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ABSTRACT

Previous research has shown that Staged Execution (SE), i.e., di-
viding a program into segments and executing each segment at the
core that has the data and/or functionality to best run that segment,
can improve performance and save power. However, SE’s benefit
is limited because most segments access inter-segment data, i.e.,
data generated by the previous segment. When consecutive seg-
ments run on different cores, accesses to inter-segment data incur
cache misses, thereby reducing performance. This paper proposes
Data Marshaling (DM), a new technique to eliminate cache misses
to inter-segment data. DM uses profiling to identify instructions
that generate inter-segment data, and adds only 96 bytes/core of
storage overhead. We show that DM significantly improves the
performance of two promising Staged Execution models, Acceler-
ated Critical Sections and producer-consumer pipeline parallelism,
on both homogeneous and heterogeneous multi-core systems. In
both models, DM can achieve almost all of the potential of ideally
eliminating cache misses to inter-segment data. DM’s performance
benefit increases with the number of cores.

Categories and Subject Descriptors: C.0 [General]: System ar-
chitectures;

General Terms: Design, Performance.

Keywords: Staged Execution, Critical Sections, Pipelining, CMP.

1. INTRODUCTION
Previous research has shown that execution models that segment

a program and run each segment on its best suited core (the core
with the data and/or the functional units needed for the segment)
unveil new performance opportunities. Examples of such mod-
els include Accelerated Critical Sections [41], producer-consumer
pipelines, computation spreading [13], Cilk [10], and Apple’s
Grand Central Dispatch [5]. We collectively refer to these mod-
els as Staged Execution (SE).1 In SE, when a core encounters a
new segment, it ships the segment to the segment’s home core (i.e.,
the core most suited for the segment’s execution). The home core
buffers the execution request from the requesting core and pro-
cesses it in turn.

While SE can improve locality [41, 11, 18], increase paral-
lelism [43], and leverage heterogeneous cores [4], its performance
benefit is limited when a segment accesses inter-segment data,
i.e., data generated by the previous segment. Since each segment
runs on a different core, accesses to inter-segment data generate

1We borrow the term Staged Execution from the operating systems [27] and
database [18] communities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

cache misses, which reduces performance. Unfortunately, hard-
ware prefetching is ineffective for inter-segment data because the
data access patterns are irregular and fewer cache lines need to be
transferred than required to train a hardware prefetcher.

To reduce cache misses for inter-segment data, we propose a
mechanism to identify and send the inter-segment data required by
a segment to its home core. We call it Data Marshaling (DM), a
term borrowed from the network programming community where
data required by a remote procedure call is sent to the remote core
executing that procedure. However, the implementations of the two
mechanisms are fundamentally different, as would be expected due
to their dissimilar environments, as shown in Section 7.3.

We use a key observation to design DM: the generator set, i.e.,
the set of instructions that generate inter-segment data stays con-

stant throughout the execution. The compiler uses profiling to iden-
tify the generator set and the hardware marshals the data written by
these instructions to the home core of the next segment. This ap-
proach has three advantages. First, since the generator instructions
are statically known, DM does not require any training. Second, the
requesting core starts marshaling the inter-segment cache lines as
soon as the execution request is sent to the home core, which makes
data transfer timely. Third, since DM identifies inter-segment data
as any data written by a generator instruction, DM can marshal any
arbitrary sequence of cache lines. DM requires only a modest 96
bytes/core storage, one new ISA instruction, and compiler support.

DM is a general framework and can be applied to reduce inter-
segment data misses in any SE paradigm. In this paper, we show
how DM can improve the performance of the promising Accel-
erated Critical Section (ACS) paradigm [41] and the traditional
producer-consumer pipeline paradigm. ACS accelerates the criti-
cal sections by running them on the large core of an Asymmetric
Chip Multiprocessor (ACMP). DM can marshal the inter-segment
data needed by the critical section to the large core. Our eval-
uation across 12 critical-section-intensive applications shows that
DM eliminates almost all inter-segment data misses in ACS. Over-
all, DM improves performance by 8.5% over an aggressive baseline
with ACS and a state-of-the-art prefetcher, at an area budget equiv-
alent to 16 small cores. In a producer-consumer pipeline, cores are
allocated to pipeline stages and each work-quantum moves from
core to core as it is processed. In this case, DM can marshal
the data produced at one stage to the next stage. Our evaluation
across 9 pipelined workloads shows that DM captures almost all
performance potential possible from eliminating inter-segment data
misses and improves performance by 14% at an area budget of 16
cores. Section 6 discusses other uses of DM, such as task-parallel
workloads [21, 10, 5] and systems with specialized accelerators.

Contributions: This paper makes two main contributions:

• We propose Data Marshaling (DM) to overcome the perfor-
mance degradation due to misses for inter-segment data by iden-
tifying and marshaling the required data to the home core. DM
is a flexible and general framework that can be useful in many
different execution paradigms. DM uses profiling and requires
only 96-byte/core storage.
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• We design and evaluate two applications of Data Marshaling:
Accelerated Critical Sections and producer-consumer pipeline
parallelism. We show that in both cases DM can eliminate al-
most all performance loss due to inter-segment data misses.

2. BACKGROUND

2.1 Staged Execution
The central idea of Staged Execution (SE) is to split a program

into code segments and execute each segment where it runs the
best, i.e., its home core. The criteria commonly used to choose
a segment’s home core include performance criticality, functional-
ity, and data requirements, e.g. critical sections which are on the
critical path of the program are best run at the fastest core [41].
Mechanisms to choose the home core are beyond the scope of this
paper and are discussed in other work on SE [41, 11, 13, 17].

Implementation: Each core is assigned a work-queue which
stores the segments to be processed by the core. Every time the
core completes a segment, it dequeues and processes the next entry
from the work-queue. If the work-queue is empty, the core waits
until a request is enqueued or the program finishes.

The program is divided into segments, where each segment is
best suited for a different core. Each segment, except the first, has
a previous-segment (the segment that executed before it). Similarly,
each segment, except the last, has a next-segment (the segment that
will execute after it). At the end of each segment is an initiation
routine for its next-segment. The initiation routine enqueues a re-
quest for execution of the next-segment at the next-segment’s home
core. The core that runs the initiation routine to request a segment’s
execution is the segment’s requesting core.

Example: Figure 1(a) shows a code with three segments: S0, S1,
and S2. S0 is S1’s previous-segment and S2 is S1’s next-segment.
At the end of S0 is S1’s initiation routine and at the end of S1
is S2’s initiation routine. Figure 1(b) shows the execution of this
code on a CMP with three cores (P0-P2) with the assumption that
the home cores of S0, S1, and S2 are P0, P1, and P2 respectively.
After completing S0, P0 runs S1’s initiation routine, which inserts
a request for the execution of S1 in P1’s work-queue. Thus, P0 is
S1’s requesting core. P1 dequeues the entry, executes segment S1,
and enqueues a request for S2 in P2’s work-queue. Processing at
P2 is similar to the processing at P0 and P1.

