
Computer Architecture:
Multithreading

Prof. Onur Mutlu (Editted by Seth)
Carnegie Mellon University

Multithreading (Outline)
 Multiple hardware contexts
 Purpose
 Initial incarnations

 CDC 6600
 HEP

 Levels of multithreading
 Fine-grained (cycle-by-cycle)
 Coarse grained (multitasking)

 Switch-on-event

 Simultaneous
 Uses: traditional + creative (now that we have multiple

contexts, why do we not do …)

2

Multithreading: Basics
 Thread

 Instruction stream with state (registers and memory)
 Register state is also called “thread context”

 Threads could be part of the same process (program) or
from different programs
 Threads in the same program share the same address space

(shared memory model)

 Traditionally, the processor keeps track of the context of a
single thread

 Multitasking: When a new thread needs to be executed, old
thread’s context in hardware written back to memory and
new thread’s context loaded

3

Hardware Multithreading
 General idea: Have multiple thread contexts in a single

processor
 When the hardware executes from those hardware contexts

determines the granularity of multithreading

 Why?
 To tolerate latency (initial motivation)

 Latency of memory operations, dependent instructions, branch
resolution

 By utilizing processing resources more efficiently

 To improve system throughput
 By exploiting thread-level parallelism
 By improving superscalar/OoO processor utilization

 To reduce context switch penalty

4

Initial Motivations
 Tolerate latency

 When one thread encounters a long-latency operation, the
processor can execute a useful operation from another thread

 CDC 6600 peripheral processors
 I/O latency: 10 cycles
 10 I/O threads can be active to cover the latency
 Pipeline with 100ns cycle time, memory with 1000ns latency
 Idea: Each I/O “processor” executes one instruction every 10

cycles on the same pipeline
 Thornton, “Design of a Computer: The Control Data 6600,”

1970.
 Thornton, “Parallel Operation in the Control Data 6600,”

AFIPS 1964.
5

Hardware Multithreading
 Benefit

+ Latency tolerance
+ Better hardware utilization (when?)
+ Reduced context switch penalty

 Cost
- Requires multiple thread contexts to be implemented in

hardware (area, power, latency cost)
- Usually reduced single-thread performance

- Resource sharing, contention
- Switching penalty (can be reduced with additional hardware)

6

Types of Hardware Multithreading
 Fine-grained

 Cycle by cycle

 Coarse-grained
 Switch on event (e.g., cache miss)
 Switch on quantum/timeout

 Simultaneous
 Instructions from multiple threads executed concurrently in

the same cycle

7

Fine-grained Multithreading
 Idea: Switch to another thread every cycle such that no two

instructions from the thread are in the pipeline concurrently

 Improves pipeline utilization by taking advantage of multiple
threads

 Alternative way of looking at it: Tolerates the control and
data dependency latencies by overlapping the latency with
useful work from other threads

 Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

8

Fine-grained Multithreading
 CDC 6600’s peripheral processing unit is fine-grained

multithreaded
 Processor executes a different I/O thread every cycle
 An operation from the same thread is executed every 10

cycles

 Denelcor HEP
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
 120 threads/processor

 50 user, 70 OS functions
 available queue vs. unavailable (waiting) queue
 each thread can only have 1 instruction in the processor pipeline; each

thread independent
 to each thread, processor looks like a sequential machine
 throughput vs. single thread speed

9

Fine-grained Multithreading in HEP
 Cycle time: 100ns

 8 stages 800 ns to
complete an
instruction
 assuming no memory

access

10

Fine-grained Multithreading
 Advantages

+ No need for dependency checking between instructions
(only one instruction in pipeline from a single thread)

+ No need for branch prediction logic
+ Otherwise-bubble cycles used for executing useful instructions from

different threads
+ Improved system throughput, latency tolerance, utilization

 Disadvantages
- Extra hardware complexity: multiple hardware contexts, thread

selection logic
- Reduced single thread performance (one instruction fetched every N

cycles)
- Resource contention between threads in caches and memory
- Dependency checking logic between threads remains (load/store)

11

Multithreaded Pipeline Example

 Slide from Joel Emer

12

Sun Niagara Multithreaded Pipeline

13

Tera MTA Fine-grained Multithreading
 256 processors, each with a 21-cycle pipeline
 128 active threads
 A thread can issue instructions every 21 cycles

 Then, why 128 threads?

