
Requirements, Bottlenecks, and Good Fortune:
Agents for Microprocessor Evolution

YALE PATT, FELLOW, IEEE

Invited Paper

The first microprocessor, the Intel 4004, showed up in 1971. It
contained 2300 transistors and operated at a clock frequency of 108
kHz. Today, 30 years later, the microprocessor contains almost 200
million transistors, operating at a frequency of more than 1 GHz.
In five years, those numbers are expected to grow to more than a
billion transistors on a single chip, operating at a clock frequency
of from 6 to 10 GHz.

The evolution of the microprocessor, from where it started in 1971
to where it is today and where it is likely to be in five years, has
come about because of several contributing forces. Our position is
that this evolution did not just happen, that each step forward came
as a result of one of three things, and always within the context
of a computer architect making tradeoffs. The three things are: 1)
new requirements; 2) bottlenecks; and 3) good fortune. I call them
collectively agents for evolution.

This article attempts to do three things: describe a basic frame-
work for the field of microprocessors, show some of the important
developments that have come along in the 30 years since the ar-
rival of the first microprocessor, and finally, suggest some of the
new things you can expect to see in a high-performance micropro-
cessor in the next five years.

Keywords—Computer architecture, microarchitecture, micro-
processor, microprocessor design, microprocessor evolution.

I. BASIC FRAMEWORK

A. Computer Architecture: A Science of Tradeoffs

Computer architecture is far more “art” than “science.”
Our capabilities and insights improve as we experience more
cases. Computer architects draw on their experience with
previous designs in making decisions on current projects. If
computer architecture is a science at all, it is a science of
tradeoffs. Computer architects over the past half century have
continued to develop a foundation of knowledge to help them
practice their craft. Almost always the job of the computer ar-
chitect requires using that fundamental knowledge to make

Manuscript received May 29, 2001; revised August 6, 2001.
The author is with the University of Texas at Austin, Austin, TX

78712-1084 USA (e-mail: patt@ece.utexas.edu).
Publisher Item Identifier S 0018-9219(01)09681-5.

Fig. 1. The microprocessor today.

tradeoffs. This has been especially true throughout the evo-
lution of the microprocessor.

B. Levels of Transformation

Numbers of transistors and their switching times are re-
sources provided by process technology. What we use those
resources for depends on the demands of the marketplace.
How we use those resources is what the microprocessor is
all about. Fig. 1 shows the levels of transformation that a
problem, stated in some natural language like English, must
go through to be solved. In a real sense, it is the electrons that
actually do the work and solve the problem. However, since
we do not speak “electron” and electrons do not speak any
natural language, the best we can do is systematically trans-
form the problem through the levels shown on Fig. 1 until we
reach the electron (or device) level, that is, the 200 million
transistor, 1-GHz chip.

Along the way, the problem solution is first formulated as
an algorithm to remove the unacceptable characteristics of
natural language, such as ambiguity. It is then encoded in a
mechanical language and compiled to the instruction set ar-
chitecture (ISA) of the particular microprocessor. The ISA is
the agreed upon interface that: 1) the compiled program uses
to tell the microprocessor what it (the program) needs done
and 2) the microprocessor uses to know what it must carry out

0018–9219/01$10.00 © 2001 IEEE

PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001 1553

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 17:32 from IEEE Xplore. Restrictions apply.

in behalf of the program. The ISA is implemented by a set
of hardware structures collectively referred to as the micro-
processor’s microarchitecture. Each hardware structure and
its interconnections are made of electronic digital circuits,
which in turn are made of electronic devices.

When we say “microprocessor” today, we generally mean
the shaded region of Fig. 1. That is, each microprocessor con-
sists of circuits which implement hardware structures (col-
lectively called the microarchitecture) which provide an in-
terface (called the ISA) to the software. In the case of the
personal computer, the ISA is the IA-32, and the microarchi-
tecture is Intel’s Pentium IV, or in earlier days, the Pentium
III, Pentium II, Pentium Pro, 486, etc., or AMD’s K-8, or in
earlier days, K-7, K-6, etc.

