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Today
 What is Parallel Processing?  Why?
 Kinds of Parallel Processing
 Multiprocessing and Multithreading
 Measuring success

 Speedup
 Amdhal’s Law

 Bottlenecks to parallelism
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Concurrent Systems

Physical Geographical Cloud Parallel

Geophysical 
location +++ ++ --- ---

Relative 
location +++ +++ + -

Faults ++++ +++ ++ --
Number of 
Processors +++ +++ + -

Network 
structure varies varies fixed fixed

Network 
connectivity --- --- + +

++

+
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Concurrent System Challenge: Programming

8

The old joke:
How long does it take to write a parallel program? 

One Graduate Student Year



Parallel Programming Again??
 Increased demand (multicore)
 Increased scale (cloud)
 Improved compute/communicate
 Change in Application focus

 Irregular
 Recursive data structures
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Why Parallel Computers?
 Parallelism: Doing multiple things at a time
 Things: instructions, operations, tasks

 Main (historical?) Goal
 Improve performance (Execution time or task throughput)

 Execution time of a program governed by Amdahl’s Law

 Other (more recent) Goals
 Reduce power consumption

 If task is parallel, more slower units consume less power than 1 faster unit
 P = ½CVF2 and V F 

 Improve cost efficiency and scalability, reduce complexity
 Harder to design a single unit that performs as well as N simpler units 

 Improve dependability: Redundant execution in space
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What is Parallel Architecture?

 A parallel computer is a collection of processing elements 
that cooperate to solve large problems fast

 Some broad issues:
 Resource Allocation:

 how large a collection? 
 how powerful are the elements?
 how much memory?

 Data access, Communication and Synchronization
 how do the elements  cooperate and communicate?
 how are  data transmitted between processors?
 what are the abstractions and primitives for cooperation?

 Performance and Scalability
 how does it all translate into performance?
 how does it scale?



Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

 SISD: Single instruction operates on single data element
 SIMD: Single instruction operates on multiple data elements

 Array processor
 Vector processor

 MISD: Multiple instructions operate on single data element
 Closest form?: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
 Multiprocessor
 Multithreaded processor
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Types of Parallelism and How to Exploit Them
 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel
 Pipelining, out-of-order execution, speculative execution, VLIW
 Dataflow

 Data Parallelism
 Different pieces of data can be operated on in parallel
 SIMD: Vector processing, array processing
 Systolic arrays, streaming processors

 Task Level Parallelism
 Different “tasks/threads” can be executed in parallel
 Multithreading
 Multiprocessing (multi-core)
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Task-Level Parallelism: Creating Tasks
 Partition a single problem into multiple related tasks 

(threads)
 Explicitly: Parallel programming

 Easy when tasks are natural in the problem
 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation
 Partition a single thread speculatively

 Run many independent tasks (processes) together
 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task
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Multiprocessing Fundamentals
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Multiprocessor Types
 Loosely coupled multiprocessors

 No shared global memory address space
 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing
 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors
 Shared global memory address space
 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking 
uniprocessor) except
 Operations on shared data require synchronization
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Main Issues in Tightly-Coupled MP 
 Shared memory synchronization

 Locks, atomic operations

 Cache consistency
 More commonly called cache coherence

 Ordering of memory operations 
 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning
 Communication: Interconnection networks
 Load imbalance
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Aside: Hardware-based Multithreading
 Idea: Multiple threads execute on the same processor with 

multiple hardware contexts; hardware controls switching 
between contexts

 Coarse grained
 Quantum based
 Event based (switch-on-event multithreading)

 Fine grained
 Cycle by cycle
 Thornton, “CDC 6600: Design of a Computer,” 1970.
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Simultaneous
 Can dispatch instructions from multiple threads at the same time
 Good for improving utilization of multiple execution units
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Metrics of Multiprocessors
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Parallel Speedup

Time to execute the program with 1 processor
divided by

Time to execute the program with N processors
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Parallel Speedup Example
 a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation 1 cycle, no communication cost, 
each op can be executed in a different processor

 How fast is this with a single processor?
 Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors? 

