
Scalable High Performance Main Memory System Using
Phase-Change Memory Technology

Moinuddin K. Qureshi Vijayalakshmi Srinivasan Jude A. Rivers

IBM Research
T. J. Watson Research Center, Yorktown Heights NY 10598

{mkquresh, viji, jarivers}@us.ibm.com

ABSTRACT

The memory subsystem accounts for a significant cost and power
budget of a computer system. Current DRAM-based main memory
systems are starting to hit the power and cost limit. An alternative
memory technology that uses resistance contrast in phase-change
materials is being actively investigated in the circuits community.
Phase Change Memory (PCM) devices offer more density relative
to DRAM, and can help increase main memory capacity of future
systems while remaining within the cost and power constraints.

In this paper, we analyze a PCM-based hybrid main memory
system using an architecture level model of PCM. We explore the
trade-offs for a main memory system consisting of PCM storage
coupled with a small DRAM buffer. Such an architecture has the
latency benefits of DRAM and the capacity benefits of PCM. Our
evaluations for a baseline system of 16-cores with 8GB DRAM
show that, on average, PCM can reduce page faults by 5X and pro-
vide a speedup of 3X. As PCM is projected to have limited write
endurance, we also propose simple organizational and management
solutions of the hybrid memory that reduces the write traffic to
PCM, boosting its lifetime from 3 years to 9.7 years.

Categories and Subject Descriptors:

B.3.1 [Semiconductor Memories]: Phase Change Memory

General Terms: Design, Performance, Reliability.

Keywords: Phase Change Memory, Wear Leveling, Endurance,
DRAM Caching.

1. INTRODUCTION
Current computer systems consist of several cores on a chip, and

sometimes several chips in a system. As the number of cores in
the system increases, the number of concurrently running applica-
tions (or threads) increases, which in turn increases the combined
working set of the system. The memory system must be capable of
supporting this growth in the total working set. For several decades,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09, June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$10.00.

DRAM has been the building block of the main memories of com-
puter systems. However, with the increasing size of the memory
system, a significant portion of the total system power and the total
system cost is spent in the memory system. For example, Lefurgy et
al. [15] report that as much as 40% of the total system energy is con-
sumed by the main memory subsystem in a mid-range IBM eServer
machine. Therefore, technology researchers have been studying
new memory technologies that can provide more memory capacity
than DRAM while still being competitive in terms of performance,
cost, and power.

Two promising technologies that fulfill these criteria are Flash
and Phase Change Memory(PCM). Flash is a solid-state technol-
ogy that stores data using memory cells made of floating-gate tran-
sistors. PCM stores data using a phase-change material that can be
in one of two physical states: crystalline or amorphous. While both
Flash and PCM are much slower than DRAM, they provide supe-
rior density relative to DRAM. Therefore, they can be used to pro-
vide a much higher capacity for the memory system than DRAM
can within the same budget.

Figure 1 shows the typical access latency (in cycles, assuming a
4GHz machine) of different memory technologies, and their rela-
tive place in the overall memory hierarchy. Hard disk drive (HDD)
latency is typically about four to five orders of magnitude higher
than DRAM [6]. A technology denser than DRAM and access la-
tency between DRAM and hard disk can bridge this speed gap.
Flash-based disk caches have already been proposed to bridge the
gap between DRAM and hard disk, and to reduce the power con-
sumed in HDD [13]. However, with Flash being 28 times slower
than DRAM, it is still important to increase DRAM capacity to re-
duce the accesses to the Flash-based disk cache. The access latency
of PCM is much closer to DRAM, and coupled with its density ad-
vantage, PCM is an attractive technology to increase memory ca-
pacity while remaining within the system cost and power budget.
Furthermore, PCM cells can sustain 1000x more writes than Flash
cells, which makes the lifetime of PCM-based memory system in
the range of years as opposed to days for a Flash-based main mem-
ory system.

There are several challenges to overcome before PCM can be-
come a part of the main memory system. First, PCM being much
slower than DRAM, makes a memory system comprising exclu-
sively of PCM, to have much increased memory access latency;
thereby, adversely impacting system performance. Second, PCM
devices are likely to sustain significantly reduced number of writes
compared to DRAM, therefore the write traffic to these devices
must be reduced. Otherwise, the short lifetime may significantly
limit the usefulness of PCM for commercial systems.

