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ABSTRACT 

A highly parallel (more than a thousand) datapoW machine 
EM-4 is now under development. The EM-4 &sign principle is to 
construct a high performance computer using a compact architecture 
by overcoming several defects of dataflow machines. Constructing the 

EM-4, it is essential to fabricate a processing element (PE) on a sin- 
gle chip for reducing operation speed, system size, design complexhy 

and cost. In the EM-4. the PE . called EMC-R, has been specially 
designed using a 50,OOOgate gate array chip. This paper focuses on 
an architecture of the EMC-R. The distinctive features of it are: a 
strongly connected arc datafiow model; a direct matching scheme; a 

RISC-based design; a deadlock-free on-chip packet switch; and an 
integration of a packet-based circular pipeline and a register-based 
advanced control pipeline. These features are intensively examined, 
and the instruction set architecture and the conftguration architecture 
which exploit them are &scribed. 

1. Introduction 

A datatlow architecture is supposed to be the most suitable 
architecture for highly parallel computers. The reasons are: it can 
naturally extract the maximum available concurrency in a computation: 
it is suitable for VLSI implementation since a large number of identi- 
cal processing elements (PEs) and repetitive data networks can be used 
in its construction; and datallow languages provide an elegant solution 
for writing concurrent programs. There are, however, many technical 
problems involved in realizing a practical datallow computer. Feasibil- 
ity studies in the practical use of datatlow computers are essential. 

Several architectures based on the dataflow concept have been 
proposed[1,2.3,4,5.8,9], some of which have been implemented in 
experimental machines. Among them the SIGMA-l [51, which is a 
large-scale datailow supercomputer for numerical computations, shows 
the possibility to surpass the conventional von Neumann computers. It 
consists of 128 PEs and has a processing performance of more than 
100 MFXOPS. A SIGMA-l PE is implemented by several gate array 
chips and a large memory. To construct a highly parallel machine, 
direct extension by merely adding more SIGMA-l PEs is not practical 
because the architectural design is complicated and too much hardware 
is required to implement all the PEs and the network To realize a 
highly parallel machine, one or more PEs should be implemented on a 
single chip and the network structure must be simplified. The total 
architecture including computation model must be reconsidered. 
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The EM-4[101, whose target structure is mcxe than 1CKlO PEa, is 
also being developed at the Electrotechnical laboratory on the basis of 
the SIGMA-l project. The design principles of the EM4 are as fol- 
lows. 

1. Simplify the total architecture of a datatlow machinc. 
e.g. interconnection network with O(N) hardware. a 
RISC-based single-chip PE design, and a direct match- 
ing scheme. 
2. Improve machine performance by integrating a 
packet-based circular pipeline and a register-based 
advanced control pipeline. 
3. Afford versatile resource management facilities, 
which current datallow machines do not have, by intro- 
ducing a strongly connected arc &allow model, 

The EM-~‘S single-chip processor, called the RMC-R, real&es 
these principles. This paper focuses on the architecture of the EMC-R. 

Section 2 describes design features of the EMC-R. Defects of 
current datallow architectures are listed and distinctive features of the 
EMC-R (or the EM-4) for conquering them are shown. In section 3, 
the instruction set architecture of the EMC-R which reflecta the above 
principles is described. Features of an instruction set, instruction for- 
mats and a packet format are shown them. Section 4 describes the 
configuration architecture of the EMC-R which realizes all of the 
above. 

2. Design Features of the EMC-R 

2.1. Defects of Current Datatlow Architectures 

In or&r to design an efficient parallel m&ine. we closely 
examined the defects of current dataflow architectures. They am sum- 
marized as follows. 
Dl. A circular pipeline [4] does not work well as a “pipeline” for less 
parallel execution. 

This is because current datatIow execution modela have no 
advanced control mechanism. In the case of highly parallel execution 
(2 N x S, where N is the number of PEs and S is the number of pipe 
line stages in each PE), all the stages of a circular pipeline can be 
filled with tokens. In other cases, it may occur that only one token is 
going round the pipeline cycle, and that PE throughput is less than one 
per a pipeline circulation time. 
D2. Simple packet-based architecture cannot exploit registers or a 
register file efficiently. 