 Memory latency: approximately 150 cycles
 No data cache
 Threads can be blocked waiting for memory
 More threads better ability to tolerate memory latency

 Thread state per processor
 128 x 32 general purpose registers
 128 x 1 thread status registers

14

Coarse-grained Multithreading
 Idea: When a thread is stalled due to some event, switch to

a different hardware context
 Switch-on-event multithreading

 Possible stall events
 Cache misses
 Synchronization events (e.g., load an empty location)
 FP operations

 HEP, Tera combine fine-grained MT and coarse-grained MT
 Thread waiting for memory becomes blocked (un-selectable)

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,”
ISCA 1990.

 Explicit switch on event
16

Coarse-grained Multithreading in APRIL
 Agarwal et al., “APRIL: A Processor Architecture for

Multiprocessing,” ISCA 1990.

 4 hardware thread contexts
 Called “task frames”

 Thread switch on
 Cache miss
 Network access
 Synchronization fault

 How?
 Empty processor pipeline, change frame pointer (PC)

17

Fine-grained vs. Coarse-grained MT
 Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)
+ Coarse-grained requires a pipeline flush or a lot of hardware

to save pipeline state
 Higher performance overhead with deep pipelines and

large windows

 Disadvantages
- Low single thread performance: each thread gets 1/Nth of the

bandwidth of the pipeline

18

IBM RS64-IV
 4-way superscalar, in-order, 5-stage pipeline
 Two hardware contexts
 On an L2 cache miss

 Flush pipeline
 Switch to the other thread

 Considerations
 Memory latency vs. thread switch overhead
 Short pipeline, in-order execution (small instruction window)

reduces the overhead of switching

19

Intel Montecito
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium

Processor,” IEEE Micro 2005.

 Thread switch on
 L3 cache miss/data return
 Timeout – for fairness
 Switch hint instruction
 ALAT invalidation – synchronization fault
 Transition to low power mode

 <2% area overhead due to CGMT
20

Fairness in Coarse-grained Multithreading
 Resource sharing in space and time always causes fairness

considerations
 Fairness: how much progress each thread makes

 In CGMT, the time allocated to each thread affects both
fairness and system throughput
 When do we switch?
 For how long do we switch?

 When do we switch back?

 How does the hardware scheduler interact with the software
scheduler for fairness?

 What is the switching overhead vs. benefit?
 Where do we store the contexts?

21

Fairness in Coarse-grained Multithreading
 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”

MICRO 2006.
 How can you solve the below problem?

22

Fairness vs. Throughput
 Switch not only on miss, but also on data return

 Problem: Switching has performance overhead
 Pipeline and window flush
 Reduced locality and increased resource contention (frequent

switches increase resource contention and reduce locality)

 One possible solution
 Estimate the slowdown of each thread compared to when run

alone
 Enforce switching when slowdowns become significantly

unbalanced
 Gabor et al., “Fairness and Throughput in Switch on Event

Multithreading,” MICRO 2006.
23

Simultaneous Multithreading
 Fine-grained and coarse-grained multithreading can start

execution of instructions from only a single thread at a
given cycle

 Execution unit (or pipeline stage) utilization can be low if
there are not enough instructions from a thread to
“dispatch” in one cycle
 In a machine with multiple execution units (i.e., superscalar)

 Idea: Dispatch instructions from multiple threads in the
same cycle (to keep multiple execution units utilized)
 Hirata et al., “An Elementary Processor Architecture with Simultaneous

Instruction Issuing from Multiple Threads,” ISCA 1992.
 Yamamoto et al., “Performance Estimation of Multistreamed, Superscalar

Processors,” HICSS 1994.
 Tullsen et al., “Simultaneous Multithreading: Maximizing On-Chip

Parallelism,” ISCA 1995.
25

Functional Unit Utilization

 Data dependencies reduce functional unit utilization in
pipelined processors

26

Time

Functional Unit Utilization in Superscalar

 Functional unit utilization becomes lower in superscalar,
OoO machines. Finding 4 instructions in parallel is not
always possible

27

Time

Predicated Execution

 Idea: Convert control dependencies into data dependencies
 Improves FU utilization, but some results are thrown away

28

Time

Chip Multiprocessor

 Idea: Partition functional units across cores
 Still limited FU utilization within a single thread; limited

single-thread performance
29

Time

Fine-grained Multithreading

 Still low utilization due to intra-thread dependencies
 Single thread performance suffers

30

Time

Simultaneous Multithreading

 Idea: Utilize functional units with independent operations
from the same or different threads

31

Time

Simultaneous Multithreading
 Reduces both horizontal and vertical waste
 Required hardware