22



23



24



Speedup with 3 Processors
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Revisiting the Single-Processor Algorithm
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Horner, “A new method of solving numerical equations of all orders, by continuous 
approximation,” Philosophical Transactions of the Royal Society, 1819.
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Takeaway
 To calculate parallel speedup fairly you need to use the 

best known algorithm for each system with N processors

 If not, you can get superlinear speedup
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Superlinear Speedup
 Can speedup be greater than P with P processing 

elements?

 Consider:
 Cache effects
 Memory effects
 Working set

 Happens in two ways:
 Unfair comparisons
 Memory effects
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Utilization, Redundancy, Efficiency
 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used 
 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel 
processing
 R = (# of operations in parallel version) / (# operations in best 

single processor algorithm version)

 Efficiency 
 E = (Time with 1 processor) / (processors x Time with P processors)
 E = U/R
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Utilization of a Multiprocessor
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Amdahl’s law
 You plan to visit a friend in Normandy France and must 

decide whether it is worth it to take the Concorde SST 
($3,100) or a 747 ($1,021) from NY to Paris, assuming it 
will take 4 hours Pgh to NY and 4 hours Paris to Normandy.

time NY->Paris total trip time speedup over 747
 747 8.5 hours 16.5 hours 1
 SST 3.75 hours 11.75 hours 1.4

 Taking the SST (which is 2.2 times faster) speeds up the 
overall trip by only a factor of 1.4!



Amdahl’s law (cont)

T1 T2

Old program (unenhanced)
T1 = time that can NOT

be enhanced.

T2 = time that can be
enhanced.

T2’ = time after the
enhancement.       

Old time: T = T1 + T2

T1’ = T1 T2’ <= T2

New program (enhanced)

New time: T’ = T1’ + T2’

Speedup: Soverall = T / T’



Amdahl’s law (cont)

Two key parameters: 
Fenhanced = T2 / T      (fraction of original time that can be improved)
Senhanced = T2 / T2’   (speedup of enhanced part)

T’ = T1’ + T2’ = T1 + T2’ = T(1-Fenhanced) + T2’
= T(1-Fenhanced) + (T2/Senhanced)                  [by def of Senhanced]
= T(1-Fenhanced) + T(Fenhanced /Senhanced)          [by def of Fenhanced]
= T((1-Fenhanced) + Fenhanced/Senhanced)

Amdahl’s Law:
Soverall = T / T’ = 1/((1-Fenhanced) + Fenhanced/Senhanced)

Key idea: Amdahl’s law quantifies the general notion of 
diminishing returns. It applies to any activity, not just 
computer programs.



Amdahl’s law (cont)

 Trip example: Suppose that for the New York to Paris 
leg,  we now consider the possibility of taking a rocket 
ship (15 minutes)  or a handy rip in the fabric of space-
time (0 minutes):

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4
rocket 0.25 hours 8.25 hours 2.0
rip 0.0 hours 8 hours 2.1



Amdahl’s law (cont)

 Useful corollary to Amdahl’s law:
 1  <=  Soverall <= 1 / (1 - Fenhanced)

Fenhanced Max Soverall Fenhanced Max Soverall

0.0 1 0.9375 16

0.5 2 0.96875 32

0.75 4 0.984375 64

0.875 8 0.9921875 128

Moral: It is hard to speed up a program.

Moral++ : It is easy to make premature optimizations.



Caveats of Parallelism (I)
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Amdahl’s Law
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Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967. 



Caveats of Parallelism (I): Amdahl’s Law
 Amdahl’s Law

 f: Parallelizable fraction of a program
 P: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

 Maximum speedup limited by serial portion: Serial bottleneck

40

Speedup =
1

+1 - f f
P



Amdahl’s Law Implication 1
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Amdahl’s Law Implication 2
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Sequential Bottleneck
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Why the Sequential Bottleneck?
 Parallel machines have the 

sequential bottleneck

 Main cause: Non-parallelizable 
operations on data (e.g. non-
parallelizable loops)

for ( i = 0 ; i < N; i++)
A[i] = (A[i] + A[i-1]) / 2

 Single thread prepares data 
and spawns parallel tasks 
(usually sequential)
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Another Example of Sequential Bottleneck
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Implications of Amdahl’s Law on Design
 CRAY-1
 Russell, “The CRAY-1 

computer system,”
CACM 1978.

