
An Architecture of a Dataflow Single Chip Processor

Shuichi SAKAI, Yoshinori YAMAGUCHI, Kei KIRAKI,

Yuetsu KODAMA and Toshitsugu YUBA

Electrotechnical Laboratory

l-l-4 Umezono, Tsukuba, Ibaraki 305. JAPAN

ABSTRACT

A highly parallel (more than a thousand) datapoW machine
EM-4 is now under development. The EM-4 &sign principle is to
construct a high performance computer using a compact architecture
by overcoming several defects of dataflow machines. Constructing the

EM-4, it is essential to fabricate a processing element (PE) on a sin-
gle chip for reducing operation speed, system size, design complexhy

and cost. In the EM-4. the PE . called EMC-R, has been specially
designed using a 50,OOOgate gate array chip. This paper focuses on
an architecture of the EMC-R. The distinctive features of it are: a
strongly connected arc datafiow model; a direct matching scheme; a

RISC-based design; a deadlock-free on-chip packet switch; and an
integration of a packet-based circular pipeline and a register-based
advanced control pipeline. These features are intensively examined,
and the instruction set architecture and the conftguration architecture
which exploit them are &scribed.

1. Introduction

A datatlow architecture is supposed to be the most suitable
architecture for highly parallel computers. The reasons are: it can
naturally extract the maximum available concurrency in a computation:
it is suitable for VLSI implementation since a large number of identi-
cal processing elements (PEs) and repetitive data networks can be used
in its construction; and datallow languages provide an elegant solution
for writing concurrent programs. There are, however, many technical
problems involved in realizing a practical datallow computer. Feasibil-
ity studies in the practical use of datatlow computers are essential.

Several architectures based on the dataflow concept have been
proposed[1,2.3,4,5.8,9], some of which have been implemented in
experimental machines. Among them the SIGMA-l [51, which is a
large-scale datailow supercomputer for numerical computations, shows
the possibility to surpass the conventional von Neumann computers. It
consists of 128 PEs and has a processing performance of more than
100 MFXOPS. A SIGMA-l PE is implemented by several gate array
chips and a large memory. To construct a highly parallel machine,
direct extension by merely adding more SIGMA-l PEs is not practical
because the architectural design is complicated and too much hardware
is required to implement all the PEs and the network To realize a
highly parallel machine, one or more PEs should be implemented on a
single chip and the network structure must be simplified. The total
architecture including computation model must be reconsidered.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specilic permission.

0 1989 ACM 0884-7495/89/0000/0046$01.50 46

The EM-4[101, whose target structure is mcxe than 1CKlO PEa, is
also being developed at the Electrotechnical laboratory on the basis of
the SIGMA-l project. The design principles of the EM4 are as fol-
lows.

1. Simplify the total architecture of a datatlow machinc.
e.g. interconnection network with O(N) hardware. a
RISC-based single-chip PE design, and a direct match-
ing scheme.
2. Improve machine performance by integrating a
packet-based circular pipeline and a register-based
advanced control pipeline.
3. Afford versatile resource management facilities,
which current datallow machines do not have, by intro-
ducing a strongly connected arc &allow model,

The EM-~‘S single-chip processor, called the RMC-R, real&es
these principles. This paper focuses on the architecture of the EMC-R.

Section 2 describes design features of the EMC-R. Defects of
current datallow architectures are listed and distinctive features of the
EMC-R (or the EM-4) for conquering them are shown. In section 3,
the instruction set architecture of the EMC-R which reflecta the above
principles is described. Features of an instruction set, instruction for-
mats and a packet format are shown them. Section 4 describes the
configuration architecture of the EMC-R which realizes all of the
above.

2. Design Features of the EMC-R

2.1. Defects of Current Datatlow Architectures

In or&r to design an efficient parallel m&ine. we closely
examined the defects of current dataflow architectures. They am sum-
marized as follows.
Dl. A circular pipeline [4] does not work well as a “pipeline” for less
parallel execution.

This is because current datatIow execution modela have no
advanced control mechanism. In the case of highly parallel execution
(2 N x S, where N is the number of PEs and S is the number of pipe
line stages in each PE), all the stages of a circular pipeline can be
filled with tokens. In other cases, it may occur that only one token is
going round the pipeline cycle, and that PE throughput is less than one
per a pipeline circulation time.
D2. Simple packet-based architecture cannot exploit registers or a
register file efficiently.

