
Computer Architecture:
Parallel Processing Basics

Onur Mutlu & Seth Copen Goldstein
Carnegie Mellon University

9/9/13

Today
 What is Parallel Processing? Why?
 Kinds of Parallel Processing
 Multiprocessing and Multithreading
 Measuring success

 Speedup
 Amdhal’s Law

 Bottlenecks to parallelism

2

 Embedded-Physical Distributed

Concurrent Systems

Sensor
NetworksClaytronics

 Embedded-Physical Distributed

 Geographically Distributed

Concurrent Systems

Sensor
NetworksClaytronics

Internet Power
Grid

 Embedded-Physical Distributed

 Geographically Distributed

 Cloud Computing

Concurrent Systems

Sensor
NetworksClaytronics

Internet Power
Grid

EC2
Tashi

PDL'09
5© 2007-9 Goldstein

 Embedded-Physical Distributed

 Geographically Distributed

 Cloud Computing

 Parallel

Concurrent Systems

Sensor
NetworksClaytronics

Internet Power
Grid

EC2
Tashi

PDL'09
6© 2007-9 Goldstein

Concurrent Systems

Physical Geographical Cloud Parallel

Geophysical
location +++ ++ --- ---

Relative
location +++ +++ + -

Faults ++++ +++ ++ --
Number of
Processors +++ +++ + -

Network
structure varies varies fixed fixed

Network
connectivity --- --- + +

++

+

7

Concurrent System Challenge: Programming

8

The old joke:
How long does it take to write a parallel program?

One Graduate Student Year

Parallel Programming Again??
 Increased demand (multicore)
 Increased scale (cloud)
 Improved compute/communicate
 Change in Application focus

 Irregular
 Recursive data structures

PDL'09 © 2007-9 Goldstein9

Why Parallel Computers?
 Parallelism: Doing multiple things at a time
 Things: instructions, operations, tasks

 Main (historical?) Goal
 Improve performance (Execution time or task throughput)

 Execution time of a program governed by Amdahl’s Law

 Other (more recent) Goals
 Reduce power consumption

 If task is parallel, more slower units consume less power than 1 faster unit
 P = ½CVF2 and V F

 Improve cost efficiency and scalability, reduce complexity
 Harder to design a single unit that performs as well as N simpler units

 Improve dependability: Redundant execution in space
10

What is Parallel Architecture?

 A parallel computer is a collection of processing elements
that cooperate to solve large problems fast

 Some broad issues:
 Resource Allocation:

 how large a collection?
 how powerful are the elements?
 how much memory?

 Data access, Communication and Synchronization
 how do the elements cooperate and communicate?
 how are data transmitted between processors?
 what are the abstractions and primitives for cooperation?

 Performance and Scalability
 how does it all translate into performance?
 how does it scale?

Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element
 SIMD: Single instruction operates on multiple data elements

 Array processor
 Vector processor

 MISD: Multiple instructions operate on single data element
 Closest form?: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
 Multiprocessor
 Multithreaded processor

13

Types of Parallelism and How to Exploit Them
 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel
 Pipelining, out-of-order execution, speculative execution, VLIW
 Dataflow

 Data Parallelism
 Different pieces of data can be operated on in parallel
 SIMD: Vector processing, array processing
 Systolic arrays, streaming processors

 Task Level Parallelism
 Different “tasks/threads” can be executed in parallel
 Multithreading
 Multiprocessing (multi-core)

14

Task-Level Parallelism: Creating Tasks
 Partition a single problem into multiple related tasks

(threads)
 Explicitly: Parallel programming

 Easy when tasks are natural in the problem
 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation
 Partition a single thread speculatively

 Run many independent tasks (processes) together
 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task
15

Multiprocessing Fundamentals

16

Multiprocessor Types
 Loosely coupled multiprocessors

 No shared global memory address space
 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing
 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors
 Shared global memory address space
 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking
uniprocessor) except
 Operations on shared data require synchronization

17

Main Issues in Tightly-Coupled MP
 Shared memory synchronization

 Locks, atomic operations

 Cache consistency
 More commonly called cache coherence

 Ordering of memory operations
 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning
 Communication: Interconnection networks
 Load imbalance

18

Aside: Hardware-based Multithreading
 Idea: Multiple threads execute on the same processor with

multiple hardware contexts; hardware controls switching
between contexts

 Coarse grained
 Quantum based
 Event based (switch-on-event multithreading)

 Fine grained
 Cycle by cycle
 Thornton, “CDC 6600: Design of a Computer,” 1970.
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Simultaneous
 Can dispatch instructions from multiple threads at the same time
 Good for improving utilization of multiple execution units

19

Metrics of Multiprocessors

20

Parallel Speedup

Time to execute the program with 1 processor
divided by

Time to execute the program with N processors

21

Parallel Speedup Example
 a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation 1 cycle, no communication cost,
each op can be executed in a different processor

 How fast is this with a single processor?
 Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors?