 The ability to dispatch instructions from multiple threads
simultaneously into different functional units

 Superscalar, OoO processors already have this machinery
 Dynamic instruction scheduler searches the scheduling

window to wake up and select ready instructions
 As long as dependencies are correctly tracked (via renaming

and memory disambiguation), scheduler can be thread-
agnostic

33

Basic Superscalar OoO Pipeline

34

Fetch Decode
/Map

Queue Reg
Read

Execute Dcache/
Store
Buffer

Reg
Write

Retire

PC

Icache

Register
Map

Dcache
Regs Regs

Thread-
blind

SMT Pipeline
 Physical register file needs to become larger. Why?

35

Fetch Decode
/Map

Queue Reg
Read

Execute Dcache/
Store
Buffer

Reg
Write

Retire

Icache
Dcache

PC

Register
Map

Regs Regs

Changes to Pipeline for SMT
 Replicated resources

 Program counter
 Register map
 Return address stack
 Global history register

 Shared resources
 Register file (size increased)
 Instruction queue (scheduler)
 First and second level caches
 Translation lookaside buffers
 Branch predictor

36

Changes to OoO+SS Pipeline for SMT

37

Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,” ISCA 1996.

SMT Scalability
 Diminishing returns from more threads. Why?

38

SMT Design Considerations
 Fetch and prioritization policies

 Which thread to fetch from?

 Shared resource allocation policies
 How to prevent starvation?
 How to maximize throughput?
 How to provide fairness/QoS?
 Free-for-all vs. partitioned

 How to measure performance
 Is total IPC across all threads the right metric?

 How to select threads to co-schedule
 Snavely and Tullsen, “Symbiotic Jobscheduling for a

Simultaneous Multithreading Processor,” ASPLOS 2000.
39

Which Thread to Fetch From?
 (Somewhat) Static policies

 Round-robin
 8 instructions from one thread
 4 instructions from two threads
 2 instructions from four threads
 …

 Dynamic policies
 Favor threads with minimal in-flight branches
 Favor threads with minimal outstanding misses
 Favor threads with minimal in-flight instructions
 …

40

Which Instruction to Select/Dispatch?
 Can be thread agnostic.
 Why?

41

SMT Fetch Policies (I)
 Round robin: Fetch from a different thread each cycle
 Does not work well in practice. Why?

 Instructions from slow threads hog the pipeline and block
the instruction window
 E.g., a thread with long-latency cache miss (L2 miss) fills up

the window with its instructions
 Once window is full, no other thread can issue and execute

instructions and the entire core stalls

42

SMT Fetch Policies (II)
 ICOUNT: Fetch from thread with the least instructions in

the earlier pipeline stages (before execution)

 Why does this improve throughput?

43Slide from Joel Emer

SMT ICOUNT Fetch Policy
 Favors faster threads that have few instructions waiting

 Advantages over round robin
+ Allows faster threads to make more progress (before threads

with long-latency instructions block the window fast)
+ Higher IPC throughput

 Disadvantages over round robin
- Is this fair?
- Prone to short-term starvation: Need additional methods to

ensure starvation freedom

44

Some Results on Fetch Policy

45

Handling Long Latency Loads
 Long-latency (L2/L3 miss) loads are a problem in a single-threaded

processor
 Block instruction/scheduling windows and cause the processor to stall

 In SMT, a long-latency load instruction can block the window for ALL
threads
 i.e. reduce the memory latency tolerance benefits of SMT

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous
Multithreading Processor,” MICRO 2001.

46

Proposed Solutions to Long-Latency Loads
 Idea: Flush the thread that incurs an L2 cache miss

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous Multithreading
Processor,” MICRO 2001.

 Idea: Predict load miss on fetch and do not insert following instructions from
that thread into the scheduler
 El-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency in SMT

Processors,” HPCA 2003.

 Idea: Partition the shared resources among threads so that a thread’s long-
latency load does not affect another
 Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT Processors,”

PACT 2003.

 Idea: Predict if (and how much) a thread has MLP when it incurs a cache miss;
flush the thread after its MLP is exploited
 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for SMT

Processors,” HPCA 2007.

47

Runahead Threads
 Idea: Use runahead execution on a long-latency load
+ Improves both single thread and multi-thread performance
 Ramirez et al., “Runahead Threads to Improve SMT

Performance,” HPCA 2008.

