
Computer Architecture:
Parallel Processing Basics

Onur Mutlu & Seth Copen Goldstein
Carnegie Mellon University

9/9/13



Today
 What is Parallel Processing?  Why?
 Kinds of Parallel Processing
 Multiprocessing and Multithreading
 Measuring success

 Speedup
 Amdhal’s Law

 Bottlenecks to parallelism

2



 Embedded-Physical Distributed

Concurrent Systems

Sensor
NetworksClaytronics



 Embedded-Physical Distributed

 Geographically Distributed

Concurrent Systems

Sensor
NetworksClaytronics

Internet Power
Grid



 Embedded-Physical Distributed

 Geographically Distributed

 Cloud Computing

Concurrent Systems

Sensor
NetworksClaytronics

Internet Power
Grid

EC2
Tashi

PDL'09
5© 2007-9 Goldstein



 Embedded-Physical Distributed

 Geographically Distributed

 Cloud Computing

 Parallel

Concurrent Systems

Sensor
NetworksClaytronics

Internet Power
Grid

EC2
Tashi

PDL'09
6© 2007-9 Goldstein



Concurrent Systems

Physical Geographical Cloud Parallel

Geophysical 
location +++ ++ --- ---

Relative 
location +++ +++ + -

Faults ++++ +++ ++ --
Number of 
Processors +++ +++ + -

Network 
structure varies varies fixed fixed

Network 
connectivity --- --- + +

++

+

7



Concurrent System Challenge: Programming

8

The old joke:
How long does it take to write a parallel program? 

One Graduate Student Year



Parallel Programming Again??
 Increased demand (multicore)
 Increased scale (cloud)
 Improved compute/communicate
 Change in Application focus

 Irregular
 Recursive data structures

PDL'09 © 2007-9 Goldstein9



Why Parallel Computers?
 Parallelism: Doing multiple things at a time
 Things: instructions, operations, tasks

 Main (historical?) Goal
 Improve performance (Execution time or task throughput)

 Execution time of a program governed by Amdahl’s Law

 Other (more recent) Goals
 Reduce power consumption

 If task is parallel, more slower units consume less power than 1 faster unit
 P = ½CVF2 and V F 

 Improve cost efficiency and scalability, reduce complexity
 Harder to design a single unit that performs as well as N simpler units 

 Improve dependability: Redundant execution in space
10



What is Parallel Architecture?

 A parallel computer is a collection of processing elements 
that cooperate to solve large problems fast

 Some broad issues:
 Resource Allocation:

 how large a collection? 
 how powerful are the elements?
 how much memory?

 Data access, Communication and Synchronization
 how do the elements  cooperate and communicate?
 how are  data transmitted between processors?
 what are the abstractions and primitives for cooperation?

 Performance and Scalability
 how does it all translate into performance?
 how does it scale?



Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

 SISD: Single instruction operates on single data element
 SIMD: Single instruction operates on multiple data elements

 Array processor
 Vector processor

 MISD: Multiple instructions operate on single data element
 Closest form?: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
 Multiprocessor
 Multithreaded processor

13



Types of Parallelism and How to Exploit Them
 Instruction Level Parallelism

 Different instructions within a stream can be executed in parallel
 Pipelining, out-of-order execution, speculative execution, VLIW
 Dataflow

 Data Parallelism
 Different pieces of data can be operated on in parallel
 SIMD: Vector processing, array processing
 Systolic arrays, streaming processors

 Task Level Parallelism
 Different “tasks/threads” can be executed in parallel
 Multithreading
 Multiprocessing (multi-core)

14



Task-Level Parallelism: Creating Tasks
 Partition a single problem into multiple related tasks 

(threads)
 Explicitly: Parallel programming

 Easy when tasks are natural in the problem
 Web/database queries

 Difficult when natural task boundaries are unclear

 Transparently/implicitly: Thread level speculation
 Partition a single thread speculatively

 Run many independent tasks (processes) together
 Easy when there are many processes

