns the top N closest matches (N is 128 in our experiments). Figure 6.6

shows the pipelined implementation forrank. Each iteration is divided into 3

stages. The first stage (S1) reads the next string to be processed. The second stage

(S2) performs the string comparison, and the final stage (S3)inserts the similarity

metric in a sorted heap, and removes the smallest element from the heap (except

when heap size is less than N). At the end of the execution, thesorted heap contains

the top N closest matches.

Table 6.4 shows the throughput of system when each stage is allocated one

core (1-1-1). The throughput of S2, which performs the string comparison, is signif-

icantly lower than the other stages in the pipeline. As S2 is the LIMITER, allocating

more cores to S2 is likely to improve overall performance. The next three rows in
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the table shows the throughput when one of the stage receives4 cores and the other

stages get one core. With the increased core count, S1 and S3 show a speedup of

2.5x and 1.3x, respectively. However, as these stages are not the LIMITER, the

overall execution time does not decrease.

Table 6.4: Throughput of different stages as core allocation is varied (measured as
iterations/1M cycles).

Core Alloc. S1 S2 S3 Exec. Time

1-1-1 1116 142 236 17 sec

4-1-1 2523 118 258 19 sec
1-4-1 1005 558 278 13.2 sec
1-1-4 900 117 290 19.2 sec

1-4-2 930 368 285 14.6 sec
1-2-1 1028 274 268 13 sec

When S2 is allocated 4 cores, it shows a speedup of approximately 4x. This

is because all cores in S2 work independently without requiring communication.

Unfortunately, the overall execution time reduces by only 27%. This is because

as S2 scales, its throughput surpasses the throughput of S3.Thus, S3 becomes the

LIMITER. Once S3 becomes the LIMITER, the overall executiontime is dominated

by S3.

As S3 is the LIMITER, we expect to improve overall performance by in-

creasing cores allocated to S3. The table also shows the throughput when additional

cores are allocated to S3 (1-4-2). The access to the shared linked data-structure in

S3 is protected by a critical section, hence this stage is notscalable and overall per-

formance reduces as the number of cores is increased due to contention for shared

data. Thus, increasing core counts for S3 does not help improve performance while

consuming increased power.

We modify the source code ofrank to include library calls to FDP. Figure

6.7 shows the overall throughput and active cores as FDP adjusts the core-to-stage

allocation. With the information obtained during training, FDP identifies S2 as the

LIMITER stage, and allocates it one extra core (1-2-1). In the next invocation, it
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identifies S3 as the LIMITER stage, and increases the core count allocated to S3

(1-2-2). However, as S3 does not scale, FDP withdraws the extra core given to S3,

and switches to power-optimization mode. In power-optimization mode, FDP saves

power by executing S1 on one of the cores allocated to S2. Thus, the final allocation

is S1+S2 on one core, S2 on another core, and S3 on the third core. After this, there

are no opportunities left in the pipeline to save power or improve performance,

and execution continues on 3 cores completing in 13 seconds (similar to best-static

allocation 1-2-1, but with fewer cores).

N
um

be
r 

of
 A

ct
iv

e 
C

or
es

6

5

4

3

END

2

1

0 1 2 3 4 5

1.0

1.1

1.2

1.3

1.4

1.5

184

Number of Iterations (x 2K)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

S2 gets 1 core

S3 gets 1 core
(1−2−2)

S3 gives 1 core
(1−2−1)

CORE2: S3
CORE1: S2
CORE0: S1+S2

Stage Combining

(1−2−1)

ACTIVE CORES

THROUGHPUT

Figure 6.7: Overall throughput and active cores ofrank as FDP adjusts core-to-
stage allocation

6.6.1.3 Performance

Figure 6.8 shows the speed-up when the workloads are executed with the

core-to-stage allocation using 1CorePS, Prop, FDP, and Profile-Based. The speedup

is relative to execution time with a single core system3. The bar labeledGmean

is the geometric mean over all workloads. The 1CorePS schemeprovides only

a marginal improvement, providing minor speedup increase on four out of seven

workloads. On the contrary, a Profile-Based allocation significantly improves per-

3We run the sequential version without any overheads of multi-threading.
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Figure 6.8: Speedup with different core-to-stage allocation schemes.

formance for all workloads, providing an average speedup of2.86x. However,

Profile-Based requires impractical searching through all possible integer alloca-

tions. Prop avoids this brute force searching and gets an improvement similar to

Profile-Based by providing an average speedup of 2.7x. FDP outperforms or is

similar to the comparative schemes on all workloads.MCarlo gets near optimal

speedup of 7x with FDP because it contains a scalable LIMITERstage and FDP

combines all other stages. The workloadrank has a stage that is not scalable,

hence the limited performance improvement with all schemes. FDP provides an

average speedup of 4.3x. Note, that this significant improvement in performance

comes without any reliance on profile information which is required for both Prop

and Profile-Based.

6.6.1.4 Number of Active Cores

FDP tries to increase performance by taking core resources from faster

stages and reallocating it to slower stages. When the slowest stage no longer scales

with additional cores, the spare cores can be turned off or used for other applica-

tions. Figure 6.9 shows the average number of active cores during the execution

of the program for 1CorePS, FDP, and Prop/Profile-Based. Both Prop and Profile-

Based allocates all the cores in the system, therefore they are shown with the same

bar. The bar labeledAmeandenotes the arithmetic mean over all the workloads.

The number of active cores with the 1CorePS is equal to the number of

pipeline stages, which has an average of 5.2 cores. The Prop and Profile-Based
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Figure 6.9: Average number of active cores for different core allocation schemes.

schemes use 8 cores. ForPagemine andmtwister, the performance saturates at

7 cores, so FDP does not use one of the cores in the system. For the workloadrank,

the non-scalable stage means that five out of the eight cores can be turned off. Thus,

FDP is not only a performance enhancing technique but also helps with reducing

the power consumed by cores when it is not possible to improveperformance with

more cores. On average, FDP consumes only 7 cores even thoughit has one and

a half times the speedup of the Profile-Based scheme. This means for the same

number of active cores, FDP consumes two-thirds the energy as the Profile-Based

scheme and has a much reduced energy-delay product.

6.6.1.5 Robustness to Input Set

The best core-to-stage allocation can vary with the input set. Therefore, the

decisions based on profile information of one input set may not provide improve-

ments on other input set. To explain this phenomenon, we conduct experiments for

thecompress workload with two additional input sets that are hard to compress.

We call these workloadscompress-2 andcompress-3. The LIMITER stage

S3 forcompress-2 (80K cycles) and forcompress-3 (140K cycles) is much

smaller than the one used in our studies (2.2M cycles). The non-scalable stage

that writes to the output file remains close to 80K cycles in all cases. Thus, the
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compress workload has limited scalability for the newly added input sets.

Figure 6.10 shows the speedup for the two workloads with 1CorePS, Prop,

FDP and Profile-Based. Both Prop and Profile-Based use the decisions made in

our originalcompress workload. These decisions in fact result in worse perfor-

mance than 1CorePS forcompress-2, because they allocate more cores to the

non-scalable stage which results in increased contention.FDP, on the other hand,

does not rely on any profile information and allocates only one-core to the non-

scalable stage. It allocates two cores to S3 forcompress-2 and 3 cores to S3 for

compress-3. The runtime adaptation allows FDP to outperform all comparative

schemes on all the input sets.
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Figure 6.10: Robustness to variations in input set.

6.6.1.6 Scalability to Larger Systems

We use an 8-core machine as our baseline for evaluations. In this section,

we analyze the robustness and scalability of FDP to larger systems, using a 16-core

AMD Barcelona machine. We do not show results for 1CorePS as they are similar

to the 8-core system (all workloads have fewer than 8 stages). Furthermore, a 16-

core machine can be allocated to a 6-7 stage pipeline in several thousand ways,

which makes evaluating Profile-Based impractical.

Figure 6.11 shows the speedup of Prop and FDP compared to a single core

on the Barcelona machine. FDP improves performance ofall workloads compared

to Prop. Most notably, inimage, FDP obtains almost twice the improvement of

Prop. The scalable part ofimage, which transforms blocks of the image from
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Figure 6.11: FDP’s performance on 16-core Barcelona.

colored to gray scale, continues to scale until 6 cores. The other parts, reading and

writing from the file, do not scale. Prop allocates cores to each stage proportionally

assuming equal scaling. However, the cores allocated to non-scalable parts do not

contribute to performance. FDP avoids such futile allocations. On average, FDP

provides a speedup of 6.13x compared to 4.3x with Prop.

As the number of cores increases, the performance of some of the workloads

starts to saturate. Under such scenarios, there is no room toimprove performance

but there is a lot of potential to save power. Figure 6.12 shows the average number

of active cores during the workload execution with FDP and Prop. Since Prop allo-

cates all cores, the average for Prop is 16. When cores do not contribute to perfor-

mance FDP can deallocate them, thereby saving power. For example,pagemine

contains four stages in the pipeline that do not scale because of critical sections.

FDP allocates 7 cores to the scalable stage, 1 core each to thenon-scalable stages,

and 1 more core to the input stage. The remaining four cores remain unallocated.

On average, FDP has 11.5 cores active, which means a core power reduction of

more than 25%. Thus FDP not only improves overall performance significantly but

can also save power.

If all cores were active, then the energy consumed by FDP would be 30%

less compared to Prop (measured by relative execution time). Given that FDP uses
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Figure 6.12: FDP’s power on 16-core Barcelona.

25% fewer cores than Prop, FDP consumes less than half the energy consumed

by Prop. Thus, FDP is an energy-efficient high-performance framework for imple-

menting pipelined programs.

6.6.2 Evaluation of ALS

We now evaluate how well ALS can accelerate the limiter stage.

6.6.2.1 Evaluation Methodology

We simulate two configurations: Baseline (a baseline SCMP),and an

ACMP. The parameters of each small core, the interconnect, caches, and the mem-

ory sub-system are shown in Table 6.5.

Table 6.6 shows the simulated workloads. We developed a pipelined imple-

mentation of the dedup decoder based on the sequential code in PARSEC [15] and

call it dedupD.

