
AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors

Eric Rotenberg
Computer Sciences Department

University of Wisconsin - Madison
ericro@cs.wisc.edu

Abstract

This paper speculates that technology trends pose new
challenges for fault tolerance in microprocessors. Specifi-
cally, severely reduced design tolerances implied by giga-
herz clock rates may result in frequent and arbitrary
transient faults. We suggest that existing fault-tolerant
techniques -- system-level, gate-level, or component-spe-
cific approaches -- are either too costly for general purpose
computing, overly intrusive to the design, or insufficient for
covering arbitrary logic faults. An approach in which the
microarchitecture itself provides fault tolerance is
required.

We propose a new time redundancy fault-tolerant
approach in which a program is duplicated and the two
redundant programs simultaneously run on the processor.
The technique exploits several significant microarchitec-
tural trends to provide broad coverage of transient faults
and restricted coverage of permanent faults. These trends
are simultaneous multithreading, control flow and data
flow prediction, andhierarchical processors-- all of which
are intended for higher performance, but which can be eas-
ily leveraged for the specified fault tolerance goals. The
overhead for achieving fault tolerance is low, both in terms
of performance and changes to the existing microarchitec-
ture. Detailed simulations of five of the SPEC95 bench-
marks show that executing two redundant programs on the
fault-tolerant microarchitecture takes only 10% to 30%
longer than running a single version of the program.

1. Introduction

The commercial success of general purpose computers,
from personal computers to servers and multiprocessors,
can be attributed to the proliferation of high performance
single-chip microprocessors. Bothtechnology advances--
circuit speed and density improvements -- andmicroarchi-
tecture innovations-- exploiting the parallelism inherent in
sequential programs -- fuel the rapid growth in micropro-
cessor performance that sustains general purpose comput-
ing. And interestingly, both technology and
microarchitectural trends have implications to micropro-
cessor fault tolerance.

Technology-driven performance improvements will
inevitably pose new challenges for fault tolerance in micro-
processors [1,2]. In particular, there may come a time when
clock rates and densities are so high that the chip is prone
to frequent, arbitrary transient faults[2]. High clock rate
designs require (1) small voltage swings for fast switching
and power considerations, and (2) widespread use of high
performance, but relatively undisciplined, circuit design
techniques, e.g. dynamic logic. This combination is prob-
lematic because dynamic logic is susceptible to noise and
crosstalk, and low voltage levels at charged nodes only
make it more so. Pushing the technology envelope may
even compromise conservative, static circuit designs, due
to reduced tolerances in general(consider, for example,
the difficulty in managing clock skew in gigaherz chips).

Specialized fault-tolerant techniques, such as error cor-
recting codes (ECC) for on-chip memories [3] and Recom-
puting with Shifted Operands (RESO) for ALUs [4,5], do
not adequately cover arbitrary logic faults characteristic of
this environment. And while self-checking logic tech-
niques [6,7] can provide general coverage, chip area and
performance goals may preclude applying self-checking
logic globally (for example, integrating self-checking into
the design methodology and cell libraries). Finally, sys-
tem-level fault tolerance, in the form of redundant proces-
sors, is perhaps too costly for small general purpose
computers.

Therefore, we propose amicroarchitecture-based
fault-tolerant approach. That is, instead of perpetuating the
rigid separation between computer architecture and fault
tolerance, broad coverage of transient faults, with low to
moderate performance impact, can be achieved by exploit-
ing microarchitectural techniques -- techniques that are
already incorporated in the microprocessor for perfor-
mance reasons.

In this paper, we propose and evaluate a time redun-
dancy fault-tolerant approach calledActive-stream/Redun-
dant-stream Simultaneous Multithreading, or AR-SMT.
AR-SMT exploits several recent microarchitectural trends
to provide low-overhead, broad coverage of transient
faults, and restricted coverage of some permanent faults.

1.1. AR-SMT time redundancy

Time redundancy is a fault-tolerant technique in which
a computation is performed multiple times on the same
hardware [4,8]. This technique is cheaper than other
fault-tolerant solutions that use some form of hardware
redundancy, because it does not replicate hardware. Of
course, simple time redundancy can only detect transient
faults that are present during one or more of the redundant
computations, but not all of them. Frequent and relatively
short-lived transient faults are the primary focus of this
paper, and therefore time redundancy is a viable approach.
(However, detection of long-lived transient faults and some
permanent faults are also addressed in our proposal.)

