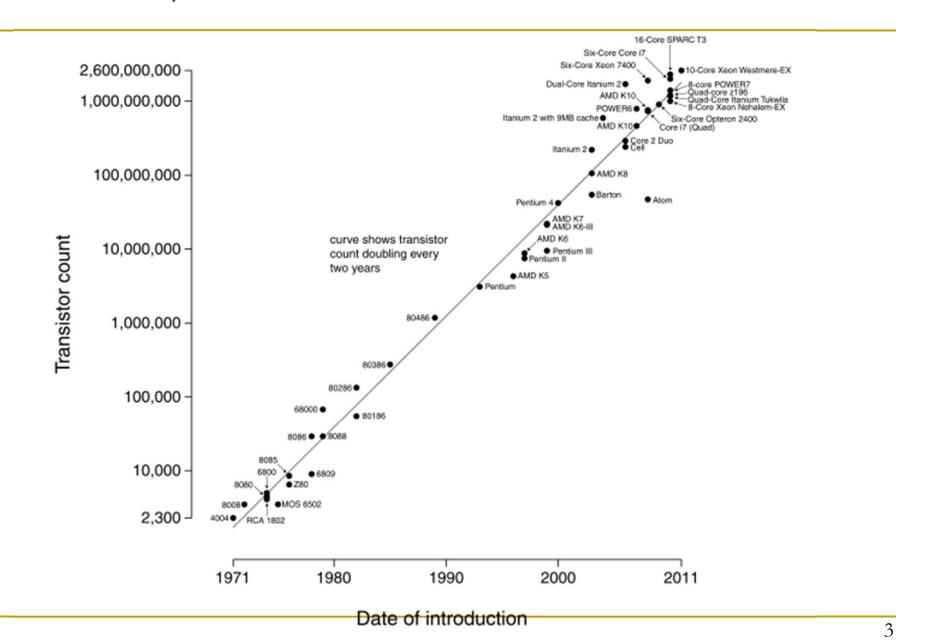
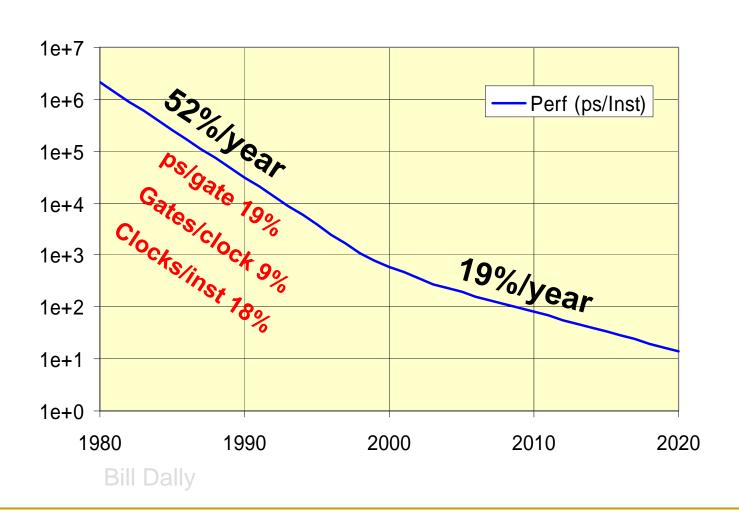

Computer Architecture: Multi-Core Processors: Why?


Onur Mutlu & Seth Copen Goldstein
Carnegie Mellon University
9/11/13

Moore's Law



Moore, "Cramming more components onto integrated circuits," Electronics, 1965.

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Conventional Processors Stop Scaling Performance by 50% each year

Multi-Core

- Idea: Put multiple processors on the same die.
- Technology scaling (Moore's Law) enables more transistors to be placed on the same die area
- What else could you do with the die area you dedicate to multiple processors?
 - Have a bigger, more powerful core
 - Have larger caches in the memory hierarchy
 - Simultaneous multithreading
 - Integrate platform components on chip (e.g., network interface, memory controllers)

...

Why Not a Better Single Core?