6.6.2.2 Performance at One Core per Stage

We first compare SCMP and ACMP when only one core is assigned toeach

stage. SCMP assigns a small core to each stage while the ACMP assigns the large

core to the limiter stage (the stage with the longest execution time) and a small core
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Table 6.5: Configuration of the simulated machines.

Small core 2-wide, 2GHz, 5-stage, in-order
Large core 4-wide, 2GHz, 2-way SMT, 128-entry ROB, 12-stage, out-of-order; 4x the area

of small core
Interconnect 64-byte wide bi-directional ring, all queuing delays modeled, minimum cache-

to-cache latency of 5 cycles
Coherence MESI on-chip distributed directory similar to SGI Origin [59], cache-to-cache

transfers, # of banks = # of cores, 8K entries/bank
Prefetcher Aggressive stream prefetcher [99] with 32 stream buffers, can stay 16-lines

ahead, prefetches into cores’ L2 caches
Caches Private L1I and L1D: 32KB, write-through, 1-cycle, 4-way. Private L2: 256KB,

write-back, 6-cycle, 8-way (1MB, 8-cycle, 16-way for largecore). Shared L3:
8MB, 20-cycle, 16-way

Memory 32 banks, bank conflicts and queuing delays modeled. Precharge, activate, col-
umn access latencies are 25ns each

Memory bus 4:1 CPU/bus ratio, 64-bit wide, split-transaction

Area-equivalent CMPs. Area is equal to N small cores. We varyN from 1 to 64.

SCMP N small cores. Core-to-stage allocation chosen using FDP.
ACMP 1 large core and N-4 small cores; Core-to-stage allocation chosen using FDP;

large core runs the limiter stage

Table 6.6: Workload characteristics.

Workload Description (No. of pipeline
stages)

Major steps of computa-
tion

Input

black BlackScholes Financial Ker-
nel [74] (6)

Compute each option’s
call/put value

1M opts

compress File compression using bzip2
algorithm(5)

Read file, compress, re-
order, write

4MB text file

dedupE De-duplication (Encoding) [15]
(7)

Read, find anchors, chunk,
compress, write

simlarge

dedupD De-duplication (Decoding) [15]
(7)

Read, decompress, check
cache, reassemble/write

simlarge

ferret Content based search [15](8) Load, segment, extract,
vector, rank, out

simlarge

image Image conversion from RGB to
gray-scale(5)

Read file, convert, re-order,
write

100M pixels

mtwist Mersenne-Twister PRNG [74]
(5)

Read seeds, generate
PRNs, box-muller

path=200M

rank Rank string similarity with an
input string(3)

Read string, compare, rank800K strings

sign Compute the signature of a
page of text(7)

Read page and compute
signature

1M pages

to each of the remaining stages. Figure 6.13 shows the execution time of ACMP

(with ALS) normalized to the execution time of SCMP. Note that this is not an

equal-area comparison as the ACMP’s large core occupies thearea of four small

cores.

ACMP significantly reduces the execution time of all workloads except
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Figure 6.13: Speedup at 1 Core Per Stage (not area-equivalent).

mtwist where ACMP’s improvement is only marginal.mtwist contains two

stages, S3 and S4, which have almost the same average execution time (within 3%

of each other) . ALS accelerates only S3 which makes S4 the limiter stage and the

overall performance stays similar to the baseline. In all other workloads, ACMP

reduces execution time significantly. For example, ACMP reduces the execution

time of black by 44% because the limiter stage inblack consists of a regular

loop with large amounts of memory level parallelism (MLP). Whenblack’s lim-

iters runs at the large core, the large core is able to exploitthis MLP (due to its out

of orderness) and accelerate the stage significantly. This translates into very high

overall performance for ACMP.

6.6.2.3 Performance at Best Core-to-stage Allocation

We now compare ACMP and SCMP where FDP was used to choose the best

core-to-stage allocation for each application-configuration pair. The comparisons

are done at an equal-area budget of 32-cores.

Figure 6.14 shows the execution time of ACMP normalized to the execution

time of SCMP. ACMP significantly reduces the execution time of seven out of the

nine workloads. For example, insign, ACMP reduces execution time by 20%.

sign consists of four stages of computation: a stage to allocate memory (S1),

a stage to compute signatures of input pages of text (S2), a stage to process the
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Figure 6.14: Speedup with FDP at an equal area budget of 32 small cores.

signatures (S3), and a stage to deallocate memory resources. S2 is compute-bound

while S3 is dominated by a critical section which inhibits its ability to scale with

the number of cores. At one core per stage, S2 has the longest execution time and is

thus the limiter. As the the number of cores increase, FDP assigns more and more

cores to S2. When S2 has been assigned four cores, S3 becomes the limiter. Since

S3 does not scale, SCMP’s performance saturates. However, for ACMP, FDP then

assigns S3 to the large core. Accelerating S3 again makes S2 the limiter which

allows the workload to leverage another small core, therebyincreasing the overall

performance by 20%.

Why does ACMP not benefitblack and mtwist? The dominant stages

in black andmtwist scale with the number of cores. Since the limiter stages

scale, they only marginally benefit from the large core in theACMP. To provide

more insights, we further analyzedblack. black has six stages (S0-S6). S0

and S5 perform memory allocation and deallocation respectively. S1-S4 perform

different steps of computation and are very scalable. FDP continues to assign more

and more cores to the scalable stages. For the 32-core SCMP, FDP assigns S0-S5

one, two, eight, nine, eight, and four cores respectively. We also find that the stages

S0, S2, and S3 have approximately the same throughput. Thus,accelerating any

one of them using the large cores does not improve performance. We find that as

the area budget increases, more cores are assigned to the scalable stages S2 and

S3 which makes S0 the limiter stage, thereby providing opportunity for ACMP to
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improve performance via accelerating S0.
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Figure 6.15: Performance of ACMP forblack at an area budget of 40.

To analyze this effect, we also compareblack’s performance on an

ACMP and SCMP at an area budget of 40. Figure 6.15 shows execution time

of black on four configurations: the baseline SCMP with an area budget of 32

(baseline-32), the baseline SCMP with an area budget of 40 (baseline-40), ACMP

with an area budget of 32 (ACMP-32), and ACMP with an area budget of 40

(ACMP-40). Note that the execution times of Baseline-32 andBaseline-40 are

nearly equal. However, ACMP-40 is 20% faster than both SCMP-32 and SCMP-40

and 15% faster than the ACMP-32. We conclude that ACMP increases performance

as well as scalability. Furthermore, its benefit will further increase as the chip area

increases, and pipeline programs becomes limited by non-scalable stages.
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Chapter 7

Data Marshaling

7.1 The Problem

Taking advantage of the ACMP requires shipping work to the large core

whenever it is beneficial to run it at the large core. However,when a work-quanta

executes at the large core, it incurs cache misses in fetching its working set from the

small core. This lowers the IPC of the large core, thereby reducing the benefit of

sending the work to the large core. To this end, we proposeData Marshaling (DM)

which identifies the data needed by the large core and proactively transfers it to the

cache of the large core from the cache of the small core. DM is also beneficial for

pipeline parallelism where each stage runs on a different core and the input data for

the stage has to be transferred from the core executing the previous stage.

We first explain a general implementation of DM and then explain the

specifics which make it applicable to the ACMP. To design a general DM, we first

generalize the problem by introducing an abstraction layercalledstaged execution.

Staged ExecutionThe central idea of Staged Execution (SE) is to split a

program into codesegmentsand execute each segment where it runs the best. If

more than one cores are equally suited for a segment, different instances of the

segment can run on any one of those cores. Thus, thehome coreof an instance of a

segment is the core where that particular instance executes. The criteria commonly

used to choose a segment’s home core include performance criticality, functionality,

and data requirements, e.g. critical sections which are on the critical path of the

program are best run at the fastest core. Other mechanisms tochoose the home core

are beyond the scope of this thesis and are discussed in otherwork on SE [18, 21,

32, 96].
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Implementation: Each core is assigned a work-queue, which can be imple-

mented as a hardware or a software structure. The work-queuestores the execution

requests to be processed by the corresponding core. Each entry in the queue con-

tains an identifier of the segment to be processed. The identifier can be a segment

ID, the address of the first instruction in the segment, or a pointer to a function

object. Each core continuously runs in a loop, processing segments from its work-

queue. Every time the core completes a segment, it dequeues the next entry from the

work-queue and processes the segment referenced by that entry. If the work-queue

is empty, the core waits until a request is enqueued or the program finishes.

The program is divided intosegments, where each segment is best suited

for a different core. Each segment, except the first, has aprevious-segment(the

segment that executed before it) and anext-segment(the segment that will execute

after it).

At the end of each segment is aninitiation routinefor its next-segment. The

initiation routine performs two tasks. First, it chooses the home core of the next-

segment from one of the cores assigned to the nest-segment. Second, it enqueues

a request for execution of the next-segment at the chosen home core. We call the

core that runs the initiation routine to request a segment’sexecution the segment’s

requesting core.

We now explain SE using an example. Figure 7.1a shows a code example

that computes the values of X, Y, and Z. The code can be dividedinto three seg-

ments: A, B, and C (shown in Figure 7.1b). Segment A is SegmentB’s previous-

segment and Segment C is Segment B’s next-segment. At the endof Segment A

is Segment B’s initiation routine and at the end of Segment B is Segment C’s ini-

tiation routine. Figure 7.1c shows the execution of this code on a CMP with three

cores (P0-P2) with the assumption that the home cores of Segments A, B and C

are P0, P1, and P2 respectively. After completing Segment A,P0 runs Segment

B’s initiation routine, which inserts a request for the execution of Segment B in

P1’s work-queue. Thus, P0 is Segment B’s requesting core. P1dequeues the entry,
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executes segment B, and enqueues a request for Segment C in P2’s work-queue.

Processing at P2 is similar to the processing at P0 and P1.

Segment A:

Segment B:

Segment C:

(b)

c = c − 1

a = a + 1

X = a + 2

b = b + 2

Y = X + b

c = c − 1

Z = Y + c

(a)

Transfer X

P0 P1

Keep a

Transfer Y

P2

Keep b

(c)

...