������
������
������

������
������
������

2
1

2 2 2 2 2
5 9 13 17 21

L1 CACHE

SRAM

LAST LEVEL CACHE

EDRAM DRAM FLASHPCM HARD DRIVE

MAIN MEMORY SYSTEM

Typical Access Latency (in terms of processor cycles for a 4 GHz processor)

HIGH PERFORMANCE DISK SYSTEM

2 2 2 2
3 7 11 15

2
19

2
23

Figure 1: Latency of different technologies in memory hierarchy. Numbers accurate within a factor of two.

There is active research on PCM, and several PCM prototypes
have been proposed, each optimizing for some important device
characteristics (such as density, latency, bandwidth, or lifetime).
While the PCM technology matures, and becomes ready to be used
as a complement to DRAM, we believe that system architecture
solutions can be explored to make these memories part of the main
memory to improve system performance. The objective of this pa-
per is to study the design trade-offs in integrating the most promis-
ing emerging memory technology, PCM, into the main memory
system.

To be independent of the choice of a specific PCM prototype, we
use an abstract memory model that is D times denser than DRAM
and S times slower than DRAM. We show that for currently pro-
jected values of PCM (S ≈ 4, D ≈ 4), a main memory system
using PCM can reduce page faults by 5X, and hence execute appli-
cations with much larger working sets. However, because PCM is
slower than DRAM, main memory access time is likely to increase
linearly with S, which increases the overall execution time. There-
fore, we believe that PCM is unlikely to be a drop-in replacement
for DRAM. We show that by having a small DRAM buffer in front
of the PCM memory, we can make the effective access time and
performance closer to a DRAM memory.

We study the design issues in such a hybrid memory architecture
and show how a two-level memory system can be managed. Our
evaluations for a baseline system of 16-cores with 8GB DRAM
show that PCM-based hybrid memory can provide a speedup of 3X
while incurring only 13% area overhead. The speedup is within
10% of an expensive DRAM only system which would incur 4X
the area. We use an aggressive baseline that already has a large
Flash-based disk cache. We show that PCM-based hybrid memory
provides much higher performance benefits for a system without
Flash or with limited Flash capacity.

As each cell in PCM can endure only a limited number of writes,
we also discuss techniques to reduce write traffic to PCM. We de-
velop an analytical model to study the impact of write traffic on the
lifetime of PCM that shows how the “bytes per cycle” relates to av-
erage lifetime of PCM for a given endurance (maximum number of
writes per cell). We show that architectural choices and simple en-
hancements can reduce the write traffic by 3X which can increase
the average lifetime from 3 years to 9.7 years.

To our knowledge, this is the first study on architectural analysis
of PCM based main memory systems. We believe this will serve
as a starting point for system architects to address the challenges
posed by PCM, making PCM attractive to be integrated in the main
memory of future systems.

2. BACKGROUND AND MOTIVATION
With increasing number of processors in the computer system,

the pressure on the memory system to satisfy the demand of all
concurrently executing applications (threads) has increased as well.
Furthermore, critical computing applications are becoming more
data-centric than compute-centric [9]. One of the major challenges
in the design of large-scale, high-performance computer systems
is maintaining the performance growth rate of the system mem-
ory. Typically, the disk is five orders of magnitude slower than
the rest of the system [6] making frequent misses in system main
memory a major bottleneck to system performance. Furthermore,
main memory consisting entirely of DRAM is already hitting the
power and cost limits [15]. Exploiting emerging memory technolo-
gies, such as Phase-Change Memory (PCM) and Flash, become
crucial to be able to build larger capacity memory systems in the
future while remaining within the overall system cost and power
budgets. In this section, we first present a brief description of the
Phase-Change Memory technology, and highlight the strengths of
PCM that makes it a promising candidate for main memory of high-
performance servers. We present a simple model that is useful in
describing such emerging memory technologies for use in com-
puter architecture studies.