 Well known as a fast 
vector machine
 8 64-element vector 

registers

 The fastest SCALAR
machine of its time!
 Reason: Sequential 

bottleneck!
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Caveats of Parallelism (II)
 Amdahl’s Law

 f: Parallelizable fraction of a program
 P: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

 Maximum speedup limited by serial portion: Serial bottleneck
 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)
 Load imbalance overhead (imperfect parallelization)
 Resource sharing overhead (contention among N processors)
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Bottlenecks in Parallel Portion
 Synchronization: Operations manipulating shared data 

cannot be parallelized
 Locks, mutual exclusion, barrier synchronization
 Communication: Tasks may need values from each other
- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths
 Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware 
resources, delaying each other
 Replicating all resources (e.g., memory) expensive
- Additional latency not present when each task runs alone
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Difficulty in Parallel Programming
 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications
 Multimedia, physical simulation, graphics
 Large web servers, databases?

 Big difficulty is in 
 Harder to parallelize algorithms
 Getting parallel programs to work correctly
 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about
 Designing machines that overcome the sequential and parallel 

bottlenecks to achieve higher performance and efficiency
 Making programmer’s job easier in writing correct and high-

performance parallel programs
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Parallel and Serial Bottlenecks
 How do you alleviate some of the serial and parallel 

bottlenecks in a multi-core processor?
 We will return to this question in the next few lectures
 Reading list:

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI 
Throttling,” ISCA 2005.

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009. 

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012. 

 Ipek et al., “Core Fusion: Accommodating Software Diversity 
in Chip Multiprocessors,” ISCA 2007.

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE 
Computer 2008.
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Bottlenecks in the Parallel Portion
 Amdahl’s Law does not consider these

 How do synchronization (e.g., critical sections), and load 
imbalance, resource contention affect parallel speedup?

 Can we develop an intuitive model (like Amdahl’s Law) to 
reason about these? 
 A research topic

 Example papers:
 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's 

law and its implications for multicore design,” ISCA 2010.
 Suleman et al., “Feedback-driven threading: power-efficient 

and high-performance execution of multi-threaded workloads 
on CMPs,” ASPLOS 2008.

 Need better analysis of critical sections in real programs
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Readings
 Required

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009. 

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012.

 Recommended
 Culler & Singh, Chapter 1
 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 

1966
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Related Video
 18-447 Spring 2013 Lecture 30B: Multiprocessors

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
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Backup slides
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Readings
 Required

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009. 

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012.

 Recommended
 Culler & Singh, Chapter 1
 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 

1966
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Referenced Readings (I)
 Thornton, “CDC 6600: Design of a Computer,” 1970.
 Smith, “A pipelined, shared resource MIMD computer,”

ICPP 1978.
 Horner, “A new method of solving numerical equations of 

all orders, by continuous approximation,” Philosophical 
Transactions of the Royal Society, 1819.

 Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967. 

 Russell, “The CRAY-1 computer system,” CACM 1978.
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Referenced Readings (II)
 Annavaram et al., “Mitigating Amdahl’s Law Through EPI Throttling,”

ISCA 2005.
 Suleman et al., “Accelerating Critical Section Execution with 

Asymmetric Multi-Core Architectures,” ASPLOS 2009. 
 Joao et al., “Bottleneck Identification and Scheduling in Multithreaded 

Applications,” ASPLOS 2012. 
 Ipek et al., “Core Fusion: Accommodating Software Diversity in Chip 

Multiprocessors,” ISCA 2007.
 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE Computer 

2008.
 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's law and 

its implications for multicore design,” ISCA 2010.
 Suleman et al., “Feedback-driven threading: power-efficient and high-

performance execution of multi-threaded workloads on CMPs,” ASPLOS 
2008.
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Related Video
 18-447 Spring 2013 Lecture 30B: Multiprocessors

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
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