22

23

24

Speedup with 3 Processors

25

Revisiting the Single-Processor Algorithm

26

Horner, “A new method of solving numerical equations of all orders, by continuous
approximation,” Philosophical Transactions of the Royal Society, 1819.

27

Takeaway
 To calculate parallel speedup fairly you need to use the

best known algorithm for each system with N processors

 If not, you can get superlinear speedup

28

Superlinear Speedup
 Can speedup be greater than P with P processing

elements?

 Consider:
 Cache effects
 Memory effects
 Working set

 Happens in two ways:
 Unfair comparisons
 Memory effects

29

Utilization, Redundancy, Efficiency
 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used
 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel
processing
 R = (# of operations in parallel version) / (# operations in best

single processor algorithm version)

 Efficiency
 E = (Time with 1 processor) / (processors x Time with P processors)
 E = U/R

30

Utilization of a Multiprocessor

31

32

Amdahl’s law
 You plan to visit a friend in Normandy France and must

decide whether it is worth it to take the Concorde SST
($3,100) or a 747 ($1,021) from NY to Paris, assuming it
will take 4 hours Pgh to NY and 4 hours Paris to Normandy.

time NY->Paris total trip time speedup over 747
 747 8.5 hours 16.5 hours 1
 SST 3.75 hours 11.75 hours 1.4

 Taking the SST (which is 2.2 times faster) speeds up the
overall trip by only a factor of 1.4!

Amdahl’s law (cont)

T1 T2

Old program (unenhanced)
T1 = time that can NOT

be enhanced.

T2 = time that can be
enhanced.

T2’ = time after the
enhancement.

Old time: T = T1 + T2

T1’ = T1 T2’ <= T2

New program (enhanced)

New time: T’ = T1’ + T2’

Speedup: Soverall = T / T’

Amdahl’s law (cont)

Two key parameters:
Fenhanced = T2 / T (fraction of original time that can be improved)
Senhanced = T2 / T2’ (speedup of enhanced part)

T’ = T1’ + T2’ = T1 + T2’ = T(1-Fenhanced) + T2’
= T(1-Fenhanced) + (T2/Senhanced) [by def of Senhanced]
= T(1-Fenhanced) + T(Fenhanced /Senhanced) [by def of Fenhanced]
= T((1-Fenhanced) + Fenhanced/Senhanced)

Amdahl’s Law:
Soverall = T / T’ = 1/((1-Fenhanced) + Fenhanced/Senhanced)

Key idea: Amdahl’s law quantifies the general notion of
diminishing returns. It applies to any activity, not just
computer programs.

Amdahl’s law (cont)

 Trip example: Suppose that for the New York to Paris
leg, we now consider the possibility of taking a rocket
ship (15 minutes) or a handy rip in the fabric of space-
time (0 minutes):

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4
rocket 0.25 hours 8.25 hours 2.0
rip 0.0 hours 8 hours 2.1

Amdahl’s law (cont)

 Useful corollary to Amdahl’s law:
 1 <= Soverall <= 1 / (1 - Fenhanced)

Fenhanced Max Soverall Fenhanced Max Soverall

0.0 1 0.9375 16

0.5 2 0.96875 32

0.75 4 0.984375 64

0.875 8 0.9921875 128

Moral: It is hard to speed up a program.

Moral++ : It is easy to make premature optimizations.

Caveats of Parallelism (I)

38

Amdahl’s Law

39

Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

Caveats of Parallelism (I): Amdahl’s Law
 Amdahl’s Law

 f: Parallelizable fraction of a program
 P: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

40

Speedup =
1

+1 - f f
P

Amdahl’s Law Implication 1

41

Amdahl’s Law Implication 2

42

Sequential Bottleneck

43

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0
0.

04
0.

08
0.

12
0.