...

...

...

...

...

...

a = a + 1

X = a + 2

b = b + 2

Y = X + b

Z = Y + c
...

...
X = a + 2

a = a + 1

b = b + 2

Y = X + b

c = c − 1

Z = Y + c

Figure 7.1: (a) Source code, (b) code segments, and (c) theirexecution in SE.

.

We define theInter-Segment Dataof a segment asthe data the segment

requires from its previous segment. For example, Segment B in Figure 7.1 requires

the variable X to compute Y. Thus, X is Segment B’s inter-segment data. Locality

of inter-segment data is very high in models where consecutive segments run on

the same core: the first segment generates the data which may remain in the local

cache until the next segment can use it. However, in SE, accesses to inter-segment

data incur cache misses and the data is transferred from the requesting core to the

home core via the cache coherence mechanism. For example, inFigure 7.1c, P1

incurs a cache miss to transfer X from P0’s cache. Similarly,P2 incurs a cache miss

for Y, which is Segment C’s inter-segment data. These cache misses limit SE’s

performance.

7.2 Mechanism

Data Marshaling (DM)aims to reduce cache misses to inter-segment data.

In DM, the requesting core identifies the inter-segment dataand marshals it to the

home core when it ships a segment to the home core. We first share the key insight

that forms the basis for DM.
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7.2.1 Key Insight

We first define new terminology. We call the last instruction that modifies

the inter-segment data in a segment agenerator. For example, consider the code in

Figure 7.2 with two segments: S1 and S2. In this case, A is S2’sinter-segment data:

it is written by an instruction in S1, theSTORE on line 2, and read by an instruction

in S2, the LOAD on line 4. Thus, theSTOREon line 2 is A’s generator since there

are no other stores to A between this STORE and the initiationof Segment S2. The

LOAD on line 1 isnota generator because it does not modify A and the STORE on

line 0 isnot a generator since there is a later STORE (the one on line 2) to A. We

generalize our definition of generators to cache lines by redefining a generator as

the last instruction that modifies a cache line containing inter-segment data before

the next segment begins.

Segment S1: ; Previous-segment of S2
0: STORE A
1: LOAD A
2: STORE A ; A’s generator
3: CALL Initiation(S2)

Segment S2: ; Currently executing segment
4: LOAD A ; Inter-segment data access
5: ..
6: CALL Initiation(S3)

Figure 7.2: Concept of “generator of inter-segment data”.

We call the set of all generator instructions, i.e. generators of all the

cache lines containing inter-segment data, thegenerator-set. We observed that the

generator-set of a program is often small and does not vary during the execution of

the program and across input sets (See Section 7.3.4.1 for details). This implies that

any instruction that has once been identified as a generator stays a generator. Thus,

a cache line written by a generator is very likely to be inter-segment data required

by the following segment, hence, a good candidate for data marshaling. Based on

this observation, we assume thatevery cache line written by an instruction in the

generator-set is inter-segment data and will be needed for the execution of the next
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segment. We call the set of inter-segment data cache lines generatedby a segment

its marshal-set. DM adds all cache lines written by generators to the marshal-set.

When a core finishes the initiation routine of the next segment, all cache lines that

belong to the marshal-set are transferred to the next-segment’s home core.

We only marshal data between consecutive segments for two reasons: 1) it

achieves most of the potential benefit since we measure that 68% of the data re-

quired by a segment is written by the immediately preceding segment, and 2) in

most execution paradigms, the requesting core only knows where the next segment

will run, but not where the subsequent segments will run. Thus, marshaling data

to non-consecutive segments requires a substantially complicated mechanism. Effi-

cient mechanisms for marshaling data to non-consecutive segments is a part of our

future work.

7.2.2 Overview of the Architecture

The functionality of DM can be partitioned into three distinct parts:

Identifying the generator-set: DM identifies the generator-set at compile-

time using profiling. We define thelast-writerof a cache line to be the last instruc-

tion that modified a cache line. Thus,a line is inter-segment data if it is accessed

inside a segment but its last-writer is a previous segment instruction. Since the

generator-set is stable, we assume that last-writers of allinter-segment data are

generators. Thus, every time DM detects an inter-segment cache line, it adds the

cache line’s last-writer to the generator-set (unless it isalready in the generator-set).

The compiler conveys the identified generator-set to the hardware using new ISA

semantics.

Recording of inter-segment data: Every time an instruction in the

generator-set is executed, its destination cache line is predicted to be inter-segment

data and added to the marshal-set.

Marshaling of inter-segment data: All elements of the marshal-set are

transferred, i.e. marshaled, to the home core of the next-segment as soon as the
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On every memory access:
If cache-line not present in segment’s accessed lines and last-writer is from previous segment

Add last-writer to generator-set

On every store:
Save address of store in current-last-writer

At the end of segment:
Deallocate previous-last-writer
current-last-writer becomes previous-last-writer
Allocate and initialize current-last-writer

Figure 7.3: The profiling algorithm.

execution request is sent to the next-segment’s home core.

For example, DM for the code shown in Figure 7.2 works as follows. DM

detects A to be inter-segment data, identifies the STORE on line 2 to be A’s last-

writer, and adds it to the generator-set. When the STORE on line 2 executes again,

DM realizes that it is a generator and adds the cache line it modifies to the marshal-

set. When the core runs the initiation routine for S2, DM marshals all cache lines

in the marshal-set to S2’s home core. Consequently, when S2 executes at its home

core, it (very likely) will incur a cache hit for A.

7.2.3 Profiling Algorithm

Our profiling algorithm runs the application as a single thread and instru-

ments all memory instructions.1 The instrumentation code takes as input the PC-

address of the instrumented instruction and the address of the cache line accessed

by that instruction. Figure 7.3 shows the profiling algorithm. The algorithm re-

quires three data structures: 1) Agenerator-setthat stores the identified generators,

2) A current-last-writertable that stores the last-writer of each cache line modified

in the current segment, and 3) Aprevious-last-writertable that stores the last-writer

of each cache line modified in the previous segment.

1We also evaluated a thread-aware version of our profiling mechanism but its results did not
differ from the single-threaded version.
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For every memory access, the algorithm checks whether or notthe line was

modified in the previous segment by querying the previous-last-writer table. If the

line was not modified in the previous segment, the line is ignored. If the cache

line was modified in the previous segment, the last-writer ofthe line (an instruction

in the previous segment) is added to the generator-set. Whenan instruction modi-

fies a cache line, the profiling algorithm records the instruction as the last-writer of

the destination cache line in the current-last-writer table. At the end of each seg-

ment, the lookup table of the previous segment is discarded,the current segment

lookup table becomes the previous segment lookup table, anda new current seg-

ment lookup table is initialized. After the program finishes, the generator-set data

structure contains all generators.

7.2.4 ISA Support

DM adds two features to the ISA: a GENERATOR prefix and a MARSHAL

instruction. The compiler marks all generator instructions by prepending them with

the GENERATOR prefix. The purpose of the MARSHAL instructionis to inform

the hardware that a new segment is being initiated and provide the hardware with

the ID of the home core of the next segment. The instruction takes the home core

ID of the next-segment as its only argument. When the MARSHALinstruction

executes, the hardware begins to marshal all cache lines in the marshal-set to the

core specified by HOME-CORE-ID. We discuss the overhead of these changes in

Section 7.2.9.

7.2.5 Library Support

DM requires the initiation routines to execute aMARSHAL instruction with

the ID of the core to which the segment is being shipped. Sinceinitiation routines

are commonly a part of the library or run-time engine, the library or the run-time

that decides which core to ship a task to is modified to executetheMARSHAL in-

struction with the correct HOME-CORE-ID.
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7.2.6 Data Marshaling Unit

Each core is augmented with a Data Marshaling Unit (DMU), which is in-

charge of tracking and marshaling the inter-segment data tothe home core. Fig-

ure 7.4(a) shows how the core and the DMU are integrated. Figure 7.4(b) shows the

microarchitecture of the DMU. Its main component is aMarshal Bufferto record

the addresses of all cache lines to be marshaled. Figure 7.4(c) shows the operation

of the DMU. When the core retires an instruction with the GENERATOR prefix, it

sends the physical cache line address written by the instruction to the DMU. The

DMU enqueues the address in the Marshal Buffer. The Marshal Buffer is combin-

ing, i.e. multiple accesses to the same cache line are combined into a single entry,

and circular, i.e. if it becomes full its oldest entry is replaced with the incoming

entry.

When the core executes the MARSHAL instruction, it asserts the MAR-

SHAL signal and sends the HOME-CORE-ID to the DMU. The DMU starts mar-

shaling data to the home core. For each line address in the Marshal Buffer, the

DMU accesses the local L2 cache to read the coherence state and data. If the line

is in shared state or if a cache miss occurs, the DMU skips thatline. If the line is in

exclusive or modified state, the DMU puts the line in a temporary state that makes it

inaccessible (similar to [68]) and sends aDM Transaction(see Section 7.2.7) con-

taining the cache line to the home core. The home core installs the marshaled line

in its fill buffer and responds with an ACK, signaling the requesting core to invali-

date the cache line. If the fill buffer is full, the home core responds with a NACK,

signaling the requesting core to restore the original stateof the cache line.

Note that we marshal the cache lines to the private L2 cache ofthe home

core. Marshaling the cache lines into the L2, instead of L1, has the advantage

that DM does not contend with the home core for cache bandwidth. Moreover,

since L2 is bigger than L1, cache pollution is less likely. However, marshaling

into L2 implies that the core will incur an L1 miss for inter-segment data cache

lines. We found that the benefit of marshaling into the L2 outweighs the overhead
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Figure 7.4: Data Marshaling Unit.

of marshaling into the L1.

7.2.7 Modifications to the On-Chip Interconnect

The interconnect supports one newDM transaction, which is sent by the

DMU to a remote core. Each DM transaction is a regular point-to-point message

containing the address and data of a marshaled cache line. Thus, it requires exactly

the same interconnect support (wires, routing logic, etc.)of a cache line fill during

a cache-to-cache transfer, which is supported by existing CMPs.