- Alternative: Bigger, more powerful single core
 - Larger superscalar issue width, larger instruction window, more execution units, large trace caches, large branch predictors, etc
 - + Improves single-thread performance transparently to programmer, compiler
 - Very difficult to design (Scalable algorithms for improving single-thread performance elusive)
 - Power hungry many out-of-order execution structures consume significant power/area when scaled. Why?
 - Diminishing returns on performance
 - Does not significantly help memory-bound application performance (Scalable algorithms for this elusive)

Large Superscalar+OoO vs. Multi-Core

Olukotun et al., "The Case for a Single-Chip Multiprocessor," ASPLOS 1996.

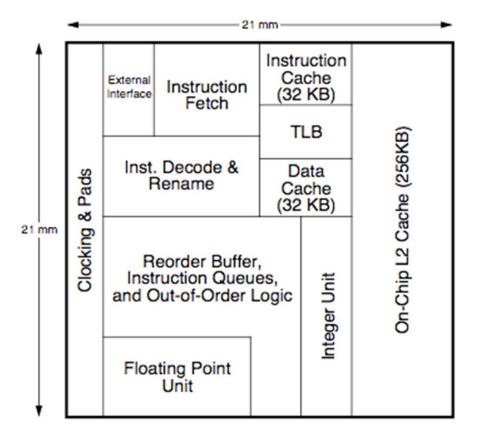


Figure 2. Floorplan for the six-issue dynamic superscalar microprocessor.

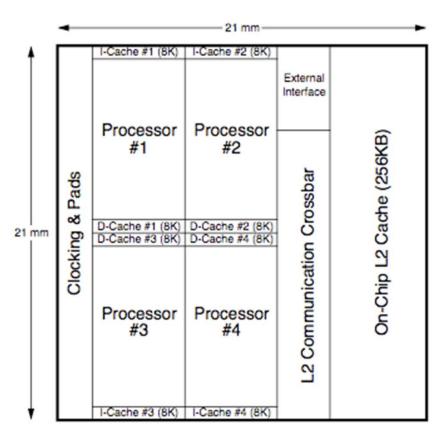


Figure 3. Floorplan for the four-way single-chip multiprocessor.

Multi-Core vs. Large Superscalar+OoO

Multi-core advantages

- + Simpler cores → more power efficient, lower complexity, easier to design and replicate, higher frequency (shorter wires, smaller structures)
- + Higher system throughput on multiprogrammed workloads → reduced context switches
- + Higher system performance in parallel applications

Multi-core disadvantages

- Requires parallel tasks/threads to improve performance (parallel programming)
- Resource sharing can reduce single-thread performance
- Shared hardware resources need to be managed
- Number of pins limits data supply for increased demand

Large Superscalar vs. Multi-Core

Olukotun et al., "The Case for a Single-Chip Multiprocessor," ASPLOS 1996.

Technology push

- Instruction issue queue size limits the cycle time of the superscalar, OoO processor → diminishing performance
 - Quadratic increase in complexity with issue width
- Large, multi-ported register files to support large instruction windows and issue widths → reduced frequency or longer RF access, diminishing performance

Application pull

- Integer applications: little parallelism?
- FP applications: abundant loop-level parallelism
- Others (transaction proc., multiprogramming): CMP better fit

Comparison Points...