If you always realize a token as a packet, and if you make each 
of the packets enter a PE whenever possible, it is nonsense to reserve 
tokens in registers for the future node operation. .This is one of the 
main reasons why a fine pitch pipeline is difficuh’to implement in a 
datallow machine. 
D3. Time complexity and hardware complexity for matching are heavy 
if you adopt the colored token style. 



Color matching needs special hardware iike associative memory 
or hashing hardware. They both require complex control logics and 
matching takes considerable time. 
D4. Packet flow traffic is too heavy. 

With a simple packet architecture, packet flow traffic is too 
heavy and a high-bandwidth low-delay interconnection network must 
be implemented. However, network performance is limited by current 
&vice technology. 
D5. Current dataflow concepts cannot provide flexible and efficient 
resource management mechanisms. 

If you realize mutual exclusion for resource management in a 
datafiow machine, you should provide some serialization mechanism 
(e.g. waiting queue). Its implementation is difficult, however, because 
the access to a concerned section can be violated by anyone else. 
D6. It takes much time to eliminate garbage tokens. 

If a program uses switch operations for conditional computations, 
there may occur a lot of garbage tokens. At the end of the execution, 
they must be collected to allow the working space to be reused. Time 
overhead for such operations is usually considerably large. 

To overcome these defects, several novel facilities and mechan- 
isms are introduced in the EMC-R, which are described in the follow- 
ing subsections. 

2.2. Strongly Connected Arc Model 

Although the basic EM-4 architecture is based on the datatlow 
model, a new model called a snongly connected arc model [7] has 
been introduced to compensate for the pure dataflow architecture. The 
strongly connected arc model can solve ail the problems described in 
the previous subsection. 

In this model, dataflow graph arcs are divided into two 
categories: the normal arcs and the strongly connected arcs. A 
datallow subgraph whose nodes are connected by strongly connected 
arcs is called a strongly connected block. The contml strategy of the 
modified dataflow model in which this model is introduced is that the 
operation nodes are executed exclusively in a strongly connected 
block. Figure 1 shows an example of strongly connected blocks. In this 
figure, there are two strongly connected blocks, A and B. When node 5 
or node 6 is fired, biock A or block B is executed exclusively. This 
has the effect of giving the nodes in a strongly connected block the 
highest priorities if nodes are executed depending on primities. A 
strongly connected block acts as a macro node which includes several 
instructions and is executed as if it were a single basic node. In the 
EM-4. each strongly connected bock is executed by a single PE. 

There are several advantages in the strongly connected arc 
model, which are shown below. 
Al. This model makes it easy to introduce an advanced control pipe- 
tine to dataflow architecture, because the exclusion of the outer block 
instructions causes more deterministic execution of codes, This solves 
the problem of Dl. 
A2. Instruction execution cycles can be rcduccd by introducing a 
strongly connected register file which is used for storing tokens in a 
strongly connected block. This is possible as the registered data in the 
concerned block are not violated by any other data. This overcomes 
the defect D2. 
A3. In an intra-block execution, matching can be realized much mom 
easily and efficiently because it is not necessary to match function 
identifiers (i.e. colors) if the block is included in the function. This 
solves the inefficiency problem of D3. 

These Al, A2 and A3 enable the EMC-R to have a fine pitch 
execution pipeline. 
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Figure 1 An Example of a Strongly Connected Block. 

A4. There are no packet transfers in a strongly connected block. This 
reduces the defect D4. 
A5. It can provide flexible resource management facilities by con- 
structing an indivisible instruction sequence (e.g. teat and set). This 

overcomes the defect DS. 
A6. It can simplify the problem of remaining garbage tokens. This is 
because only the flag resets of a strongly connected register file are 
needed for eliminating the garbage tokens. The operation can be per- 
formed simultaneously with the result data transfer, i.e. with no over- 
head. This reduces the defect D6. 