P0 P1 P2

Transfer X

Transfer Y

...

...

...

Segment S1:

Segment S2:

...

...

(b)(a)

2: STORE X

3: LOAD X

4: STORE Y

5: LOAD Y

6: STORE Z

Segment S0:

0: STORE X...
1: LOAD X...

...

LOAD X

STORE Y

STORE X

LOAD Y

STORE Z

Figure 1: (a) Source code, (b) Execution in SE.

2.2 Problem: Locality of Inter-Segment Data
We define the Inter-Segment Data of a segment as the data the

segment requires from its previous segment. In Figure 1, X is S1’s
inter-segment data as X is produced by S0 and consumed by S1.
Locality of inter-segment data is high in models where consecutive
segments run on the same core: the data generated by the first seg-
ment remains in the local cache until the next segment can use it.
However, in SE, accesses to inter-segment data incur cache misses

and the data is transferred from the requesting core to the home
core via cache coherence. In Figure 1, P1 incurs a cache miss to
transfer X from P0’s cache and P2 incurs a cache miss to transfer
Y from P1’s cache. These cache misses limit SE’s performance.

3. DATA MARSHALING
Data Marshaling (DM) aims to reduce cache misses to inter-

segment data. In DM, the requesting core identifies the inter-
segment data and marshals it to the home core when it ships a seg-
ment to the home core.

3.1 Key Insight
We first define new terminology. We call the last instruction that

modifies the inter-segment data in a segment a generator. For ex-
ample, in Figure 1(a), the STORE on line 2 is X’s generator since
there are no other stores to X between this STORE and the initiation
of S1. The LOAD on line 1 is not a generator because it does not
modify X and the STORE on line 0 is not a generator since there
is a later STORE (the one on line 2) to X. We generalize our defi-
nition of generators to cache lines by redefining a generator as the
last instruction that modifies a cache line containing inter-segment

data before the next segment begins.

We call the set of all generator instructions, i.e. generators of
all the cache lines containing inter-segment data, the generator-set.
We observed that the generator-set of a program is often small and
does not vary during the execution of the program and across input
sets (see Section 4.5.1 for details). This implies that any instruction
that has once been identified as a generator stays a generator. Thus,
a cache line written by a generator is very likely to be inter-segment
data required by the following segment, hence, a good candidate
for data marshaling. Based on this observation, we assume that
every cache line written by an instruction in the generator-set is

inter-segment data and will be needed for the execution of the next

segment. We call the set of inter-segment data cache lines gener-
ated by a segment its marshal-set. DM adds all cache lines written
by generators to the marshal-set. When a core finishes the initia-
tion routine of the next segment, all cache lines that belong to the
marshal-set are transferred to the next-segment’s home core.

We only marshal data between consecutive segments for two rea-
sons: 1) it achieves most of the potential benefit since 68% of the
data required by a segment is written by the immediately preceding
segment, and 2) in most execution paradigms, the requesting core
only knows the home core of the next segment, but not the home
cores of the subsequent segments.

3.2 Overview
The functionality of DM can be partitioned into three parts:
Identifying the generator-set: DM identifies the generator-set

at compile-time using profiling.2 We define the last-writer of a
cache line to be the last instruction that modified a cache line. Thus,
a line is inter-segment data if it is accessed inside a segment but its

last-writer is a previous segment instruction. Since the generator-
set is stable, we assume that last-writers of all inter-segment data
are generators. Thus, every time DM detects an inter-segment
cache line, it adds the cache line’s last-writer to the generator-set
(unless it is already in the generator-set). The compiler conveys the
identified generator-set to the hardware using new ISA semantics.

Recording of inter-segment data: Every time an instruction in
the generator-set is executed, its destination cache line is predicted
to be inter-segment data and added to the marshal-set.

2We use profiling because a static analysis may not be able to identify all generators
without accurate interprocedural pointer alias analysis. However, if an efficient static
analysis is developed, the proposed ISA and hardware will be able to fully leverage it.
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Marshaling of inter-segment data: All elements of the marshal-
set are transferred, i.e. marshaled, to the home core of the next-
segment when the next segment is initiated.

For example, DM for the code shown in Figure 1 works as fol-
lows. DM detects X to be inter-segment data, identifies the STORE
on line 2 to be X’s last-writer, and adds it to the generator-set.
When P0 executes the STORE on line 2 again, DM realizes that it
is a generator and adds the cache line it modifies to the marshal-set.
When P0 runs the initiation routine for S1, DM marshals all cache
lines in the marshal-set to P1. Consequently, when S1 executes at
P1, it (very likely) will incur a cache hit for X.

DM requires support from the compiler, ISA, and hardware.

3.3 Profiling Algorithm
The profiling algorithm runs the application as a single thread

and instruments all memory instructions.3 The instrumentation code
takes as input the PC-address of the instrumented instruction and
the address of the cache line accessed by that instruction. Fig-
ure 2 shows the profiling algorithm. The algorithm requires three
data structures: 1) a generator-set that stores the identified genera-
tors, 2) a current-last-writer table that stores the last-writer of each
cache line modified in the current segment, and 3) a previous-last-
writer table that stores the last-writer of each cache line modified
in the previous segment.

On every memory access:

If cache-line not present in segment’s accessed lines and
last-writer is from previous segment

Add last-writer to generator-set

On every store:

Save address of store in current-last-writer

At the end of segment:

Deallocate previous-last-writer
current-last-writer becomes previous-last-writer
Allocate and initialize current-last-writer

Figure 2: The profiling algorithm.

For every memory access, the algorithm checks whether or not
the line was modified in the previous segment by querying the
previous-last-writer table. If the line was not modified in the pre-
vious segment, the line is ignored. If the cache line was modified
in the previous segment, the last-writer of the line (an instruction
in the previous segment) is added to the generator-set. When an
instruction modifies a cache line, the profiling algorithm records
the instruction as the last-writer of the destination cache line in the
current-last-writer table. At the end of each segment, the lookup
table of the previous segment is discarded, the current segment
lookup table becomes the previous segment lookup table, and a
new current segment lookup table is initialized. After the program
finishes, the generator-set data structure contains all generators.

3.4 ISA Support
DM adds two features to the ISA: a GENERATOR prefix and

a MARSHAL instruction. The compiler marks all generator in-
structions by prepending them with the GENERATOR prefix. The
MARSHAL instruction is used to inform the hardware that a new
segment is being initiated. The instruction takes the home core
ID of the next-segment as its only argument. When the initiation
routine initiates a segment at a core, it executes the MARSHAL in-
struction with that core’s ID.4 When the MARSHAL instruction
executes, the hardware begins to marshal all cache lines in the
marshal-set to the core specified by HOME-ID.

