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Review: DRAM Controller: Functions

Ensure correct operation of DRAM (refresh and timing)

Service DRAM requests while obeying timing constraints of
DRAM chips

o Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

o Translate requests to DRAM command sequences

Buffer and schedule requests to improve performance
o Reordering, row-buffer, bank, rank, bus management

Manage power consumption and thermals in DRAM
o Turn on/off DRAM chips, manage power modes

DRAM Power Management

DRAM chips have power modes
Idea: When not accessing a chip power it down

Power states

o Active (highest power)

o All banks idle

o Power-down

o Self-refresh (lowest power)

Tradeoff: State transitions incur latency during which the
chip cannot be accessed

Review: Why are DRAM Controllers Difficult to Design?

Need to obey DRAM timing constraints for correctness
o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

o tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

a ..

Need to keep track of many resources to prevent conflicts
o Channels, banks, ranks, data bus, address bus, row buffers
Need to handle DRAM refresh

Need to optimize for performance (in the presence of constraints)
o Reordering is not simple

o Predicting the future?




Review: Many DRAM Timing Constraints

Review: More on DRAM Operation

= Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

= Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Latency Symbol | DRAM cveles Lateney Symbol | DRAM cyeles
Precharge ‘RP 11 Activate to read/wnite ‘RCD 11
Read column address strobe CL 11 Wrte column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39
Actrvate to precharge "RAS 28 Read to precharge “RTP 6
Burst length *BL 4 Column address strobe to column address strobe | 'CCD 4
Activate to acuvate (different bank) | ' RRD [ Four activate windows ‘FAW 24
Wnite to read ‘WTH 6 Wiite recovery ‘WR 12

Table 4. DDR3 1600 DRAM timing specifications

= From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

Cost DRAM Architecture,” HPCA 2013.
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Figure 5. Three Phases of DRAM Access
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Selt-Optimizing DRAM Controllers

= Problem: DRAM controllers difficult to design = It is difficult for

human designers to design a policy that can adapt itself very well

to different workloads and different system conditions

= ldea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

= Observation: Reinforcement learning maps nicely to memory
control.

= Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Selt-Optimizing DRAM Controllers
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Figure 2: (a) Intelligent agent based on reinforcement learning

principles; (b) DRAM scheduler as an RL-agent




Selt-Optimizing DRAM Controllers

= Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

o Associate system states and actions (commands) with long term
reward values

o Schedule command with highest estimated long-term value in each
state

o Continuously update state-action values based on feedback from
system

SYSTEM

DataBus _______|
Scheduled DRAM Utilization (t)
Command (t+1) Scheduler State ________ |
Attributes (t)

Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(1SCA), pages 39-50, Beijing, China, June 2008.
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Figure 4: High-level overview of an RL-based scheduler.
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Performance Results
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Selt Optimizing DRAM Controllers

= Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

= Disadvantages

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.qg., fairness, QoS)
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Trends Affecting Main Memory

Major Trends Affecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 15

Major Trends Affecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 16




Major Trends Affecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

o ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

o DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending

SAFARI 7

Major Trends Affecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm
o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy

SAFARI 18

The DRAM Scaling Problem

= DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
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= DRAM capacity, cost, and energy/power hard to scale

SAFARI 19

Solution 1; Tolerate DRAM

= Overcome DRAM shortcomings with
o System-DRAM co-design
o Novel DRAM architectures, interface, functions
o Better waste management (efficient utilization)

= Key issues to tackle

o Reduce refresh energy

o Improve bandwidth and latency

o Reduce waste

o Enable reliability at low cost

Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA'13.
Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013.

SAFARI 20




Tolerating DRAM:
System-DRAM Co-Design

New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization
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RAIDR: Reducing
DRAM Refresh Impact

DRAM Refresh

DRAM capacitor charge leaks over time

The memory controller needs to refresh each row
periodically to restore charge

o Activate + precharge each row every N ms

o Typical N = 64 ms

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling

SAFARI 2




Refresh Today: Auto Refresh

Columns

BANK 1 BANK 2

BANK 3

[ RowBuffer | | |

3 DRAM Bus
A batch of rows are DRAM CONTROLLER
periodically refreshed
via the auto-refresh command
25
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Refresh Overhead: Performance
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Refresh Overhead: Energy
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Problem with Conventional Refresh

= Today: Every row is refreshed at the same rate
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Refresh interval (s)

= Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

= Problem: No support in DRAM for different refresh rates per row

SAFARI
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Retention Time of DRAM Rows

= Observation: Only very few rows need to be refreshed at the
worst-case rate
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= Can we exploit this to reduce refresh operations at low cost?