2.3. Direct Matching Scheme 

To remove the defect D3. a fast and simple data matching 
scheme is needed. A strongly connected model solves this problem 
within a block but matching overhead on a normai dadlow node is 
not solved. We have designed a simple new data matching scheme. 
called a direct m~rchittg scheme. This scheme is implemented Using 

ordinary memories. Since the logic for realizing the scheme is fairly 
simple, it can be easily implemented by wired logic on the EMC-R. 

When a function is invoked, an instance of storage is allocated 
to a group of PEs. This instance is called an operand segment. It is 
used for waiting and matching of operands. An operand segment has 
memory words whose number is equal to or larger than that of two 
operand instructions in the concerned function. The compiled codes 
for the function are stored in another area, which is called a rem&are 
segmenr. The address of the instruction in the template segment has a 
one-to-one simple correspondence with that of the matching. Binding 
of an operand segment and a template segment is also performed at 
the function invocation time. 

The matching is executed by checking the stored data in an 
operand segment and by storing new data if its partner is absent The 
matching location for each dataflow node is uniquely given as an ahso- 
lute memory address in an operand segment. Thus matching can be 
carried out without using the associative memory or a hashing mechan- 
ism. 



2.4. Processor Connected Omega Network 

The EM-4 uses a proce.ssor connected omega network as its 
intenzo~eclion network. Figure 2 ilhtsttatcs an example of its topol- 
ogy. The advantages of this network are: the average distance from 
any PE to any other PE is order log(N), while N is the total number of 
PEs; the number of connection links from a PE is a small constant 
even if there are many PEs: and total number of switching elements is 
O(N) which is smaller than that of a multi-stage network 
@wh?o)). 

The precise routing algorithm of the network will be reported in 
another paper. 

The EMC-R contains an element of the processor connected 
omega network. One reason for this is to reduce the packet Iransfer 
time bctwcen a switch and a PE. The other reasons are the low 
hardware cost and the design simplicity. This element and processing 
function can work hrdepcndently and concurrently. 

3. Instruction Set Architecture 

3.1. RISC Architecture 

We adopt a RISC architecture for the EMC-R for simplicity and 
execution efficiency. Current &tallow architectures are not suited to 
RISC because defects D2, D3, and D4 in 2.1 obsnuct its implementa- 
tion. The EMC-R is suited to RISC for its features in 2.2 and 2.3. It 
can exploit a fine pitch pipeline. each stage of which is simple. It has 

a register file whose member is the strongly connected register 
descri~ in 2.2. 

The EMC-R is a dataflow RISC chip due to the following 
features: it has only 26 instructions; there are only four kinds of 
instruction formats: it has only two memory addressing modes; it has a 
register file; it uses no microprograms; its packet size is fixed; there 
are only a few packet types; and it has simple synchronization 
mechanisms (direct matching and a register-based sequencing). 

Among them. the latter three should be regarded as the features 
of a RISC PE for a parallel computer. 

In the following subsections, the features of EMC-R instruction 
set architecture are described 

Figure 2 Processor Connected Omega Network. 

3.2. Instruction Set 

Table 1 shows an instruction set of the EMC-R. It has twenty- 
six kinds of insbuctions, each of which is executed in a single clock 
cycle (except continuous-memory-word-access instructions). 

Details of an operation are affordcd by the AUX field. For 
instance, the SHF instruction left or right shifts according to the con- 

tents of the AUX field. 

In the EMC-R. a complex instruction can be performed by a 
slrongly connected bock which contains simpler instructions. This is 
called a nmcro insnucrion. For instance, an integer division operation, 
a function call operation and complex structure operations are provided 
as macro instructions. 

The following insmtctions are the characteristic instructions of 
the EMC-R. 
(1) Branch Instructions 

In the EMC-R, an action of a data switch operation in a strongly 
connected block is to tire one of the adequate nodes of its destination, 
without flowing any data. For this reason, the word BRANCH is used 
instead of SWITCH in the EMC-R for representing a data switch. 
There are six BRANCH instructions as shown in the Table 1. In 
order to simplify sequencing, they are implemented in a delayed 
branch style. 