The disadvantage of time redundancy is the perfor-
mance degradation caused by repetition of tasks. In a gen-
eral purpose computer, full programs are the tasks to be
performed. If we assume 2x redundancy,program-level
time redundancyeffectively doubles the execution time of
a program because the same program is run twice
back-to-back, as shown in Figure 1(a).

FIGURE 1. Time redundancy techniques.

Instruction re-execution [5] addresses the performance
degradation caused by time redundancy. With instruction
re-execution, the program is not explicitly duplicated.
Rather, when an instruction reaches the execution stage of
the processor pipeline, two copies of the instruction are
formed and issued to the execution units (Figure 1(b)).
Because instructions are duplicated within the processor
itself, the processor has flexible control over the scheduling
of redundant computations. Dynamic scheduling logic
combined with a highly parallel execution core allows the
processor to “scavenge” idle execution cycles and execu-
tion units to perform the redundant computations. This is
possible because there are not always enough independent
operations in the program to fully utilize the parallel
resources. That is,dynamically scheduled superscalar pro-
cessors[9] are designed for the irregularity of instruc-

tion-level parallelism in ordinary, sequential programs, and
consequently the peak parallelism supported by the
microarchitecture is greater than sustained parallelism of
programs.

The downside of instruction re-execution is that it pro-
vides limited hardware coverage. Only asingle stageof a
complex processor pipeline is conceptually duplicated: the
functional units, i.e. ALUs. In modern superscalar proces-
sors, this comprises only a fraction of the overall complex-
ity of the chip.

AR-SMT combines the full processor coverage of pro-
gram-level time redundancy with the performance advan-
tages of instruction re-execution. In AR-SMT,two explicit
copies of the program run concurrently on the same pro-
cessor resources, as shown in Figure 1(c). The two copies
are treated as completely independent programs, each hav-
ing its own state or program context. Consequently, as with
program-level time redundancy, the entire pipeline of the
processor is conceptually duplicated, providing broad cov-
erage of the chip. The performance advantages of instruc-
tion re-execution are retained, however, due to the
concurrent sharing of processor resources by the two pro-
gram threads. This technique is made possible by a recent
microarchitecture innovation calledsimultaneous multi-
threading (SMT)[10,11]. SMT leverages the fine-grain
scheduling flexibility and highly parallel microarchitecture
of superscalar processors. As we mentioned before, often
there are phases of a single program that do not fully utilize
the microarchitecture, so sharing the processor resources
among multiple programs will increase overall utilization.
Improved utilization reduces the total time required to exe-
cute all program threads, despite possibly slowing down
single thread performance. In AR-SMT, half of the pro-
gram threads happen to be duplicates for detecting tran-
sient faults.

AR-SMT is an example of exploiting the microarchitec-
ture, in this case simultaneous multithreading, to achieve
fault tolerance. In the following two sections, we first
describe the basic mechanisms behind AR-SMT, and then
point out other microarchitecture trends that are exploited
for (1) reducing the performance overhead of time redun-
dancy even further and (2) improving fault coverage.

1.2. Basic operation of AR-SMT

Figure 2 shows an abstraction of AR-SMT. The solid
arrow represents the dynamic instruction stream of the
original program thread, called theactive stream
(A-stream). As instructions from the A-stream are fetched
and executed, and their results committed to the program’s
state, the results of each instruction are also pushed onto a
FIFO queue called theDelay Buffer. Results include modi-
fications to the program counter (PC) by branches and any
modifications to both registers and memory.

(a) Program-level time redundancy

(b) Instruction re-execution

(c) AR-SMT

Program P’Program P

Processor Processor

FU

FU

FU

FU
i

i’
instr i

Program P

dynamic
scheduling execution units

parallelProcessor

Program P’

Program P

Processor

A secondredundant instruction stream(R-stream), rep-
resented with a dashed arrow in Figure 2, lags behind the
A-stream by no more than the length of the Delay Buffer.
The A-stream and R-stream are simultaneously processed
using the existing SMT microarchitecture. As the R-stream
is fetched and executed, its committed results are com-
pared to those in the Delay Buffer. A fault is detected if the
comparison fails, and furthermore, the committed state of
the R-stream can be used as a checkpoint for recovery.

The Delay Buffer ensures time redundancy: the
A-stream and R-stream copies of an instruction are exe-
cuted at different times, in general providing good transient
fault coverage. A fault may cause an error in the A-stream,
the R-stream, or both. An error in the A-stream is detected
after some delay through the Delay Buffer. An error in the
R-stream is detected before committing the first affected
instruction. A fault may induce errors in both streams, in
which case only the R-stream plays a role in detection.