SAFARI 29

Reducing DRAM Refresh Operations

= ldea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

n (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

o e.g., a bin for 64-128ms, another for 128-256mes, ...

= Observation: Only very few rows need to be refreshed very
frequently [64-128ms] = Have only a few bins = Low HW
overhead to achieve large reductions in refresh operations

= Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

SAFARI 30

RAIDR: Mechanism
04-128ms

>250ms

1.25KB storage in controller for 32GB DRAM memory

128-256ms

bins at difterent rates
- probe Bloom Filters to determine refresh rate of a row

SAFARI 3

1. Profiling

To profile a row:

1. Write data to the row

2. Prevent it from being refreshed

3. Measure time before data corruption

Row 1 Row 2 Row 3
Initally 13113113131%1... 111113131... 11111111...
After 64 ms 11111111... 11111111... 11111111...
After 128 ms 11011111... 11111111... 11111111...
(64-128ms)
After 256 ms SETIOREY. . TSNS igN...
(128-256ms) (=>256ms)

SAFARI 2




2. Binning

= How to efficiently and scalably store rows into retention
time bins?
= Use Hardware Bloom Filters [Bloom, CACM 1970]

Example with 64-128ms bin:

IOIOI}IOI1I0I0I0I0I1I0I0I0I0I0I0|

Hash function 1

Hash function 2 Hash function 3

/

Insert Row 1

SAFARI 3

Bloom Filter Operation Example

Example with 64-128ms bin:

1 & 1 & 1 =1
toJoJi1JoJi1JoJoJoJoJ1]JoJoJofo]Oo]O]

‘\
Hash function 1 Hash function 2 Hash function 3

R A

Row 1 present?
Yes
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Bloom Filter Operation Example

Example with 64-128ms bin:

0 & 1 & 0 =0
(0fJof1]JoJ1]JoJoJofJoJ1]ofo]Oo[Oo[O]O]

\‘
Hash function 1 Hash function 2 Hash function 3

e

Row 2 present?
No
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Bloom Filter Operation Example

Example with 64-128ms bin:

IOIOI1IOI1I1IOIOIOI1IOIOI1IOI}I0|

/

Hash function 2 Hash function 3

/

Insert Row 4
SAFARI 36

Hash function 1




Bloom Filter Operation Example

Example with 64-128ms bin:
& i
1

il &
(oJofJi1Jof1]JifJoJofJoJ1fJo]oO] 0

&

Hash function 1 Hash function 2 Hash function 3

TR M

Row 5 present?
Yes (false positive)
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Benefits of Bloom Filters as Bins

= False positives: a row may be declared present in the
Bloom filter even if it was never inserted

o Not a problem: Refresh some rows more frequently than
needed

= No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

= Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

= Efficient: No need to store info on a per-row basis; simple
hardware - 1.25 KB for 2 filters for 32 GB DRAM system

SAFARI 38

3. Refreshing (RAIDR Refresh Controller)

SAFARI 39

3. Refreshing (RAIDR Refresh Controller)

Memory controller
chooses each row
as a refresh candidate
every 64ms

Row in 64-128ms bin? — Row in 128-256ms bin?
(First Bloom filter: 256B) (Second Bloom filter: 1KB)

l l

Refresh the row Every other 64ms window, Every 4th 64ms window,
refresh the row refresh the row

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
SAFARI 40




Tolerating Temperature Changes

» Change in temperature causes retention time of all cells to

change by a uniform and predictable factor

» Refresh rate scaling: increase the refresh rate for all rows

uniformly, depending on the temperature

» Implementation: counter with programmable period

» Lower temperature = longer period = less frequent refreshes

» Higher temperature = shorter period = more frequent
refreshes

SAFARI
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RAIDR: Baseline Design

Refresh control is in DRAM in today’s auto-refresh systems
RAIDR can be implemented in either the controller or DRAM

SAFARI 2

RAIDR in Memory Controller: Option 1

RAIDR in DRAM Chip: Option 2

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

SAFARI
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Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)
Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

SAFARI “




RAIDR Results

= Baseline:
o 32 GB DDR3 DRAM system (8 cores, 512KB cache/core)
o 64ms refresh interval for all rows

= RAIDR:
o 64-128ms retention range: 256 B Bloom filter, 10 hash functions
o 128-256ms retention range: 1 KB Bloom filter, 6 hash functions
o Default refresh interval: 256 ms