3We also evaluated a thread-aware version of our profiling mechanism but its results
did not differ from the single-threaded version.
4The runtime library stores a segment-to-core mapping which is populated by execut-
ing a CPUID instruction on each core.

3.5 Data Marshaling Unit
Each core is augmented with a Data Marshaling Unit (DMU),

which is in-charge of tracking and marshaling the inter-segment
data to the home core. Figure 3(a) shows the integration of the
DMU with the core. Its main component is the Marshal Buffer,
which stores the addresses of the cache lines to be marshaled. The
Marshal Buffer is combining, i.e. multiple accesses to the same
cache line are combined into a single entry, and circular, i.e. if it
becomes full its oldest entry is replaced with the incoming entry.

Figure 3(b) shows the operation of the DMU. When the core re-
tires an instruction with the GENERATOR prefix, it sends the phys-
ical address of the cache line written by the instruction to the DMU.
The DMU enqueues the address in the Marshal Buffer. When the
core executes the MARSHAL instruction, it asserts the MARSHAL
signal and sends the HOME-ID to the DMU. The DMU starts mar-
shaling data to the home core. For each line address in the Marshal
Buffer, the DMU accesses the local L2 cache to read the coherence
state and data. If the line is in shared state or if a cache miss occurs,
the DMU skips that line. If the line is in exclusive or modified state,
the DMU puts the line in a temporary state that makes it inaccessi-
ble (similar to [30]) and sends a DM Transaction (see Section 3.6)
containing the cache line to the home core. The home core installs
the marshaled line in its fill buffer and responds with an ACK, sig-
naling the requesting core to invalidate the cache line. If the fill
buffer is full, the home core responds with a NACK, signaling the
requesting core to restore the original state of the cache line.

Dest. of GENERATOR Inst. &

MARSHAL signal + HOME−ID

to be marshaled
cache lines
Addresses of

Requesting

T
im

e

MARSHAL

Signal

Core

Marshaled

Cache Lines

Execution Req.

Addresses

Core
Home

(b) DMU functionality

DMU

(a) DMU integration (DMU is shaded)

Cache
L2

Buffer
Marshal

Core

Figure 3: Data Marshaling Unit.

Note that DM marshals lines into L2 caches (not L1). This re-
duces contention for cache ports between the core and DMU. More-
over, L2, being bigger, is less prone to cache pollution. However,
this also implies that DM does not save L1 misses. We find that the
performance benefit of marshaling into the L2 outweighs its cost.

3.6 On-Chip Interconnect Support
The interconnect supports one new DM transaction, which is

sent by the DMU to a remote core via the directory/ordering-point.
Each DM transaction is a point-to-point message containing the ad-
dress and data of a marshaled cache line, and requires the same in-
terconnect support (wires, routing, etc.) as a cache-to-cache trans-
fer, which is available in existing CMPs.

3.7 Handling Interrupts and Exceptions
An interrupt or exception can modify the virtual-to-physical ad-

dress mapping, thereby making the contents of the Marshal Buffer
invalid. Since DM does not impact correctness, we simply flush the
contents of the Marshal Buffer at an interrupt or exception.

3.8 Overhead
DM can significantly improve performance by reducing inter-

segment cache misses. However, it also incurs some overhead:

• DM adds the GENERATOR prefix to all generator instructions.
This only marginally increases the I-cache footprint, since the
average size of the generator-set is only 55 instructions.

• DM adds a MARSHAL instruction to each segment. This over-
head is low because the MARSHAL instruction: (1) does not
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read/write any data, and (2) executes only once per segment,
which often consists of thousands of instructions.

• The DMU can contend with the core for cache ports. This over-
head is no different from the baseline, where the inter-segment
data cache-to-cache transfer requests contend for the cache.

• DM augments each core with a Marshal Buffer. The storage
overhead of this buffer is only 96 bytes/core (16 6-byte entries,
each storing the physical address of a cache line). Section 4.5.8
shows the sensitivity of performance to Marshal Buffer size.

In summary, the overhead of DM is low. We now discuss the use
of DM in different execution paradigms.

4. ACCELERATED CRITICAL SECTIONS
Data Marshaling is beneficial in any execution paradigm that

uses the basic principle of Staged Execution. In this section we
describe the application of DM to improve a recently proposed SE
paradigm: Accelerated Critical Sections (ACS) [41].

4.1 Background
Critical Sections: Accesses to shared data are encapsulated in-

side critical sections to preserve mutual exclusion. Only one thread
can execute a critical section at any given time, while other threads
wanting to execute the same critical section must wait, thereby re-
ducing performance. Furthermore, contention for critical sections
increases with more threads, thereby reducing application scala-
bility. This contention can be reduced if critical sections execute
faster. When threads are waiting for the completion of a critical
section, reducing the execution time of the critical section signif-
icantly affects not only the thread that is executing it but also the
threads that are waiting for it.

Suleman et al. [41] proposed Accelerated Critical Sections (ACS)
to reduce execution time of critical sections. ACS leverages the
Asymmetric Chip Multiprocessor (ACMP) architecture [39, 19, 31],
which provides at least one large core and many small cores on the
same chip. ACS executes the parallel threads on the small cores
and leverages the large core(s) to speedily execute Amdahl’s serial
bottleneck as well as critical sections.

ACS introduces two new instructions, CSCALL and CSRET,
which are inserted at the beginning and end of a critical section
respectively. When a small core executes a CSCALL instruction, it
sends a critical section execution request (CSCALL) to the large
core P0 and waits until it receives a response. P0 buffers the
CSCALL request in the Critical Section Request Buffer (CSRB)
and starts executing the requested critical section at the first oppor-
tunity. When P0 executes a CSRET, it sends a critical section done
(CSDONE) signal to the requesting small core, which can then re-
sume normal execution.

ACS is an instance of Staged Execution (SE) where code is split
into two types of segments: critical-section segments that run at the
large core, and non-critical-section segments that run at the small
cores. Every critical-section segment is followed by a non-critical-
section segment and vice-versa. Every non-critical-section segment
terminates with a CSCALL and every critical-section segment ter-
minates with a CSRET instruction. A CSCALL instruction initiates
a critical-section segment and enqueues it at the large core’s work-
queue (the CSRB). A CSRET instruction initiates a non-critical-
section segment at the small core.

4.2 Private Data in ACS
By executing all critical sections at the same core, ACS keeps

the shared data (protected by the critical sections) and the lock
variables (protecting the critical section) at the large core, thereby
improving locality of shared data. However, every time the criti-

cal section accesses data generated outside the critical section (i.e.
thread-private data), the large core incurs cache misses to trans-
fer this data from the small core. This data is inter-segment data:
it is generated in the non-critical-section segment and accessed
in the critical-section segment. Marshaling this data to the large
core can reduce cache misses at the large core, thereby accelerat-
ing the critical-section even more. Note that marshaling the inter-
segment data generated by the critical-section segment and used
by the non-critical-section segment only speeds up the non-critical
section code, which is not critical for overall performance. We thus
study marshaling private data from the small core to the large core.
Since private data and inter-segment data are synonymous in ACS,
we use them interchangeably.