2.1 What is Phase-Change Memory?
PCM is a type of non-volatile memory that exploits the prop-

erty of chalcogenide glass to switch between two states, amorphous
and crystalline, with the application of heat using electrical pulses.
The phase change material can be switched from one phase to an-
other reliably, quickly, and a large number of times. The amor-
phous phase has low optical reflexivity and high electrical resistiv-
ity. Whereas, the crystalline phase (or phases) has high reflexivity
and low resistance. The difference in resistance between the two
states is typically about five orders of magnitude [24] and can be
used to infer logical states of binary data.

While the principle of using phase change materials for memory
cell was demonstrated in 1960s [23], the technology was too slow
to be of practical use. However, the discovery of fast crystalliz-
ing material such as Ge2Sb2Te5(GST) [27] and Ag- and In-doped
Sb2Te(AIST) [25] has renewed industrial interest in PCM and the
first commercial PCM products are about to enter the market. Both
GST and AIST can crystallize in less than 100ns compared to 10µs
or more for earlier materials [23]. PCM devices with extremely
small dimensions as low as 3nm × 20nm have been fabricated
and tested. A good discussion on scaling characteristics of PCM is
available in [24].

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

Contact

material
Phase−change

Access device

Insulator

Bitline

Wordline

Figure 2: Typical Phase-Change Memory Device

Figure 2 shows the basic structure of a PCM device [24]. The
PCM material is between a top and a bottom electrode with a heat-
ing element that extends from the bottom electrode, and establishes
contact with the PCM material. When current is injected into the
junction of the material and the heating element, it induces the
phase change. Crystallizing the phase-change material by heat-
ing it above the crystallization temperature (but below the melt-
ing temperature) is called the SET operation. The SET operation
is controlled by moderate power, and long duration of electrical
pulses and this returns the cell to a low-resistance state, and logi-
cally stores a 1. Melt-quenching the material is called the RESET
operation, and it makes the material amorphous. The RESET oper-
ation is controlled by high-power pulses which places the memory
cell in high-resistance state. The data stored in the cell is retrieved
by sensing the device resistance by applying very low power. The
Current-Voltage curve for PCM is shown in Figure 3 [24].

One of the critical properties that enables PCM is threshold switch-
ing [24]. To convert from crystalline to amorphous state, very high
voltage is required to deliver the high power. However, above a
particular threshold voltage, the conductivity of the material in the
amorphous state increases rapidly thereby generating large current
flows, and consequently heats the material. If the current pulse is
switched off as soon as the threshold voltage is reached, the mate-
rial returns to the high-resistance, amorphous state.

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

RESET region

Threshold
voltage

Read
voltage

region
SET

1.00

0.75

0.50

0.25

C
u
rr

e
n
t
(a

.u
.)

Voltage (a.u.)

Figure 3: Typical I-V curve for PCM device, demonstrating

threshold switching (a.u.= arbitrary units)

2.2 Why PCM for Main Memory?
PCM is a dense technology with feature size comparable to DRAM

cells. Furthermore, a PCM cell can be in different degrees of par-
tial crystallization thereby enabling more than one bit to be stored
in each cell, Recently, a prototype [4] with two logical bits in each
physical cell has been demonstrated. This means four states with
different degrees of partial crystallization are possible, which al-
lows twice as many bits to be stored in the same physical area.
Research is under way to store more bits per PCM cell.

Table 1 summarizes the properties of different memory tech-
nologies based on the data obtained from the literature [11][12]
[4][22][10][5][26][1]. Write endurance is the maximum number
of writes for each cell. Data retention is the duration for which
the non-volatile technologies can retain data. As PCM is still be-
ing researched, different sources quote different relative merits of
their PCM prototypes. Here we use the values of density, speed,
endurance for PCM as a summary from the different prototype pro-
jections, and this will serve as a reference point for a PCM design.

Table 1: Comparison of Memory Technologies

Parameter DRAM NAND NOR PCM
Flash Flash

Density 1X 4X 0.25X 2X-4X

Read Latency 60ns 25 us 300 ns 200-300 ns

Write Speed ≈1 Gbps 2.4 MB/s 0.5 MB/s ≈100 MB/s

Endurance N/A 10
4

10
4

10
6 to 10

8

Retention Refresh 10yrs 10yrs 10 yrs

From Table 1, it is obvious that the poor density of NOR Flash
makes it uncompetitive compared to DRAM for designing main
memory. NAND Flash has much better density than DRAM but
has significantly slow random access time (≈ 25us). The 400x
latency difference between DRAM and Flash means that DRAM
capacity will have to continue increasing in the future main mem-
ories. Furthermore, the poor write endurance of Flash would result
in unacceptably low lifetime (in days) for main memory system.
However, Flash has much better latency and power than HDD, and
is finding widespread use as a disk cache [13]. In our studies, we
assume that the disk system already has a large Flash-based disk
cache. However, we show that even with such an aggressive disk
system, main memory capacity is still a problem.