There are other ISAs; for example, SPARC (from Sun Mi-
crosystems), Alpha (from Compaq), and Power-PC (from
Motorola and IBM). Each has its own idiosyncrasies that
makes it a better or worse interface for what a compiler can
deliver, or how the microarchitecture can carry out the work.
For each ISA, there are multiple distinct microarchitectures.
We have mentioned several for the IA-32. For the Alpha,
there are, for example, the 21064, 21164, and 21 264.

At each step in the hierarchy, from choice of algorithm, to
language, to ISA to microarchitecture, to circuits, there are
choices and therefore tradeoffs.

Often, but not always, the choice is between higher per-
formance and lower cost. An analogy to the automobile is
instructive. One can build a high-performance sports car that
can go from 0 to 100 mph in practically 0 seconds. But, it will
be very expensive. Or, one can build a very inexpensive au-
tomobile that could never get to 100 mph, but gets 100 miles
to a gallon of gasoline. One does not get performance and
economy. That is the tradeoff.

C. Design Points

The design of a microprocessor is about making relevant
tradeoffs. We refer to the set of considerations, along with
the relevant importance of each, as the “design point” for
the microprocessor—that is, the characteristics that are most
important to the use of the microprocessor, such that one
is willing to be less concerned about other characteristics.
Performance, cost, heat dissipation, and power consumption
are examples of characteristics that strongly affect a design
point. Another is “high availability”—one can design a mi-
croprocessor where the most important consideration is the
requirement that the microprocessor never fail. Some cus-
tomers are willing to accept lower performance or higher cost
if they can be assured that the microprocessor will never fail.
We call such a processor “fault tolerant,” or highly available.

Other customers are willing to sacrifice a little perfor-
mance, if it is combined with substantial savings in energy
requirements. This design point has become more and more
important as the power and energy requirements of the
highest performance chips have become unacceptably larger
and larger. Again, there is a tradeoff: highest performance
or power awareness.

It is worth noting that “power awareness” is different from
another important design point, “low power.” There are many
applications where the overriding consideration is that the
microprocessor operate for a long period of time using a very
small energy source.

In each case, it is usually the problem we are addressing
(see again Fig. 1) which dictates the design point for the mi-
croprocessor, and the resulting tradeoffs that must be made.

D. Application Space

The word “Problem” in Fig. 1 is a catch-all for the Ap-
plication Space, that is, the set of applications for which we
wish to use microprocessors. This set is increasing at a phe-
nomenal rate, and is expected to continue to do so. In fact,
as long as people dream up more uses for computers, the
need for microprocessors and the tradeoffs that each will
make will continue to expand. That is, the application space
(or, rather, the applications of central importance) drive the
design point. We have already mentioned high-availability
processors where the applications demand that the micro-
processor never fails. And low power processors where the
applications must be able to run for a long time on a small
amount of energy.

Other examples of the application space that continue to
drive the need for unique design points are the following:

1) scientific applications such as those whose computa-
tions control nuclear power plants, determine where to
drill for oil, and predict the weather;

2) transaction-based applications such as those that
handle ATM transfers and e-commerce business;

3) business data processing applications, such as those
that handle inventory control, payrolls, IRS activity,
and various personnel record keeping, whether the per-
sonnel are employees, students, or voters;

4) network applications, such as high-speed routing of
Internet packets, that enable the connection of your
home system to take advantage of the Internet;

5) guaranteed delivery (a.k.a. real time) applications that
require the result of a computation by a certain critical
deadline;

6) embedded applications, where the processor is a com-
ponent of a larger system that is used to solve the (usu-
ally) dedicated application;

7) media applications such as those that decode video and
audio files;

8) random software packages that desktop users would
like to run on their PCs.

Each of these application areas has a very different set of
characteristics. Each application area demands a different set
of tradeoffs to be made in specifying the microprocessor to
do the job.

E. The Basics of Processing

Simply put, a microprocessor processes instructions. To
do this, it has to do three things: 1) supply instructions to the
core of the processor where each instruction can do its job; 2)

1554 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 17:32 from IEEE Xplore. Restrictions apply.

supply data needed by each instruction; and 3) perform the
operations required by each instruction.