FIGURE 2. High level view of AR-SMT.

1.3. Exploiting other microarchitecture trends

The AR-SMT model exploits simultaneous multithread-
ing to implement time redundancy. We now describe two
additional microarchitectural trends that can be leveraged
for both higher performance and improved fault tolerance.

1.3.1. Improved performance through control and data
“prediction”. The order in which instructions may execute
is dictated bydata dependencesandcontrol dependences
among instructions. If instructioni produces a value that is
used by instructionj, j cannot execute untili completes.
This is called a data dependence. Likewise, branch instruc-
tions introduce control dependences: the next instructions
to be fetched after a branch instruction depends on the out-
come of the branch instruction.

High performance processors attempt to execute multi-
ple instructions in parallel each cycle. Unfortunately,
instruction-level parallelismis limited or obscured by both
control and data dependences in the program. Consider the
sequence of five instructions shown in Figure 3(a). Instruc-
tions i2 through i4 all have a data dependence with an
immediately preceding instruction, which means they must
execute serially as shown in Figure 3(b). Furthermore,
although instruction i5 has no data dependences, it can not
be fetched until the outcome of branch i4 is known. The
control dependence with i4 is a severe performance penalty

because it both serializes executionand exposes some
number of cycles to fetch instruction i5 into the processor,
labeled in the diagram as “pipeline latency”.

Control dependences are typically alleviated with
branch prediction [12,13]: the outcomes of branches can be
predicted with high accuracy based on the previous history
of branch outcomes. Branch prediction allows the proces-
sor to fetch instructions ahead of the execution pipeline, so
i5 can execute as early as cycle 1 if the branch i4 is pre-
dicted to be taken, as shown in Figure 3(c).

More recently, researchers have even suggested predict-
ing data values [14,15,16]. At instruction fetch time, the
source operands of instructions are predicted. In this way,
they do not have to wait for values from their producer
instructions -- instructions may execute in parallel under
the assumption that the predicted values are correct. In
Figure 3(c), values for r1, r2, and r3 are predicted, so
instructions i1 through i4 may execute in parallel during
cycle 1. In cycle 2, the computed results produced during
cycle 1 are used tovalidatethe predicted values for r1, r2,
and r3 (special recovery actions are required in the event of
mispredictions [14,17]).

FIGURE 3. Control and data dependences.

With both control and data prediction, the processor
exposes more instruction-level parallelism and speeds exe-
cution of the program. AR-SMT can exploit this same con-
cept to minimize the execution time of the R-stream,
becausethe Delay Buffer contains data and control infor-
mation from the first run of the program(i.e. results from
the A-stream). The state in the Delay Buffer provides the
R-stream withperfect control and data flow prediction:
instructions can execute essentially free from all control
and data dependences. Note that this does not reduce fault
coverage of the processor in any way, since instructions
still pass through all stages of the pipeline. They simply
pass through the pipeline quicker.

Furthermore,the hardware used for validating data and
control predictions is in fact the hardware for detecting
faults. Normally, predictions are compared with computed
results to detect mispredictions. In the case of the
R-stream, these comparators validate so-called “predic-
tions” obtained from the A-stream against values computed
by the R-stream. If the validation fails, then a transient
fault must have occurred in either stream.

SMT PROCESSOR COREA-stream

A-streamR-stream

R-stream

DELAY BUFFER

fetch commit

i4
i3
i2
i1

i5

pipeline latency

2
3
4
5
6
7
8
9

1
cycle

(b) base schedule

2
3
4
5
6
7
8
9

1 i1 i2 i3 i4 i5

cycle

(c) with prediction

�
�
�
�

��

��

��

��

�
�
�
�

i1: r1 <= r6-11
i2: r2 <= r1<<2
i3: r3 <= r1+r2

i5: r5 <= 10

(a) program segment

i4: branch i5,r3==0

In summary, existing prediction techniques can be
leveraged to reduce the overhead of time redundancy, both
in terms of performance and hardware: “predictions” from
the Delay Buffer speed execution of the R-stream, and
existing validation hardware is used for fault detection
logic.

1.3.2. Improved fault tolerance through hierarchy and
replication. In the search for ever-increasing amounts of
instruction-level parallelism, high performance processors
have become exceedingly complex. There has been a
recent interest among researchers to reduce complexity by
dividing up large, centralized structures and wide datapaths
[18,19,20,21,17]. By reducing complexity in an intelligent
way, a high clock rate can be achieved without sacrificing
the exploitation of instruction-level parallelism.