» Results on SPEC CPU2006, TPC-C, TPC-H benchmarks
o 74.6% refresh reduction
o ~16%/20% DRAM dynamic/idle power reduction
o ~9% performance improvement

SAFARI +

RAIDR Refresh Reduction

32 GB DDR3 DRAM system
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RAIDR: Performance
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RAIDR performance benefits increase with workload’s memory intensity
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RAIDR: DRAM Energy Efficiency
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DRAM Device Capacity Scaling: Performance

DRAM Device Capacity Scaling: Energy

8 160 =
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Device capacity Device capacity
RAIDR performance benefits increase with DRAM chip capacity RAIDR energy benefits increase with DRAM chip capacity RAIDR slides
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More Readings Related to RAIDR New DRAM Architectures

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern
DRAM Devices: Implications for Retention Time Profiling
Mechanisms"
Proceedings of the 40th International Symposium on Computer
Architecture (1SCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides

(pdf)

SAFARI >

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization

SAFARI 2




Tiered-Latency DRAM:
Reducing DRAM Latency

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture”
19th International Symposium on High-Performance Computer Architecture (HPCA),
Shenzhen, China, February 2013. Slides (pptx)

Historical DRAM Latency-Capacity Trend
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DRAM latency continues to be a critical bottleneck
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What Causes the Long Latency? What Causes the Long Latency? .
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Why is the Subarray So Slow?

Subarray Cell

wordline

{ | access
transistor |

\
\
\

N
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row decoder
bitline: 512 cells
row decoder

_~€apacitor

ense amplifier

.
S
- -

large sense amplifier

sense amplifier

* Long bitline
— Amortizes sense amplifier cost > Small area
— Large bitline capacitance = High latency & power
57

Trade-Off: Area (Die Size) vs. Latency
Short Bitline

Long Bitline

Trade-Off: Area vs. Latency

Trade-Off: Area (Die Size) vs. Latency
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Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area M

/Y VA VAR

Low Latency

Add Isolation
Isolation Transistors tline = Fast
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Approximating the Best of Both Worlds

Long Bitlin Tiered-Latency DRAM \ort Bitline

Small Area Small Area M

NN\ N\ N\

M Low Latency Low Latency

, 1 ) [

7 Small area
using long
_ bitline
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Tiered-Latency DRAM

e Divide a bitline into two segments with an
isolation transistor

Far Segment

/

Isolation Transistor

Near Segment

Sense Amplifier
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Near Segment Access

e Turn off the isolation transistor

Reduced bitline length
Reduced bitline capacitance
=» Low latency & low power

OOOOO0O0)

Isolation Transistor (Off)

Near Segment

Sense Amplifier
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Far Segment Access

e Turn on the isolation transistor

Long bitline length

Large bitline capacitance

Additional resistance of isolation transistor
=» High latency & high power

J

Isolation Transistor (ON)

Near Segment

Sense Amplifier
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Latency, Power, and Area Evaluation

e Commodity DRAM: 512 cells/bitline

e TL-DRAM: 512 cells/bitline

— Near segment: 32 cells

— Far segment: 480 cells
e Latency Evaluation

— SPICE simulation using circuit-level DRAM model
* Power and Area Evaluation

— DRAM area/power simulator from Rambus

— DDR3 energy calculator from Micron

65

Commodity DRAM vs. TL-DRAM

e DRAM Latency (tRC) « DRAM Power
+49%

150% 150%

+23%

(52.5ns)

0% II II
Commodity
DRAM TL-DRAM

0%
Commodity
DRAM

e DRAM Area Overhead

~3%: mainly due to the isolation transistors

TL-DRAM
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Latency vs. Near Segment Length
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Latency vs. Near Segment Length
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM

* TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

* Many potential uses

(1. Use near segment as hardware-managed inclusive )
cache to far segment )

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system )
4. Simply replace DRAM with TL-DRAM

70

Near Segment as Hardware-Managed Cache
TL-DRAM

main

memory
nearnsegmentl BrT 12

sense amplifier

far segment

I/0

channel ‘

* Challenge 1: How to efficiently migrate a row between
segments?