Among the emerging memory technologies, PCM has the most
promising characteristics. PCM offers a density advantage simi-
lar to NAND Flash, which means more main memory capacity for
the same chip area. The read latency of PCM is similar to NOR
Flash, which is only about 4X slower compared to DRAM. The
write latency of PCM is about an order of magnitude slower than
read latency. However, write latency is typically not in the criti-
cal path and can be tolerated using buffers. Finally, PCM is also
expected to have higher write endurance (106 to 108 writes) rel-
ative to Flash (104 writes). We believe that these capabilities of
PCM combined with lower memory cost makes PCM a promising
candidate for main memory of high-performance servers.

2.3 Abstract Memory Model
The focus of this work is to study the effect of overall system per-

formance by adding PCM as a complement to the DRAM memory.
In order to not restrict our evaluation of PCM to currently available
prototypes, we have adopted the approach of a generic memory
model that combines existing DRAM memory with a PCM mem-
ory. Therefore, in order to study the impact of adding PCM to main
memory we first develop a simple abstract model using DRAM as

(c) (d)(a)

DISK

PnP1

 DRAM
MEMORY

MAIN

(b)

DISK

PnP1

 DRAM
MEMORY

MAIN

FLASH

DISK

MEMORY

MAIN

PnP1

FLASH

PCM STORAGE

MEMORY

MAIN

DISK

DRAM

PnP1

FLASH

PCM STORAGE

Figure 4: Candidate main memory organizations (a) Traditional system (b) Aggressive system with Flash-based disk cache (c) System

with PCM (d) System with Hybrid memory system

a reference. The PCM technology is described as {D, S, Wmax}
which means the PCM is D times denser than DRAM, S times
slower read latency than DRAM and can endure a maximum of
Wmax writes per cell. For the purposes of our evaluation, we use
currently projected values1 for PCM technology and describe it as
{D = 4, S = 4, Wmax = 10Million}.

Using a PCM with S = 4 as a replacement of DRAM signif-
icantly increases the memory access latency, which can have an
adverse impact on system performance. Therefore, we explore the
trade-offs of using a combination of DRAM and PCM as part of the
main memory. Furthermore, the write endurance of PCM, although
orders of magnitude better than Flash, can still limit main memory
lifetime. The next section describes the organization and system
performance challenges in having such a hybrid main memory sys-
tem comprising of different technologies.

3. HYBRID MAIN MEMORY
Figure 4 (a) shows a traditional system in which DRAM main

memory is backed by a disk. Flash memory is finding widespread
use to reduce the latency and power requirement of disks. In fact,
some systems have only Flash-based storage without the hard disks;
for example, the MacBook Air [3] laptop has DRAM backed by a
64GB Flash drive. It is therefore reasonable to expect future high-
performance systems to have Flash-based disk caches [13] such as
shown in Figure 4(b). However, because there is still two orders of
magnitude difference in the access latency of DRAM memories and
the next level of storage, a large amount of DRAM main memory is
still needed to avoid going to the disks. PCM can be used instead of
DRAM to increase main memory capacity as shown in Figure 4 (c).
However, the relatively higher latency of PCM compared to DRAM
will significantly decrease the system performance. Therefore, to
get the best capacity and latency, Figure 4(d) shows the hybrid sys-
tem we foresee emerging for future high-performance systems. The
larger PCM storage will have the capacity to hold most of the pages
needed during program execution, thereby reducing disk accesses
due to paging. The fast DRAM memory will act as both a buffer for
main memory, and as an interface between the PCM main memory
and the processor system. We show that a relatively small DRAM
buffer (3% size of the PCM storage) can bridge most of the latency
gap between DRAM and PCM.