Complexity can be reduced through hierarchy [21].
Instead of having one large processing structure work on,
say, 128 or 256 individual instructions at a time, 8 smaller
processing elements can each work on 16 or 32 instruc-
tions.

FIGURE 4. A trace processor [17].

A trace processor[17], shown in Figure 4, is one exam-
ple of a hierarchical microarchitecture. It dynamically par-
titions the instruction stream into larger units of work
called traces. A trace is a dynamic sequence of instruc-
tions; typical trace lengths are 16 or 32 instructions, and
there can be any number of branches within a trace. Traces
are considered the fundamental unit of work, and the pro-
cessor is organized as such. In particular, the execution
resources are distributed among multiple processing ele-
ments (PEs), each PE resembling a moderate-sized super-
scalar processor. Traces are explicitly predicted and
fetched as a unit (i.e. trace prediction instead of individual
branch prediction), and subsequently dispatched to a PE.
Each PE is allocated a single trace to execute. Inter-trace
data dependences are predicted to enhance the parallel pro-
cessing of traces.

It is beyond the scope of this paper to discuss the com-
plexity and performance advantages of trace processors:
suffice it to say that sequencing and executing the program
at the higher level of traces is potentially more efficient
than processing instructions individually. However, we can
point out one particular advantage this microarchitecture
offers for AR-SMT: the replicated PEs inherently provide
a coarse level of hardware redundancy. We propose detect-
ing permanent faults within PEs by guaranteeing that a
trace in the A-stream and its corresponding redundant trace
in the R-stream execute on different PEs. This requires
storing a few extra bits of information per trace in the
Delay Buffer to indicate which PE executed the trace. Fur-
thermore, the PE allocation constraint imposed on the
R-stream does not degrade performance with respect to
arbitrary allocation. If only one PE is currently free, but it
cannot be used by the R-stream because it is the same PE
on which the trace first executed, then thenext PE to
become available is guaranteed to be a different PE; mean-
while, the A-stream can make use of the available PE.

The coarse level of hardware redundancy is especially
appealing forre-configuring the trace processor in the
event of a permanent PE fault. It is easier to remove a PE
from the resource pool than to remove an individual
instruction buffer from among hundreds of closely-inte-
grated buffers. The small number of PEs and the fact that
PEs are relatively isolated from each other (modularity)
makes re-configuration conceptually simple.

1.4. Related work

A spectrum of time redundancy techniques is presented
in [22]. The key realization is that all time redundancy
approaches essentially duplicate the program and they dif-
fer only in the granularity at which redundant computation
is interleaved. This paper is the culmination of that earlier
research.

Recently and independently, the Stanford ROAR project
[23] proposedDependable Adaptive Computing Systems.
The architecture is composed of a general purpose com-
puter and a reconfigurable FPGA coprocessor, and encom-
passes at least three significant concepts. First, the use of
redundant butdiverse modules significantly increases
dependability during common-mode failures and, further-
more, the reconfigurable coprocessor is an ideal platform
for synthesizing diverse modules. Second, the FPGA can
be reconfigured down to the gate level, so recovery from
failures does not require swapping in large spare modules.
Third, SMT is suggested for achieving low-overhead fault
tolerance. [23] is an overview of the ROAR project and,
consequently, a fault-tolerant SMT implementation is not
put forth and evaluation is based on analytical estimates
and a compression algorithm multithreaded by hand.

Next
Trace
Predict

Global
Registers

Local

Live-in
Value
Predict

Trace
Cache

Maps
Rename
Global

Registers
Predicted

Issue Buffers

Registers

Func
Units

Processing Element 1

Processing Element 2

Processing Element 3

Processing Element 0

S
pe

cu
la

tiv
e

S
ta

te
D

at
a

C
ac

he

2. AR-SMT implementation issues

In this section key implementation issues are presented.
Section 2.1 reviews SMT hardware techniques. Where
SMT policy decisions are required, we describe how these
policies are tailored to AR-SMT. Section 2.2 discusses new
issues that arise because the dynamically created R-stream
is not a true software context, requiring minor operating
system and hardware support.

2.1. Implementing SMT

Most of the design is derived from work on simulta-
neous multithreaded machines [10,11]. The techniques are
well established and understood, and recent research shows
that SMT can be incorporated into existing high perfor-
mance processors rather seamlessly. The following discus-
sion focuses on two important aspects of any SMT
machine: (1) separating register and memory state of multi-
ple threads, and (2) sharing critical processor resources.