F. Instruction Supply

In the early days of supplying instructions, one instruction
was fetched at a time, decoded, and sent to the core for pro-
cessing. As time has passed, the number that can be fetched
at one time has grown from one to four, and shows signs of
soon growing to six or eight. Three things can get in the way
of fully supplying the core with instructions to process: in-
struction cache misses, fetch breaks, and conditional branch
mispredictions. When an access to the instruction cache fails,
the supply of instructions drops to zero until the cache miss
is serviced. A fetch break occurs when an instruction being
fetched is a taken branch, rendering useless all the subse-
quent instructions fetched in the same cycle, independent of
the issue width. A conditional branch misprediction means
that all instructions fetched since the mispredicted branch
represent wasted effort, and must be thrown away before pro-
ceeding along the correct instruction path.

G. Data Supply

To supply data needed by an instruction, one needs the
ability to have available an infinite supply of needed data,
to supply it in zero time, and at reasonable cost. Real data
storage can not accommodate these three requirements. The
best we can do is a storage hierarchy, where a small amount
of data can be accessed (on-chip) in one to three cycles, a lot
more data can be accessed (also, on-chip) in ten to 16 cycles,
and still more data can be accessed (off chip) in hundreds of
cycles. The result is that real data storage suffers from latency
to obtain a particular data element and the bandwidth neces-
sary to move that data element from its location in the storage
hierarchy to the core of the processor where it is needed.

As bad as this off-chip latency is today, it is getting worse
all the time. Improvements in processor cycle time continue
to grow at a much faster rate than memory cycle time. In a
few years we expect to see off-chip data accesses to memory
take thousands of processor cycles.

H. Instruction Processing

To perform the operations required by these instructions,
one needs a sufficient number of functional units to process
the data as soon as the data is available, and sufficient
interconnections to instantly supply a result produced by
one functional unit to the functional unit that needs it as a
source. However, sufficient interconnections are not enough.
As on-chip cycle times decrease, the latency required to
forward results produced by functional units in one part the
chip to functional units in other parts of the chip where these
results are needed as source operands gets worse.

II. A GENTS FOREVOLUTION

Many things have aided the development of the micropro-
cessor: The willingness of the buying public to scoop up what
the vendors produce—without a market, we would have all

gone home long ago. The creativity of engineers to come
up with answers where there were problems—without solu-
tions, there would be no evolution.

I submit that these things come second, and that the forcing
functions (which I have called Agents for Evolution) have
been new requirements, bottlenecks, and good fortune.

A. Agent I: New Requirements

Early microprocessors limited processing to what one
could achieve by fetching one instruction each cycle, de-
coding that instruction and forwarding it and its data to the
functional units in the core for processing. The demand for
higher performance dictated that fetching one instruction
each cycle was insufficient. The result is the wide-issue
microprocessor, where the fetch mechanism allows mul-
tiple instructions to be fetched, decoded and issued to the
execution core each cycle.

Another example, also due to requirements for high per-
formance, was the need for more than one instruction to be
processed at the same time. One can do only one ADD at a
time if one has only one ALU. The result was the inclusion
of multiple functional units in the execution core.

Today the prevailing new requirement involves power con-
sumption, or what is being referred to as power-aware com-
puting. The requirement is to provide the same level of com-
puter performance as a previous design, while consuming a
fraction of the power required for that previous design. Note
that this is different from the low-power requirement of em-
bedded processors, which has been an important design point
for some time.

There is a good deal of sentiment that tomorrow’s new
requirement will involve the human interface, which is de-
manding more and more attention as computer/human inter-
action becomes more and more pervasive.

B. Agent II: Bottlenecks

We have identified above the three components of instruc-
tion processing (instruction supply, data supply, and carrying
out the operations of the instruction), and what each entails.
By far, most of the improvements to the microprocessor have
come about due to attempts to eliminate bottlenecks that pre-
vent these three components from doing their jobs.