1PCM cells are smaller in size (4.8 F 2 per cell) compared to
DRAM cells (6-8 F 2 per cell) [2]. Each PCM cell can store mul-
tiple bits [4]. PCM is expected to scale better than DRAM [9].
Therefore, we assume PCM has 4X density compared to DRAM.

3.1 Hybrid Main Memory Organization
In a hybrid main memory organization, the PCM storage is man-

aged by the Operating System (OS) using a Page Table, in a man-
ner similar to current DRAM main memory systems. The DRAM
buffer is organized similar to a hardware cache that is not visible
to the OS, and is managed by the DRAM controller. Although, the
DRAM buffer can be organized at any granularity, we assume that
both the DRAM buffer and the PCM storage are organized at a page
granularity.

W

DATAT
P=1

T =

DATA

FROM FLASH/DISK

DRAM BUFFER

TAG: PCM TAG

PCM WRITE QUEUE

V TAG DP R

D: DIRTY BIT(S)

R: LRU BITS

P: PRESENT in PCM

V: VALID BIT

P=0

TO MEMORY
CONTROLLER

W = WearLevelShift

PCM STORAGE

If P=0 or D=1

Figure 5: Lazy Write Organization

Figure 5 shows our proposed hybrid main memory organization.
In addition to covering the larger read latency of PCM using a
DRAM buffer, this organization tolerates an order of magnitude
slower write latency of PCM using a write queue, and overcomes
the endurance limit of PCM using techniques to limit the number
of writes to the PCM memory. These mechanisms are discussed
in detail in the next few sections, along with a description of the
relevant portions of Figure 5.

3.2 Lazy-Write Organization
We propose the Lazy-Write organization which reduces the num-

ber of writes to the PCM and overcomes the slow write speed of the
PCM, both without incurring any performance overhead. When a
page fault is serviced, the page fetched from the hard disk (HDD)
is written only to the DRAM cache. Although allocating a page
table entry at the time of page fetch from HDD automatically allo-

cates the space for this page in the PCM, the allocated PCM page
is not written with the data brought from the HDD. This eliminates
the overhead of writing the PCM. To track the pages present only
in the DRAM, and not in the PCM, the DRAM tag directory is
extended with a “presence” (P) bit. When the page from HDD is
stored in the DRAM cache, the P bit in the DRAM tag directory is
set to 0. In the “lazy write” organization, a page is written to the
PCM only when it is evicted from the DRAM storage, and the P bit
is 0, or the dirty bit is set. If on a DRAM miss, the page is fetched
from the PCM then the P bit in the DRAM tag directory entry of
that page is set to 1. When a page with P bit set is evicted from
the DRAM, it is not written back to the PCM unless it is dirty. Fur-
thermore, to account for the larger write latency of the PCM a write
queue is associated with the PCM. We assume that tags of both the
write queue and the DRAM buffer are made of SRAM in order to
help in probing these structures while incurring low latency. Given
the PCM write latency, a write queue of 100 pages is sufficient to
avoid stalls due to write queue being full.

Compared to an architecture that installs in both storage (PCM
and DRAM), the “lazy write” architecture avoids the first write
in case of dirty pages. For example, consider the kernel of the
DAXPY application Y [i] = a · X[i] + Y [i]. In this case, “lazy
write” policy fetches page(s) for array Y only to DRAM. The PCM
gets a copy of the pages of Y only after it has been read, modi-
fied, and evicted from DRAM. If on the other hand page(s) for Y

were installed in the PCM at fetch time, then they would have been
written twice, once on fetch and again on writeback at the time of
eviction from DRAM. The number of PCM writes for the read only
page for X remains unchanged in both configurations.