If you always realize a token as a packet, and if you make each
of the packets enter a PE whenever possible, it is nonsense to reserve
tokens in registers for the future node operation. .This is one of the
main reasons why a fine pitch pipeline is difficuh’to implement in a
datallow machine.
D3. Time complexity and hardware complexity for matching are heavy
if you adopt the colored token style.

Color matching needs special hardware iike associative memory
or hashing hardware. They both require complex control logics and
matching takes considerable time.
D4. Packet flow traffic is too heavy.

With a simple packet architecture, packet flow traffic is too
heavy and a high-bandwidth low-delay interconnection network must
be implemented. However, network performance is limited by current
&vice technology.
D5. Current dataflow concepts cannot provide flexible and efficient
resource management mechanisms.

If you realize mutual exclusion for resource management in a
datafiow machine, you should provide some serialization mechanism
(e.g. waiting queue). Its implementation is difficult, however, because
the access to a concerned section can be violated by anyone else.
D6. It takes much time to eliminate garbage tokens.

If a program uses switch operations for conditional computations,
there may occur a lot of garbage tokens. At the end of the execution,
they must be collected to allow the working space to be reused. Time
overhead for such operations is usually considerably large.

To overcome these defects, several novel facilities and mechan-
isms are introduced in the EMC-R, which are described in the follow-
ing subsections.

2.2. Strongly Connected Arc Model

Although the basic EM-4 architecture is based on the datatlow
model, a new model called a snongly connected arc model [7] has
been introduced to compensate for the pure dataflow architecture. The
strongly connected arc model can solve ail the problems described in
the previous subsection.

In this model, dataflow graph arcs are divided into two
categories: the normal arcs and the strongly connected arcs. A
datallow subgraph whose nodes are connected by strongly connected
arcs is called a strongly connected block. The contml strategy of the
modified dataflow model in which this model is introduced is that the
operation nodes are executed exclusively in a strongly connected
block. Figure 1 shows an example of strongly connected blocks. In this
figure, there are two strongly connected blocks, A and B. When node 5
or node 6 is fired, biock A or block B is executed exclusively. This
has the effect of giving the nodes in a strongly connected block the
highest priorities if nodes are executed depending on primities. A
strongly connected block acts as a macro node which includes several
instructions and is executed as if it were a single basic node. In the
EM-4. each strongly connected bock is executed by a single PE.

There are several advantages in the strongly connected arc
model, which are shown below.
Al. This model makes it easy to introduce an advanced control pipe-
tine to dataflow architecture, because the exclusion of the outer block
instructions causes more deterministic execution of codes, This solves
the problem of Dl.
A2. Instruction execution cycles can be rcduccd by introducing a
strongly connected register file which is used for storing tokens in a
strongly connected block. This is possible as the registered data in the
concerned block are not violated by any other data. This overcomes
the defect D2.
A3. In an intra-block execution, matching can be realized much mom
easily and efficiently because it is not necessary to match function
identifiers (i.e. colors) if the block is included in the function. This
solves the inefficiency problem of D3.

These Al, A2 and A3 enable the EMC-R to have a fine pitch
execution pipeline.

47

--c) normalarc

-w strongly connected arc

[:::::i strongly connected block

Figure 1 An Example of a Strongly Connected Block.

A4. There are no packet transfers in a strongly connected block. This
reduces the defect D4.
A5. It can provide flexible resource management facilities by con-
structing an indivisible instruction sequence (e.g. teat and set). This

overcomes the defect DS.
A6. It can simplify the problem of remaining garbage tokens. This is
because only the flag resets of a strongly connected register file are
needed for eliminating the garbage tokens. The operation can be per-
formed simultaneously with the result data transfer, i.e. with no over-
head. This reduces the defect D6.

2.3. Direct Matching Scheme

To remove the defect D3. a fast and simple data matching
scheme is needed. A strongly connected model solves this problem
within a block but matching overhead on a normai dadlow node is
not solved. We have designed a simple new data matching scheme.
called a direct m~rchittg scheme. This scheme is implemented Using

ordinary memories. Since the logic for realizing the scheme is fairly
simple, it can be easily implemented by wired logic on the EMC-R.