For example, instruction supply requires fetching some
number—today four—instructions each cycle. If these in-
structions were stored in memory, the time to fetch would
be too long. The bottleneck is the slow memory. Thus, the
instruction cache was invented.

If the hardware has the capability to fetch four instruc-
tions, but the second instruction is a conditional branch, only
two—not four—instructions would be fetched. The bottle-
neck, which is caused by the conditional branch, is the ar-
rangement of instructions in the order produced by the com-
piler, rather than the (dynamic) order in which the instruc-
tions are executed. The new feature, first added recently to
the Pentium IV, is the Trace Cache, which stores instructions
in the order in which they have recently been executed, not
in the (static) order designated by the compiler.

PATT: REQUIREMENTS, BOTTLENECKS, AND GOOD FORTUNE 1555

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 17:32 from IEEE Xplore. Restrictions apply.

Finally, if instructions are to be supplied every cycle, one
has a problem when encountering a branch in that the con-
dition that determines whether or not the branch should be
taken is not yet known. One could wait for that condition
to be resolved, temporarily halting the fetch of instructions
until this resolution occurs. That bottleneck was alleviated by
the introduction of branch predictors, which guess whether
the branch should be taken or not, and immediately fetch ac-
cording to this guess.

C. Agent III: Good Fortune

Good fortune happens when something causes a windfall
which can then be used to provide additional features to the
microprocessor. A good example of this is the technology
shrink that allows a next implementation of a microprocessor
to take up less space on the chip than the previous implemen-
tation did. With less space required by the old design, more
space is available for doing other things. Two examples of
other things that were introduced to the microprocessor in
this way were the on-chip floating point accelerator in the
mid 1980s and the multimedia instruction extension capa-
bility added on-chip in the late 1990s.

III. EVOLUTION: FROM 1971TO TODAY

The microprocessor has evolved dramatically from the
simple 2300 transistors of the Intel 4004 to what it is today.
As suggested above, that evolution was due to several
things. The result is that the Pentium IV of today bears little
resemblance to the Intel 4004 of 1971.

Some examples of that evolution are the following.

A. Pipelining

Early microprocessors processed one instruction from
fetch to retirement before starting on the next instruction.
Pipelining, which had been around at least since the 1960s
in mainframe computers, was an obvious solution to that
performance bottleneck. Commercially viable micropro-
cessors such as the Intel 8086 introduced the first step
toward pipelining in the late 1970s by prefetching the next
instruction while the current instruction was being executed.

B. On-Chip Caches

On-chip caches did not show up in microprocessors until a
few years later. The latency to get instructions and data from
off-chip memory to the on-chip processing elements was too
long. The result: an on-chip cache. The first commercially
viable microprocessor to exhibit an on-chip cache was the
Motorola MC68020, in 1984. In a pipelined processor, it is
useful to be able to fetch an instruction and fetch data in
the same cycle without the bottleneck of contending for the
one port to the cache. Once it became possible to put caches
on the chip, the next step was to cache separately instruc-
tions and data. Among the first microprocessors to include
separate on-chip instruction and data caches was Motorola’s
MC68030, in 1986.

A cache can either be fast or large, not both. Since the
cache had to be fast, it had to also be small, resulting in too

large a cache miss ratio. The problem with cache misses was
the delay to go off-chip to satisfy the miss was too large.
The result: two levels of cache on-chip, so that a miss in
the fast, small first level cache could be satisfied by a larger,
slower second level cache that was still a lot faster than going
off-chip. This feature did not show up on microprocessors
until the Alpha 21164 around 1994. Today, almost all high-
performance microprocessors have two levels of cache.

C. Branch Prediction

The benefits of pipelining are lost if conditional branches
produce pipeline stalls waiting for the condition on which the
branch is based to be resolved. Hardware (run-time) branch
predictors did not show up on the microprocessor chip until
the early 1990s. Some of the early microprocessors to intro-
duce run-time branch predictors were Motorola’s MC88110,
Digital’s Alpha 21064, and Intel’s Pentium.