7.2.8 Handling Interrupts and Exceptions

The virtual-to-physical address mapping can change on an interrupt or an

exception such as a page fault or expiration of the operatingsystem time quantum.

In such a case, the contents of the Marshal Buffer may become invalid. Since DM

is used solely for performance and not for correctness, we simplify the design by

flushing the contents of the Marshal Buffer every time an interrupt or exception

occurs.

7.2.9 Overhead

DM has the potential to improve performance significantly byreducing

inter-segment cache misses. However, it also incurs some overhead:
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• DM adds a GENERATOR prefix to all generator instructions. This has the

potential to increase I-cache footprint. However, we find that the generator-

set of each application is small: 55 instructions on average. Thus, adding the

GENERATOR prefixes increases the I-cache footprint only marginally.

• DM adds a MARSHAL instruction at the end of each segment. The overhead

of the MARSHAL instruction is low as it does not read/write any data. The

overhead is further amortized as it executes only once per segment, which often

consists of thousands of instructions.

• The DMU can contend with the core on L2 cache accesses. However, this

overhead is no different from the baseline, where the cache-to-cache transfer

requests for the inter-segment data contend for the L2 cache.

• DM augments each core with a Marshal Buffer. The storage overhead of this

buffer is small: only 96 bytes/core (16 entries of 6-bytes each to store the phys-

ical address of a cache line). We discuss the sensitivity of performance to Mar-

shal Buffer size in Section 7.3.4.8.

In summary, DM’s overhead is low, and is outweighed by its benefits. We

now discuss how DM can be used by different execution paradigms.

7.3 DM for Accelerated Critical Sections (ACS)

Data Marshaling is beneficial in any execution paradigm thatuses the basic

principle of Staged Execution. In this section we describe the application of DM to

significantly improve Accelerated Critical Sections (ACS).

7.3.1 Private Data in ACS

By executing all critical sections at the same core, ACS keeps the shared

data (protected by the critical sections) and the lock variables (protecting the critical

section) at the large core, thereby improving locality of shared data. However,

every time the critical section accesses data generated outside the critical section

(i.e. thread-private data), the large core must incur cachemisses to transfer this data
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from the small core. Since this data is generated in the non-critical-section segment

and accessed in the critical-section segment, we classify it as inter-segment data.

Marshaling this data from the small core to the large core canreduce cache misses at

the large core. Note that marshaling the inter-segment datagenerated by the critical-

section segment and used by the non-critical-section segment only speeds up the

non-critical section code, which is not critical for overall performance. We thus

study marshaling private data from the small core to the large core. Since private

data and inter-segment data are synonymous in ACS, we use them interchangeably.

7.3.2 Data Marshaling in ACS

Employing DM in ACS requires two changes. First, the compiler must iden-

tify the generator instructions by running the profiling algorithm in Section 7.2.3,

treating critical sections and the code outside critical sections as two segments.

Once the generator-set is known, the compiler prepends the generator instructions

with the GENERATOR prefix. Second, the compiler/library must insert the MAR-

SHAL instruction into the initiation routine of every critical-section segment, right

before the CSCALL instruction. The argument to the MARSHAL instruction, the

core to marshal the data to, is set to the ID of the large core.

7.3.3 Evaluation Methodology

Table 7.1 shows the configuration of the simulated CMPs, using our in-

house cycle-level x86 simulator. All cores, both large and small, include a state-of-

the-art hardware prefetcher, similar to the one in [99].

Unless specified otherwise: 1) all comparisons are done at equal area bud-

get, equivalent to 16 small cores, 2) the number of threads for each application is

set to the number of available contexts.

Workloads: Our evaluation focuses on 12 critical-section-intensive work-

loads shown in Table 7.2. We define a workload to be critical-section-intensive if

at least 1% of the instructions in the parallel portion are executed within critical
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Table 7.1: Configuration of the simulated machines.

Small core 2-wide, 2GHz, 5-stage, in-order
Large core 4-wide, 2GHz, 2-way SMT, 128-entry ROB, 12-stage,

out-of-order; 4x the area of small core
Interconnect 64-byte wide bi-directional ring, all queuing delays mod-

eled, minimum cache-to-cache latency of 5 cycles
Coherence MESI on-chip distributed directory similar to SGI Ori-

gin [59], cache-to-cache transfers, # of banks = # of
cores, 8K entries/bank

Prefetcher Aggressive stream prefetcher [99] with 32 stream
buffers, can stay 16-lines ahead, prefetches into cores’
L2 caches

Caches Private L1I and L1D: 32KB, write-through, 1-cycle, 4-
way. Private L2: 256KB, write-back, 6-cycle, 8-way
(1MB, 8-cycle, 16-way for large core). Shared L3: 8MB,
20-cycle, 16-way

Memory 32 banks, bank conflicts and queuing delays modeled.
Precharge, activate, column access latencies are 25ns
each

Memory bus 4:1 CPU/bus ratio, 64-bit wide, split-transaction

Area-equivalent CMPs. Area is equal to N small cores. We varyN from 1 to 64.

ACMP 1 large core and N-4 small cores; large core runs serial
part, 2-way SMT on large core and small cores run paral-
lel part, conventional locking (Maximum number of con-
current threads = N-2)

ACS 1 large core and N-4 small cores; (N-4)-entry CSRB at
the large core, large core runs the serial part, small cores
run the parallel part, 2-way SMT on large core runs criti-
cal sections using ACS (Max. concurrent threads = N-4)

IdealACS Same as ACS except all cache misses to private data on
the large core areideally turned into cache hits. Note that
this is anunrealisticupper bound on DM.

DM Same as ACS with support for Data Marshaling

Table 7.2: Simulated workloads.

Workload Description Source Input set # of disjoint What is Protected by CS?
critical sections

is Integer sort NAS suite [13] n = 64K 1 buffer of keys to sort
pagemine Data mining kernel MineBench [70] 10Kpages 1 global histogram

puzzle 15-Puzzle game [109] 3x3 2 work-heap, memoization table
qsort Quicksort [27] 20K elem. 1 global work stack
sqlite Database [3] SysBench [4] OLTP-simple 5 database tables
tsp Traveling salesman prob. [55] 11 cities 2 termination cond., solution

maze 3D-maze solver 512x512 maze 2 Visited nodes
nqueen N-queens problem [48] 40x40 board 534 Task queue

iplookup IP packet routing [105] 2.5K queries # of threads routing tables
mysql-1 MySQL server [2] SysBench [4] OLTP-simple 20 meta data, tables
mysql-2 MySQL server [2] SysBench [4] OLTP-complex 29 meta data, tables

webcache Cooperative web cache [101] 100K queries 33 replacement policy

sections. The benchmarkmaze solves a 3-D puzzle using a branch-and-bound al-

gorithm. Threads take different routes through the maze, insert new possible routes

in a shared queue and update a global structure to indicate which routes have already

been visited.

100



7.3.4 Evaluation

We evaluate DM on several metrics. First, we show that the generator-set

stays stable throughout execution, Second, we show the coverage, accuracy, and

timeliness of DM followed by an analysis of DM’s effect on L2 cache miss rate

inside critical sections. Third, we show the effect of DM on the IPC of the critical

program paths. Fourth, we compare the performance of DM to that of the baseline

ACS and idealACS (ACS with no misses for private data) at different number of

cores.

7.3.4.1 Stability of the Generator-Set

DM assumes that the generator-set, the set of instructions which generate

private data, is small and stays stable throughout execution. To test this assump-

tion, we measure the stability and size of the generator set.Table 7.3 shows the size

and variance of the generator-set in 12 workloads. Varianceis the average number

of differences between intermediate generator-sets (computed every 5M instruc-

tions) and the overall generator-set divided by the generator-set’s size. In all cases,

variance is less than 6% indicating that the generator-set is stable during execution.

We also evaluated the stability of the generator-set on different input sets and found

that the generator-set is constant across input sets.

Table 7.3: Size and variance of Generator-Set.
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Size 3 10 24 23 34 49 111 23 27 114 277 7 58.5
Variance (%) 0.1 0.1 0.1 0.9 3.0 2.2 4.9 4.2 4.3 6.4 6.3 1.2 -

7.3.4.2 Coverage, Accuracy, and Timeliness of DM

We measure DM’s effectiveness in reducing private data misses using three

metrics: coverage, accuracy, and timeliness.Coverageis the percentage of private
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data cache lines identified by DM.Accuracy is the percentage of the marshaled

lines that are actually used at the large core.Timelinessis the percentage of useful

marshaled cache lines that reach the large core before they are needed. Note that

a marshaled cache line that is in transit when it is requestedby the large core is

not considered timely according to this definition, but it can provide performance

benefit by reducing L2 miss latency.

Figure 7.5a shows the coverage of DM. DM is likely to detect all private

lines because it optimistically assumes that every instruction that once generates

private data always generates private data. We find that DM covers 99% of L2

cache misses to private data in all workloads exceptis. The private data inis is

117 cache lines, which fills up the Marshal Buffer, and thus several private lines are

not marshalled (See Section 7.3.4.8).
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Figure 7.5: (a) Coverage, (b) Accuracy, and (c) Timeliness of DM.
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Figure 7.5b shows the accuracy of DM. Recall our assumption that every

cache line written by any of the generator instructions is private data. This as-

sumption is optimistic since a generator’s destination cache line may or may not be

used by a critical section depending on control-flow inside the critical section. For

example, the critical sections in the irregular database-workloadsmysql-1 and

mysql-2 have a larger amount of data-dependent control flow instructions which

leads to a lower accuracy of DM. Despite our optimistic assumption, we find that

a majority (on average 62%) of the cache lines marshaled are useful. Moreover,

note that marshaling non-useful lines can cause cache pollution and/or interconnect

contention, but only if the number of marshaled cache lines is high. We find this

not to be the case. Table 7.4 shows the number of cache lines marshaled per critical

section for every workload. In general, we found that transferringonly an average

of 5 cache lines, 62% of which are useful on average, causes a minimal amount of

cache pollution and/or interconnect contention.