When a function is invoked, an instance of storage is allocated
to a group of PEs. This instance is called an operand segment. It is
used for waiting and matching of operands. An operand segment has
memory words whose number is equal to or larger than that of two
operand instructions in the concerned function. The compiled codes
for the function are stored in another area, which is called a rem&are
segmenr. The address of the instruction in the template segment has a
one-to-one simple correspondence with that of the matching. Binding
of an operand segment and a template segment is also performed at
the function invocation time.

The matching is executed by checking the stored data in an
operand segment and by storing new data if its partner is absent The
matching location for each dataflow node is uniquely given as an ahso-
lute memory address in an operand segment. Thus matching can be
carried out without using the associative memory or a hashing mechan-
ism.

2.4. Processor Connected Omega Network

The EM-4 uses a proce.ssor connected omega network as its
intenzo~eclion network. Figure 2 ilhtsttatcs an example of its topol-
ogy. The advantages of this network are: the average distance from
any PE to any other PE is order log(N), while N is the total number of
PEs; the number of connection links from a PE is a small constant
even if there are many PEs: and total number of switching elements is
O(N) which is smaller than that of a multi-stage network
@wh?o)).

The precise routing algorithm of the network will be reported in
another paper.

The EMC-R contains an element of the processor connected
omega network. One reason for this is to reduce the packet Iransfer
time bctwcen a switch and a PE. The other reasons are the low
hardware cost and the design simplicity. This element and processing
function can work hrdepcndently and concurrently.

3. Instruction Set Architecture

3.1. RISC Architecture

We adopt a RISC architecture for the EMC-R for simplicity and
execution efficiency. Current &tallow architectures are not suited to
RISC because defects D2, D3, and D4 in 2.1 obsnuct its implementa-
tion. The EMC-R is suited to RISC for its features in 2.2 and 2.3. It
can exploit a fine pitch pipeline. each stage of which is simple. It has

a register file whose member is the strongly connected register
descri~ in 2.2.

The EMC-R is a dataflow RISC chip due to the following
features: it has only 26 instructions; there are only four kinds of
instruction formats: it has only two memory addressing modes; it has a
register file; it uses no microprograms; its packet size is fixed; there
are only a few packet types; and it has simple synchronization
mechanisms (direct matching and a register-based sequencing).

Among them. the latter three should be regarded as the features
of a RISC PE for a parallel computer.

In the following subsections, the features of EMC-R instruction
set architecture are described

Figure 2 Processor Connected Omega Network.

3.2. Instruction Set

Table 1 shows an instruction set of the EMC-R. It has twenty-
six kinds of insbuctions, each of which is executed in a single clock
cycle (except continuous-memory-word-access instructions).

Details of an operation are affordcd by the AUX field. For
instance, the SHF instruction left or right shifts according to the con-

tents of the AUX field.

In the EMC-R. a complex instruction can be performed by a
slrongly connected bock which contains simpler instructions. This is
called a nmcro insnucrion. For instance, an integer division operation,
a function call operation and complex structure operations are provided
as macro instructions.

The following insmtctions are the characteristic instructions of
the EMC-R.
(1) Branch Instructions

In the EMC-R, an action of a data switch operation in a strongly
connected block is to tire one of the adequate nodes of its destination,
without flowing any data. For this reason, the word BRANCH is used
instead of SWITCH in the EMC-R for representing a data switch.
There are six BRANCH instructions as shown in the Table 1. In
order to simplify sequencing, they are implemented in a delayed
branch style.

The EMC-R can provide a normal datatlow switch by strongly

connecting the BRANCH instruction and the MKPKT instructions
desaibcd below. In a good program, however, almost all of the
switches are realized in a strongly connected block, because a packet
flow overhead and a garbage token collection overhead are removed
with this method (see 2.2).
(2) MKPKT

In the EMC-R, all of the instructions, except those of memory
EICUXS and branch instructions, cart make a packet for sending their
results. In addition, it has a MKPKT instruction dedicated to packet

Table 1 Instruction Set

Mimetic and Logic

Memory or Register

48

generation. The MKPKT sends a packet whose address part is its first
operand and whose data part is its second operand. Continuous
MKPKTs perform the efficient distribution of the same data More-
over, MKPKT supplies two special operations: an inter-function data
transfer and a global data transfer such as a structure data transfer.
(3) GET

GET is an instruction for remote operations. It sends a return
address to the address represented as its operand. For instance, CAR,
CDR and sending a return address of a function are performed by the
GET.