* Challenge 2: How to efficiently manage the cache?
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Inter-Segment Migration

* Goal: Migrate source row into destination row

* Naive way: Memory controller reads the source row
byte by byte and writes to destination row byte by byte
-> High latency

Far Segment

/

Isolation Transistor
1)e OtIoC

Near Segment
[] ‘ “ BIEIEI sense Amplifier
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Inter-Segment Migration
e Our way:
— Source and destination cells share bitlines

— Transfer data from source to destination across
shared bitlines concurrently

e 0:0.0:0 01

Far Segment

7/

Isolation Transistor

Near Segment

/

IRl sense Amplifier

e
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Inter-Segment Migration
* Our way:

— Source and destination cells share bitlines

— Transfer data from so .
Step 1: Activate source row

shared bitlines concu
1 1 1 1 1 1

Migration is overlapped with source row access

Additional ~4ns over row access latency

Step 2: Activate destination
row to connect cell and bitline

Near Segment

Sense Amplifier
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Near Segment as Hardware-Managed Cache
TL-DRAM

main

memory
nearnsegmentl BrT 12

sense amplifier

far segment

I/0

channel ‘

* Challenge 1: How to efficiently migrate a row between
segments?

[* Challenge 2: How to efficiently manage the cache? |
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Evaluation Methodology

e System simulator

— CPU: Instruction-trace-based x86 simulator
— Memory: Cycle-accurate DDR3 DRAM simulator

 Workloads

— 32 Benchmarks from TPC, STREAM, SPEC CPU2006

e Performance Metrics

— Single-core: Instructions-Per-Cycle
— Multi-core: Weighted speedup

76




Configurations

e System configuration
— CPU: 5.3GHz
— LLC: 512kB private per core
— Memory: DDR3-1066
* 1-2 channel, 1 rank/channel
* 8 banks, 32 subarrays/bank, 512 cells/bitline
* Row-interleaved mapping & closed-row policy

e TL-DRAM configuration
— Total bitline length: 512 cells/bitline
— Near segment length: 1-256 cells

— Hardware-managed inclusive cache: near segment
77

Performance & Power Consumption
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Using near segment as a cache improves
performance and reduces power consumption
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Single-Core: Varying Near Segment Length

Maximum IPC
Improvement

14%
12%
10% -
8%
6%
4%
2%
0%

Larger cache capacity

Higher cache access latency

Performance Improvement

1 2 4 8 16 32 64 128 256
Near Segment Length (cells)

By adjusting the near segment length, we can
trade off cache capacity for cache latency
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Other Mechanisms & Results

* More mechanisms for leveraging TL-DRAM
— Hardware-managed exclusive caching mechanism
— Profile-based page mapping to near segment

— TL-DRAM improves performance and reduces power
consumption with other mechanisms

* More than two tiers
— Latency evaluation for three-tier TL-DRAM

* Detailed circuit evaluation
for DRAM latency and power consumption

— Examination of tRC and tRCD
* Implementation details and storage cost analysis  in
memory controller
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Summary of TL-DRAM

* Problem: DRAM latency is a critical performance bottleneck
* Our Goal: Reduce DRAM latency with low area cost

* Observation: Long bitlines in DRAM are the dominant source
of DRAM latency

* Key Idea: Divide long bitlines into two shorter segments
—Fast and slow segments
* Tiered-latency DRAM: Enables latency heterogeneity in DRAM

—Can leverage this in many ways to improve performance
and reduce power consumption

* Results: When the fast segment is used as a cache to the slow
segment - Significant performance improvement (>12%) and

power reduction (>23%) at low area cost (3%)
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New DRAM Architectures

RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization
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Subarray-Level Parallelism:
Reducing Bank Conflict Impact

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM"
Proceedings of the 39th International Symposium on Computer Architecture (1SCA),
Portland, OR, June 2012. Slides (pptx)

The Memory Bank Conflict Problem

Two requests to the same bank are serviced serially
Problem: Costly in terms of performance and power

Goal: We would like to reduce bank conflicts without
increasing the number of banks (at low cost)

Idea: Exploit the internal sub-array structure of a DRAM bank
to parallelize bank conflicts

o By reducing global sharing of hardware between sub-arrays

Kim, Seshadri, Lee, Liu, Mutlu, “A Case for Exploiting
Subarray-Level Parallelism in DRAM,” ISCA 2012.
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The Problem with Memory Bank Conflicts

e Two Banks/» Served in parallel

e One Bank < Wasted
E Wr . . Wr -

2. Yens Begatbw-Buffer

23 Rd 3 Rd

Goal

= Goal: Mitigate the detrimental effects
of bank conflicts in a cost-effective
manner