Table 7.4: Average number of cache lines marshaled per critical section
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Lines Marshaled16 8.95 5.64 1.78 3.62 1.82 2.78 8.51 2.89 9.83 15.39 1.83 4.99

Figure 7.5c shows DM’s timeliness. We find that 84% of the useful cache

lines marshaled by DM are timely. Since coverage is close to 100%, timeliness

directly corresponds to the reduction in private data cachemisses. DM reduces

99% of the cache misses for private data inpagemine where timeliness is the

highest. Inpagemine, the main critical section performs reduction of a temporary

local histogram (private data) into a persistent global histogram (shared data). The

private data is 8 cache lines: 128 buckets of 4-bytes each. Since the critical section

is long (212 cycles on the large core) and contention at the large core is high, DM

gets enough time to marshal all the needed cache lines beforethey are needed by

the large core. DM’s timeliness is more than 75% in all workloads. We show in

Section 7.3.4.7 that timeliness increases with larger cache sizes.
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7.3.4.3 Cache Miss Reduction Inside Critical Sections

Table 7.5 shows the L2 cache misses per kilo-instruction inside critical sec-

tions (CS-MPKI) for ACS and DM. When DM is employed, the arithmetic mean of

CS-MPKI reduces by92% (from 8.92 to 0.78). The reduction is only 52% inis

becauseis has low coverage. We conclude that DM (almost) eliminates L2cache

misses inside critical sections.

Table 7.5: MPKI inside critical sections.
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ACS 3.02 15.60 4.72 25.53 0.79 22.51 16.94 0.75 0.96 4.97 10.86 0.85 8.92 1.59
DM 1.43 0.22 0.48 0.23 0.89 2.15 1.33 0.35 0.41 0.47 1.18 0.13 0.78 0.42

7.3.4.4 Speedup in Critical Sections

DM’s goal is to accelerate critical section execution by reducing cache

misses to private data. Figure 7.6 shows the retired critical-section-instructions per-

cycle (CS-IPC) of DM normalized to CS-IPC of baseline ACS. Inworkloads where

CS-MPKI is low or where L2 misses can be serviced in parallel,DM’s improve-

ment in CS-IPC is not proportional to the reduction in CS-MPKI. For example, in

webcache, DM reduces CS-MPKI by almost 6x but the increase in CS-IPC is

only 5%. This is because CS-MPKI ofwebcache is only 0.85. Recall that these

misses to private data are on-chip cache misses that are serviced by cache-to-cache

transfers. Thus, an MPKI of 0.85, which would be significant if it were for off-chip

misses, is less significant for these lower-latency on-chipmisses.

In workloads where CS-MPKI is higher, such as inpagemine, puzzle,

qsort, andnqueen, DM speeds up critical section execution by more than 10%.

Most notably,nqueen’s critical sections execute 48% faster with DM. Note that

in none of the workloads do critical sections execute slowerwith DM than in ACS.

On average, critical sections execute 11% faster with DM compared to ACS. Thus,
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in benchmarks where there is high contention for critical sections, DM will provide

a high overall speedup, as we show next.
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Figure 7.6: Increase in CS-IPC with DM.

7.3.4.5 Performance

DM increases the IPC of critical sections, thereby reducingthe time spent

inside critical sections. For highly-contended critical sections, reducing the time

spent inside the critical section substantially increasesoverall performance. More-

over, as the number of available cores on a chip increases (which can increase the

number of concurrent threads), contention for critical sections further increases and

DM is expected to become more beneficial. We compare ACMP, ACS, and DM at

area budgets of 16, 32 and 64 small cores.

Area budget of 16: Figure 7.7 shows the speedup of ACMP, DM, and Ide-

alACS compared to the baseline ACS. DM outperforms ACS on allworkloads, by

8.5% on average. Most prominently, inpagemine, puzzle, andqsort, DM

outperforms ACS by more than 10% due to large increases in CS-IPC. In other

benchmarks such astsp andnqueen, DM performs 1-5% better than ACS. Note

that DM’s performance improvement strongly tracks the increase in critical section

IPC shown in Figure 7.6. There is one exception,nqueen, where the main critical

section updates a FIFO work-queue that uses very fine-grain locking. Thus, con-
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Figure 7.7: Speedup of DM with an area-budget of 16.

tention for the critical sections is low and, even though DM speeds up the critical

sections by 48%, overall performance improvement is only 2%. In all other work-

loads, faster critical sections lead to higher overall performance as expected. DM’s

performance is within 1% of the IdealACS for all workloads. Thus,DM achieves

almost all the performance benefit available from eliminating cache misses to pri-

vate data.

It is worth mentioning that DM is accelerating execution ofonly oneof the

cores (the large core) by 11% (as shown in Figure 7.6) and providing an overall

performance improvement of 8.5% (as shown in Figure 7.7). Since critical sections

are usually on the critical path of the program, DM’s acceleration ofjust the critical

path by an amount provides almost-proportional overall speedup without requiring

acceleration of all threads.

Larger area budgets (32 and 64): As the number of cores increases,

so does the contention for critical sections, which increases ACS’s benefit. Fig-

ure 7.8 shows that DM’s average performance improvement over ACS increases

to 9.8% at area budget 32 versus the 8.5% at area budget 16. Most prominently,

in pagemine DM’s improvement over ACS increases from 30% to 68%. This

is becausepagemine is completely critical-section-limited and any acceleration

of critical sections greatly improves overall speedup. DM’s performance is again

within 1% of that of IdealACS, showing that DM achieves almost all potential ben-
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efit.
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Figure 7.8: Speedup of DM with an area-budget of 32.

As the chip area further increases to 64, DM’s improvement over ACS con-

tinues to increase (Figure 7.9). On average, DM provides 13.4% performance im-

provement over ACS and is within 2% of its upper-bound (IdealACS). We conclude

that DM’s benefits are likely to increase as systems scale to larger number of cores.
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Figure 7.9: Speedup of DM with an area-budget of 64.

At best-threads: The best-threads of a workload is the minimum of the

number of threads that minimizes its execution time and the number of processor
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contexts. Determining the best-threads requires oracle information because this

number depends on input data, which is only available at runtime. We also evaluated

DM’s speedup with best-threads normalized to ACS with best-threads for an area

budget of 16. Our results show that even if we use oracle information to pick the

best number of threads, which penalizes DM since DM performsbetter at a higher

thread count, DM provides 5.3% performance over the baseline ACS.

7.3.4.6 Sensitivity to Interconnect Hop Latency

DM’s performance improvement over ACS can change with the intercon-

nect hop latency between caches for two reasons. First, increasing the hop latency

increases the cost of each on-chip cache miss, increasing the performance impact of

misses to private data and making DM more beneficial. Second,increasing the hop

latency increases the time to marshal a cache line, which canreduce DM’s timeli-

ness, reducing its benefit. We evaluate ACS and DM using hop latencies of 2, 5,

and 10 cycles. On average, the speed up of DM over ACS increases from 5.2% to

8.5% to 12.7% as hop latency increases from 2 to 5 to 10. We conclude that DM

is even more effective in systems with longer hop latencies,e.g. higher frequency

CMPs or SMPs.

7.3.4.7 Sensitivity to L2 Cache Sizes

Private data misses are communication misses. Such misses cannot be

avoided by increasing cache capacity. Thus, DM, which reduces communication

misses, stays equally beneficial when L2 cache size increases. In fact, DM’s ben-

efit might increase with larger caches due to three reasons: 1) enlarging the cache

reduces capacity and conflict misses, increasing the relative performance impact of

communication misses and techniques that reduce such misses; 2) increasing the

L2 size of the large core increases the likelihood that a marshaled cache line will

not be evicted before it is used, which increases DM’s coverage and timeliness; 3)

increasing the small core’s L2 capacity increases the amount of private data that

stays resident at the small cores’ L2 caches and thus can be marshaled, which can
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increase DM’s coverage.

Table 7.6: Sensitivity of DM to L2 Cache Size.
L2 Cache Size (KB) 128 256 512 1024 2048

ACS vs. ACS 256KB (%) -5.4 0.0 2.1 2.9 3.1
DM vs. ACS 256KB (%) -11.4 8.5 10.6 11.3 12.0

Table 7.6 shows the average speedup across all benchmarks for ACS and

DM for L2 cache sizes from 128KB to 2048KB. Note that the cacheof the large core

is always 4x larger than the cache of a small core. The performance benefit of DM

over ACS slightly increases as cache size increases from 256KB to 2048KB. In fact,

DM with a 256KB L2 cache outperforms ACS with a 2MB L2 cache. However,

with a 128KB L2 cache, DM performs worse than ACS. This is because marshaling

private data into a small L2 cache at the large core causes cache pollution, evicting

shared data or marshaled data of other critical sections notyet executed, and leading

to longer-latency L2 cache misses, serviced by the L3. We conclude that DM’s

performance benefit either increases or stays constant as L2cache size increases.

7.3.4.8 Sensitivity to Size of the Marshal Buffer

The number of entries in the Marshal Buffer limits the numberof cache

lines DM can marshal for a critical section segment. We experimented with dif-

ferent Marshal Buffer sizes and found that 16 entries (whichwe use in our main

evaluation) suffice for all workloads exceptis. Sinceis requires the marshaling

of 117 cache lines on average, when we use a 128-entry MarshalBuffer, CS-MPKI

in is is reduced by 22% and performance increases by 3.8% comparedto a 16-

entry Marshal Buffer.

7.4 DM for Pipeline Workloads

Pipeline parallelism is another instance of SE: each iteration of a loop is

split into multiple code segments where each segment is one pipeline stage. Fur-

thermore, segments run on different cores. As in SE, each core has a work-queue
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Pipeline Stage S1: Pipeline Stage S1:
1: .... 1: .... ;Compute X
2: store X 2: GENERATOR store X
3: Enqueue a request at S2’s home core3: Enqueue a request at S2’s home core;S2’s initiation

4: MARSHAL <S2’s home core>

Pipeline Stage S2: Pipeline Stage S2:
4: Y = ... X ... 5: Y = ... X ... ;Compute Y
.... ....
(a) Code of a pipeline. (b) Modified code with DM.