The EMC-R can provide a normal datatlow switch by strongly 

connecting the BRANCH instruction and the MKPKT instructions 
desaibcd below. In a good program, however, almost all of the 
switches are realized in a strongly connected block, because a packet 
flow overhead and a garbage token collection overhead are removed 
with this method (see 2.2). 
(2) MKPKT 

In the EMC-R, all of the instructions, except those of memory 
EICUXS and branch instructions, cart make a packet for sending their 
results. In addition, it has a MKPKT instruction dedicated to packet 

Table 1 Instruction Set 

Mimetic and Logic 

Memory or Register 
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generation. The MKPKT sends a packet whose address part is its first 
operand and whose data part is its second operand. Continuous 
MKPKTs perform the efficient distribution of the same data More- 
over, MKPKT supplies two special operations: an inter-function data 
transfer and a global data transfer such as a structure data transfer. 
(3) GET 

GET is an instruction for remote operations. It sends a return 
address to the address represented as its operand. For instance, CAR, 
CDR and sending a return address of a function are performed by the 
GET. 

3.3. Instruction Format 

The EMC-R has four types of instruction formats. Two of them 
are shown in Figure 3 (the other two are the immediate attached ones). 
Both of them are stored in a single memory word where each memory 
word is 38 bits long. 

The OP field holds an operation code. AUX is a secondary field 
of the OP. If the concerned strongly connected block ends with the 
next instruction execution, then the M field (mode field) contains zero. 
RO and Rl are the strongly connected registers used for the nerf 
instruction, lf this instruction is strongly connected to other instruc- 
tions. In this way, register-based advanced control is implemented in 
the EMC-R. 

OUT is a tag field indicating whether the instruction generates a 
packet or not. If OUT is zero (Figure 3 (a)), then no packets are gen- 
erated and the result is stored in R2. In this case, BC is a branch con- 
dition field which describes a branching style and DPL contains the 
displacement of a branching address. The latter two fields are used 
only in branch instructions. 

If the OUT field contains one (Figure 3 (h)). then a packet is 
generated. The address part of the output packet is made up of the 
WCF. M2, CA, and DPL fields, and the operand segment identifier of 
the concerned function. The data part of the packet is the operation 
lESUlt. 

A typical instruction execution is illustrated in more detail in 4.1 
and 4.2. 

T 0 
OP AUX R M NF RO Rl U R2 BC DPL 

C T 

5 7 111 4 4142 8 

(a) Without Immediate, without Packet Output ( OUT = 0 ) 

T OWMC 
OP AUX R M N-F RO Rl U C 2 A DPL 

C TF 

5 7 111 4 4 1213 8 

(b) Without Immediate, with Packet Output ( OUT = 1 ) 

Each figure is the field size. 

Figure 3 Two Typical Types of Instruction Format. 

3.4. Packet Format 

A typical packet format is illustrated in Figure 4. Each packet 
consists of an address part and a data part, both of which have 39 bits. 
(1) Address Part 

HST field indicates whether this packet is bound for a normal 
destination or a host. PT is a packet type field. WCF is a waiting 
condition flag field, which indicates a type of matching. M is also a 
flag which indicates a type of dataflow arc. If it is zero. then the 
packet will fue. a normal node, otherwise it will the a strongly con- 
nected block. (GA, CA, MA) are the destination address fields. GA 
is a destination FE group address, CA is its column (i.e. member) 
address. and MA is a memory address. If this is a normal data packet, 
then MA is the matching address. 
(2) Data Part 

C is a cancel bit field indicating that the packet is a nonsense 
packet. DT and D are the data type and the data, respectively, which 
this packet carries. 

3.5. Special Packets 

A normal data packet has a NORM packet type, but packets for 
function control, structure access, remote memory access, etc. have 
special types. ‘Ibese special packets have no operand segment number, 
i.e. they are colorless. A special packet is generated by a MKPKT 
instruction or by a GET instruction. It is executed by a special 
strongly connected block named SP Monitor. A system manager can 
set the SP Monitor in any way desired during the system initialixa- 
tion. so the effect of a special packet can be properly determined by 
the manager. Thus the special packet execution in the EMC-R is 
completely flexible. 