3.3. Instruction Format

The EMC-R has four types of instruction formats. Two of them
are shown in Figure 3 (the other two are the immediate attached ones).
Both of them are stored in a single memory word where each memory
word is 38 bits long.

The OP field holds an operation code. AUX is a secondary field
of the OP. If the concerned strongly connected block ends with the
next instruction execution, then the M field (mode field) contains zero.
RO and Rl are the strongly connected registers used for the nerf
instruction, lf this instruction is strongly connected to other instruc-
tions. In this way, register-based advanced control is implemented in
the EMC-R.

OUT is a tag field indicating whether the instruction generates a
packet or not. If OUT is zero (Figure 3 (a)), then no packets are gen-
erated and the result is stored in R2. In this case, BC is a branch con-
dition field which describes a branching style and DPL contains the
displacement of a branching address. The latter two fields are used
only in branch instructions.

If the OUT field contains one (Figure 3 (h)). then a packet is
generated. The address part of the output packet is made up of the
WCF. M2, CA, and DPL fields, and the operand segment identifier of
the concerned function. The data part of the packet is the operation
lESUlt.

A typical instruction execution is illustrated in more detail in 4.1
and 4.2.

T 0
OP AUX R M NF RO Rl U R2 BC DPL

C T

5 7 111 4 4142 8

(a) Without Immediate, without Packet Output (OUT = 0)

T OWMC
OP AUX R M N-F RO Rl U C 2 A DPL

C TF

5 7 111 4 4 1213 8

(b) Without Immediate, with Packet Output (OUT = 1)

Each figure is the field size.

Figure 3 Two Typical Types of Instruction Format.

3.4. Packet Format

A typical packet format is illustrated in Figure 4. Each packet
consists of an address part and a data part, both of which have 39 bits.
(1) Address Part

HST field indicates whether this packet is bound for a normal
destination or a host. PT is a packet type field. WCF is a waiting
condition flag field, which indicates a type of matching. M is also a
flag which indicates a type of dataflow arc. If it is zero. then the
packet will fue. a normal node, otherwise it will the a strongly con-
nected block. (GA, CA, MA) are the destination address fields. GA
is a destination FE group address, CA is its column (i.e. member)
address. and MA is a memory address. If this is a normal data packet,
then MA is the matching address.
(2) Data Part

C is a cancel bit field indicating that the packet is a nonsense
packet. DT and D are the data type and the data, respectively, which
this packet carries.

3.5. Special Packets

A normal data packet has a NORM packet type, but packets for
function control, structure access, remote memory access, etc. have
special types. ‘Ibese special packets have no operand segment number,
i.e. they are colorless. A special packet is generated by a MKPKT
instruction or by a GET instruction. It is executed by a special
strongly connected block named SP Monitor. A system manager can
set the SP Monitor in any way desired during the system initialixa-
tion. so the effect of a special packet can be properly determined by
the manager. Thus the special packet execution in the EMC-R is
completely flexible.

3.6. Program Examples

Figure 5 illustrates two FIBONACCI progmms. Figure 5 (a) is a
pure dataBow program and Figure 5 (b) is a program with strongly
connected blocks. In the latter one, type checking and data switching

15217 3 20

(a) Address Part

13 3 32

Cb) Data Part

Each figure is the field size.

Figure 4 Typical Packet Format.

49

L

FIB: (COPY &Ql immb <SW1 TZ)

EQl: (EQ ‘1 <SW1 b)

SWl: (SWITCH (T <CNST immb)
(F (EQZ immb <SW2 n))

EQ2: (EQ ‘2 <SW2 b)

sw2: (SWITCH fl <CNST immb)
(F <SUB1 immb cSUB2 immb))

CNST: (COPY ‘1 CRETV r>)

SuBl: (SUB ‘1 dxLL.0 S>)

SUB2 (SUB ‘2 CCALLl 0)

CALLOt (*GCALL ‘FIB <ADD l>]

CALLl: (*GCALL ‘FIB <ADD I=-)

ADD: (ADD cRETV D)

RETV: (‘PASSVAL 4CJLL s>]

KILL: (*KILL)