4.3 Data Marshaling in ACS
Employing DM in ACS requires two changes. First, the compiler

identifies the generator instructions by running the profiling algo-
rithm in Section 3.3, treating critical sections and the code outside
critical sections as two segments. Second, the library inserts the
MARSHAL instruction right before every CSCALL instruction.
The argument to the MARSHAL instruction, the core to marshal
the data to, is set to the ID of the large core.

4.4 Evaluation Methodology
Table 1 shows the configuration of the simulated CMPs, using

our in-house cycle-level x86 simulator. We use simulation param-
eters similar to [41]. All cores, both large and small, include a
state-of-the-art hardware prefetcher, similar to the one in [42].

Table 1: Configuration of the simulated machines.
Small core 2-wide, 2GHz, 5-stage, in-order

Large core 4-wide, 2GHz, 2-way SMT, 128-entry ROB, 12-stage, out-of-
order; 4x the area of small core

Interconnect 64-byte wide bi-directional ring, all queuing delays modeled,
minimum cache-to-cache latency of 5 cycles

Coherence MESI on-chip distributed directory similar to SGI Origin [28],
cache-to-cache transfers, # of banks = # of cores, 8K entries/bank

Prefetcher Aggressive stream prefetcher [42] with 32 stream buffers, can
stay 16-lines ahead, prefetches into cores’ L2 caches

Caches Private L1I and L1D: 32KB, write-through, 1-cycle, 4-way. Pri-
vate L2: 256KB, write-back, 6-cycle, 8-way (1MB, 8-cycle, 16-
way for large core). Shared L3: 8MB, 20-cycle, 16-way

Memory 32 banks, bank conflicts and queuing delays modeled. Precharge,
activate, column access latencies are 25ns each

Memory bus 4:1 CPU/bus ratio, 64-bit wide, split-transaction

Area-equivalent CMPs. Area is equal to N small cores. We vary N from 1 to 64.

ACMP 1 large core and N-4 small cores; large core runs serial part, 2-
way SMT on large core and small cores run parallel part, conven-
tional locking (Maximum number of concurrent threads = N-2)

ACS 1 large core and N-4 small cores; (N-4)-entry CSRB at the large
core, large core runs the serial part, small cores run the parallel
part, 2-way SMT on large core runs critical sections using ACS
(Max. concurrent threads = N-4)

IdealACS Same as ACS except all cache misses to private data on the large
core are ideally turned into cache hits. Note that this is an unre-
alistic upper bound on DM.

DM Same as ACS with support for Data Marshaling

Unless specified otherwise: 1) all comparisons are done at equal
area budget, equivalent to 16 small cores, 2) the number of threads
for each application is set to the number of available contexts.

Workloads: Our evaluation focuses on 12 critical-section-
intensive workloads shown in Table 2. We define a workload to be
critical-section-intensive if at least 1% of the instructions in the par-
allel portion are executed within critical sections. The benchmark
maze solves a 3-D puzzle using a branch-and-bound algorithm.
Threads take different routes through the maze, insert new possi-
ble routes in a shared queue and update a global structure to indi-
cate which routes have already been visited. iplookup, puzzle,
webcache and pagemine are similar to the benchmarks with the
same names used in [40].
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Table 2: Simulated workloads.

Workload Description Source Profile Evaluation # of disjoint What is Protected by CS?
Input Input critical sections

is Integer sort NAS suite [6] n = 16K n = 64K 1 buffer of keys to sort

pagemine Data mining kernel MineBench [32] 2K pages 10Kpages 1 global histogram

puzzle 15-Puzzle game [40] 3x3-easy 3x3 2 work-heap, memoization table

qsort Quicksort OpenMP SCR [15] 4K elements 20K elements 1 global work stack

sqlite sqlite3 [2] database engine SysBench [3] insert-test OLTP-simple 5 database tables

tsp Traveling salesman problem [26] 7 cities 11 cities 2 termination condition, solution

maze 3D-maze solver 128x128 maze 512x512 maze 2 visited nodes

nqueen N-queens problem [22] 20x20 board 40x40 board 534 task queue

iplookup IP packet routing [45] 500 queries 2.5K queries # of threads routing tables

mysql-1 MySQL server [1] SysBench [3] insert-test OLTP-simple 20 meta data, tables

mysql-2 MySQL server [1] SysBench [3] insert-txn OLTP-complex 29 meta data, tables

webcache Cooperative web cache [40] 10K queries 100K queries 33 replacement policy

4.5 Evaluation
We evaluate DM on four metrics. First, we show that the

generator-set stays stable throughout execution. Second, we show
the coverage, accuracy, and timeliness of DM followed by an anal-
ysis of DM’s effect on L2 cache miss rate inside critical sections.
Third, we show the effect of DM on the IPC of the critical program
paths. Fourth, we compare the performance of DM to that of the
baseline and ideal ACS at different number of cores.

4.5.1 Stability of the Generator-Set
DM assumes that the generator-set, the set of instructions which

generate private data, is small and stays stable throughout execu-
tion. To test this assumption, we measure the stability and size
of the generator set. Table 3 shows the size and variance of the
generator-set in 12 workloads. Variance is the average number
of differences between intermediate generator-sets (computed ev-
ery 5M instructions) and the overall generator-set, divided by the
generator-set’s size. In all cases, variance is less than 7% indicating
that the generator-set is stable during execution. We also evaluated
the stability of the generator-set on different input sets and found
that the generator-set is constant across input sets.

Table 3: Size and variance of the generator-set.
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4.5.2 Coverage, Accuracy, and Timeliness of DM
We measure DM’s effectiveness in reducing private data misses

using three metrics: coverage, accuracy, and timeliness. Coverage

is the fraction of private data cache lines identified by DM. Accu-

racy is the fraction of marshaled lines that are actually used at the
large core. Timeliness is the fraction of useful marshaled cache
lines that reach the large core before they are needed. Note that a
marshaled cache line that is in transit when it is requested by the
large core is not considered timely according to this definition, but
it can provide performance benefit by reducing L2 miss latency.
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Figure 4: Coverage, Accuracy, and Timeliness of DM.

Figure 4 shows the coverage of DM. DM is likely to detect all
private lines because it optimistically assumes that every instruction

that once generates private data always generates private data. We
find that DM covers 99% of L2 cache misses to private data in all
workloads except is. The private data in is is 117 cache lines,
which fills up the Marshal Buffer, and thus several private lines are
not marshaled (see Section 4.5.8).