Figure 7.10: Code example of a pipeline.

and processes execution requests. Each pipeline stage firstcompletes its computa-

tion and then executes the initiation routine for the next stage.

7.4.1 Inter-segment data in pipeline parallelism

Figure 7.10(a) shows a code example of two pipeline stages: S1 and S2,

running on cores P1 and P2, respectively. S1 computes and stores the value of a

variable X (line 1-2) and then enqueues a request to run S2 at core P2 (line 3). Note

that X is used by S2 (line 4). P2 may process the computation inS2 immediately or

later, depending on the entries in its work-queue.

7.4.2 DM in Pipelines

Processing of a pipeline stage often requires data that was generated in

the previous pipeline stage. Since each stage executes at a different core, such

inter-segment or inter-stage data must be transferred fromcore to core as the work-

quantum is processed by successive pipeline stages. For example, in the pipeline

code in Figure 7.10(a), variable X is inter-segment data as it is generated in S1 (line

2) and used by S2 (line 4). When S2 runs on P2, P2 incurs a cache miss to fetch X

from P1.

DM requires two code changes. First, the compiler must identify the gen-

erator instructions and prepend them with a GENERATOR prefix. Second, the

compiler/library must insert a MARSHAL instruction in the initiation routine. Fig-

ure 7.10(b) shows the same code with modifications for DM. Since X is inter-
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segment data, the compiler identifies via profiling the storeinstruction on line 2

as a generator and prepends it with the GENERATOR prefix. Furthermore, the

MARSHAL instruction is inserted in the initiation routine (line 4).

When P1 (the core assigned to S1) runs the store on line 2, the hardware

inserts the physical address of the cache line being modifiedinto P1’s Marshal

Buffer. When the MARSHAL instruction on line 5 executes, theData Marshaling

Unit (DMU) marshals the cache line containing X to P2’s L2 cache. When S2 runs

on P2, it incurs a cache hit for X, which likely reduces execution time.

7.4.3 Evaluation Methodology

We simulate three different configurations: Baseline (a baseline ACMP

without DM), Ideal (an idealistic but impractical ACMP where all inter-segment

misses are turned into hits), and DM (an ACMP with support forDM). The param-

eters of each core, the interconnect, caches, and the memorysub-system are shown

in Table 7.1. The Ideal scheme, which unrealistically eliminates all inter-segment

misses, is an upper bound of DM’s performance.

Table 7.7 shows the simulated workloads. We developed a pipelined imple-

mentation of the dedup decoder based on the sequential code in PARSEC [15] and

call it dedupD. A MARSHAL instruction was inserted in the initiation routine of

each workload. Unless otherwise specialized, all comparisons are at equal-area and

equal-number-of-threads. Results are for a 16-core CMP unless otherwise stated.

7.4.4 Evaluation

We evaluate DM’s coverage, accuracy and timeliness, and itsimpact on

the MPKI of inter-segment data, and overall performance. Wealso show DM’s

sensitivity to relevant architectural parameters. We alsovalidated that the generator-

sets are stable during execution and across input sets for pipeline workloads, but we

do not show the results due to space constraints.
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Table 7.7: Workload characteristics.

Workload Description (No. of pipeline
stages)

Major steps of computation Input

black BlackScholes Financial Kernel [74]
(6)

Compute each option’s
call/put value

1M opts

compress File compression using bzip2 algo-
rithm (5)

Read file, compress, re-order,
write

4MB text file

dedupE De-duplication (Encoding) [15](7) Read, find anchors, chunk,
compress, write

simlarge

dedupD De-duplication (Decoding) [15](7) Read, decompress, check
cache, reassemble/write

simlarge

ferret Content based search [15](8) Load, segment, extract, vector,
rank, out

simlarge

image Image conversion from RGB to
gray-scale(5)

Read file, convert, re-order,
write

100M pixels

mtwist Mersenne-Twister PRNG [74](5) Read seeds, generate PRNs,
box-muller

path=200M

rank Rank string similarity with an input
string(3)

Read string, compare, rank 800K strings

sign Compute the signature of a page of
text (7)

Read page and compute signa-
ture

1M pages

7.4.4.1 Coverage, Accuracy, and Timeliness

Figure 7.11a shows DM’s coverage, i.e., the percentage of inter-segment

data cache lines identified by DM. Coverage is over 90% in all workloads except

dedupD, image, andmtwist. In these workloads the inter-segment data needed

per segment often exceeds the size of the Marshal Buffer (16). Since DM marshals

only the cache lines in the Marshal Buffer, not all inter-segment data is marshaled.

Figure 7.11b shows the accuracy of DM, i.e., the percentage of marshaled

lines that are actually used by the home core. DM’s accuracy is low, between 40%

and 50%, because stages contain control flow. However, the increase in interconnect

transactions/cache pollution for DM is negligible becausethe number of cache lines

marshaled per segment is small: the average is 6.8 and the maximum is 16 (the size

of the Marshal Buffer).

Figure 7.11c shows DM’s timeliness, i.e., the percentage ofuseful cache

lines identified by DM that reach the remote home core before their use. Timeliness

is high, more than 80% in all cases, for two reasons: (1) segments often wait in
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Figure 7.11: (a) Coverage, (b) Accuracy, and (c) Timelinessof DM.

the home core’s work-queue before their processing, givingDM enough time to

marshal the lines, (2) transferring the few lines that are marshaled per segment

requires a small number of cycles.

7.4.4.2 Reduction in Inter-Segment Cache Misses

Table 7.8 shows the L2 MPKI of inter-segment data in the baseline and

DM. DM significantly reduces the MPKI in all cases. The most noticeable issign

where DM reduces the MPKI from 30.3 to 0.9.sign computes the signature of

an input page for indexing. The main inter-segment data insign is the page’s

signature, a 256-character array (4 cache lines). Since DM’s profiling algorithm

marks the instruction that stores all array elements as a generator, DM saves all

cache misses for the array. Similarly, DM completely eliminates inter-segment data

misses inferret anddedupE. DM reduces the harmonic mean of MPKI by 81%

and the arithmetic mean by 69%.
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Table 7.8: L2 Misses for Inter-Segment Data (MPKI). We show both amean and
hmean because hmean is skewed due todedupE. Note: MPKI of inter-segment
data in Ideal is 0.
Workload black compressdedupD dedupE ferret image mtwist rank sign ameanhmean
baseline 14.2 7.7 47.5 0.4 4.4 55.6 51.4 4.1 30.3 23.95 2.76

DM 2.8 1.7 33.0 0.0 0.1 20.4 7.4 0.3 0.9 7.40 0.53

7.4.4.3 Performance

Execution time of a pipelined program is always dictated by its slowest

stage. Thus, DM’s impact on overall performance depends on how much it speeds

up the slowest stage. Figure 7.12 shows the speedup of Ideal and DM over the base-

line at 16 cores. On average, DM provides a 14% speedup over the baseline, which

is 96% of the potential. DM improves performance in all workloads. DM’s im-

provement is highest inblack (34% speedup) because DM reduces inter-segment

misses by 81% and as a result speeds up the slowest stage significantly. DM is

within 5% of the Ideal speedup inblack because accesses to inter-segment data

are in the first few instructions of each stage and consequently the marshaled cache

lines are not always timely. DM’s speedup is lower indedupE andferret be-

cause these workloads only incur a small number of inter-segment misses and DM’s

potential is low (Ideal speedup is only 5% for ferret).
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Figure 7.12: Speedup at 16 cores.

32-core results:Figure 7.13 shows the speedup of Ideal and DM over the

baseline with 32 cores. DM’s speedup increased for all workloads compared to 16
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Figure 7.13: Speedup at 32 cores.

cores. Most significant is the change incompress, from 1% to 18%, because

the slowest stage incompress changes between 16 and 32 cores. At 16 threads,

compress’s slowest stage is the stage that compresses chunks of inputdata. This

stage is compute-bound and does not offer a high potential for DM. However, the

compression stage is scalable, i.e., its throughput increases with more cores. At 32

cores, the compression stage’s throughput is more than the non-scalable re-order

stage (the stage which re-orders chunks of compressed data before writing them to

the output file). Unlike the compression stage which is compute-bound, the re-order

stage is bounded by cache misses for inter-segment data, ergo, a higher potential for

DM and thus the higher benefit. On average, at 32 cores, DM improves performance

by 16%, which is higher than its speedup at 16 cores (14%). In summary, DM is an

effective technique that successfully improves performance of pipelined workloads,

with increasing benefit as the number of cores increases.

7.4.4.4 Sensitivity to Interconnect Hop Latency

We find that the speedup of DM increases with hop latency (refer to Sec-

tion 7.3.4.6 for reasons). We evaluated DM with hop latencies of 2, 5, and 10 cycles

and find that it provides speedups of 12.4%, 14%, and 15.1% over the baseline, re-

spectively.
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7.4.4.5 Sensitivity to L2 Cache Sizes

DM’s benefit increases with cache size for pipeline workloads as well (see

Section 7.3.4.7 for reasons). DM’s speedup over the baseline is 4.6%, 14%, 14.8%,

15.3%, and 15.4% for cache sizes of 128KB, 256KB, 512KB, 1MB,and 2MB,

respectively.

7.4.4.6 Sensitivity to size of Marshal Buffer

We find that a 16-entry Marshal Buffer is sufficient for all workloads except

dedupD, image, andmtwist. The number of inter-segment cache lines per

segment in these workloads is greater than 16. For example, the primary inter-

segment data structure in image, an array of 150 32-bit RGB pixels, spans 32-cache

lines. Table 7.9 shows the performance of DM with varying Marshal Buffer sizes in

these three workloads. In each case, performance saturatesonce there are enough

entries to fit all inter-segment cache lines (32, 32, and 128 for dedupD, image, and

mtwist respectively). In summary, while there are a few workloads that benefit from

a larger Marshal Buffer, a 16-entry buffer suffices for most workloads.