3.3 Line-Level Writes
Typically, the main memory is read and written in pages. How-

ever, “endurance” limits of the PCM require exploring mechanisms
to reduce the number of writes to the PCM. We propose writing to
the PCM memory in smaller chunks instead of a whole page. For
example, if writes to a page can be tracked at the granularity of a
processor’s cache line, the number of writes to the PCM page can
be minimized by writing only “dirty” lines within a page. We pro-
pose Line Level WriteBack (LLWB), that tracks the writes to pages
held in the DRAM on the basis of processor’s cache lines. To do
so, the DRAM tag directory shown in Figure 5 is extended to hold
a “dirty” bit for each cache line in the page. In this organization,
when a dirty page is evicted from the DRAM, if the P bit is 1 (i.e.,
the page is already present in the PCM), only the dirty lines of the
page are written to the PCM. When the P bit of a dirty page chosen
for eviction is 0, all the lines of the page will have to be written to
the PCM. LLWB significantly reduces wasteful writes from DRAM
to PCM for workloads which write to very few lines in a dirty page.
To support LLWB we need dirty bits per line of a page. For exam-
ple, for the baseline system with 4096B page and 256B linesize, we
need 16 dirty bits per page in the tag store of DRAM buffer.

3.4 Fine-Grained Wear-Leveling for PCM
Memories with limited endurance typically employ wear-leveling

algorithms to extend their life expectancy. For example, in Flash
memories, wear-leveling algorithms arrange data in a manner so
that sector erasures are distributed more evenly across the Flash
cell array and single sector failures due to high concentration of
erase cycles are minimized. Wear leveling enables the host system
to perform its reads and writes to logical sector addresses, while the
wear leveling algorithm remaps logical sector addresses to different
physical sector addresses in the Flash array depending on write traf-
fic. For example, the wear-leveling algorithm of TrueFFS [16] file

system tracks the least used sectors in the Flash to identify where
to next write data.

We also assume that the baseline PCM system uses a wear-leveling
mechanism to ensure uniform usage of different regions of the PCM
memory. However, wear-leveling is typically done at a granularity
larger than page-size (e.g. 128KB regions) in order to reduce wear-
out tracking overhead [13].

LLWB reduces write traffic to PCM. However, if only some
cache lines within a page are written to frequently, they will wear
out sooner than the other lines in that page. We analyze the distri-
bution of write traffic to each line in a PCM page. Figure 6 shows
the total writeback traffic per dirty page for the two database appli-
cations, db1 and db2. The average number of writes per line is also
shown. The page size is 4KB and line size is 256B, giving a total
of 16 lines per page, numbered from 0 to 15.

0
2
4
6
8

10
12
14
16
18
20

 N
u

m
.
W

ri
te

s
fo

r
E

a
ch

 L
in

e
(M

il
li

o
n

)

Average

db1 db2
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6: Total write traffic for each of the sixteen lines (0-15)

for dirty pages in baseline system

For both db1 and db2 there is significant non-uniformity in which
lines in the page are written back. For example, in db1, Line0
is written twice as often as average. This means Line0 may get
endurance related failure in half the time. The lifetime of PCM
can be increased if the writes can be made uniform across all lines
in the page. This can be done by tracking number of writes on a
per line basis, however, this would incur huge tracking overhead.
We propose a technique, Fine Grained Wear-Leveling (FGWL), for
making the writes uniform (in the average case) while avoiding per
line storage. In FGWL, the lines in each page are stored in the PCM
in a rotated manner. For a system with 16 lines per page the rotate
amount is between 0 and 15 lines. If the rotate value is 0, the page
is stored in a traditional manner. If it is 1, then the Line 0 of the
address space is stored in Line 1 of the physical PCM page, each
line is stored shifted, and Line 15 of address space is stored in Line
0. When a PCM page is read, it is realigned. The pages are written
from the Write Queue to the PCM in a line-shifted format. On a
page fault, when the page is fetched from the hard disk, a Pseudo
Random Number Generator (PRNG) is consulted to get a random
4-bit rotate value, and this value is stored in the WearLevelShift
(W) field associated with the PCM page as shown in Figure 5. This
value remains constant until the page is replaced, at which point the
PRNG is consulted again for the new page allocated in the same
physical space of the PCM.

A PCM page is occupied by different virtual pages at different
times and is replaced often (several times an hour). Therefore, over
the lifetime of the PCM page (in years) the random rotate value
associated with each page will have a uniform distribution for the
rotate value of 0 through 15. Therefore, the average stress on each
physical page will be uniform. Figure 7 shows the write traffic per
dirty DRAM page with FGWL, for db1 and db2. FGWL makes the
write traffic uniform for all the lines in the PCM page, which means
the lifetime of PCM page is determined by the average-case write
traffic and not the worst-case write traffic to a line. Implementing
FGWL requires 4-bit storage per page (4KB).