Figure 4 also shows the accuracy of DM. Recall our assumption
that every cache line written by any of the generator instructions
is private data. This assumption is optimistic since a generator’s
destination cache line may or may not be used by a critical section
depending on control-flow inside the critical section. For example,
the critical sections in the irregular database-workloads mysql-1
and mysql-2 have a larger number of data-dependent control flow
instructions, which leads to a lower accuracy of DM. Despite our
optimistic assumption, we find that a majority (on average 62%) of
the cache lines marshaled are useful. Moreover, note that marshal-
ing non-useful lines can cause cache pollution and/or interconnect
contention, but only if the number of marshaled cache lines is high.
We find this not to be the case. Table 4 shows the number of cache
lines marshaled per critical section for every workload. In general,
we found that transferring only an average of 5 cache lines, 62%
of which are useful on average, causes a minimal amount of cache
pollution and/or interconnect contention.

Table 4: Number of cache lines marshaled per critical section.
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Lines 16 9.0 5.6 1.8 3.6 1.8 2.8 8.5 2.9 9.8 15.4 1.8 5.0

Figure 4 also shows DM’s timeliness. We find that 84% of the
useful cache lines marshaled by DM are timely. Since coverage is
close to 100%, timeliness directly corresponds to the reduction in
private data cache misses. DM reduces 99% of the cache misses
for private data in pagemine where timeliness is the highest. In
pagemine, the main critical section performs reduction of a tem-
porary local histogram (private data) into a persistent global his-
togram (shared data). pagemine’s private data is 8 cache lines:
128 buckets of 4-bytes each. Since the critical section is long (212
cycles on the large core) and contention at the large core is high,
DM gets enough time to marshal all the needed cache lines before
they are needed by the large core. DM’s timeliness is more than
75% in all workloads.

4.5.3 Cache Miss Reduction Inside Critical Sections
Table 5 shows the L2 cache misses per kilo-instruction inside

critical sections (CS-MPKI) for ACS with no prefetcher (ACS-
NP), ACS with prefetcher (ACS) and DM. ACS is only marginally
better (11%) than ACS-NP, showing that an aggressive hardware
prefetcher is ineffective for inter-segment data misses. When DM
is employed, the arithmetic mean of CS-MPKI reduces by 92%

(from 8.92 to 0.78). The reduction is only 52% in is because DM
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has low coverage. We conclude that DM largely reduces L2 cache
misses inside critical sections.

Table 5: MPKI inside critical sections.
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ACS-NP 13.4 15.6 4.7 25.6 0.8 22.6 18.5 0.8 1.0 5.3 11.5 0.9 10.0 1.8

ACS 3.0 15.6 4.7 25.5 0.8 22.5 16.9 0.8 1.0 5.0 10.9 0.9 8.9 1.6

DM 1.4 0.2 0.5 0.2 0.9 2.2 1.3 0.4 0.4 0.5 1.2 0.1 0.8 0.4

4.5.4 Speedup in Critical Sections
DM’s goal is to accelerate critical section execution by reducing

cache misses to private data. Figure 5 shows the retired critical-
section-instructions per-cycle (CS-IPC) of DM normalized to CS-
IPC of baseline ACS. In workloads where CS-MPKI is low or
where L2 misses can be serviced in parallel, DM’s improvement
in CS-IPC is not proportional to the reduction in CS-MPKI. For
example, in webcache, DM reduces CS-MPKI by almost 6x but
the increase in CS-IPC is only 5%. This is because CS-MPKI of
webcache is only 0.85, which has a small effect on performance
since these misses are serviced by cache-to-cache transfers.
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Figure 5: Increase in CS-IPC with DM.

In workloads where CS-MPKI is higher, such as in pagemine,
puzzle, qsort, and nqueen, DM speeds up critical section ex-
ecution by more than 10%. Most notably, nqueen’s critical sec-
tions execute 48% faster with DM. Note that in none of the work-
loads do critical sections execute slower with DM than in ACS.
On average, critical sections execute 11% faster with DM. Thus,
in benchmarks where there is high contention for critical sections,
DM will provide a high overall speedup, as we show next.

4.5.5 Performance
DM increases the IPC of critical sections, thereby reducing the

time spent inside critical sections. For highly-contended critical
sections, reducing the time spent inside the critical section substan-
tially increases overall performance. Moreover, as the number of
available cores on a chip increases (which can increase the num-
ber of concurrent threads), contention for critical sections further
increases and DM is expected to become more beneficial. We com-
pare ACMP, ACS, and DM at area budgets of 16, 32 and 64.
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Figure 6: Speedup of DM with an area-budget of 16.

Area budget of 16: Figure 6 shows the speedup of ACMP, DM,
and IdealACS normalized to the baseline ACS. DM outperforms
ACS on all workloads, by 8.5% on average. Most prominently,
in pagemine, puzzle, and qsort, DM outperforms ACS by
more than 10% due to large increases in CS-IPC. In other bench-
marks such as tsp and nqueen, DM performs 1-5% better than
ACS. Note that DM’s performance improvement strongly tracks the

increase in critical section IPC shown in Figure 5. There is one ex-
ception, nqueen, where the main critical section updates a FIFO
work-queue that uses very fine-grain locking. Thus, contention for
the critical sections is low and, even though DM speeds up the criti-
cal sections by 48%, overall performance improvement is only 2%.
In all other workloads, faster critical sections lead to higher over-
all performance. DM’s performance is within 1% of the IdealACS
for all workloads. Thus, DM achieves almost all the performance
benefit available from eliminating cache misses to private data.

Note that DM is able to provide an overall speedup of 8.5% by
accelerating the execution of only the large core by 11% (as shown
in Figure 5). This is because when critical sections are on the crit-
ical path of the program, accelerating just the critical sections by
any amount provides an almost-proportional overall speedup with-
out requiring acceleration of all threads.

Larger area budgets (32 and 64): Figure 7 shows that DM’s
average performance improvement over ACS increases to 9.8%
at area budget 32. Most prominently, in pagemine DM’s im-
provement over ACS increases from 30% to 68%. This is because
pagemine is completely critical-section-limited and any acceler-
ation of critical sections greatly improves overall speedup. DM’s
performance is again within 1% of that of IdealACS, showing that
DM achieves almost all potential benefit.
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Figure 7: Speedup of DM with an area-budget of 32.

As the chip area further increases to 64, DM’s improvement over
ACS continues to increase (Figure 8). On average, DM provides
13.4% performance improvement over ACS and is within 2% of
its upper bound (IdealACS). We conclude that DM’s benefits are
likely to increase as systems scale to larger number of cores.
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Figure 8: Speedup of DM with an area-budget of 64.

At best-threads: The best-threads of a workload is the mini-
mum number of threads required to minimize its execution time.
We also evaluated DM’s speedup with best-threads normalized to
ACS with best-threads for an area budget of 16. Our results show
that even if we use oracle information to pick the best number of
threads, which penalizes DM since DM performs better at a higher
thread count, DM improves performance by 5.3% over ACS.