 Batch simulations, different users, cloud computing workloads

 Does not improve the performance of a single task
15



Multiprocessing Fundamentals

16



Multiprocessor Types
 Loosely coupled multiprocessors

 No shared global memory address space
 Multicomputer network

 Network-based multiprocessors

 Usually programmed via message passing
 Explicit calls (send, receive) for communication

 Tightly coupled multiprocessors
 Shared global memory address space
 Traditional multiprocessing: symmetric multiprocessing (SMP)

 Existing multi-core processors, multithreaded processors

 Programming model similar to uniprocessors (i.e., multitasking 
uniprocessor) except
 Operations on shared data require synchronization

17



Main Issues in Tightly-Coupled MP 
 Shared memory synchronization

 Locks, atomic operations

 Cache consistency
 More commonly called cache coherence

 Ordering of memory operations 
 What should the programmer expect the hardware to provide?

 Resource sharing, contention, partitioning
 Communication: Interconnection networks
 Load imbalance

18



Aside: Hardware-based Multithreading
 Idea: Multiple threads execute on the same processor with 

multiple hardware contexts; hardware controls switching 
between contexts

 Coarse grained
 Quantum based
 Event based (switch-on-event multithreading)

 Fine grained
 Cycle by cycle
 Thornton, “CDC 6600: Design of a Computer,” 1970.
 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Simultaneous
 Can dispatch instructions from multiple threads at the same time
 Good for improving utilization of multiple execution units

19



Metrics of Multiprocessors

20



Parallel Speedup

Time to execute the program with 1 processor
divided by

Time to execute the program with N processors

21



Parallel Speedup Example
 a4x4 + a3x3 + a2x2 + a1x + a0

 Assume each operation 1 cycle, no communication cost, 
each op can be executed in a different processor

 How fast is this with a single processor?
 Assume no pipelining or concurrent execution of instructions

 How fast is this with 3 processors? 

22



23



24



Speedup with 3 Processors

25



Revisiting the Single-Processor Algorithm

26

Horner, “A new method of solving numerical equations of all orders, by continuous 
approximation,” Philosophical Transactions of the Royal Society, 1819.



27



Takeaway
 To calculate parallel speedup fairly you need to use the 

best known algorithm for each system with N processors

 If not, you can get superlinear speedup

28



Superlinear Speedup
 Can speedup be greater than P with P processing 

elements?

 Consider:
 Cache effects
 Memory effects
 Working set

 Happens in two ways:
 Unfair comparisons
 Memory effects

29



Utilization, Redundancy, Efficiency
 Traditional metrics

 Assume all P processors are tied up for parallel computation

 Utilization: How much processing capability is used 
 U = (# Operations in parallel version) / (processors x Time)

 Redundancy: how much extra work is done with parallel 
processing
 R = (# of operations in parallel version) / (# operations in best 

single processor algorithm version)

 Efficiency 
 E = (Time with 1 processor) / (processors x Time with P processors)
 E = U/R

30



Utilization of a Multiprocessor

31



32



Amdahl’s law
 You plan to visit a friend in Normandy France and must 

decide whether it is worth it to take the Concorde SST 
($3,100) or a 747 ($1,021) from NY to Paris, assuming it 
will take 4 hours Pgh to NY and 4 hours Paris to Normandy.

time NY->Paris total trip time speedup over 747
 747 8.5 hours 16.5 hours 1
 SST 3.75 hours 11.75 hours 1.4

 Taking the SST (which is 2.2 times faster) speeds up the 
overall trip by only a factor of 1.4!



Amdahl’s law (cont)

T1 T2

Old program (unenhanced)
T1 = time that can NOT

be enhanced.

T2 = time that can be
enhanced.

T2’ = time after the
enhancement.       