= Naive solution: Add more banks
o Very expensive

= Cost-effective solution: Approximate

sathe benefits of more banks without =

A single row-buffer  Many local row-buffers,
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Key Observation #1 Key Observation #2
Each subarray is mostly
A DRAM bank js divided into mdeﬁﬁgﬂi&;  sherie 0ok
subggjlcg‘(/gank Physical Bank :9 /(Ui tonaty-shef \
— B o Subarray,, Il
— Subarrayg, W S |
;:: 32k roji8 ! g : !
Row Subarray, . — . !
S l
Row-Buffer Global Row-Buf | O _' i
! I
\ ;

cannot drive allrows  one at each subarray
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Bank Global Row-Buf

p
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Key Idea: Reduce Sharing of Globals
1. Parallel access to subarrays

_l Local Row-Buf
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Overview of Our Mechanism

Subarrayg,

1. Parallelize

8 [Rest) 50 [Besd)
Tosamesbankers

but diff. subarrays

Subarray,

Global Row-Buf
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Challenges: Global Structures

1. Global Address Latch

SAFARI o1

Challenge #1. Global Address Latch

- VDD
[}
o
8 row-buffer
y v °
) 0 °
— [ ]
8
[ Voo
O] B’ |
AC row-buffer
Global
row-buffer
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Solution #1. Subarray Address Latch
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Challenges: Global Structures

1. Global Address Latch

= Problem: Only one raised
wordline

= Solution: Subarray Address

4
-L-DaDD Latch
/ -
ACMngl;byffef 2. Global Bitlines
ooa
Global latch 2> row-buffer
s=rakacal latches o3 SAFARI o
Challenge #2. Global Bitlines Solution #2. Designated-Bit Latch
Global bitlines . Global bitlines
=
row-bufjer Switch ropLELA— switch
P > P >
CO//iSion
/ /| Switch D 717 Switch
P > < >
Global
A — READ! ) o, 5i0ka! .
SAFARI ' % s=rSelectively connect local to global %




Challenges: Global Structures
1. Global Address Latch

MASA: Advantages

Baseline (Sukatrgy-Qblivious)

Problem: Only one raised : : :
wordline wWr 2 332 3Rd 3 e
Solution: Subarray Address Vo
Latch 2. Write Penalty — 3. Thrashing
2. Global Bitlines MASHm < Saved |
Problem: Collision during access . time
. . -Wr R >
g Qg@dsﬂé}t(’@glw@@d‘eamwmm = T -
MASA: Overhead Cheaper Mechanisms B F& B
S Z
= © c
DRAM Die Size: 0.15% increase Latches T% ol B>
o Subarray Address Latches 5 ;L g
o Designated-Bit Latches & Wire = : = :

DRAM Static Energy: Small increase
o 0.56mW for each activated subarray

o But saves dynamic energy
Controller: Small additional storage

o Keep track of subarray status (< 256B)
sapkkKeep track of new timing constraints

-1

I

%[I SALP-2
=

SALP-1
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System Configuration

= System Configuration
o CPU: 5.3GHz, 128 ROB, 8 MSHR
o LLC: 512kB per-core slice

= Memory Configuration

o DDR3-1066

o (default) 1 channel, 1 rank, 8 banks, 8 subarrays-per-
bank

o (sensitivity) 1-8 chans, 1-8 ranks, 8-64 banks, 1-128 subarrays
= Mapping & Row-Policy

o (default) Line-interleaved & Closed-row

o (sensitivity) Row-interleaved & Open-row

= DRAM Controller Configuration

= FsA-/ﬁA-pnfry read/write gueues ppr-r‘hnnnpl

SAFARER-FCFS, batch scheduling for writes 101

SALP: Single-core Results

— 80%
S 70%
£ 60%
050% -
O 40%
Q 30%
£ 20%
O 10%
a 0%

m MASA E"ldeal

MASA ach/eves most of the benefit

14 V4
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SALP: Single-Core Results

SALP-1 m SALP-2

| m" "
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DRAM
Die
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Subarray-Level Parallelism: Results

Normalized

B Baseline mMASA HEBaseline ®MASA

S.1.2 . 100%
@) x
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MASA Increases enerqgy-
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New DRAM Architectures

= RAIDR: Reducing Refresh Impact

TL-DRAM: Reducing DRAM Latency

SALP: Reducing Bank Conflict Impact

RowClone: Fast Bulk Data Copy and Initialization
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RowClone: Fast Bulk Data
Copy and Initialization

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry,
"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data"

CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie Mellon University, April 2013.