4.5.6 Sensitivity to Interconnect Hop Latency

DM’s performance improvement over ACS can change with the
interconnect hop latency between caches for two reasons. First, in-
creasing the hop latency increases the cost of each on-chip cache
miss, increasing the performance impact of misses to private data
and making DM more beneficial. Second, increasing the hop la-
tency increases the time to marshal a cache line, which can reduce
DM’s timeliness, reducing its benefit. We evaluate ACS and DM
using hop latencies of 2, 5, and 10 cycles. On average, the speed
up of DM over ACS increases from 5.2% to 8.5% to 12.7% as hop
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latency increases from 2 to 5 to 10. We conclude that DM is even
more effective in systems with longer hop latencies, e.g. higher
frequency CMPs or SMPs.

4.5.7 Sensitivity to L2 Cache Size

Private data misses are communication misses that cannot be
avoided by increasing cache capacity. Thus, DM, which reduces
communication misses, stays equally beneficial when L2 cache size
increases. In fact, DM’s benefit might increase with larger caches
due to three reasons: 1) enlarging the cache reduces capacity and
conflict misses, increasing the relative performance impact of com-
munication misses and techniques that reduce such misses; 2) in-
creasing the L2 size of the large core increases the likelihood that
a marshaled cache line will not be evicted before it is used, which
increases DM’s coverage and timeliness; 3) increasing the small
core’s L2 capacity increases the amount of private data that stays
resident at the small cores’ L2 caches and thus can be marshaled,
which can increase DM’s coverage.

Table 6: Sensitivity of DM to L2 Cache Size.
L2 Cache Size (KB) 128 256 512 1024 2048

ACS vs. ACS 256KB (%) -5.4 0.0 2.1 2.9 3.1

DM vs. ACS 256KB (%) -11.4 8.5 10.6 11.3 12.0

Table 6 shows the average speedup across all benchmarks for
ACS and DM for small-core L2 cache sizes from 128KB to 2048KB.
Note that the cache of the large core is always 4x as large as the
cache of a small core. The performance benefit of DM over ACS
slightly increases as cache size increases from 256KB to 2048KB.
In fact, DM with a 256KB L2 cache outperforms ACS with a 2MB
L2 cache. However, with a 128KB L2 cache, DM performs worse
than ACS. This is because marshaling private data into a small L2
cache at the large core causes cache pollution, evicting shared data
or marshaled data of other critical sections not yet executed, and
leading to longer-latency L2 cache misses, serviced by the L3. We
conclude that DM’s performance benefit either increases or stays
constant as L2 cache size increases.

4.5.8 Sensitivity to Size of the Marshal Buffer

The number of entries in the Marshal Buffer limits the number
of cache lines DM can marshal for a critical section segment. We
experimented with different Marshal Buffer sizes and found that
16 entries (which we use in our main evaluation) suffice for all
workloads except is. Since is requires the marshaling of 117
cache lines on average, when we use a 128-entry Marshal Buffer,
CS-MPKI in is is reduced by 22% and performance increases by
3.8% compared to a 16-entry Marshal Buffer.

5. PRODUCER-CONSUMER PIPELINE
Pipeline parallelism is a commonly used approach to split the

work in a loop among threads. In pipeline parallelism, each itera-
tion of a loop is split into multiple work-quanta where each work-
quantum executes in a different pipeline stage. Each stage is allo-
cated one or more cores. Pipeline parallelism is another instance
of Staged Execution: each iteration of a loop is split into code seg-
ments (pipeline stages) which run on different cores.

Figure 9(a) shows a code example of two pipeline stages: S1
and S2, running on cores P1 and P2, respectively. S1 computes
and stores the value of a variable X (lines 1-2) and then enqueues a
request to run S2 at core P2 (line 3). Note that X is used by S2 (line
4). P2 may process the computation in S2 immediately or later,
depending on the entries in its work-queue.

5.1 DM in Pipelines
Processing of a pipeline stage often requires data that was gen-

erated in the previous pipeline stage. Since each stage executes

Pipeline Stage S1: Pipeline Stage S1:

1: .... 1: .... ;Compute X
2: store X 2: GENERATOR store X

3: Enqueue a request 3: Enqueue a request ;S2’s initiation
at S2’s home core at S2’s home core

4: MARSHAL <S2’s home core>

Pipeline Stage S2: Pipeline Stage S2:

4: Y = ... X ... 5: Y = ... X ... ;Compute Y using X
.... ....

(a) Code of a pipeline. (b) Modified code with DM.

Figure 9: Code example of a pipeline.

at a different core, such inter-segment or inter-stage data must be
transferred from core to core as the work-quantum is processed by
successive pipeline stages. For example, in the pipeline code in
Figure 9(a), variable X is inter-segment data as it is generated in S1
(line 2) and used by S2 (line 4). When S2 runs on P2, P2 incurs a
cache miss to fetch X from P1.

DM requires two code changes. First, the compiler must iden-
tify the generator instructions and prepend them with a GENER-
ATOR prefix. Second, the compiler/library must insert a MAR-
SHAL instruction in the initiation routine. Figure 9(b) shows the
code in Figure 9(a) with the modifications required by DM. Since
X is inter-segment data, the compiler identifies via profiling the
store instruction on line 2 as a generator and prepends it with the
GENERATOR prefix. Furthermore, the MARSHAL instruction is
inserted in the initiation routine (line 4).

When P1 (the core assigned to S1) runs the store on line 2, the
hardware inserts the physical address of the cache line being mod-
ified into P1’s Marshal Buffer. When the MARSHAL instruction
on line 4 executes, the Data Marshaling Unit (DMU) marshals the
cache line containing X to P2’s L2 cache. When S2 runs on P2, it
incurs a cache hit for X, which likely reduces execution time.

5.2 Evaluation Methodology
We simulate a symmetric CMP with all small cores with the pa-

rameters shown in Table 1. We simulate three different configura-
tions: Baseline (a baseline CMP without DM), Ideal (an idealistic
but impractical CMP where all inter-segment misses are turned into
hits), and DM (a CMP with support for DM). The Ideal scheme,
which unrealistically eliminates all inter-segment misses, is an up-
per bound of DM’s performance. We evaluate DM on 16-core and
32-core CMPs, but not on a 64-core CMP because a majority of our
workloads do not scale to 64 threads. Table 7 shows the simulated
workloads. A MARSHAL instruction was inserted in the initiation
routine of each workload. The core-to-stage allocation is propor-
tional to execution times, e.g. if two stages execute in 500 and 1000
cycles (on a single core), we assign the latter twice as many cores
as the former. All comparisons are at equal-area of 16 small cores
unless otherwise stated.