3.6. Program Examples 

Figure 5 illustrates two FIBONACCI progmms. Figure 5 (a) is a 
pure dataBow program and Figure 5 (b) is a program with strongly 
connected blocks. In the latter one, type checking and data switching 

15217 3 20 

(a) Address Part 

13 3 32 

Cb) Data Part 

Each figure is the field size. 

Figure 4 Typical Packet Format. 
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L 

FIB: (COPY &Ql immb <SW1 TZ) 

EQl: (EQ ‘1 <SW1 b) 

SWl: (SWITCH (T <CNST immb) 
(F (EQZ immb <SW2 n)) 

EQ2: (EQ ‘2 <SW2 b) 

sw2: (SWITCH fl <CNST immb) 
(F <SUB1 immb cSUB2 immb)) 

CNST: (COPY ‘1 CRETV r>) 

SuBl: (SUB ‘1 dxLL.0 S>) 

SUB2 (SUB ‘2 CCALLl 0) 

CALLOt (*GCALL ‘FIB <ADD l>] 

CALLl: (*GCALL ‘FIB <ADD I=-) 

ADD: (ADD cRETV D) 

RETV: (‘PASSVAL 4CJLL s> ] 

KILL: (*KILL) 

FIB: [BEQ ‘1 (LEAF) (RO:NL)] 
[SUB ‘1 Rl (RONL) (NL:NL $)I 
[BEQ ‘2 (LEAF) (RO:NL)] 
[SUB ‘2 R2 (SEG:Rl) (NL:NL %)I 
[MKPKT <CALL0 s> (SEG:R2 $)I 
[MKPKT <CALL1 s> (NL:NL)] 

LEAF: [MKPKT ‘1 <RETV 17 (NL:NL)] 

-1 

CALLO: (*GCALL ‘FIB <ADD b) 

CALLl: (*GCALL ‘FIB <ADD I-Z=) 

ADD: (ADD cRETV n) 

RETV: (*PASSVAL <KILL s-1 

KILL: (*=I 

(a) A Normal D&allow Program (b) A Strongly Connected Dataflow Program 

Figure 5 FIBONACCI Program. 

Single Chip Processor EMC-R 

PRC : Packet Rewriting 

Controller 
I I 
IBU EXU 

Figure 6 Block Diagram of the EMC-R. 
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are strongly connected to a single block illustrated as a rectangle in 
Figure 5 (b). It takes twenty-three clocks to execute the rectangular 
part if you select the former program (in the csse of occurring recur- 
sive calls). If you select the latter pro&m, it only takes nine clocks. 
This means that the stmngly connected method can execute this sub- 
program about two and half times as fast as the pure datatlow method. 

Remark that, in the above comparison, a SWITCH instruction 
and a COPY instruction were supposed to exist in the EMC-R. And 
remark that all the normal nodes of the EMC-R are executed in the 
same clock cycles with the pure datatlow machine SIGMA-I. 

4. Configuration Architecture 

4.1. EMC-R Architecture 

Figure 6 shows a block diagram of the EMC-R which realizes 
all of the features described in the previous sections. The EMC-R 
consists of a Switching Unit (SU), an Input Buffer Unit (IBU), a Fetch 
and Matching Unit (PMU), an Execution Unit (EXU), a Memory Con- 
trol Unit @KU), and Maintenance Circuits. 
(1) Switching Unit 

The Switching Unit (SU) is a three-by-three packet switch which 
is an element of a processor connected omega network. It switches 
data independently of and concurrently with the other units. Each 
input port of the network has structured buffers. Organization of the 
SU is illustrated in Figure 7. 

When a processor connected omega network is used in a 
buffered manner, store-and-forward deadlock prevention facilities must 
be supplied. In the EMC-R, a three bank buffer is provided in each 
input port. Firstly, a packet is buffered in the least level bank. When 
the packet arrives at the zeroth stage of the network, it is pushed into 
the one-upper-level bank. Because of the topological property of the 
processor connected omega network, any packet never covers three 
rounds of this network, so the logical structure of a packet transfer 
cannot make loops. This three bank strategy thus removes all store- 
and-forward deadlocks from the network. 