2.1.1. Handling register values from multiple threads.
Each thread must be provided its own register state, and

register dependences in one thread must not interfere with
register dependences in another thread. The approach in
[11] leveragesregister renamingto transparently and flexi-
bly share a single, large physical register file among multi-
ple threads.

Register renaming overcomes the limitation of having
too few general-purpose registers in the instruction-set
architecture (e.g. 32). Typically, the processor provides
many morephysical registersso that multiple writes to the
same logical register can be assigned unique physical reg-
isters. This allows the writes, and their dependent instruc-
tion chains, to proceed independently and in parallel. A
register mapmaintains the most current mapping of logical
to physical registers.

In SMT, there is still a single, large physical register file
but each thread has its own register map. The separate
maps guarantee the same logical register in two different
threads are mapped to two different physical registers.

The approach in [11] has two advantages. First, the
most complex part of the processor -- the instruction issue
mechanism -- is unchanged. The fact that instructions from
multiple threads co-exist in the processor is transparent to
the instruction issue and register forwarding logic because
it uses physical register specifiers, and renaming ensures
the physical registers of various threads do not overlap.
Second, managing a shared centralized register file instead
of dedicated per-thread register files allows some threads to
use more registers than other threads. Section 3.2 shows
the R-stream requires fewer resources than the A-stream.

2.1.2. Handling memory values from multiple threads.
The memory disambiguation unitis the mechanism for

enforcing data dependences through memory. It ensures

that a load gets its data from the last store to the same
memory address. The disambiguation hardware consists of
load and store buffers to track all outstanding memory
operations, and logic to detect loads and stores having the
same memory address. Like the register file, this buffering
is shared among the SMT threads, i.e. loads and stores
from multiple threads co-exist in the disambiguation unit.

As with register dependences, memory dependences
from different threads must not interfere with each other.
Thus, memory addresses must be augmented with athread
identifier if disambiguation is based on virtual addresses.
The same virtual address used by two different threads is
distinguishable using the thread id. Thread ids need not be
stored in the data cache, however, if physical tags are used.

2.1.3. Concerning instruction fetch for the R-stream.
Conventional SMT requires multiple program counters

(PCs), one for each of the threads. Furthermore, branch
predictor structures must be shared by multiple threads for
predicting control flow.

AR-SMT also requires multiple program counters, but
the control flow predictor does not have to be shared
between the A-stream and R-stream. Recall that the PCs of
retired A-stream instructions are stored in the Delay
Buffer, in a sense providing control flow predictions for the
R-stream. Therefore, the control flow predictor structures
are dedicated to the A-stream: predictor accuracy and com-
plexity remain unaffected.

2.1.4. Sharing processor bandwidth.The trace processor
pipeline is shown in Figure 5. At each pipeline stage, we
show how AR-SMT shares processor bandwidth between
the A-stream and the R-stream. Some parts of the pipeline
are time-sharedand others arespace-shared. Time-shared
means in any given cycle, the pipeline stage is consumed
entirely by one thread. Space-shared means every cycle a
fraction of the bandwidth is allocated to both threads.

FIGURE 5. How threads share pipeline stages.

EXECUTE
ISSUE RETIRE

time-shared

PE

PE

PE

PE

D-cache
Disambig. Unit

Reg File

Predictor
Trace

Cache
Trace

DISPATCH

Decode
Rename
Allocate PE

space-shared

from Delay Buffer
Trace "Prediction"

FETCH

A-stream

A-stream

A-stream

R-stream

A-stream

R-stream

State
Commit

Resources
Reclaim

The instruction fetch/dispatch pipeline is time-shared
due to the nature of traces. Traces are fetched and dis-
patched as anindivisible unit, at a rate of 1 per cycle.
Clearly, this bandwidth cannot be split and shared between
two threads -- traces belong to one thread or the other.

Likewise, traces are retired from the processor at the
rate of 1 per cycle. Retirement is essentially the dual of dis-
patch in that resources are reclaimed, e.g. the PE, physical
registers, load/store buffers, etc. Therefore, the retire stage
is also time-shared.

Of course, execution resources are space-shared. In
trace processors, the unit of space-sharing is a PE. For
example, Figure 5 shows 3 PEs allocated to the A-stream
and 1 PE allocated to the R-stream.

An important design decision is how to allocate band-
width to multiple threads to minimize overall execution
time. For pure SMT, many sophisticated policies are possi-
ble [11]. Adaptive heuristics allocate bandwidth dynami-
cally based on control prediction accuracies, amount of
instruction-level parallelism exhibited by each thread, etc.