5.3 Evaluation
We evaluate coverage, accuracy, timeliness, inter-segment data

MPKI, and overall performance of DM. We also show DM’s sensi-
tivity to relevant architectural parameters.5

5.3.1 Coverage, Accuracy, and Timeliness

Figure 10 shows DM’s coverage, i.e., the fraction of inter-
segment data cache lines identified by DM. Coverage is over 90%
in all workloads except dedupD, image, and mtwist where the
inter-segment data per segment exceeds the size of the Marshal
Buffer (16) and not all inter-segment data is marshaled.

Figure 10 also shows the accuracy of DM, i.e., the fraction of

5We validated that the generator-sets are stable during execution and across input sets
for pipeline workloads, but we do not show the results due to space constraints.
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Table 7: Workload characteristics.
Workload Description (No. of

pipeline stages)

Major steps of com-

putation

Profile

Input

Evaluation

Input

black BlackScholes Financial
Kernel [33] (6)

Compute each option’s
call/put value

0.25M
opts

1M opts

compress File compression using
bzip2 algorithm (5)

Read file, compress, re-
order, write

0.5MB
image

4MB text
file

dedupE De-duplication (En-
coding) [8] (7)

Read, find anchors,
chunk, compress, write

simsmall simlarge

dedupD De-duplication (De-
coding) [8] (7)

Read, decompress,
check-cache, write

simsmall simlarge

ferret Content based search
[8] (8)

Load, segment, extract,
vector, rank, out

simsmall simlarge

image Image conversion from
RGB to gray-scale (5)

Read file, convert, re-
order, write

10M pix-
els

100M pix-
els

mtwist Mersenne-Twister
PRNG [33] (5)

Read seeds, generate
PRNs, box-muller

path=
20M

path=
200M

rank Rank string similarity
with an input string (3)

Read string, compare,
rank

100K
strings

800K
strings

sign Compute the signature
of a page of text (7)

Read page and com-
pute signature

100K
pages

1M pages
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Figure 10: Coverage, Accuracy, and Timeliness of DM.

marshaled lines that are actually used by the home core. DM’s ac-
curacy is low, between 40% and 50%, because stages contain con-
trol flow. However, the increase in interconnect transactions/cache
pollution for DM is negligible because the number of cache lines
marshaled per segment is small: the average is 6.8 and the maxi-
mum is 16 (the size of the Marshal Buffer).

Figure 10 also shows DM’s timeliness, i.e., the percentage of
useful cache lines identified by DM that reach the remote home
core before their use. Timeliness is high, more than 80% in all
cases, for two reasons: (1) segments often wait in the home core’s
work-queue before their processing, giving DM enough time to
marshal the lines, (2) transferring the few lines that are marshaled
per segment requires a small number of cycles.

5.3.2 Reduction in Inter-Segment Cache Misses

Table 8 shows the L2 MPKI of inter-segment data in baseline-
NP (baseline with no prefetcher), baseline and DM. The prefetcher
reduces the average MPKI by only 9%. DM reduces the MPKI sig-
nificantly more in all cases. Most noticeable is signwhere DM re-
duces the MPKI from 30.3 to 0.9. In sign, the main inter-segment
data is a 256-character page signature array (4 cache lines). Since
DM’s profiling algorithm marks the instruction that stores the ar-
ray as a generator, DM saves all cache misses for the array. Simi-
larly, DM almost completely eliminates inter-segment data misses
in ferret and dedupE. DM reduces the harmonic and arithmetic
mean of MPKI by 81% and 69% respectively.

Table 8: L2 Misses for Inter-Segment Data (MPKI). We show

both amean and hmean because hmean is skewed due to

dedupE. Note: MPKI of inter-segment data in Ideal is 0.
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baseline-NP 15.2 7.8 49.5 0.7 4.9 67.6 59.4 4.2 31.3 26.6 4.57

baseline 14.2 7.7 47.5 0.4 4.4 55.6 51.4 4.1 30.3 24.0 2.76

DM 2.8 1.7 33.0 0.0 0.1 20.4 7.4 0.3 0.9 7.4 0.53

5.3.3 Performance

Execution time of a pipelined program is always dictated by its
slowest stage. Thus, DM’s impact on overall performance depends
on how much it speeds up the slowest stage. Figure 11 shows the
speedup of Ideal and DM over the baseline at 16 cores. On av-
erage, DM provides a 14% speedup over the baseline, which is
96% of the potential. DM improves performance in all workloads.
DM’s improvement is highest in black (34% speedup) because
DM reduces inter-segment misses by 81% and as a result speeds
up the slowest stage significantly. DM’s speedup is less (5% lower)
than the Ideal speedup in black because accesses to inter-segment
data are in the first few instructions of each stage and consequently
the marshaled cache lines are not always timely. DM’s speedup is
lower in dedupE and ferret because these workloads only in-
cur a small number of inter-segment misses and DM’s potential is
low (Ideal speedup is only 5% for ferret).
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Figure 11: Speedup over baseline at 16 cores.
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Figure 12: Speedup over baseline at 32 cores.

32-core results: Figure 12 shows the speedup of Ideal and DM
over the baseline with 32 cores. DM’s speedup increases for all
workloads compared to 16 cores. Most significant is the change
in compress, from 1% to 18%, because the slowest stage in
compress changes between 16 and 32 cores. At 16 threads,
compress’s slowest stage is the stage that compresses chunks of
input data. This stage is compute-bound and does not offer a high
potential for DM. However, the compression stage is scalable, i.e.,
its throughput increases with more cores. At 32 cores, the compres-
sion stage’s throughput is more than the non-scalable re-order stage
(the stage which re-orders chunks of compressed data before writ-
ing them to the output file). Unlike the compression stage which
is compute-bound, the re-order stage is bounded by cache misses
for inter-segment data, ergo, a higher potential for DM and thus the
higher benefit. On average, at 32 cores, DM improves performance
by 16%, which is higher than its speedup at 16 cores (14%). In
summary, DM is an effective technique that successfully improves
performance of pipelined workloads, with increasing benefit as the
number of cores increases.

Performance at best-threads: We also evaluate pipelined work-
loads with the minimum number of threads required to maximize
performance. Since a majority of our workloads saturate between
16 and 32 threads, our results at best-threads resemble those at 32-
threads, i.e., DM provides a 16% speedup over the baseline.

5.3.4 Sensitivity to Interconnect Hop Latency

We find that the speedup of DM increases with hop latency (refer
to Section 4.5.6 for reasons). We evaluated DM with hop latencies
of 2, 5, and 10 cycles and find that it provides speedups of 12.4%,
14%, and 15.1% over the baseline, respectively.
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5.3.5 Sensitivity to L2 Cache Size

DM’s benefit increases with cache size for pipeline workloads
as well (see Section 4.5.7 for reasons). DM’s speedup over the
baseline is 4.6%, 14%, 14.8%, 15.3%, and 15.4% for cache sizes
of 128KB, 256KB, 512KB, 1MB, and 2MB, respectively.