0
2
4
6
8

10
12
14
16
18
20

 N
u

m
.
W

ri
te

s
fo

r
E

a
ch

 L
in

e
(M

il
li

o
n

)

Average

db1 db2
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7: Total write traffic for the sixteen lines (0-15) for dirty

pages using FGWL

3.5 Page Level Bypass for Write Filtering
Not all applications benefit from more memory capacity. For ex-

ample, streaming applications typically access a large amount of
data but have poor reuse. Such applications do not benefit from the
capacity boost provided by PCM. In fact, storing pages of such ap-
plications only accelerates the endurance related wear-out of PCM.
As PCM serves as the main memory, it is necessary to allocate
space in PCM when a page table entry is allocated for a page. But,
the actual writing of such pages in the PCM can be avoided by
leveraging the lazy write architecture. We call this Page Level By-
pass (PLB). When a page is evicted from DRAM, PLB invalidates
the Page Table Entry associated with the page, and does not install
the page in PCM. We assume that the OS enables/disables PLB for
each application using a configuration bit. If the PLB bit is turned
on, all pages of that application bypass the PCM storage.

4. EXPERIMENTAL METHODOLOGY

4.1 Workloads
We use a diverse set of applications from various suites, includ-

ing data-mining, numerical computation, Unix utilities, streaming
applications, and database workloads. Six out of the eight bench-
marks are data-parallel applications, each containing sixteen identi-
cal threads. These benchmarks are simulated to completion. Bench-
marks qsort and bsearch (binary search) are Unix utilities. Gauss
is a numerical algorithm used to solve linear equations. Kmeans is
a data-mining algorithm used primarily to classify data into multi-
ple clusters. In our studies, kmeans simulates 8 iterations of clus-
tering and re-centering between two cluster centers. Daxpy and
vdotp are streaming benchmarks derived from the stream suite [19].
These two benchmarks spend more time in array initialization than
in computation. So we do not collect statistics in the initialization
phase for these two benchmarks. We also use scaled versions of two
industry-standard database workloads, derived from a mainframe

sever. For both database workloads, db1 and db2, we simulate four
billion memory references (corresponding to a total transfer of 1
Tera Byte of data between memory and processors). Table 2 shows
the relevant characteristics of the benchmarks used in our studies,
including data-set size, page faults per million instructions for the
baseline 8GB memory, instructions/thread, and memory accesses
per thousand instructions (MAPKI).

4.2 Configuration
We use an in-house system simulator for our studies. The base-

line configuration is a sixteen-core system comprising of four 4-
core CMPs with the parameters given in Table 3. We use a simple
in-order processor model so that we can evaluate our proposal for
several hundred billion instructions in order to stress the multi-GB
main memory. Each core consists of private L1 and L2 caches, each
with a linesize of 256B. We keep the processor parameters constant
in our study.

Table 3: Baseline Configuration

System Sixteen cores (Four quad-core chips)

Processor Core single issue in-order, five stage pipeline, 4GHz

L1 caches (Private) I-cache and D-cache : 64 KB, 4-way 256B line

L2 cache (Private) 2MB, 16-way, LRU, 256B linesize

DRAM Memory 8GB, 320 cycles access latency,
8 ranks of 8 banks each, bank conflict modeled

Off-chip Bus 16B wide split-transaction bus, 2:1 speed ratio
Disk Cache (Flash) 32µs (128K cycles) avg. latency, 99% hit rate

Hard disk drive 2ms (8M cycles) average access latency

The baseline consists of an 8GB DRAM main memory which
can be accessed in 320 cycles if there are no bank conflicts. The
off-chip bus can transfer a cache line in 32 cycles and bus queuing
delays are modeled. A page size of 4KB is assumed. Virtual to
physical address translation is performed using a page table built
in our simulator. A clock style algorithm is used to perform page
replacements. If there is PCM storage, it is accessible at 4X the la-
tency of DRAM. In the hybrid memory configuration, the DRAM
buffer is 16-way with 4KB lines (same as page size), and is man-
aged using LRU replacement. The interconnect for PCM is as-
sumed to be identical to that between DRAM and processor.