FIB: [BEQ ‘1 (LEAF) (RO:NL)]
[SUB ‘1 Rl (RONL) (NL:NL $)I
[BEQ ‘2 (LEAF) (RO:NL)]
[SUB ‘2 R2 (SEG:Rl) (NL:NL %)I
[MKPKT <CALL0 s> (SEG:R2 $)I
[MKPKT <CALL1 s> (NL:NL)]

LEAF: [MKPKT ‘1 <RETV 17 (NL:NL)]

-1

CALLO: (*GCALL ‘FIB <ADD b)

CALLl: (*GCALL ‘FIB <ADD I-Z=)

ADD: (ADD cRETV n)

RETV: (*PASSVAL <KILL s-1

KILL: (*=I

(a) A Normal D&allow Program (b) A Strongly Connected Dataflow Program

Figure 5 FIBONACCI Program.

Single Chip Processor EMC-R

PRC : Packet Rewriting

Controller
I I
IBU EXU

Figure 6 Block Diagram of the EMC-R.

50

Figure 7 Switching Unit Organization.

are strongly connected to a single block illustrated as a rectangle in
Figure 5 (b). It takes twenty-three clocks to execute the rectangular
part if you select the former program (in the csse of occurring recur-
sive calls). If you select the latter pro&m, it only takes nine clocks.
This means that the stmngly connected method can execute this sub-
program about two and half times as fast as the pure datatlow method.

Remark that, in the above comparison, a SWITCH instruction
and a COPY instruction were supposed to exist in the EMC-R. And
remark that all the normal nodes of the EMC-R are executed in the
same clock cycles with the pure datatlow machine SIGMA-I.

4. Configuration Architecture

4.1. EMC-R Architecture

Figure 6 shows a block diagram of the EMC-R which realizes
all of the features described in the previous sections. The EMC-R
consists of a Switching Unit (SU), an Input Buffer Unit (IBU), a Fetch
and Matching Unit (PMU), an Execution Unit (EXU), a Memory Con-
trol Unit @KU), and Maintenance Circuits.
(1) Switching Unit

The Switching Unit (SU) is a three-by-three packet switch which
is an element of a processor connected omega network. It switches
data independently of and concurrently with the other units. Each
input port of the network has structured buffers. Organization of the
SU is illustrated in Figure 7.

When a processor connected omega network is used in a
buffered manner, store-and-forward deadlock prevention facilities must
be supplied. In the EMC-R, a three bank buffer is provided in each
input port. Firstly, a packet is buffered in the least level bank. When
the packet arrives at the zeroth stage of the network, it is pushed into
the one-upper-level bank. Because of the topological property of the
processor connected omega network, any packet never covers three
rounds of this network, so the logical structure of a packet transfer
cannot make loops. This three bank strategy thus removes all store-
and-forward deadlocks from the network.

Another feature of the SU is the function level dynamic load
balancing facility. In the EM-4. special packets which monitor the
load of PEs travel through the network. The SU rewrites these packets
within the time period required by a normal packet transfer. i.e. with
no overhead, and performs the load balancing. This rewriting is made
by the PRC in Figure 7.
(2) Input Buffer Unit

The Input Buffer Unit (IBU) is a buffer for packets waiting for
execution. A 32-word FIFO type buffer is implemented using a dual
port RAM on chip. If this buffer is full, a part of the off-chip memory
is used as a secondary buffer.
(3) Fetch and Matching Unit

The Fetch and Matching Unit (FMU) is used for matching
tokens and fetching instructions. It performs a direct matching for a
packet and a sequencing for a strongly connected block. It controls
the pipelines of the processor. especially integrating two types of pipe-
lines (see 4.2). The FMU contains an instruction address register, a
packet data register, a register for matching data, several multiplexers,
and control circuits.
(4) Execution Unit

The Execution Unit (EXU) is an instruction executor. Figure 8
tilustrates its organization. The EXU contains an instruction register,
two operand registers, a register file, an ALU, a bsrrel shifter, a multi-
plier, a versatile comparator, packet generation circuits, and control

FMU

-

MCU

Packet Gen. Circ.

4
su

JR : Instruction Register OPi : Operand Register i

Figure 8 Execution Unit Organization.

circuits.