5.3.6 Sensitivity to Size of the Marshal Buffer

We find that a 16-entry Marshal Buffer is sufficient for all work-
loads except dedupD, image, and mtwist. The number of inter-
segment cache lines per segment in these workloads is greater than
16. For example, the primary inter-segment data structure in image,
an array of 150 32-bit RGB pixels, spans 32-cache lines. Table 9
shows the performance of DM with varying Marshal Buffer sizes
in these three workloads. In each case, performance saturates once
there are enough entries to fit all inter-segment cache lines (32, 32,
and 128 for dedupD, image, and mtwist respectively). In summary,
while there are a few workloads that benefit from a larger Marshal
Buffer, a 16-entry buffer suffices for most workloads.

Table 9: Speedup (%) for different Marshal Buffer sizes.
# of entries 16 32 64 128 256

dedupD 26 40 40 40 40

image 17 24 24 24 24

mtwist 14 18 21 22 22

6. DM ON OTHER PARADIGMS
We have shown two concrete applications of DM: ACS and

pipeline parallelism. DM can also be applied to any paradigm that
resembles SE, for example:

• Remote special-purpose cores, e.g., encryption or video encod-
ing engines, which are often used to accelerate code segments.
DM can be used to marshal data to such accelerators.

• Task-parallelism models such as Cilk [10], Intel TBB [21] and
Apple’s Grand Central Dispatch [5]. DM can marshal the input
arguments of the task to the core that will execute the task.

• Computation Spreading [13], which improves locality by al-
ways running the operating system code on the same set of
cores. DM can marshal the data to and from these cores.

• Thread Motion [35], which migrates threads among cores to
improve power-performance efficiency. DM can be extended to
reduce cache misses due to thread migration.

• The CoreTime OS scheduler [11], which assigns data objects
to caches and migrates threads to increase locality. DM can
marshal any extra data required by the thread (e.g., portions of
its stack).

DM can also enable new execution paradigms. DM lowers
the cost of data-migration, the single most important overhead as-
sociated with remote execution of code segments. DM can thus
enable remote execution in scenarios where it was previously in-
feasible. Examples include remote execution of fine-grain tasks
for increasing parallelism, sharing of rarely-used functional units
between cores for saving chip area, and new core specialization
opportunities for increased performance and power-efficiency.

In summary, DM is applicable to widely-used current paradigms,
and can potentially enable new paradigms.

7. RELATED WORK
The main contribution of this paper is a novel solution to a ma-

jor limitation of the Staged Execution paradigm: the large increase
caused by it in cache misses to inter-segment data. Data Mar-
shaling has related work in the areas of hardware prefetching and
OS/compiler techniques to improve locality.

7.1 Hardware Prefetching
Hardware prefetchers can be broadly classified as prefetch-

ers that target regular (stride/stream) memory access patterns
(e.g., [24, 42]) and those that target irregular memory access pat-
terns (e.g., [23, 14, 37, 16]). Prefetchers that handle only regular
data cannot capture misses for inter-segment data because inter-
segment cache lines do not follow a regular stream/stride pattern
and are scattered in memory. Prefetchers that handle irregular data
(as well as stride/stream based prefetchers) are also not suited for
prefetching inter-segment data because the number of cache misses
required for training such prefetchers is often more than all of the
inter-segment data (an average of 5 in ACS and 6.8 in pipeline
workloads). Thus, by the time prefetching begins, a majority of
the cache misses have already been incurred.

DM does not have these disadvantages. DM requires mini-
mal on-chip storage, can marshal any arbitrary sequence of inter-
segment cache lines, and starts marshaling as soon as the next code
segment is shipped to its home core, without requiring any training.
Note that our baseline uses an aggressive stream prefetcher [42] and
the reported improvements are on top of this aggressive prefetcher.

7.2 Reducing Cache Misses
Yang et al. [29] show that pushing (vs. pulling) cache lines to

the core can save off-chip cache misses for linked data structures.
In contrast, DM saves on-chip misses for any sequence of inter-
segment data. Bhattacharjee et al. [7] schedule tasks to maximize
cache locality in TBB [21], another example of SE. DM can further
help by eliminating the remaining cache misses. Hossain et al. [20]
propose DDCache where the producer pushes a cache line to all the
sharers of the line when one of the sharers requests the line. DD-
Cache is orthogonal to DM as it only improves locality of shared
data, while DM improves locality of private (inter-segment) data.

Other proposals improve shared data locality by inserting soft-
ware prefetch instructions before the critical section [44, 36]. Such
a scheme cannot work for inter-segment data because prefetch in-
structions must be executed at the home core as part of the next
code segment and very close to the actual use of the data, likely
making the prefetches untimely. Recent cache hierarchy designs
(e.g., [34]) aim to provide fast access to both shared and pri-
vate data. They can further benefit from DM to minimize cache-
to-cache transfers. Proposals to accelerate thread migration [12,
38] are orthogonal and can be combined with DM. Other mecha-
nisms [46, 25] reduce cache line access latency by migrating cache
lines closer to the cores that are accessing them. Such schemes can-
not reduce inter-segment data misses because –like prefetching–
they do not marshal the data proactively and also require training.

7.3 Other Related Work
Remote Procedure Calls (RPC) [9], used in networking, require

the programmers to “marshal” the input data with the RPC request.
This is similar to DM, which marshals inter-segment data to the
home core of the next code segment. However, unlike RPC, DM
is solely for performance (i.e., not required for correct execution),
does not require programmer input, and is applicable to instances
of Staged Execution that do not resemble procedure calls.

8. CONCLUSION
We propose Data Marshaling (DM) to improve the reduced lo-

cality of inter-segment data in Staged Execution (SE), thereby over-
coming a major limitation of SE. DM identifies and marshals the
inter-segment data needed by a segment before or during the seg-
ment’s execution. We show in detail two applications of DM. First,
we use DM to marshal the thread-private data to remotely executing
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critical sections in the Accelerated Critical Section (ACS) mecha-
nism. Our evaluation with 12 critical-section-intensive workloads
shows that DM reduces the average execution time by 8.5% com-
pared to an equal-area (16 small cores) baseline ACMP with sup-
port for ACS. Second, we use DM for workloads with pipeline par-
allelism to marshal the data produced in one pipeline stage to the
next stage. Our evaluation with 9 pipelined workloads shows that
DM improves performance by 14% on a 16-core CMP and 16% on
a 32-core CMP. We find that DM’s performance is within 5% of
an ideal mechanism that eliminates all inter-segment data misses
using oracle information, showing that DM achieves almost all of
its performance potential. We describe a variety of other possible
applications of DM, and conclude that DM is a promising approach
that can successfully recover performance loss due to cache misses
incurred for inter-segment data in Staged Execution paradigms.
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