D. On-Chip Floating Point Unit

Early microprocessors had a separate chip to handle
floating point operations. As transistors got smaller and
chips got larger, the transistor count reached the point
where the floating point unit could be placed on the same
chip with the main processing unit, utilizing “new” spare
capacity and saving unnecessary off-chip communication.
The Motorola MC88100 and the Intel 486 were two early
chips to incorporate the floating point unit on the main
processor chip in the late 1980s.

E. Additional Specialized Functional Units

Early microprocessors had one or very few functional
units. As the number of transistors on a chip grew, so also
the recognition that concurrent execution could be exploited
with multiple functional units. First such things as separate
address ALUs were added. Then a more sophisticated
load/store functional unit containing structures like write
buffers, a miss pending queue, and a mechanism for han-
dling memory disambiguation became a part of the general
microprocessor chip in the 1990s. Intel’s i860, in 1986, was
one of the first to have multiple specialized functional units,
one to assist graphical processing, in addition to the floating
point add and multiply units.

F. Out-of-Order Processing

The contract between the programmer/compiler and the
microarchitecture requires that instructions must be carried
out in the order specified by the translated program. This
produces a bottleneck each time an instruction that can
not be carried out prevents a subsequent instruction from
being executed if the subsequent instruction has all that it
needs to begin execution. The mechanism to get around this
bottleneck, out-of-order processing, had been known since
the mid-1960s on the IBM 360/91, for example. However,
the mechanism was restricted to high-performance scientific
computation, where it was claimed that being able to handle
precise exceptions was not a critical requirement. Current
acceptance of the IEEE Floating Point Standard by just

1556 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 17:32 from IEEE Xplore. Restrictions apply.

about all manufacturers suggests otherwise. Nonetheless,
although out-of-order execution had been used on main-
frames for 35 years, its use in combination with precise
exception handling first showed up on microprocessors in
the mid-1990s.

To accommodate out-of-order execution, the micropro-
cessor adopted the register aliasing and reservation stations
that had been used on earlier mainframes. To do so with
precise exceptions, the microprocessor had to add the
distinction between instruction execution and instruction
retirement. Instructions were allowed to execute whenever
their resources (data and functional units) became available,
independent of their order in the program, but were forced to
retire in the same order that they occurred in the executing
program. That is, the internal microarchitecture could exe-
cute instructions out of order, but had to report results (i.e.,
change the permanent state of the computation) in the order
the instructions occurred in the executing program. Doing
this required a structure for restoring the state in the case of
an exception. This state restoring mechanism is commonly
manifested as a Reorder Buffer on most microprocessors
today, and as a checkpoint retirement structure on a few.
Though other microprocessors showed the beginnings of
out-of-order execution earlier, the first to fully exploit the
concept was the Pentium Pro, in 1995.

G. Clusters

Single die size continues to increase, feature size continues
to decrease, and on-chip frequencies continue to increase.
The result is that a value produced by a functional unit at one
corner of the chip can not traverse the chip and be available
as a source to a functional unit at the opposite corner of the
chip in the next cycle. The result—partition the execution
core into clusters so that most of the time, results produced
by a functional unit in one cluster will be used by another
functional unit in the same cluster. One still has the problem
of knowing which cluster to steer a particular instruction to,
but if successful, the inordinate multiple cycle delay caused
by a result having to traverse a major part of the chip goes
away. This feature first appeared on the Alpha 21264 in the
late 1990s.

H. Chip Multiprocessor

An alternative use of the increasing richness of the die
(many more transistors, combined with faster operating fre-
quency) is to partition the chip into regions, with an identical
processor occupying each region. The paradigm is referred to
as CMP, for chip multiprocessor. For tasks that are easily par-
titionable into self-contained instruction streams, where sub-
stantial communication between the instruction streams is re-
quired, the CMP is a useful paradigm. It provides the added
benefit of interprocessor communication occurring on-chip,
where such communication is much faster than off-chip. IBM
introduced this feature in 2000, with two processors on its G4
chip.