In an execution cycle, the contents of operand registers are sent
to the ALU, etc. Then the operation is carried out according to the OP
and AUX fields of the instruction. register. The result is sent in a
packet or stored in a register file. All of these actions are made in a
single clock, and, in the same clock, fetch and decode of the next
instruction and data load born the FMU or a register file are per-
formed (see 4.2).
(5) Memory Control Unit and Off-Chip Memory

The Memory Control Unit (MCU) arbitrates memory access
requests from the IBU. the FMU, and the EXU, and sends data
between the off-chip memory and the EMC-R. The MCU consists of
a data multiplexer, an address multiplexer, and an srbiaation con-
troller.

The off-chip memory size can te up to 5 megabytes. It is used
for a secondary packet buffer, a matching store, an instruction store. an
area for the SP monitor (see 3.5). a structure store, and a working area.
(6) Maintenance Circuits

The Maintenance Circuits make initialization of the chip and
memory words, handle many kinds of errors and provide the dynamic
monitor which nqorts a system performance and the system stat113
such as processor load, an active function number and structure ares
used. We will report the concept and the construction method of the
Maintenance Circuits in another paper.

4.2. Pipeline Organization

Figure 9 illustmtes the pipeline organization of the EMC-R.

Basically, the pipeline has four stages, some of which have two sub-
stages. Each stage has a rectangle which represents a single clock
action, or a bypass line which means no clock action. A small rectan-
gle represents a half clock action.

51

Each packet from a network is buffered in the IBU if necessary
(the far left side of the figure). Then the concerned template segment
number (see 2.3) is fetched from the off-chip memory in the first stage
(TNF). The number is stored at the top of the operand segment at the
function invocation time. The first stage is bypassed when the packet
is not a normal data packet.

The second stage is the matching stage. In the case of matching
with the immediate, an immediate fetch (IMF) occurs. In the case of
matching with data in the matching store, data at the concerned
address is read in the former half clock (RD). If a partner exists, the
flag at Ihe address is eliminated in the latter half clock (EL); else a
new packet data is written in the latter half clock (WR). This read-
modify-write action is completed in a single clock cycle. The second
stage is omitted if a new token 6res a single operand instruction.

The third stage is an instruction fetch (IF) and decode (DC)
stage. Each operation is performed in a half clock.

The fourth stage is an execution stage. Transfer of the result
packet can be overlapped with the execution. If the next instruction is
strongly connected with the current instruction, instruction fetch and
data load of the next instruction are overlapped with the execution.
The third stage and the fourth stage are repeated in the overlapped
manner until there are no executable instructions in the concerned
strongly connected block. If the instruction is a normal mode instruc-
tion or the last instruction of the strongly connected block. its execu-
tion can be overlapped with the insauction fetch and decode of a next
packet processing. Thus, an integration of two types of pipelines, a
packet-based circular pipeline (illustrated as thin lines in Figure 9) and
a register-based advanced control pipeline (illustrated as thick lines in
Figure 9). is realized.

During each stage, the TNF, the IMF, the RD. the WR, the EL
and the IF are performed by the FMU with the assistance of the
MCU. The DC and the EX are performed by the EXU.

The register-based advanced control pipeline is a fast and Simple
pipeline exploited by strongly connected blocks. Its throughput is at
most six times as high as that of the packet-based circular pipeline.

Each PE has a peak processing performance of more than I2
MIPS.

4.3. Implementation

The EMC-R is a real processor chilp, so its implementation is
limited by current chip fabrication technology. Our chip contains
50,000 CMOS gates and 256 signal lines.

Tabk 2 shows the gate usage and pin usage of each EMC-R
unit. The Switching Unit is complex as it has three bank buffers and
their multiplexer at each port. The Execution Unit is also complex
because it has many large modules such as a register file, a multiplier,
a barrel shifter, and a packet generator. The Fetch and Matching Unit
requires a little hardware, because the direct matching reduces the
hardware cost of it.

As for pins, almost all of them are used for data buses of the
network and the off-chip memory.

The EMC-R will be fabricated by June 1989. Then the EM-4
prototype which has 80 PEs will be constructed. It will con&St of.16
processor boards, each of which will have five PEs and a mother board
which the network will be implemented on. The JLM-4 prototype

hardware will be operational in 1990. Peak performance of this proto-
type is expeced to be more than 1 GIPS. Conshuction of an efficient
real machine of 1,000 PEs is the next program, which is the goal of
the EM-4 project.