Another feature of the SU is the function level dynamic load 
balancing facility. In the EM-4. special packets which monitor the 
load of PEs travel through the network. The SU rewrites these packets 
within the time period required by a normal packet transfer. i.e. with 
no overhead, and performs the load balancing. This rewriting is made 
by the PRC in Figure 7. 
(2) Input Buffer Unit 

The Input Buffer Unit (IBU) is a buffer for packets waiting for 
execution. A 32-word FIFO type buffer is implemented using a dual 
port RAM on chip. If this buffer is full, a part of the off-chip memory 
is used as a secondary buffer. 
(3) Fetch and Matching Unit 

The Fetch and Matching Unit (FMU) is used for matching 
tokens and fetching instructions. It performs a direct matching for a 
packet and a sequencing for a strongly connected block. It controls 
the pipelines of the processor. especially integrating two types of pipe- 
lines (see 4.2). The FMU contains an instruction address register, a 
packet data register, a register for matching data, several multiplexers, 
and control circuits. 
(4) Execution Unit 

The Execution Unit (EXU) is an instruction executor. Figure 8 
tilustrates its organization. The EXU contains an instruction register, 
two operand registers, a register file, an ALU, a bsrrel shifter, a multi- 
plier, a versatile comparator, packet generation circuits, and control 

FMU 

- 

MCU 

Packet Gen. Circ. 

4 
su 

JR : Instruction Register OPi : Operand Register i 

Figure 8 Execution Unit Organization. 

circuits. 

In an execution cycle, the contents of operand registers are sent 
to the ALU, etc. Then the operation is carried out according to the OP 
and AUX fields of the instruction. register. The result is sent in a 
packet or stored in a register file. All of these actions are made in a 
single clock, and, in the same clock, fetch and decode of the next 
instruction and data load born the FMU or a register file are per- 
formed (see 4.2). 
(5) Memory Control Unit and Off-Chip Memory 

The Memory Control Unit (MCU) arbitrates memory access 
requests from the IBU. the FMU, and the EXU, and sends data 
between the off-chip memory and the EMC-R. The MCU consists of 
a data multiplexer, an address multiplexer, and an srbiaation con- 
troller. 

The off-chip memory size can te up to 5 megabytes. It is used 
for a secondary packet buffer, a matching store, an instruction store. an 
area for the SP monitor (see 3.5). a structure store, and a working area. 
(6) Maintenance Circuits 

The Maintenance Circuits make initialization of the chip and 
memory words, handle many kinds of errors and provide the dynamic 
monitor which nqorts a system performance and the system stat113 
such as processor load, an active function number and structure ares 
used. We will report the concept and the construction method of the 
Maintenance Circuits in another paper. 

4.2. Pipeline Organization 

Figure 9 illustmtes the pipeline organization of the EMC-R. 

Basically, the pipeline has four stages, some of which have two sub- 
stages. Each stage has a rectangle which represents a single clock 
action, or a bypass line which means no clock action. A small rectan- 
gle represents a half clock action. 
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Each packet from a network is buffered in the IBU if necessary 
(the far left side of the figure). Then the concerned template segment 
number (see 2.3) is fetched from the off-chip memory in the first stage 
(TNF). The number is stored at the top of the operand segment at the 
function invocation time. The first stage is bypassed when the packet 
is not a normal data packet. 

The second stage is the matching stage. In the case of matching 
with the immediate, an immediate fetch (IMF) occurs. In the case of 
matching with data in the matching store, data at the concerned 
address is read in the former half clock (RD). If a partner exists, the 
flag at Ihe address is eliminated in the latter half clock (EL); else a 
new packet data is written in the latter half clock (WR). This read- 
modify-write action is completed in a single clock cycle. The second 
stage is omitted if a new token 6res a single operand instruction. 