Old time: T = T1 + T2

T1’ = T1 T2’ <= T2

New program (enhanced)

New time: T’ = T1’ + T2’

Speedup: Soverall = T / T’



Amdahl’s law (cont)

Two key parameters: 
Fenhanced = T2 / T      (fraction of original time that can be improved)
Senhanced = T2 / T2’   (speedup of enhanced part)

T’ = T1’ + T2’ = T1 + T2’ = T(1-Fenhanced) + T2’
= T(1-Fenhanced) + (T2/Senhanced)                  [by def of Senhanced]
= T(1-Fenhanced) + T(Fenhanced /Senhanced)          [by def of Fenhanced]
= T((1-Fenhanced) + Fenhanced/Senhanced)

Amdahl’s Law:
Soverall = T / T’ = 1/((1-Fenhanced) + Fenhanced/Senhanced)

Key idea: Amdahl’s law quantifies the general notion of 
diminishing returns. It applies to any activity, not just 
computer programs.



Amdahl’s law (cont)

 Trip example: Suppose that for the New York to Paris 
leg,  we now consider the possibility of taking a rocket 
ship (15 minutes)  or a handy rip in the fabric of space-
time (0 minutes):

time NY->Paris total trip time speedup over 747
747 8.5 hours 16.5 hours 1
SST 3.75 hours 11.75 hours 1.4
rocket 0.25 hours 8.25 hours 2.0
rip 0.0 hours 8 hours 2.1



Amdahl’s law (cont)

 Useful corollary to Amdahl’s law:
 1  <=  Soverall <= 1 / (1 - Fenhanced)

Fenhanced Max Soverall Fenhanced Max Soverall

0.0 1 0.9375 16

0.5 2 0.96875 32

0.75 4 0.984375 64

0.875 8 0.9921875 128

Moral: It is hard to speed up a program.

Moral++ : It is easy to make premature optimizations.



Caveats of Parallelism (I)

38



Amdahl’s Law

39

Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967. 



Caveats of Parallelism (I): Amdahl’s Law
 Amdahl’s Law

 f: Parallelizable fraction of a program
 P: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

 Maximum speedup limited by serial portion: Serial bottleneck

40

Speedup =
1

+1 - f f
P



Amdahl’s Law Implication 1

41



Amdahl’s Law Implication 2

42



Sequential Bottleneck

43

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

0
0.

04
0.

08
0.

12
0.

16 0.
2

0.
24

0.
28

0.
32

0.
36 0.
4

0.
44

0.
48

0.
52

0.
56 0.
6

0.
64

0.
68

0.
72

0.
76 0.
8

0.
84

0.
88

0.
92

0.
96 1

N=10

N=100

N=1000

f (parallel fraction)



Why the Sequential Bottleneck?
 Parallel machines have the 

sequential bottleneck

 Main cause: Non-parallelizable 
operations on data (e.g. non-
parallelizable loops)

for ( i = 0 ; i < N; i++)
A[i] = (A[i] + A[i-1]) / 2

 Single thread prepares data 
and spawns parallel tasks 
(usually sequential)

44



Another Example of Sequential Bottleneck

45



Implications of Amdahl’s Law on Design
 CRAY-1
 Russell, “The CRAY-1 

computer system,”
CACM 1978.

 Well known as a fast 
vector machine
 8 64-element vector 

registers

 The fastest SCALAR
machine of its time!
 Reason: Sequential 

bottleneck!

46



Caveats of Parallelism (II)
 Amdahl’s Law

 f: Parallelizable fraction of a program
 P: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

 Maximum speedup limited by serial portion: Serial bottleneck
 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)
 Load imbalance overhead (imperfect parallelization)
 Resource sharing overhead (contention among N processors)

47

Speedup =
1

+1 - f f
P



Bottlenecks in Parallel Portion
 Synchronization: Operations manipulating shared data 

cannot be parallelized
 Locks, mutual exclusion, barrier synchronization
 Communication: Tasks may need values from each other
- Causes thread serialization when shared data is contended

 Load Imbalance: Parallel tasks may have different lengths
 Due to imperfect parallelization or microarchitectural effects
- Reduces speedup in parallel portion

 Resource Contention: Parallel tasks can share hardware 
resources, delaying each other
 Replicating all resources (e.g., memory) expensive
- Additional latency not present when each task runs alone

48



Difficulty in Parallel Programming
 Little difficulty if parallelism is natural

 “Embarrassingly parallel” applications
 Multimedia, physical simulation, graphics
 Large web servers, databases?