Table 2 Hardware Complexitg

UNIT
Switching Unit

Input Buffer Unit
Fetch and Matching Unit

Execution Unit
Memory Control Unit /
Maintenance Circuits) 1,589 1 12

Total (45,653 1 255

TwoOP. ---) Normal Dataflow
Normal
Packet

Pipeline
- it%& COMe~ted

Packet Out

4)rc u u D

Stage 1 Stage 2 Stage 3 Stage 4

Temp. # Fetch Matching Instr. Fetch Execution
and Decode and Packet Output

Figure 9 Pipeline Organization of the EMC-R.

52

5. Conclusion

This paper describes the architecture of the EMC-R, a single
chip dataflow processor which is a PE of the EM-4. The distinctive
features of the EMC-R are:
(1) a strongly connected arc dataflow model;
(2) a direct matching scheme;
(3) a RISC-based design;
(4) a deadlock-free on-chip packet switch; and
(5) an integration of a packet-based circular pipeline and a register-
based advanced control pipeline.

These features were examined, and the instruction set architec-
tare and configuration architecture which exploit them were described.

Tlte schedule of the hardware implementation is written in 4.3.
As for softwares, a high level language and an optimizing compiler am
currently under development. The latter has a node labeling scheduler
for the intra-function load balancing 161 and a block constructor for
automatically making strongly connected blocks. The optimixatlon
schemes and algorithms will be reported in another paper.

Future problems arc as follows.
(1) Close consideration and expansion of a strongly connected am
dataflow model.
(2) Consideration of a chip design using much highly-integrated VLSI.

Acknowledgement

We wish to thank Dr. Hirosbi Kashiwagi, Deputy Director-
General of the Electrotechnical Laboratory, Dr. Akio Tojo, Director of
the Computer Science Division and Mr. Toshio Shimada. Chief of the
Computer Architecture Section for supporting this research, and the
staff of the Computer Architecture Section for the fruitful discussions.

References

111 Amamiya.M.. TakesueM.. HasegawaR. and Mikami,H.: Imple-
mentation and Evaluation of a ListProcessing-Otientad Data Flow
Machine, Pmt. the 13th Annu. Symp. on Computer Architecture,
pp.lO-19 (June 1986).
[2] Arvind, Dertouxos,M.L. and Iannucci,R.A.: A Multiprocessor Emu-
lation Facility, MIT-LCS Technical Report 302 (Sep. 1983).
[3] Dennis,J.B., Lim,W.Y.P. and Ackerman,W.B.: The MIT Datatlow
Engineering Model, Proc. IFIP Congress 83. 553560 (1983).
141 GurdJ., Kirkham,C.C. and Warson.1.: The Manchester Prototype
Dataflow Computer, Commun. ACM, 21. 1, pp.3452 (1985).
[5] Hi&&, Sekiguti.S. artd Shimada,T.: System Architecture of a
Datatlow Supercomputer. TENCON87, Seoul (1987).
[61 Otsuka,Y., Sakai,S. and Yuba,T.: Static Load Allocation in
DataRow Machines, Pmt. of Technical Group on Computer Architec-
ture, IECE Japan, CA.%-136, in Japanese (1986).
[71 Sakai,S., Yamaguchi,Y., Hiraki.IC. and YubaJ.: Introduction of a
Strongly-Connected-Arc Model in a Data Driven Single Chip tissor
EMC-R. Proc. Datallow Workshop 1987, EXE Japan, pp.231-238, in
Japanese (1987).
[8] Shimada,T., Hiraki,K.. Nishida,K. and Sekiguchi.S.: Evaluation of
a Prototype Data Flow Processor of the SIGMA-l for Scientific Com-
putations, Inf. Process. Leu.,l6, 3, pp.139-143 (1983).
[9] Yamaguchi,Y., Toda,K. and Yuba,T.: A Performance Evaluation of
a Lisp-Based Data-Driven Machine(EM-3). Proc. 10th Annual Sympo-
sium on Computer Architecture, pp.163.169 (1983).
[lo] Yamaguchi,Y.. SakaiS., An Architectural Design of a Highly
Parallel Dataflow Machine, to appear in IFIP’89 (1989).

53