Table 7.9: Sensitivity to Marshal Buffer size: Speedup overbaseline (%).
# of entries 16 32 64 128 256

dedupD 26 40 40 40 40
image 17 24 24 24 24
mtwist 14 18 21 22 22

7.5 DM on Other Paradigms

We have shown two concrete examples of how DM can be applied todif-

ferent execution models: ACS and pipeline parallelism. DM can be applied to any

paradigm that resembles SE, for example:

• Task-parallelism models such as Cilk [17], Intel TBB [47] and Apple’s Grand

Central Dispatch [12]. Any time a new task is scheduled at a remote core, DM

can marshal the input arguments of the task to the core that will execute the
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task.

• Computation Spreading [21], which improves locality by always running the

operating system code on the same set of cores. DM can marshalthe data to

and from the cores dedicated for OS code.

• Thread Motion [80] migrates threads among cores to improve power-

performance efficiency. DM can be extended to reduce cache misses due to

thread migration.

• The CoreTime OS scheduler [18] assigns data objects to caches and migrates

threads to the cache containing the majority of the data theyaccess. DM can

marshal any extra data required by the thread (e.g., portions of its stack).

• Remote special-purpose cores, e.g., encryption or video encoding engines, are

often used to accelerate code segments. DM can be used to marshal data to such

accelerators.

DM not only improves the existing paradigms, but can also enable new

paradigms that follow SE. By significantly reducing the data-migration cost as-

sociated with shipping a segment to a remote core, DM can enable very fine-grain

segments, which could allow more opportunity for core specialization. In summary,

DM is applicable to widely-used current paradigms, makes proposed paradigms

more effective, and can potentially enable new paradigms.
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Chapter 8

Related Work

8.1 Related Work in Accelerating Non-Parallel Kernels

Morad et al. [69] used analytic models to show that an asymmetric archi-

tecture with one large core and multiple small cores can run non-parallel kernels

quickly, thereby improving overall performance and scalability. We showed in [93]

that an ACMP can be built using off-the-shelf cores and can improve performance

of real workloads. Hill at al. [38] build on our ACMP model andpresent an analytic

analysis which shows that ACMP can improve performance of non-parallel kernels.

The work presented in this thesis is different from the work by Morad et. al. and

Hill et. al. for four reasons: (1) we show a practical architecture for the ACMP,

not just analytic models; (2) we propose an actual algorithmfor accelerating non-

parallel kernels; (3) we evaluate ACMP by simulating real workloads; and (4) we

also show that the ACMP can also accelerate critical sections and limiter stages in

addition to the non-parallel kernels.

Kumar et al. [56] propose heterogeneous cores to reduce power and increase

throughput of a system running multiple single-threaded workloads. Their mecha-

nism chooses the best core to run each application on. In contrast, we use the ACMP

to reduce the execution time and improve scalability of a single multi-threaded pro-

gram by accelerating the common critical paths in the program.

Annavaram et al. [11] propose that an ACMP can also be createdusing

frequency throttling: they increase the frequency of the core that is executing the

non-parallel kernel. However, they only deal with non-parallel kernels and do not

accelerate critical sections or limiter pipeline stages, which are central to our pro-

posal. The mechanisms we propose are general and can leverage the ACMP they
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create via frequency throttling.

The IBM Cell processor [40] provides a PowerPC core in addition to the

parallel processing engines on the chip. It is different from the ACMP because the

cores have different ISAs and the PowerPC core is used primarily to run legacy

code.

Previous research [49, 53, 65, 98, 112] also shows that multiple small cores

can be fused to form a powerful core at runtime when non-parallel kernels are ex-

ecuted. If such a chip can be built, our techniques can be adapted to work with

their architecture: multiple execution engines can be combined to form a powerful

execution engine to accelerate the serial bottlenecks.

8.2 Related Work in Reducing Critical Section Penalty

8.2.1 Related Work in Improving Locality of Shared Data and Locks

Sridharan et al. [89] propose a thread scheduling algorithmfor SMP ma-

chines to increase shared data locality in critical sections. When a thread encoun-

ters a critical section, the operating system migrates the thread to the processor that

has the shared data. This scheme increases cache locality ofshared data but incurs

the substantial operating system overhead of migrating complete thread state on ev-

ery critical section. Accelerated Critical Sections (ACS)does not migrate thread

contexts and therefore does not need OS intervention. Instead, it sends a CSCALL

request with minimal data to the core executing the criticalsections. Moreover,

ACS accelerates critical section execution, a benefit unavailable in [89]. Trancoso

et al. [102] and Ranganathan et al. [81] improve locality in critical sections using

software prefetching. These techniques can be combined with ACS for improved

performance.

Several primitives like Test&Set, Test&Test&Set, Compare&Swap,

fetch&add are commonly used to efficiently implement atomicoperations such as

increments, lock acquire, and lock release operations. Recent research has also

studied hardware and software techniques to reduce the overhead of atomic op-
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erations [9, 39, 61]. The Niagara-2 processor improves cache locality of atomic

operations by executing the instructions [33] remotely at the cache bank where the

data is resident. However, none of these techniques increase the speed/locality of

general critical sections which read-modify-write multiple data, a feature provided

by our mechanisms. As shown in Table 5.3 on page 49, many workloads contain

critical sections which are hundreds of instructions long and these mechanisms are

unable to shoten such critical sections.

8.2.2 Related Work in Hiding the Latency of Critical Sections

Several proposals try to hide the latency of a critical section by execut-

ing it speculatively with other instances of the same critical sectionas long as

they do not have data conflicts with each other. Examples include transactional

memory (TM) [37], speculative lock elision (SLE) [76], transactional lock removal

(TLR) [77], and speculative synchronization (SS) [67]. SLEis a hardware tech-

nique that allows multiple threads to execute the critical sections speculatively with-

out acquiring the lock. If a data conflict is detected, only one thread is allowed to

complete the critical section while the remaining threads roll back to the begin-

ning of the critical section and try again. TLR improves uponSLE by providing a

timestamp-based conflict resolution scheme that enables lock-free execution. ACS

is orthogonal to these approaches due to three major reasons:

1. TLR/SLE/SS/TM improve performance when the concurrently executed in-

stances of the critical sections do not have data conflicts with each other. In contrast,

ACS improves performance even for critical section instances that have data con-

flicts. If data conflicts are frequent, TLR/SLE/SS/TM can degrade performance by

rolling back the speculative execution of all but one instance to the beginning of the

critical section. In contrast, ACS’s performance is not affected by data conflicts in

critical sections.

2. TLR/SLE/SS/TM amortize critical section latency by concurrently executing

non-conflicting critical sections, but they do not reduce the latency of each critical

section. In contrast, ACS reduces the execution latency of critical sections.
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Figure 8.1:ACS vs. TLR performance.

3. TLR/SLE/SS/TM do not improve locality of lock and shared data. In contrast,

ACS improves locality of lock and shared data by keeping themin a single cache.

We compare the performance of ACS and TLR. Figure 8.1 shows the ex-

ecution time of an ACMP augmented with TLR1 and the execution time of ACS

normalized to ACMP (area budget is 32 and number of threads set to the optimal

number for each system). TLR reduces average execution timeby 6% while ACS

reduces it by 23%. In applications where critical sections often access disjoint data

(e.g.,puzzle, where the critical section protects a heap to which accesses are

disjoint), TLR provides large performance improvements. However, in workloads

where critical sections conflict with each other (e.g.,is, where each instance of the

critical section updates all elements of a shared array), TLR degrades performance.

ACS outperforms TLR on all benchmarks, and by 18% on average.This is because

ACS accelerates many critical sections regardless of whether or not they have data

conflicts, thereby reducing serialization.

As such, our approach is complementary to SLE, SS, TLR, and TM. These

other approaches amortize critical section latency by allowing concurrent execution

of critical sections but they do not improve the execution time spent in a critical

section. In contrast, our work reduces the execution time ofa critical section. Our

1TLR was implemented as described in [77]. We added a 128-entry buffer to each small core to
handle speculative memory updates.
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approach can be combined with SLE/SS/TM to further reduce the performance loss

due to critical sections. For example, some “speculative critical sections” (as in

SLE/SS) or transactions can be executed on the large core(s)using our mechanism.

This allows not only faster but also concurrent execution ofinstances of a critical

section and constitutes part of our future work.

8.2.3 Other Related Work in Remote Function Calls

The idea of executing critical sections remotely on a different processor

resembles theRemote Procedure Call (RPC)[16] mechanism used in network pro-

gramming to ease the construction of distributed, client-server based applications.

RPC is used to execute (client) subroutines on remote (server) computers. In ACS,

the small cores are analogous to the “client,” and the large core is analogous to the

“server” where the critical sections are remotely executed. ACS has two major dif-

ferences from RPC. First, ACS executes “remote” critical section calls within the

same address space and the same chip as the callee, thereby enabling the accelerated

execution of shared-memory multi-threaded programs. Second, ACS’s purpose is

to accelerate shared-memory parallel programs, whereas RPC’s purpose is to ease

network programming.

Active messages [28] have been proposed to by Eicken et al. toallow for

low overhead communication in large-scale systems. There are similarities between

Active Messages and ACS’s treatment of critical sections: both get sent as a mes-

sage to another core for execution. However, Active Messages were proposed for

very large-scale message passing systems while ACS is for shared memory ma-

chines. Furthermore, they did not accelerate the executionusing a faster core, a key

feature of ACS. Similar to the CSCALL instruction in ACS, theMIT J-machine [25]

also provided instructions to send an execution request to aremote core. However,

the J-machine was a symmetric system and did not accelerate critical paths using a

high-performance engine.
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8.3 Related Work in Increasing Pipeline Throughput

Several studies [15, 29, 34] have discussed the importance of using pipelined

parallelism on CMP platforms. Our mechanism to Accelerate the Limiter

Stages (ALS) provides automatic runtime tuning and accelration of this important

paradigm and obtains improved performance and power-efficiency. To the best of

our knowledge, ALS is the first scheme to improve pipeline throughput via asym-

metric CMPs. However, there have been several schemes whichchoose the best

core-to-stage allocation, attempting to speed up the limiter stage by assigning it

more cores. Such schemes are more specifically related to FDP, the mechanism we

proposed for choosing the best core-to-stage allocation.