16 0.
2

0.
24

0.
28

0.
32

0.
36 0.
4

0.
44

0.
48

0.
52

0.
56 0.
6

0.
64

0.
68

0.
72

0.
76 0.
8

0.
84

0.
88

0.
92

0.
96 1

N=10

N=100

N=1000

f (parallel fraction)

Why the Sequential Bottleneck?
 Parallel machines have the

sequential bottleneck

 Main cause: Non-parallelizable
operations on data (e.g. non-
parallelizable loops)

for (i = 0 ; i < N; i++)
A[i] = (A[i] + A[i-1]) / 2

 Single thread prepares data
and spawns parallel tasks
(usually sequential)

44

Another Example of Sequential Bottleneck

45

Implications of Amdahl’s Law on Design
 CRAY-1
 Russell, “The CRAY-1

computer system,”
CACM 1978.

 Well known as a fast
vector machine
 8 64-element vector

registers

 The fastest SCALAR
machine of its time!
 Reason: Sequential

bottleneck!

46

Caveats of Parallelism (II)
 Amdahl’s Law

 f: Parallelizable fraction of a program
 P: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck
 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)
 Load imbalance overhead (imperfect parallelization)
 Resource sharing overhead (contention among N processors)

47

Speedup =
1

+1 - f f
P

Bottlenecks in Parallel Portion
 Synchronization: Operations manipulating shared data

cannot be parallelized
 Locks, mutual exclusion, barrier synchronization
 Communication: Tasks may need values from each other
- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths
 Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware
resources, delaying each other
 Replicating all resources (e.g., memory) expensive
- Additional latency not present when each task runs alone

48

Difficulty in Parallel Programming
 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications
 Multimedia, physical simulation, graphics
 Large web servers, databases?

 Big difficulty is in
 Harder to parallelize algorithms
 Getting parallel programs to work correctly
 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about
 Designing machines that overcome the sequential and parallel

bottlenecks to achieve higher performance and efficiency
 Making programmer’s job easier in writing correct and high-

performance parallel programs
49

Parallel and Serial Bottlenecks
 How do you alleviate some of the serial and parallel

bottlenecks in a multi-core processor?
 We will return to this question in the next few lectures
 Reading list:

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI
Throttling,” ISCA 2005.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

 Ipek et al., “Core Fusion: Accommodating Software Diversity
in Chip Multiprocessors,” ISCA 2007.

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE
Computer 2008.

50

Bottlenecks in the Parallel Portion
 Amdahl’s Law does not consider these

 How do synchronization (e.g., critical sections), and load
imbalance, resource contention affect parallel speedup?

 Can we develop an intuitive model (like Amdahl’s Law) to
reason about these?
 A research topic

 Example papers:
 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's

law and its implications for multicore design,” ISCA 2010.
 Suleman et al., “Feedback-driven threading: power-efficient

and high-performance execution of multi-threaded workloads
on CMPs,” ASPLOS 2008.

 Need better analysis of critical sections in real programs
51

Readings
 Required

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

 Recommended
 Culler & Singh, Chapter 1
 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,

1966

52

Related Video
 18-447 Spring 2013 Lecture 30B: Multiprocessors

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

53

Computer Architecture:
Parallel Processing Basics

Prof. Onur Mutlu
Carnegie Mellon University

Backup slides

55

Readings
 Required

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in
Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009.

 Joao et al., “Bottleneck Identification and Scheduling in
Multithreaded Applications,” ASPLOS 2012.

 Recommended
 Culler & Singh, Chapter 1
 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE,

1966

56

Referenced Readings (I)
 Thornton, “CDC 6600: Design of a Computer,” 1970.
 Smith, “A pipelined, shared resource MIMD computer,”

ICPP 1978.
 Horner, “A new method of solving numerical equations of

all orders, by continuous approximation,” Philosophical
Transactions of the Royal Society, 1819.

 Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” AFIPS 1967.

 Russell, “The CRAY-1 computer system,” CACM 1978.

57

Referenced Readings (II)
 Annavaram et al., “Mitigating Amdahl’s Law Through EPI Throttling,”

ISCA 2005.
 Suleman et al., “Accelerating Critical Section Execution with

Asymmetric Multi-Core Architectures,” ASPLOS 2009.
 Joao et al., “Bottleneck Identification and Scheduling in Multithreaded

Applications,” ASPLOS 2012.
 Ipek et al., “Core Fusion: Accommodating Software Diversity in Chip

Multiprocessors,” ISCA 2007.
 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE Computer

2008.
 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's law and

its implications for multicore design,” ISCA 2010.
 Suleman et al., “Feedback-driven threading: power-efficient and high-

performance execution of multi-threaded workloads on CMPs,” ASPLOS
2008.

58

Related Video
 18-447 Spring 2013 Lecture 30B: Multiprocessors

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

59