I. Simultaneous Multithreading

Instruction supply suffers when the instruction cache ac-
cess results in a cache miss. A lot of capacity is wasted while
waiting for the cache miss to be satisfied. Burton Smith in
1978 [3] suggested using that spare capacity to fetch from
other instruction streams. The concept was first implemented
on his Donelcor HEP. The concept did not show up in the mi-
croprocessor world until the 1990s, where it was expanded to
allow fetching from alternate individual instruction streams
in alternate cycles, but executing from all instruction streams
concurrently in the same cycle, based upon the availability of
the required data. The first microprocessor to implement this
feature was the Pentium IV in 2000.

J. Fast Cores

On compute intensive tasks, the flow dependencies of
source operands waiting for the results produced by earlier
instructions can be a significant bottleneck. A solution—run
the execution core at a frequency much faster than the rest
of the microprocessor. The Pentium IV chip, introduced in
2000, has an operating frequency of 1.7 GHz, but an ALU
that operates at 3.4 GHz.

IV. THE ONE-BILLION -TRANSISTOR-CHIP FUTURE

As we have said, within the current decade, process tech-
nology is promising one billion transistors on a single die,
operating at a frequency of from 6 to 10 GHz. What will we
do with all that capability?

Computer architects today do not agree on the answer.
Some argue for extending the CMP idea that we described
above. The argument is that with one billion transistors, we
could put 100 microprocessors on a single chip, consisting of
10 million transistors each. The argument further states that
a 10 million transistor processor is still very substantial, and
building anything larger than that would just incur greater di-
minishing returns.

Others suggest an expanded use of simultaneous multi-
threading. They argue that many of the resources required
for a CMP could be shared on a single processor SMT chip,
freeing up the saved resources for other functionality such as
larger caches, better branch predictors, more functional units,
etc.

Some, including this author, note that while SMT is
certainly an improvement over CMP with respect to shared
resources, they both fall woefully short with respect to
speeding up most of the important nonscientific bench-
marks. The reason: Most of these benchmarks have the
disappointing characteristic, re: SMT, of consisting of a
single instruction stream. That and the notion that a very
expensive chip ought to address problems not solvable by a
multicomputer network made up of lots of smaller cheaper
chips argue for using all billion transistors to produce a very
high-powered uniprocessor.

Still others complain that since CAD tools are already un-
equal to the task of accurately validating our current chips,
it is irresponsible to design even more complex ones. They

PATT: REQUIREMENTS, BOTTLENECKS, AND GOOD FORTUNE 1557

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 17:32 from IEEE Xplore. Restrictions apply.

Fig. 2. The microprocessor tomorrow.

advocate a very simple core processor, combined with enor-
mous on-chip caches.

Those that are cost-centered (a very different design point)
recognize that higher levels of integration produce cheaper
products, and suggest using the one billion transistors that
will be available to put the entire nonaggressive system on
the one chip.

These are the alternative suggestions, and I suspect each
of them will show up in some product during the next ten
years. My own preference is to use the billion transistors
to evolve the highest performance uniprocessor that can
process single-instruction-stream applications. Agents to
catalyze this evolution remain as before: new requirements,
bottlenecks and good fortune. Some ideas we are likely to
see evolve are the following.

A. The New Microprocessor

Up to now, the microprocessor has been treated as shown
in Fig. 1. But why so? If we take our levels of transforma-
tion and include the algorithm and language in the micropro-
cessor, the microprocessor then becomes the thing that uses
device technology to solve problems. See Fig. 2. Why is it not
reasonable for someone wishing to design a microprocessor
that addresses some point in the application space to take into
account the special purpose algorithm needed to solve that
problem, and embed that algorithm in the microprocessor?
We do that today in low-cost embedded applications. Why
not in high-performance requirements where we are willing
to tolerate high costs?

This tailoring may take the form of reconfigurable logic,
discussed below, special dedicated instructions in the ISA, or
an integrated functional unit (like a DSP engine) provided on
the chip.

B. A New Data Path

On-chip frequencies are expected to be so high that serious
consideration must be given to the wire length of any signal
on the chip. Some signals will require multiple cycles to tra-
verse the chip, and one must examine carefully which signals
will be allowed to do that. Most signals will probably not be
allowed to. Therein lies the challenge: to redesign the data
path in light of the new constraint of wire length.