For AR-SMT, however, there is significantly less sched-
uling flexibility because the A-stream and R-stream are
tightly coupled via the Delay Buffer. More specifically, (1)
the R-stream cannot run ahead of the A-stream and (2) the
A-stream can only run ahead of the R-stream by an amount
equal to the length of the Delay Buffer. It is not clear how
much added benefit an SMT-like algorithm can yield over a
simple scheduler given these constraints; clearly this is an
area that demands further study.

The AR-SMT scheduling rules are consequently trivial.
The rules are based on keeping the Delay Buffer full and
only involve arbitration for the fetch/dispatch and retire-
ment stages.

1. Fetch/dispatch pipeline arbitration. If the Delay
Buffer is full, the R-stream is given priority to access
the fetch/dispatch pipeline.

2. Retirement stage arbitration: If the Delay Buffer is
not full, the A-stream has priority to retire a trace.

These rules cause deadlock if it were not for the follow-
ing definition of “full” in rule #1: the Delay Buffer is con-
sidered full when the number of free entries left (in terms
of traces) is equal to the number of PEs in the trace proces-
sor. Thus, there is always room to drain the A-stream from
the PEs into the Delay Buffer, in turn allowing the
R-stream to proceed.

2.2. New issues and operating system support

AR-SMT introduces new issues that do not arise with
pure SMT. The R-stream is not a true software context. It is
created on the fly by hardware and the operating system
(O/S) is unaware of it. Yet the R-stream must maintain a

separate physical memory image from the A-stream and
exceptional conditions must be properly handled.

2.2.1. Maintaining a separate memory image.The
R-stream, because it is delayed with respect to the
A-stream, needs a separate memory image (just as there is
a separate register “image” in the physical register file). A
simple solution is proposed here.
• The O/S, when allocating a physical page to a virtual

page in the A-stream context, will actually allocate two
contiguous physical pages. The first is for the A-stream
to use, and the second is for the R-stream to use. In this
way, there is still the appearance of a single address
space with a single set of protections, but simple redun-
dancy is added to the address space.

• Address translations are placed in the Delay Buffer for
use by the R-stream. This is the only virtual address
translation mechanism for the R-stream because no
page table entries are explicitly managed on its behalf.
Addresses are translated by taking the original transla-
tion and adding 1 to it.

Another solution is to make the O/S aware of the R-stream
as a true context (pure SMT).

2.2.2. Exceptions, traps, and context switches.Excep-
tions, traps, and context switches are handled by synchro-
nizing the A-stream and R-stream. When any such
condition is reached in the A-stream, the A-stream stalls
until the Delay Buffer completely empties. At this point the
two contexts are identical and the R-stream is terminated.
Now only the A-stream is serviced, swapped out, etc.,
which is required if the operating system has no knowledge
of the redundant thread. When resuming after a context
switch (or upon starting the program in general), the O/S
must guarantee that the duplicated pages have the same
state. This is required for the R-stream to function properly.

2.2.3. Real time I/O support.The method of synchroniz-
ing the A-stream and R-stream may not support critical I/O
applications in which real time constraints must be met.
One solution is to include the synchronization delay in real
time guarantees.

3. Performance evaluation

3.1. Simulation environment

A detailed, fully execution-driven simulator of a trace
processor [17] was modified to support AR-SMT time
redundancy. The simulator was developed using thesim-
plescalar simulation platform [24]. This platform uses a
MIPS-like instruction set and a gcc-based compiler to cre-
ate binaries.

The simulator only measures performance of the
microarchitecture.Fault coverage is not evaluated. It is

beyond the scope of this paper to characterize transient
faults in future microprocessors, and then develop and sim-
ulate a fault model based on this characterization. This is
left for future work.

Trace processor hardware parameters are not tabulated
here due to space limitations but can be found in [22][17].
The parameters most relevant to this paper are as follows.
• The maximum trace length is 16 instructions. Traces

are terminated only at indirect jumps/calls and returns.
• Depending on the experiment, the trace processor con-

sists of 4 or 8 PEs.
• Each PE can issue up to 4 instructions per cycle.

• Results are presented for only two threads sharing the
trace processor, the A-stream and the R-stream.

Five of the SPEC95 integer benchmarks (Table 1) were
simulated to completion.