The third stage is an instruction fetch (IF) and decode (DC) 
stage. Each operation is performed in a half clock. 

The fourth stage is an execution stage. Transfer of the result 
packet can be overlapped with the execution. If the next instruction is 
strongly connected with the current instruction, instruction fetch and 
data load of the next instruction are overlapped with the execution. 
The third stage and the fourth stage are repeated in the overlapped 
manner until there are no executable instructions in the concerned 
strongly connected block. If the instruction is a normal mode instruc- 
tion or the last instruction of the strongly connected block. its execu- 
tion can be overlapped with the insauction fetch and decode of a next 
packet processing. Thus, an integration of two types of pipelines, a 
packet-based circular pipeline (illustrated as thin lines in Figure 9) and 
a register-based advanced control pipeline (illustrated as thick lines in 
Figure 9). is realized. 

During each stage, the TNF, the IMF, the RD. the WR, the EL 
and the IF are performed by the FMU with the assistance of the 
MCU. The DC and the EX are performed by the EXU. 

The register-based advanced control pipeline is a fast and Simple 
pipeline exploited by strongly connected blocks. Its throughput is at 
most six times as high as that of the packet-based circular pipeline. 

Each PE has a peak processing performance of more than I2 
MIPS. 

4.3. Implementation 

The EMC-R is a real processor chilp, so its implementation is 
limited by current chip fabrication technology. Our chip contains 
50,000 CMOS gates and 256 signal lines. 

Tabk 2 shows the gate usage and pin usage of each EMC-R 
unit. The Switching Unit is complex as it has three bank buffers and 
their multiplexer at each port. The Execution Unit is also complex 
because it has many large modules such as a register file, a multiplier, 
a barrel shifter, and a packet generator. The Fetch and Matching Unit 
requires a little hardware, because the direct matching reduces the 
hardware cost of it. 

As for pins, almost all of them are used for data buses of the 
network and the off-chip memory. 

The EMC-R will be fabricated by June 1989. Then the EM-4 
prototype which has 80 PEs will be constructed. It will con&St of.16 
processor boards, each of which will have five PEs and a mother board 
which the network will be implemented on. The JLM-4 prototype 

hardware will be operational in 1990. Peak performance of this proto- 
type is expeced to be more than 1 GIPS. Conshuction of an efficient 
real machine of 1,000 PEs is the next program, which is the goal of 
the EM-4 project. 

Table 2 Hardware Complexitg 

UNIT 
Switching Unit 

Input Buffer Unit 
Fetch and Matching Unit 

Execution Unit 
Memory Control Unit / 
Maintenance Circuits ) 1,589 1 12 

Total ( 45,653 1 255 

TwoOP. ---) Normal Dataflow 
Normal 
Packet 

Pipeline 
- it%& COMe~ted 

Packet Out 

4 )rc u u D 

Stage 1 Stage 2 Stage 3 Stage 4 

Temp. # Fetch Matching Instr. Fetch Execution 
and Decode and Packet Output 

Figure 9 Pipeline Organization of the EMC-R. 
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5. Conclusion 

This paper describes the architecture of the EMC-R, a single 
chip dataflow processor which is a PE of the EM-4. The distinctive 
features of the EMC-R are: 
(1) a strongly connected arc dataflow model; 
(2) a direct matching scheme; 
(3) a RISC-based design; 
(4) a deadlock-free on-chip packet switch; and 
(5) an integration of a packet-based circular pipeline and a register- 
based advanced control pipeline. 

These features were examined, and the instruction set architec- 
tare and configuration architecture which exploit them were described. 

Tlte schedule of the hardware implementation is written in 4.3. 
As for softwares, a high level language and an optimizing compiler am 
currently under development. The latter has a node labeling scheduler 
for the intra-function load balancing 161 and a block constructor for 
automatically making strongly connected blocks. The optimixatlon 
schemes and algorithms will be reported in another paper. 

Future problems arc as follows. 
(1) Close consideration and expansion of a strongly connected am 
dataflow model. 
(2) Consideration of a chip design using much highly-integrated VLSI. 
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