C. Internal Fault-Tolerance

Another consequence of the increasing on-chip frequen-
cies will be the susceptibility to soft errors—errors that will
be created intermittently and infrequently due to the physical
nature of the materials operating at the expected clock fre-
quencies. Future microprocessors will have to provide func-
tionality to check for and correct these soft errors as they
occur.

D. Asynchronous and Synchronous Units Coexisting

Already, clock skew is a serious problem. At 6 GHz it
is much worse. Admittedly, asynchronous structures are
tougher to design, but they do get around the problem of a
global clock that everything synchronizes on. And that is
sufficiently important that the challenge is worth addressing.
My expectation is that we will see structures that operate
asynchronously for some fixed period of time (measured in
clock cycles), after which they synchronize with the global
clock. Different structures will require different amounts of
time in which they need to operate asynchronously to get
around their unique skew problems.

E. Different Cycle Times for Different Functions

For those structures that operate synchronously, it is not
necessary that they all run at the rated frequency of the chip.
Parts that don’t need to go fast could be designed to go slow
and save on power, for example. The future transistor budget
can provide enormous flexibility to properly take advantage
of the variability of the on-chip needs.

An ALU running at twice the frequency of the rest of the
core is just the tip of the iceberg. The future microprocessor
could use the clock intelligently, greater speed where needed,
less speed where not needed, and very slow where speed is
not in the critical path at all.

F. New Materials

I have no clue where these materials will come from, but
Moore’s law continues to prevail despite the doomsayers that
show up every five years or so to spell its demise. Critical
materials are needed vis-a-vis on-chip conductivity, and even
more importantly, vis-a-vis power requirements and heat dis-
sipation. So, in the spirit of unadulterated wishful thinking, I
wish for engineering ingenuity to prevail again.

G. Expanded Use of Microcode

Off-chip bandwidth is expensive, on-chip bandwidth is
plentiful. My expectation: we will more effectively harness
on-chip bandwidth. The expanded use of microcode is a
way to do that. For example, microcoded routines could
exploit the spare capacity of underutilized functional units
in a subordinate role to the primary instruction stream.
We have coined the term subordinate simultaneous mi-
crothreading (SSMT) to reflect its role in an SMT machine
[4]. These microcoded routines could perform dynamic
recompilation, compute some compound instruction, tune

1558 PROCEEDINGS OF THE IEEE, VOL. 89, NO. 11, NOVEMBER 2001

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 17:32 from IEEE Xplore. Restrictions apply.

the cache replacement policy, or in some other way, perform
a calculation that allows the primary instruction stream to
execute faster.

H. Reconfigurable Logic

Consistent with Fig. 2, I expect many future microproces-
sors to address the requirements of specific applications. One
application could make good use of some logic function that
would be useless to other applications, while another appli-
cation could make good use of a different logic function that
would be useless to the first application. Perhaps both appli-
cations could be handled effectively by a microprocessor that
had the capability to do run-time tailoring. That is, I think an
on-chip structure, perhaps a low granularity FPGA, but more
likely a higher granularity reconfigurable logic structure, will
be common to future microprocessors.

I. Potpourri

Finally, I offer a list of features I expect to see in the high-
performance microprocessor of 2008 or 2009, or whenever it
is that process technology finally provides us with one billion
transistors on a single silicon die.

1) Expanded use of the trace cache, where dynamic in-
struction stream segments will consist of far more than
8 instructions per entry, probably pre-scheduled with
the help of the compiler (akin to the Block-structured
ISA or the rePLay mechanism), but tuned at run-time.

2) On-chip microcode for using the spare capacity of the
execution core to tune the on-chip hardware structures.

3) Dynamic recompilation of the executing program,
probably carried out by the fill unit, or on-chip mi-
crocode will be commonplace.

4) Multiple (at least three) levels of cache with corre-
sponding ISA additions (multiple prefetch and post-
store instructions) to move data closer to the core and
further way from the core in response to the core’s
need for that data.