50

Commercial SMT Implementations
 Intel Pentium 4 (Hyperthreading)
 IBM POWER5
 Intel Nehalem
 …

52

SMT in IBM POWER5
 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE

Micro 2004.

53

IBM POWER5 Thread Throttling
 Throttle under two conditions:

 Resource-balancing logic detects the point at which a thread
reaches a threshold of load misses in the L2 cache and
translation misses in the TLB.

 Resource-balancing logic detects that one thread is beginning
to use too many GCT (i.e., reorder buffer) entries.

 Throttling mechanisms:
 Reduce the priority of the thread
 Inhibit the instruction decoding of the thread until the

congestion clears
 Flush all of the thread’s instructions that are waiting for

dispatch and stop the thread from decoding additional
instructions until the congestion clears

55

Intel Pentium 4 Hyperthreading

56

Intel Pentium 4 Hyperthreading
 Long latency load handling

 Multi-level scheduling window

 More partitioned structures
 I-TLB
 Instruction Queues
 Store buffer
 Reorder buffer

 5% area overhead due to SMT

 Marr et al., “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology Journal 2002.

57

Other Uses of Multithreading

Now that We Have MT Hardware …
 … what else can we use it for?

 Redundant execution to tolerate soft (and hard?) errors

 Implicit parallelization: thread level speculation
 Slipstream processors
 Leader-follower architectures

 Helper threading
 Prefetching
 Branch prediction

 Exception handling
59

SMT for Transient Fault Detection
 Transient faults: Faults that persist for a “short” duration

 Also called “soft errors”
 Caused by cosmic rays (e.g., neutrons)
 Leads to transient changes in wires and state (e.g., 01)

 Solution
 no practical absorbent for cosmic rays
 1 fault per 1000 computers per year (estimated fault rate)

 Fault rate likely to increase in the feature
 smaller feature size
 reduced voltage
 higher transistor count
 reduced noise margin

60

Need for Low-Cost Transient Fault Tolerance
 The rate of transient faults is expected to increase

significantly Processors will need some form of fault
tolerance.

 However, different applications have different reliability
requirements (e.g. server-apps vs. games) Users who do
not require high reliability may not want to pay the
overhead.

 Fault tolerance mechanisms with low hardware cost are
attractive because they allow the designs to be used for a
wide variety of applications.

61

Traditional Mechanisms for Transient Fault Detection

 Storage structures
 Space redundancy via parity or ECC
 Overhead of additional storage and operations can be high in

time-critical paths

 Logic structures
 Space redundancy: replicate and compare
 Time redundancy: re-execute and compare

 Space redundancy has high hardware overhead.
 Time redundancy has low hardware overhead but high

performance overhead.
 What additional benefit does space redundancy have?

62

Lockstepping (Tandem, Compaq Himalaya)

 Idea: Replicate the processor, compare the results of two
processors before committing an instruction

63

R1 (R2)

Input
Replication

Output
Comparison

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

R1 (R2)

microprocessor microprocessor

Transient Fault Detection with SMT (SRT)

 Idea: Replicate the threads, compare outputs before
committing an instruction

 Reinhardt and Mukherjee, “Transient Fault Detection
via Simultaneous Multithreading,” ISCA 2000.

 Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance
in Microprocessors,” FTCS 1999.

64

R1 (R2)

Input
Replication

Output
Comparison

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

R1 (R2)

THREAD THREAD

Sim. Redundant Threading vs. Lockstepping
 SRT Advantages

+ No need to replicate the processor
+ Uses fine-grained idle FUs/cycles (due to dependencies, misses)

to execute the same program redundantly on the same processor
+ Lower hardware cost, better hardware utilization

 Disadvantages
- More contention between redundant threads higher

performance overhead (assuming unequal hardware)
- Requires changes to processor core for result comparison, value

communication
- Must carefully fetch & schedule instructions from threads
- Cannot easily detect hard (permanent) faults

65

Sphere of Replication
 Logical boundary of redundant execution within a system
 Need to replicate input data from outside of sphere of

replication to send to redundant threads
 Need to compare and validate output before sending it out

of the sphere of replication

66

Rest of System

Sphere of Replication

Output
Compariso

n

Input
Replication

Execution
Copy 1

Execution
Copy 2

Sphere of Replication in SRT

67

Fetch PC

Instruction
Cache

Decode Register
Rename

Fp
Regs

Int .
Regs

Fp
Units

Ld /St
Units

Int .
Units

Thread 0
Thread 1

R1 (R2)