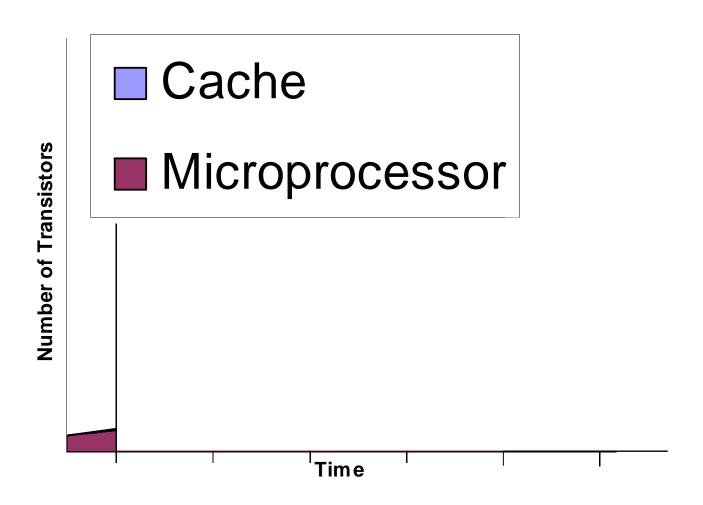

	6-way SS	4x2-way MP
# of CPUs	1	4
Degree superscalar	6	4 x 2
# of architectural registers	32int / 32fp	4 x 32int / 32fp
# of physical registers	160int / 160fp	4 x 40int / 40fp
# of integer functional units	3	4 x 1
# of floating pt. functional units	3	4 x 1
# of load/store ports	8 (one per bank)	4 x 1
BTB size	2048 entries	4 x 512 entries
Return stack size	32 entries	4 x 8 entries
Instruction issue queue size	128 entries	4 x 8 entries
I cache	32 KB, 2-way S. A.	4 x 8 KB, 2-way S. A.
D cache	32 KB, 2-way S. A.	4 x 8 KB, 2-way S. A.
L1 hit time	2 cycles (4 ns)	1 cycle (2 ns)
L1 cache interleaving	8 banks	N/A
Unified L2 cache	256 KB, 2-way S. A.	256 KB, 2-way S. A.
L2 hit time / L1 penalty	4 cycles (8 ns)	5 cycles (10 ns)
Memory latency / L2 penalty	50 cycles (100 ns)	50 cycles (100 ns)

Table 1 Var abanastanistics of the two misusanshitestunes

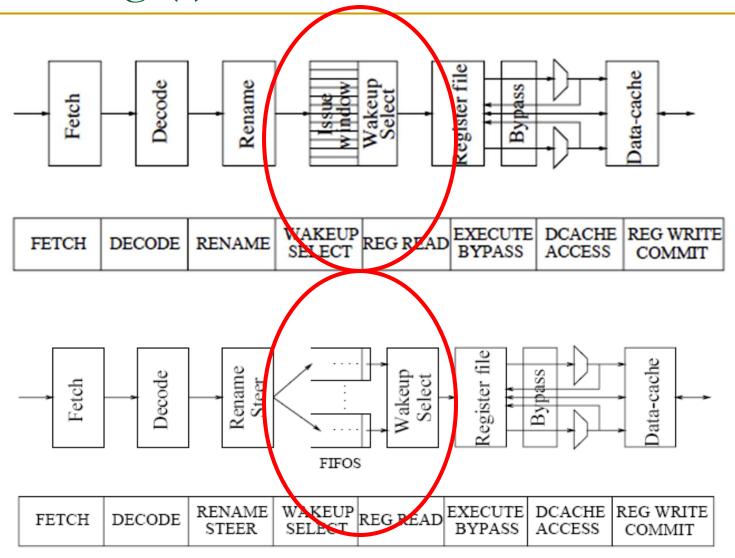
Why Not bigger caches?

- Alternative: Bigger caches
 - + Improves single-thread performance transparently to programmer, compiler
 - + Simple to design
 - Diminishing single-thread performance returns from cache size.
 Why?
 - Multiple levels complicate memory hierarchy

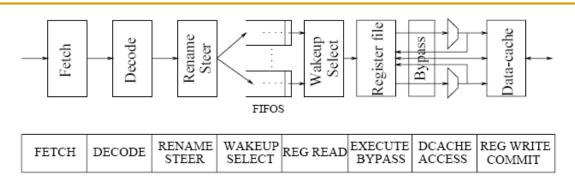
Cache vs. Core

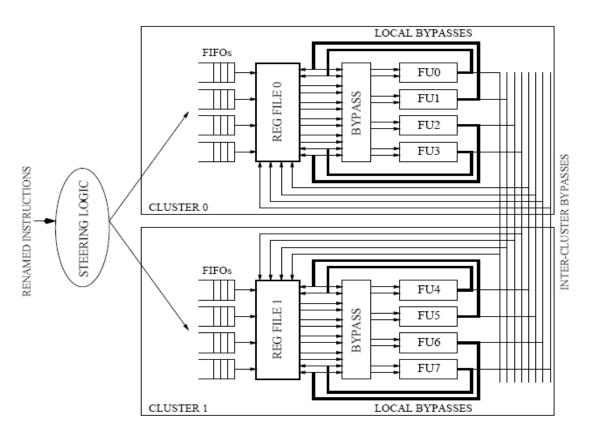
Why Not Multitheading?