 Big difficulty is in 
 Harder to parallelize algorithms
 Getting parallel programs to work correctly
 Optimizing performance in the presence of bottlenecks

 Much of parallel computer architecture is about
 Designing machines that overcome the sequential and parallel 

bottlenecks to achieve higher performance and efficiency
 Making programmer’s job easier in writing correct and high-

performance parallel programs
49



Parallel and Serial Bottlenecks
 How do you alleviate some of the serial and parallel 

bottlenecks in a multi-core processor?
 We will return to this question in the next few lectures
 Reading list:

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI 
Throttling,” ISCA 2005.

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009. 

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012. 

 Ipek et al., “Core Fusion: Accommodating Software Diversity 
in Chip Multiprocessors,” ISCA 2007.

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE 
Computer 2008.

50



Bottlenecks in the Parallel Portion
 Amdahl’s Law does not consider these

 How do synchronization (e.g., critical sections), and load 
imbalance, resource contention affect parallel speedup?

 Can we develop an intuitive model (like Amdahl’s Law) to 
reason about these? 
 A research topic

 Example papers:
 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's 

law and its implications for multicore design,” ISCA 2010.
 Suleman et al., “Feedback-driven threading: power-efficient 

and high-performance execution of multi-threaded workloads 
on CMPs,” ASPLOS 2008.

 Need better analysis of critical sections in real programs
51



Readings
 Required

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009. 

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012.

 Recommended
 Culler & Singh, Chapter 1
 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 

1966

52



Related Video
 18-447 Spring 2013 Lecture 30B: Multiprocessors

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

53



Computer Architecture:
Parallel Processing Basics

Prof. Onur Mutlu
Carnegie Mellon University



Backup slides

55



Readings
 Required

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp. 551-
560 in Readings in Computer Architecture.

 Hill, Jouppi, Sohi, “Dataflow and Multithreading,” pp. 309-314 in 
Readings in Computer Architecture.

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009. 

 Joao et al., “Bottleneck Identification and Scheduling in 
Multithreaded Applications,” ASPLOS 2012.

 Recommended
 Culler & Singh, Chapter 1
 Mike Flynn, “Very High-Speed Computing Systems,” Proc. of IEEE, 

1966

56



Referenced Readings (I)
 Thornton, “CDC 6600: Design of a Computer,” 1970.
 Smith, “A pipelined, shared resource MIMD computer,”

ICPP 1978.
 Horner, “A new method of solving numerical equations of 

all orders, by continuous approximation,” Philosophical 
Transactions of the Royal Society, 1819.

 Amdahl, “Validity of the single processor approach to 
achieving large scale computing capabilities,” AFIPS 1967. 

 Russell, “The CRAY-1 computer system,” CACM 1978.

57



Referenced Readings (II)
 Annavaram et al., “Mitigating Amdahl’s Law Through EPI Throttling,”

ISCA 2005.
 Suleman et al., “Accelerating Critical Section Execution with 

Asymmetric Multi-Core Architectures,” ASPLOS 2009. 
 Joao et al., “Bottleneck Identification and Scheduling in Multithreaded 

Applications,” ASPLOS 2012. 
 Ipek et al., “Core Fusion: Accommodating Software Diversity in Chip 

Multiprocessors,” ISCA 2007.
 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE Computer 

2008.
 Eyerman and Eeckhout, “Modeling critical sections in Amdahl's law and 

its implications for multicore design,” ISCA 2010.
 Suleman et al., “Feedback-driven threading: power-efficient and high-

performance execution of multi-threaded workloads on CMPs,” ASPLOS 
2008.

58



Related Video
 18-447 Spring 2013 Lecture 30B: Multiprocessors

 http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

59