3.2. Results

Two trace processor configurations were simulated, one
with 4 processing elements and one with 8 processing ele-
ments. Figure 6 shows AR-SMT execution timenormal-
ized with respect to the execution time of a single thread.
With 4 PEs, executing two redundant programs with
AR-SMT takes only 12% to 29% longer than executing
one program; with 8 PEs, it takes only 5% to 27% longer.
This is much better than the 100% overhead of pro-
gram-level time redundancy.

FIGURE 6. AR-SMT execution time normalized to
the execution time of a single thread.

Two factors contribute to the good performance of
AR-SMT. First, general purpose programs do not fully uti-
lize the peak bandwidth of high performance processors.
SMT exploits this by sharing processor bandwidth among
multiple threads. Second, the R-stream requires a signifi-

cantly lower fraction of the processor bandwidth because it
executes faster than the A-stream -- the R-stream has the
benefit of knowing in advance all control flow changes and
data values.

This second point is clearly demonstrated in Figure 7,
which shows the utilization of PEs by both the R-stream
and A-stream, measured for thegccbenchmark running on
an 8 PE trace processor. The graph shows the fraction of all
cycles that 0 PEs are used, 1 PE is used, 2 PEs are used,
etc. As expected, the R-stream utilizes much fewer PEs
than the A-stream. Although the total number of traces
executed by both streams is identical, R-stream traces are
serviced much faster due to perfect control and data flow
information. The vertical lines superimposed on the graph
show average utilization for both streams. On average, only
1.5 processing elements are in use by the R-stream.

Notice the average utilizations do not add up to 8. This
is because the A-stream “squashes” all traces after a
mispredicted branch, and one or more PEs will be idle until
they are dispatched new traces.

Two other conclusions can be drawn from Figure 6.
First, the overhead of AR-SMT is greater for benchmarks
that have higher instruction-level parallelism, namelygcc,
li , and jpeg. These benchmarks have high trace prediction
accuracy, and as a result the A-stream makes good utiliza-
tion of the trace processor. Therefore, taking resources
away from the A-stream has a larger impact relative to less
predictable benchmarks (go, compress).

Second, the overhead of AR-SMT is always lower with
8 PEs than with 4 PEs. Adding more PEs yields diminish-
ing returns for single thread performance, so the additional
PEs can be used relatively uncontested by the R-stream.
This is particularly true for benchmarks with poor trace
prediction accuracy --compressandgo show a significant
drop in AR-SMT overhead with 8 PEs. On the other hand,
the A-streams inli andjpegutilize 8 PEs and 4 PEs equally
well.

FIGURE 7. PE utilization (gcc , 8 PEs).

4. Summary

Both technology and microarchitecture trends have
interesting implications for fault tolerance in future high
performance microprocessors. On the one hand, technol-

TABLE 1. SPEC95 integer benchmarks used.
benchmark input dataset dynamic instruction count

compress 400000 e 2231 104 million
gcc -O3 genrecog.i 117 million
go 9 9 133 million
ijpeg vigo.ppm 166 million
xlisp queens 7 202 million

1

1.1

1.2

1.3

comp gcc go jpeg li

n
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e
(s

in
g

le
 t

h
re

ad
 =

 1
)

4 PE
8 PE

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

number of PEs used

%
 o

f
al

l c
yc

le
s

A-stream
R-stream

ogy-driven performance improvements potentially expose
microprocessors to a new fault environment, one in which
severely reduced tolerances result in frequent transient
faults throughout the chip. On the other hand, microarchi-
tecture trends can provide an overall solution for this new
fault environment.

AR-SMT is the microarchitecture-based fault-tolerant
solution put forth in this paper. Its development can be
summarized as follows.
• AR-SMT is a time redundancy technique that combines

the broad coverage of program-level time redundancy
with the high performance and fast fault detection/
recovery capability of instruction re-execution. It
achieves this by creating two separate programs (like
program-level redundancy) and running both programs
simultaneously (like instruction re-execution).

• AR-SMT leverages three important microarchitecture
trends -- advances that are likely to be implemented in
future microprocessors for high performance and man-
agement of complexity. The primary mechanism,
simultaneous multithreading, allows the active and
redundant streams to co-exist within the processor and
thus better utilize resources. Control flow and data flow
prediction concepts are applied to speed execution of
the redundant stream, and also exploit existing predic-
tion-validation hardware for detecting faults. Hierarchi-
cal processors are organized around large, replicated
processing elements; this coarse hardware redundancy
is exploited to detect permanent faults and dynamically
reconfigure the processor to work around the faults.