5) Aggressive value prediction hardware, probably with
a procedure level granularity, and corresponding com-
piler optimizations to aid its effectiveness.

6) Performance monitoring hardware to allow tuning the
hardware at run-time to more effectively match the
needs of the executing program.

7) An on-chip structure for monitoring and affecting the
energy usage of the chip.

V. CONCLUSION

The microprocessor has enjoyed an exciting journey since
its invention in 1971. Few technologies can boast the enor-
mous strides it has made. Unfortunately, there are those who
would argue that the end of this golden era is just around the
corner. But such naysayers have been here before. They said
the MIPS R2000 was all the microprocessor anyone would
ever need in 1986, and ten years later they said the Intel Pen-

tium Pro was all the microprocessor that anyone would ever
need. The industry continues to do better, and the users of
that technology continue to make use of that “better.”

This is not to say that things will not change, that new
ingenuity is no longer needed. Downstream, we may need
a radical paradigm shift such as quantum computing to bail
us out, but we are hardly constrained right now.

Sure we need to develop better CAD tools. Current CAD
tools have trouble verifying the microprocessors of today,
let alone the suggestions in this article. And, sure we need
to think more broadly in our concept of the microprocessor
(Fig. 2, for example). But the bottom line is that Moore’s Law
is alive and well, and still providing plenty of opportunity.

ACKNOWLEDGMENT

This introduction has benefited from many interactions
over many years with many former and current students and
many former and current colleagues. The draft published
here has benefited explicitly from comments and criticisms
of S. J. Patel, R. Belgard, and R. Ronen. It should be noted
that an excellent and more detailed treatment of many of the
issues touched on here are provided in a paper by Ronen and
his colleagues at Intel [5], which this author recommends to
the reader.

REFERENCES

[1] H. Mazor, “The history of the microcomputer-invention and evolu-
tion,” Proc. IEEE, vol. 83, pp. 1601–1608, Dec. 1995.

[2] Intel web site [Online]. Available: http://www.intel.com/press-
room/kits/quickrefyr.htm#1971.

[3] B. Smith, “A pipelined, shared resource MIMD computer,” inProc.
1978 Int. Conf. Parallel Processing, Aug. 1978, pp. 6–8.

[4] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt,
“Simultaneous subordinate microthreading (SSMT),” inProc. 26th
Annu. Int. Symp. Computer Architecture, May 1999, pp. 186–195.

[5] R. Ronen, A. Mendelson, K. Lai, S.-L. Lu, F. Pollack, and J. P. Shen,
“Coming challenges in microarchitecture and architecture,”Proc.
IEEE, vol. 89, pp. 325–340, Mar. 2001.

Yale Patt (Fellow, IEEE) received the B.S. de-
gree from Northeastern University and the M.S.
and Ph.D. degrees from Stanford University, all
in electrical engineering.

He is Professor of Electrical and Computer En-
gineering and the Ernest Cockrell, Jr. Centennial
Chair at The University of Texas at Austin. He di-
rects the Ph.D. research of nine students on prob-
lems relating to the implementation of high-per-
formance microprocessors. He has been an ac-
tive consultant to the microprocessor industry for

more than 30 years. His particular love is teaching—both the first required
computing course for freshmen and the advanced graduate courses in mi-
croarchitecture. He recently co-authored with S. J. Patel a textbook,Intro-
duction to Computing Systems: From Bits and Gates to C and Beyond(New
York: McGraw-Hill, 2000) which is a major departure from the traditional
freshman course. It has already been adopted by more than 50 colleges and
universities.

Dr. Patt has been awarded the IEEE/ACM Eckert Mauchly Award (1996),
the IEEE Emmanuel R. Piore medal (1995), the IEEE Wallace W. McDowell
medal (1999), and the ACM Karl V. Karlstrom Outstanding Educator award
(2000). He is a Fellow of the ACM.

PATT: REQUIREMENTS, BOTTLENECKS, AND GOOD FORTUNE 1559

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 9, 2009 at 17:32 from IEEE Xplore. Restrictions apply.