- Alternative: (Simultaneous) Multithreading
 - + Exploits thread-level parallelism (just like multi-core)
 - + Good single-thread performance with SMT
 - + No need to have an entire core for another thread
 - + Parallel performance aided by tight sharing of caches
 - Scalability is limited: need bigger register files, more function units, larger issue width (and associated costs) to have many threads → complex with many threads
 - Parallel performance limited by shared fetch bandwidth
 - Extensive resource sharing at the pipeline and memory system reduces both single-thread and parallel application performance


Why Not System on a Chip?

- Alternative: Integrate platform components on chip instead
 - + Speeds up many system functions (e.g., network interface cards, Ethernet controller, memory controller, I/O controller)
 - Not all applications benefit (e.g., CPU intensive code sections)

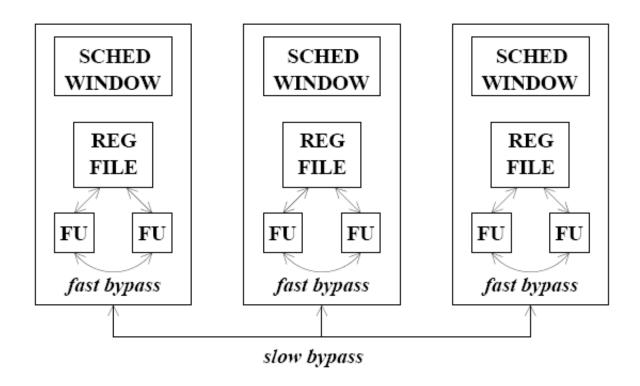

Why Not Clustering?


- Alternative: More scalable superscalar, out-of-order engines
 - Clustered superscalar processors (with multithreading)
 - + Simpler to design than superscalar, more scalable than simultaneous multithreading (less resource sharing)
 - + Can improve both single-thread and parallel application performance
 - Diminishing performance returns on single thread: Clustering reduces IPC performance compared to monolithic superscalar. Why?
 - Parallel performance limited by shared fetch bandwidth
 - Difficult to design

Clustering (I)

Clustering (II)

Each scheduler is a FIFO


- + Simpler
- + Can have N FIFOs (OoO w.r.t. each other)
- + Reduces scheduling complexity
- -- More dispatch stalls

Inter-cluster bypass: Results produced by an FU in Cluster 0 is not individually forwarded to each FU in another cluster.

 Palacharla et al., "Complexity Effective Superscalar Processors," ISCA 1997.

Clustering (III)

Scheduling within each cluster can be out of order

Brown, "Reducing Critical Path Execution Time by Breaking Critical Loops," UT-Austin 2005.

Clustered Superscalar+OoO Processors

- Clustering (e.g., Alpha 21264 integer units)
 - Divide the scheduling window (and register file) into multiple clusters
 - Instructions steered into clusters (e.g. based on dependence)
 - Clusters schedule instructions out-of-order, within cluster scheduling can be in-order
 - Inter-cluster communication happens via register files (no full bypass)
 - + Smaller scheduling windows, simpler wakeup algorithms
 - + Fewer ports into register files
 - + Faster within-cluster bypass
 - -- Extra delay when instructions require across-cluster communication
 - -- inherent difficulty of steering logic

Why Not Multi-Chip symmetric Multiproc?

- Alternative: Traditional symmetric multiprocessors
 - + Smaller die size (for the same processing core)
 - + More memory bandwidth (no pin bottleneck)
 - + Fewer shared resources -> less contention between threads
 - Long latencies between cores (need to go off chip) → shared data accesses limit performance → parallel application scalability is limited
 - Worse resource efficiency due to less sharing → worse power/energy efficiency

Why Multi-Core?