Recently Hormati et al. proposed the Flextream compilationframe-

work [41] which can dynamically recompile pipelined applications to adapt to the

changes in the execution environment, e.g., changes in the number of cores as-

signed to an application. While FDP can also adapt to changesin the execution

environment, its main goal is to maximize the performance ofa single application.

Flextream and FDP fundamentally differ for four reasons. First, Flextream does

not consider the use of asymmetric cores. Second, unlike FDP, Flextream assumes

that all stages are scalable and thus allocates cores based on the relative demands

of each stage. This can reduce performance and waste power when a stage does

not scale (see Section 6.6.1.2). Third, Flextream requiresdynamic recompilation

which restricts it to languages which support that feature,e.g., JAVA and C-sharp.

In contrast, FDP is done via a library which can be used with any language. Fourth,

Flextream cannot be used to choose the number of threads in work sharing pro-

grams because it will assume that the workload scales and allocate it all available

cores. FDP, on the other hand, chooses the best number of threads taking scalability

into account.

Other proposals in the operating system and web server domains have im-

plemented feedback directed cores-to-work allocation [91, 106]. However, they

do not use asymmetric cores and make several domain-specificassumptions which
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makes their scheme applicable only to those domains.

Others have also tried to optimize pipelines through staticcore-to-stage al-

location using profile information. The brute force search for finding the best map-

ping can be avoided by using analytical models. Other researchers have![31, 63, 71,

72] proposed analytic models for understanding and optimizing parallel pipelines.

They do not account for asymmetry and while such models can help programmers

design a pipeline, they are static and do not adapt to changesin input set and ma-

chine configuration. In contrast, FDP relieves the programmer from obtaining rep-

resentative profile information for each input set and machine configuration and

does automatic tuning using runtime information.

Languages and languages extensions [26, 47, 58, 100] can help with simpli-

fying the development of pipelined programs. Raman et al. [78] propose to auto-

matically identify pipeline parallelism in a program usingintelligent compiler and

programming techniques. Our work is orthogonal to their work in that our proposal

optimizes at run-time an already written pipelined program.

Pipeline parallelism is also used in databases [36] where each database

transaction is split into stages which can be run on multiplecores. Their work can

also use FDP to choose the best core-to-stage allocation. Others have also proposed

accelerating massively parallel computations in a kernel using special purpose ac-

celerators such as GPUs [64, 74]. The focus of this thesis is to improve scalability

by accelerating the serial bottlenecks, not the parallel parts.

8.4 Related Work in Data Marshaling

Data Marshaling (DM) has related work in the areas of hardware prefetch-

ing, cache coherence, and OS/compiler techniques to improve locality.

8.4.1 Hardware Prefetching

Hardware prefetchers can be broadly classified as prefetchers that can han-

dle regular (stride/stream) memory access patterns (e.g.,[51, 75, 99]) and those
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that can handle irregular memory access patterns (e.g., [23, 50, 84, 88, 107, 108]).

Prefetchers that handle only regular data cannot capture misses for inter-segment

data because inter-segment cache lines do not follow a regular stream/stride pat-

tern and are scattered in memory. Prefetchers that handle irregular data [50, 84, 88,

107](as well as stride/stream based prefetchers) are also not suited for prefetching

inter-segment data because the number of cache misses required for training such

prefetchers is often more than all of the inter-segment data(an average of 5 in ACS

and 6.8 in pipeline workloads). Thus, by the time prefetching begins, a majority of

the cache misses have already been incurred.

DM does not face any of these disadvantages. DM requires minimal on-

chip storage, can marshal any arbitrary sequence of inter-segment cache lines, and

starts marshaling as soon as the next code segment is shippedto its home core,

without requiring any training. Thus, the likelihood of DM covering misses in a

timely fashion is substantially higher than that of prefetching. Note that we already

used an aggressive stream prefetcher [99] in our baseline and the improvements we

report with DM are ontop of this aggressive prefetcher.

8.4.2 Reducing Cache Misses using Hardware/Compiler/OS Support

Hossain et al. [42] propose DDCache, where the producer stores the shar-

ers of every cache line and when one of the consumers requestsa cache line, the

producer sends it not only to the requester, but also to all the remaining sharers. DD-

Cache is orthogonal to DM in that it improves locality of onlyshared data, while

DM also improves locality of thread-private data. Thread Criticality Predictors [14]

have been proposed to improve cache locality in task-stealing [47], another exam-

ple of Staged Execution (SE) paradigm. They schedule tasks to maximize cache

locality and DM can further help by eliminating the remaining cache misses.

Several proposals reduce cache misses for shared data usinghard-

ware/compiler support. Sridharan et al. [89] improve shared data locality by mi-

grating threads wanting to execute a critical section to a single core. This increases
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misses for private (inter-segment) data, the limitation addressed by DM. Other pro-

posals improve shared data locality by inserting software prefetch instructions be-

fore the critical section [81, 102]. Such a scheme cannot work for inter-segment

data because prefetch instructions must be executed at the home core, i.e. as part

of the next code segment and very close to the actual use of thedata, making the

prefetches untimely. Recent cache hierarchy designs [22, 35] aim to provide fast

access to both shared and private data and can further benefitfrom DM to mini-

mize cache-to-cache transfers. Proposals that acceleratethread migration [19, 92]

are orthogonal and can be combined with DM.

The Tempest and Typhoon framework [82] provides a mechanismwhich al-

lows software to push cache lines from one core to the other. Data marshaling is

different from their work for three reasons. First, transferring cache lines in their

system requires invocation of send and receive handlers at the source and destina-

tion cores. Thus, their transfers interrupt normal thread execution. We perform

our marshaling in hardware and do not interrupt the execution to run any handlers.

Second, they require that the data must be packetized beforeit is transferred. We

have no such restrictions. Third, they require that the compiler must be able to

“fully analyze a program’s communication pattern.” We propose a simple profiling

mechanism which does not require any complex compiler analysis.

8.4.3 Other Related Work

In theRemote Procedure Call (RPC)[16] mechanism used in networking,

the programmer identifies the data that must be “marshaled” with the RPC request.

This is similar to DM, which marshals inter-segment data to the home core of the

next code segment. However, unlike RPC, marshaling in DM is solely for perfor-

mance, does not require programmer input, and is applicableto instances of SE that

do not resemble procedure calls.
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Chapter 9

Conclusion

9.1 Summary

Performance and scalability of multi-threaded programs isseverely limited

due to program portions which are not parallelized. Major sources of serializa-

tion include non-parallel kernels, critical sections, andlimiter stages in pipeline

workloads. We show that all three reduce performance and limit the number of

threads at which performance saturates. To overcome this limitation, we propose

the Asymmetric Chip Multiprocessor (ACMP) paradigm and mechanisms to iden-

tify and accelerate the serial bottlenecks using the ACMP.

To accelerate the non-parallel kernels, we propose a threadscheduling al-

gorithm which migrates the thread running a serial portion to the large core. This

technique requires minimal hardware/software overheads and significantly reduces

execution time by17% over an area-equivalent symmetric CMP.

To accelerate the critical sections, we propose a combined hard-

ware/software mechanism which accelerates critical sections by executing them at

the large core of the ACMP. This mechanism significantly reduces execution time

by 34% over an area-equivalent symmetric CMP.

To accelerate the limiter stages in pipeline workloads, we propose a software

library to identify and accelerate the limiter stage using the ACMP’s large core. The

proposed mechanism significantly reduces execution time by20% over an area-

equivalent symmetric CMP.

We further identify a major performance limitation of ACMP:the cache

misses at the large core for transferring data from the smallcores. We proposeData

Marshaling (DM) to improve the reduced locality of private data in Accelerated

127



Critical Section (ACS) mechanism and inter-segment data inpipeline workloads.

We find that DM’s performance is within 1% of an ideal mechanism that eliminates

all private data misses using oracle information, showing that DM achieves almost

all of its upper-bound performance potential.

We conclude that serial program portions can be efficiently accelerated us-

ing faster cores in an asymmetric chip multiprocessor, thereby improving perfor-

mance and increasing scalability.

9.2 Limitations and Future Work

This thesis has proposed several brand new concepts which can be extended

by future research. We envision future work in seven areas:

• Analytic Models;We proposed analytic models to analyze the effect of accel-

erating the serial bottlenecks. Since the intent was to showthe importance of

serial bottlenecks in the simplest possible manner, we madesome simplifying

assumptions. Future work can extend these models such that they take more

run-time parameters into account.

• Exploring the ACMP design space:We proposed an ACMP architecture with

one large core and many small cores. There are others ways to implement asym-

metry among cores on a chip, e.g., by frequency scaling or managed memory

scheduling. Future research can explore such options to create new asymmetric

architectures, and/or increase or reduce the degree of asymmetry in the ACMP

architecture we proposed. Note that the concepts we proposeare applicable to

any ACMP implementation.

• Generalizing the ACMP:This thesis analyzed an ACMP with a single large

core running a single application in isolation. Future research can explore ways

of leveraging multiple large cores. Future research can also explore different

options for the small and large cores, e.g., use GPUs as the small cores.

• Other bottlenecks:This thesis showed how the ACMP can improve perfor-

mance of three major bottlenecks. Future research can develop mechanisms
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to identify and accelerate other bottlenecks, e.g., Reduction in Google MapRe-

duce.

• Alternate implementations of ACS:We show a combined hardware/software

implementation of ACS. ACS can also be implemented purely inhardware or

purely in software. Future research can explore these directions.

• New software algorithms:ACS allows longer critical sections which can enable

new parallel algorithms that were previously considered infeasible due to their

data synchronization overhead. For example, priority-queue-based worklists,

although known to be more work conserving, are not used solely because they

introduce long critical sections. ACS makes their use possible, thereby enabling

new software algorithms.

• Alternate implementation of DM:We show a combined hardware/software im-

plementation of DM. Rigorous compiler algorithms to improve the accuracy

of DM or alternate hardware-only implementations of DM is anopen research

topic.

• Segment-to-core scheduling:ACS and ALS show two examples of code seg-

ments which run “better” on a large core. There may be other code segments

which could leverage the large core or a brand new type of core. Mechanisms

to identify the best core for each segment is a wide open topic.
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