R1 (R2)
R3 = R1 + R7

R8 = R7 * 2

RUU

Input Replication
 How to get the load data for redundant threads

 pair loads from redundant threads and access the cache when
both are ready: too slow – threads fully synchronized

 allow both loads to probe cache separately: false alarms with
I/O or multiprocessors

 Load Value Queue (LVQ)
 pre-designated leading & trailing threads

68

add
load R1(R2)
sub

add
load R1 (R2)
sub

probe cache
LVQ

Output Comparison
 <address, data> for stores from redundant threads

 compare & validate at commit time

 How to handle cached vs. uncacheable loads
 Stores now need to live longer to wait for trailing thread
 Need to ensure matching trailing store can commit

69

Store: ...

Store: R1 (R2)
Store: ...
Store: R1 (R2)
Store: ...
Store: ...

Store: ...Store
Queue

Output
Comparison To Data Cache

Handling of Permanent Faults via SRT
 SRT uses time redundancy

 Is this enough for detecting permanent faults?
 Can SRT detect some permanent faults? How?

 Can we incorporate explicit space redundancy into SRT?

 Idea: Execute the same instruction on different resources in
an SMT engine
 Send instructions from different threads to different execution

units (when possible)

74

SRT Evaluation
 SPEC CPU95, 15M instrs/thread

 Constrained by simulation environment
 120M instrs for 4 redundant thread pairs

 Eight-issue, four-context SMT CPU
 Based on Alpha 21464
 128-entry instruction queue
 64-entry load and store queues

 Default: statically partitioned among active threads
 22-stage pipeline
 64KB 2-way assoc. L1 caches
 3 MB 8-way assoc L2

75

Performance Overhead of SRT

 Performance degradation = 30% (and unavailable thread
context)

 Per-thread store queue improves performance by 4%
76

Chip Level Redundant Threading
 SRT typically more efficient than splitting one processor

into two half-size cores
 What if you already have two cores?

 Conceptually easy to run these in lock-step
 Benefit: full physical redundancy
 Costs:

 Latency through centralized checker logic
 Overheads (e.g., branch mispredictions) incurred twice

 We can get both time redundancy and space redundancy if
we have multiple SMT cores
 SRT for CMPs

77

Chip Level Redundant Threading

78

Some Other Approaches to Transient Fault Tolerance

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

79

DIVA
 Idea: Have a “functional checker” unit that checks the

correctness of the computation done in the “main
processor”

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Benefit: Main processor can be prone to faults or
sometimes incorrect (yet very fast)

 How can checker keep up with the main processor?
 Verification of different instructions can be performed in

parallel (if an older one is incorrect all later instructions will be
flushed anyway)

80

DIVA (Austin, MICRO 1999)
 Two cores

81

Microarchitecture Based Introspection
 Idea: Use cache miss stall cycles to redundantly execute

the program instructions

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

 Benefit: Redundant execution does not have high
performance overhead (when there are stall cycles)

 Downside: What if there are no/few stall cycles?

86

Introspection

87

MBI (Qureshi+, DSN 2005)

88

MBI Microarchitecture

89

Performance Impact of MBI

90

Helper Threading for Prefetching
 Idea: Pre-execute a piece of the (pruned) program solely

for prefetching data
 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed
 On a separate processor/core
 On a separate hardware thread context
 On the same thread context in idle cycles (during cache misses)

96

Helper Threading for Prefetching
 How to construct the speculative thread:

 Software based pruning and “spawn” instructions
 Hardware based pruning and “spawn” instructions
 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread
 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses
 Branch prediction, value prediction, only address generation

computation

97

Generalized Thread-Based Pre-Execution
 Dubois and Song, “Assisted

Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

98

Thread-Based Pre-Execution Issues
 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?
1. Insert spawn instructions well before the “problem” load

 How far ahead?
 Too early: prefetch might not be needed
 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

99

Slipstream Processors
 Goal: use multiple hardware contexts to speed up single

thread execution (implicitly parallelize the program)
 Idea: Divide program execution into two threads:

 Advanced thread executes a reduced instruction stream,
speculatively

 Redundant thread uses results, prefetches, predictions
generated by advanced thread and ensures correctness

 Benefit: Execution time of the overall program reduces
 Core idea is similar to many thread-level speculation

approaches, except with a reduced instruction stream

 Sundaramoorthy et al., “Slipstream Processors: Improving
both Performance and Fault Tolerance,” ASPLOS 2000.