- Other alternatives?
 - Dataflow?
 - VLIW?
 - Vector processors (SIMD)?
 - Streaming processors?
 - Integrating DRAM on chip?
 - Reconfigurable logic? (general purpose?)

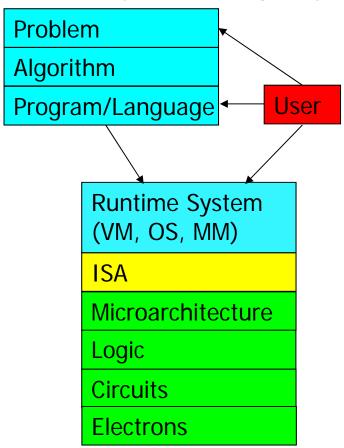
Review: Multi-Core Alternatives

- Bigger, more powerful single core
- Bigger caches
- (Simultaneous) multithreading
- Integrate platform components on chip instead
- More scalable superscalar, out-of-order engines
- Traditional symmetric multiprocessors
- Dataflow?
- Vector processors (SIMD)?
- Integrating DRAM on chip?
- Reconfigurable logic? (general purpose?)
- Other alternatives?
- Your solution?

Why Multi-Core (Cynically)

- Huge investment and need ROI
- Have to offer some kind of upgrade path
- It is easy for the processor manufacturers

Why Multi-Core (Cynically)


- Huge investment and need ROI
- Have to offer some kind of upgrade path
- It is easy for the processor manufacturers
- But, Seriously:
- Some easy parallelism
 - Most general purpose machines run multiple tasks at a time
 - Some (very important) Apps have easy parallelism
- Power is a real issue
- Design complexity is very costly
- Is it the right solution?

Computer Architecture Today (I)

- Today is a very exciting time to study computer architecture
- Industry is in a large paradigm shift (to multi-core and beyond) – many different potential system designs possible
- Many difficult problems motivating and caused by the shift
 - □ Power/energy constraints → multi-core?, accelerators?
 - □ Complexity of design → multi-core?
 - □ Difficulties in technology scaling → new technologies?
 - Memory wall/gap
 - Reliability wall/issues
 - □ Programmability wall/problem → single-core?
- No clear, definitive answers to these problems

Computer Architecture Today (II)

 These problems affect all parts of the computing stack – if we do not change the way we design systems

No clear, definitive answers to these problems

Computer Architecture Today (III)

- You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly)
- You can invent new paradigms for computation, communication, and storage
- Recommended book: Kuhn, "The Structure of Scientific Revolutions" (1962)
 - Pre-paradigm science: no clear consensus in the field
 - Normal science: dominant theory used to explain things (business as usual); exceptions considered anomalies
 - Revolutionary science: underlying assumptions re-examined

... but, first ...

- Let's understand the fundamentals...
- You can change the world only if you understand it well enough...
 - Especially the past and present dominant paradigms
 - And, their advantages and shortcomings -- tradeoffs

Computer Architecture: Multi-Core Processors: Why?

Prof. Onur Mutlu
Carnegie Mellon University

Backup slides

Referenced Readings

- Moore, "Cramming more components onto integrated circuits," Electronics, 1965.
- Olukotun et al., "The Case for a Single-Chip Multiprocessor," ASPLOS 1996.
- Tullsen et al., "Simultaneous Multithreading: Maximizing On-Chip Parallelism," ISCA 1995.
- Kessler, "The Alpha 21264 Microprocessor," IEEE Micro 1999.
- Brown, "Reducing Critical Path Execution Time by Breaking Critical Loops," UT-Austin 2005.
- Palacharla et al., "Complexity Effective Superscalar Processors," ISCA 1997.
- Kuhn, "The Structure of Scientific Revolutions," 1962.

Related Videos

- Multi-Core Systems and Heterogeneity
 - http://www.youtube.com/watch?v=LIDxT0hPl2U&list=PLVngZ 7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
 - http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ 7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2