Today’s Memory: Bulk Data Copy

1) High latency
3) Cache pollution \

CPU

2) High bandwidth utilization

4) Unwanted data movement
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Future: RowClone (In-Memory Copy)

3) No cache pollution ) 1) Low latency

CPU

2) Low bandwidth utilization
4) No unwanted data movement

AM-C nd
opyand 108

Mon of Bulk Data,” CMU Tech Report 2013.




2.
Transfer
row

DRAM operation (load one byte)

4 Kbits

p—— 1. Activate row

DRAM array

» COTECTTIRRRRRR L EIEEILEES Row Bufer (4 Kbt

3. Transfer . )
byte onto b Data pins (8 bits)

SAFARI Memory Bus

RowClone: in-DRAM Row Copy (and

Initialization) e

EEEN

EEEN )

1. Activate row A
llllllllllllllll.llllllllll====
EEEN

e r e r e e e r e r e
EEEEEEEEEEEEEEEEEEEEEEEEEEE
3. Activate row B
2.
Transfer DRAM array
row
4.
Trangdr
row
L CErTIrIT I TI R IEEELEED Row Buffe (4 i)
Data pins (8 bits)
SAFARI Memory Bus

RowClone: Key Idea

= DRAM banks contain
1. Mutiple rows of DRAM cells — row = 8KB
2. A row buffer shared by the DRAM rows

= Large scale copy
1. Copy data from source row to row buffer
2. Copy data from row buffer to destination row

Can be accomplished by two consecutive ACTIVATEs

(if source and destination rows are in the same
subarray)

SAFARI 1

RowClone: Intra-subarray Copy

Sense
Amplifiers
(row buffer)

Deactivate
(our proposal)

Activate (src) ——> —> Activate (dst)
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RowClone: Inter-bank Copy

Read Write
< > 1/0 Bus
Transfer
(our proposal)
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RowClone: Inter-subarray Copy

dst

src

temp

> 1/0 Bus

A

1. Transfer (src to temp)
2. Transfer (temp to dst)

SAFARI 1

Fast Row Initialization

Fix a row at Zero
(0.5% loss in capacity)

SAFARI 1o

RowClone: Latency and Energy Savings

1.2 m Baseline B |ntra-Subarray

" Inter-Bank W Inter-Subarray
o 1
E A A
S 11.5x 74x
@ 0.8
N
8 0.6
N
T 0.4
S
S

2
z° y

0 - A

Latency Energy

SKitidiiZdtion of Bulk Data,” CMU Tech Report 2013. e




RowClone: Latency and Energy Savings

RowClone: Overall Pertormance

Instructions per cycle

9%

Absolute Reduction
Mechanism Latency [Energy Latency Energy @ Baseline
(ns) (.uj) O RowClone
M RowClone-Z1 |
4KB Copy '
. bootup compile  mecached mysql shell
Baseline 1046 3.6 1.00 1.0 . G X ]
Intra-subarra Figure 10: Performance improvement of RowClone-Z1. Value
y 20 0.04 11.62 74.4 on top indicates percentage improvement compared to baseline.
Inter-Bank - PSM 540 11 1.93 3.2
Intra-Bank - PSM 1050 2.5 0.99 1.5 Application  bootup compile mcached mysql shell
4KB Zeroing Energy
- Reduction 40% 32% 15% 17% 67%
Baseline 546 2.0 1.00 1.0
Intra-subarray 90 0.05 6.06 41.5 Number of Cores 2 + 8
. Number of Workloads 138 50 40
~ Table 3: Latency and energy reductions due to RowClone I Weighted Speedup Improvement  15%  20%  27%
SAFARI 117 SAFARI Energy per Instruction Reduction 19% 17% 17%
Summary

= Major problems with DRAM scaling and design: high refresh
rate, high latency, low parallelism, bulk data movement

= Four new DRAM designs
o RAIDR: Reduces refresh impact
o TL-DRAM: Reduces DRAM latency at low cost
u SALP: Improves DRAM parallelism
o RowClone: Reduces energy and performance impact of bulk data copy

= All four designs
o Improve both performance and energy consumption
o Are low cost (low DRAM area overhead)
o Enable new degrees of freedom to software & controllers

= Rethinking DRAM interface and design essential for scaling
o Co-design DRAM with the rest of the system
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Computer Architecture:
Main Memory (Part I1I)

Prof. Onur Mutlu
Carnegie Mellon University