100

Slipstreaming
 “At speeds in excess of 190 m.p.h., high air pressure forms at

the front of a race car and a partial vacuum forms behind it. This
creates drag and limits the car’s top speed.

 A second car can position itself close behind the first (a process
called slipstreaming or drafting). This fills the vacuum behind the
lead car, reducing its drag. And the trailing car now has less wind
resistance in front (and by some accounts, the vacuum behind
the lead car actually helps pull the trailing car).

 As a result, both cars speed up by several m.p.h.: the two
combined go faster than either can alone.”

101

Slipstream Processors
 Detect and remove ineffectual instructions; run a shortened

“effectual” version of the program (Advanced or A-stream)
in one thread context

 Ensure correctness by running a complete version of the
program (Redundant or R-stream) in another thread
context

 Shortened A-stream runs fast; R-stream consumes near-
perfect control and data flow outcomes from A-stream and
finishes close behind

 Two streams together lead to faster execution (by helping
each other) than a single one alone

102

Slipstream Idea and Possible Hardware

103

Delay Buffer

Execution
Core

Reorder
Buffer

Instruction
Cache

Branch
Predictor

L1
Data

Cache

Execution
Core

Reorder
Buffer

Instruction
Cache

Branch
Predictor

L1
Data

Cache

IR-Predictor

IR-Detector

A-stream R-stream

L2 Cache (R-stream state only)

Slipstream Questions
 How to construct the advanced thread

 Original proposal:
 Dynamically eliminate redundant instructions (silent stores,

dynamically dead instructions)
 Dynamically eliminate easy-to-predict branches

 Other ways:
 Dynamically ignore long-latency stalls
 Static based on profiling

 How to speed up the redundant thread
 Original proposal: Reuse instruction results (control and data

flow outcomes from the A-stream)
 Other ways: Only use branch results and prefetched data as

predictions

106

Dual Core Execution
 Idea: One thread context speculatively runs ahead on load

misses and prefetches data for another thread context
 Zhou, “Dual-Core Execution: Building a Highly Scalable

Single- Thread Instruction Window,” PACT 2005.

107

Dual Core Execution: Front Processor

 The front processor runs faster by invalidating long-latency cache-
missing loads, same as runahead execution
 Load misses and their dependents are invalidated
 Branch mispredictions dependent on cache misses cannot be resolved

 Highly accurate execution as independent operations are not
affected
 Accurate prefetches to warm up caches
 Correctly resolved independent branch mispredictions

108

Dual Core Execution: Back Processor

 Re-execution ensures correctness and provides precise program
state
 Resolve branch mispredictions dependent on long-latency cache

misses

 Back processor makes faster progress with help from the front
processor
 Highly accurate instruction stream
 Warmed up data caches

109

Dual Core Execution

110

DCE Microarchitecture

111

Dual Core Execution vs. Slipstream
 Dual-core execution does not

 remove dead instructions
 reuse instruction register results
 uses the “leading” hardware context solely for prefetching

and branch prediction

+ Easier to implement, smaller hardware cost and complexity
- “Leading thread” cannot run ahead as much as in slipstream

when there are no cache misses
- Not reusing results in the “trailing thread” can reduce

overall performance benefit

112

Some Results

113

Thread Level Speculation
 Speculative multithreading, dynamic multithreading, etc…

 Idea: Divide a single instruction stream (speculatively) into
multiple threads at compile time or run-time
 Execute speculative threads in multiple hardware contexts
 Merge results into a single stream

 Hardware/software checks if any true dependencies are
violated and ensures sequential semantics

 Threads can be assumed to be independent
 Value/branch prediction can be used to break dependencies

between threads
 Entire code needs to be correctly executed to verify such

predictions
114

Thread Level Speculation Example
 Colohan et al., “A Scalable Approach to Thread-Level

Speculation,” ISCA 2000.

115

TLS Conflict Detection Example

116

Some Sample Results [Colohan+ ISCA 2000]

117

Other MT Issues
 How to select threads to co-schedule on the same

processor?
 Which threads/phases go well together?
 This issue exists in multi-core as well

 How to provide performance isolation (or predictable
performance) between threads?
 This issue exists in multi-core as well

 How to manage shared resources among threads
 Pipeline, window, registers
 Caches and the rest of the memory system
 This issue exists in multi-core as well

118

Why These Uses?
 What benefit of multithreading hardware enables them?

 Ability to communicate/synchronize with very low latency
between threads
 Enabled by proximity of threads in hardware
 Multi-core has higher latency to achieve this

119