• Detailed simulations show that AR-SMT increases exe-
cution time by only 10% to 30% over a single thread.
The low overhead is attributed to improved utilization
of the highly parallel microprocessor and use of con-
trol/data flow information from the active thread to
speed execution of the redundant thread.

Acknowledgements
Kewal Saluja is gratefully acknowledged for his con-

stant encouragement.

References
[1] D. P. Siewiorek. Niche successes to ubiquitous invisibility:
Fault-tolerant computing past, present, and future.25th Fault-Tol-
erant Computing Symp., pages 26–33, June 1995.
[2] P. I. Rubinfeld. Virtual roundtable on the challenges and trends
in processor design: Managing problems at high speeds.Comput-
er, 31(1):47–48, Jan 1998.
[3] C. L. Chen and M. Y. Hsiao. Error-correcting codes for semi-
conductor memory applications: A state of the art review. InReli-
able Computer Systems - Design and Evaluation, pages 771–786,
Digital Press, 2nd edition, 1992.
[4] J. H. Patel and L. Y. Fung. Concurrent error detection in alu’s
by recomputing with shifted operands.IEEE Trans. on Comput-
ers, C-31(7):589–595, July 1982.

[5] G. Sohi, M. Franklin, and K. Saluja. A study of time-redun-
dant fault tolerance techniques for high-performance pipelined
computers. 19th Fault-Tolerant Computing Symp., pages
436–443, June 1989.
[6] N. K. Jha and J. A. Abraham. Techniques for efficient mos im-
plementation of totally self-checking checkers.15th Fault-Toler-
ant Computing Symp., pages 430–435, June 1985.
[7] N. Kanopoulos, D. Pantzartzis, and F. R. Bartram. Design of
self-checking circuits using dcvs logic: A case study.IEEE Trans.
on Computers, 41(7):891–896, July 1992.
[8] B. W. Johnson. Fault-tolerant microprocessor-based systems.
IEEE Micro, pages 6–21, Dec 1984.
[9] J. E. Smith and G. S. Sohi. The microarchitecture of supersca-
lar processors.Proc. IEEE, 83(12):1609–24, Dec 1995.
[10] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism.22nd Intl. Symp. on
Computer Architecture, pages 392–403, June 1995.
[11] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting choice: Instruction fetch and issue on an im-
plementable simultaneous multithreading processor.23rd Intl.
Symp. on Computer Architecture, pages 191–202, May 1996.
[12] J. E. Smith. A study of branch prediction strategies.8th Symp.
on Computer Architecture, pages 135–148, May 1981.
[13] T.-Y. Yeh and Y. N. Patt. Alternative implementations of
two-level adaptive branch prediction.19th Intl. Symp. on Comput-
er Architecture, May 1992.
[14] M. Lipasti. Value Locality and Speculative Execution. PhD
thesis, Carnegie Mellon University, April 1997.
[15] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The performance
potential of data dependence speculation and collapsing.29th Intl.
Symp. on Microarchitecture, pages 238–247, Dec 1996.
[16] F. Gabbay and A. Mendelson. Speculative execution based
on value prediction. Technical Report 1080, Technion - Israel In-
stitute of Technology, EE Dept., Nov 1996.
[17] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace
processors.30th Intl. Symp. on Microarchitecture, Dec 1997.
[18] M. Franklin and G. S. Sohi. The expandable split window
paradigm for exploiting fine-grain parallelism.19th Intl. Symp. on
Computer Architecture, May 1992.
[19] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar
processors.22nd Intl. Symp. on Computer Architecture, pages
414–425, June 1995.
[20] S. Vajapeyam and T. Mitra. Improving superscalar instruc-
tion dispatch and issue by exploiting dynamic code sequences.
24th Intl. Symp. on Comp. Architecture, pages 1–12, June 1997.
[21] J. Smith and S. Vajapeyam. Trace processors: Moving to
fourth-generation microarchitectures.IEEE Computer, Bil-
lion-Transistor Architectures, Sep 1997.
[22] E. Rotenberg. Ar-smt: Coarse-grain time redundancy for high
performance general purpose processors.Univ. of Wisc. Course
Project (ECE753), http://www.cs.wisc.edu/~ericro/course_
projects/course_projects.html, May 1998.
[23] N. Saxena and E. McCluskey. Dependable adaptive comput-
ing systems – the roar project.Intl. Conf. on Systems, Man, and
Cybernetics, pages 2172–2177, Oct 1998.
[24] D. Burger, T. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar toolset. Technical Report
CS-TR-96-1308, Univ. of Wisconsin, CS Dept., July 1996.