We also assume that our memory system has a very aggressive
Flash-based disk cache (99% hit rate) so that the latency of page
faults is reduced considerably. Although such an aggressive con-
figuration will diminish the benefits of larger capacity PCM main
memory, we expect such efficient Flash caches to be used in future
high-performance systems. We discuss systems without a Flash
cache in Section 5.4.

Table 2: Benchmark Characteristics (Bn=Billions).

Name Description Data set for each thread PageF aults

Million inst
Inst/thread MAPKI

qsort Quick sort 14M entries, 128B each 21.5 114Bn 1.66
bsearch Binary search 7M entries, 256B each, 14M queries 2507 12Bn 20.8
kmeans Clustering, Data Mining 256K pts * 1K attrib of 8B each 48 175Bn 0.82
gauss Gauss Siedal method matrix 64K x 4K, 8B entry 97 97Bn 1.82
daxpy Do Yi = a · Xi + Yi X, Y are 100M entries x 8B each 156 2.6Bn 3.75
vdotp Vector dot product Xi · Yi X, Y are 100M entries x 8B each 205 2Bn 3.29

db1 Database OLTP 39.5 23Bn 10.86
db2 Database web-based database 119.5 22.9Bn 10.93

5. RESULTS AND ANALYSIS

5.1 Page Faults vs. Size of Main Memory
Figure 8 shows the number of page faults as the size of the main

memory is increased from 4GB to 32GB, normalized to the base-
line with 8GB. The bar labeledGmean denotes the geometric mean.
Both database benchmarks, db1 and db2, continue to benefit from
increasing the size of main memory. For bsearch, there are about
100X more page faults at 8GB than at 32GB. Gauss and Kmeans
frequently reuse a data-set of greater than 16GB. These bench-
marks suffer a large number of page misses, unless the memory
size is 32GB. Daxpy and vdotp do not reuse the page after ini-
tial accesses, therefore the number of page faults is independent
of main memory size. Overall, a 4X increase (8GB to 32GB) in the
memory capacity due to the density advantage of PCM reduces the
average number of page faults by 5X.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P
a

g
e

F
a

u
lt

s
N

o
rm

a
li

ze
d

 t
o

 8
G

B

4GB 8GB 16GB 32GB

db
1

db
2

qs
or

t

bs
ea

rc
h

km
ea

ns

ga
us

s

da
xp

y

vd
ot

p

G
m

ea
n

Figure 8: Number of page faults (normalized to 8GB) as size of

main memory is increased.

5.2 Cycles Per Memory Access
PCM can provide 4X more memory capacity than DRAM but

at 4X more latency. If the data-set resident in main memory is
frequently reused then the page-fault savings of the PCM system
may be offset by increased memory access penalty on each access.
Figure 9 shows the average cycles per memory access for four sys-
tems: baseline 8GB DRAM, 32GB PCM, 32GB DRAM (an ex-
pensive alternative), and 32GB PCM with 1 GB DRAM. For db2,
qsort, bsearch, kmeans, and gauss, the increased capacity of PCM
reduces average memory access time because of fewer page faults.
For db1, even though the increased capacity of PCM reduced page
faults by 46%, the average memory access time increases by 59%
because the working set is frequently reused. Both daxpy and vdopt
do not benefit from more capacity but suffer because of increased
memory latency. Having a 1GB DRAM buffer along-with PCM
makes the average memory access time much closer to the expen-
sive 32GB DRAM system.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 N
o
rm

.
C

y
cl

es
 P

er
 M

em
o
ry

 A
cc

es
s

8GB DRAM 32GB PCM 32GB DRAM 1GB DRAM+32GB PCM

db
1

db
2

qs
or

t

bs
ea

rc
h

km
ea

ns

ga
us

s

da
xp

y

vd
ot

p

G
m

ea
n

Figure 9: Average cycles per memory access (normalized to the

baseline 8GB DRAM system).

5.3 Normalized Execution Time
Figure 10 shows the normalized execution time of the four sys-

tems discussed in the previous section. The reduction in average
memory access time correlates well with the reduction in execu-
tion time. On average, relative to the baseline 8GB system, the
PCM-only 32GB system reduces execution time by 53% (speedup
of 2.12X) and the 32GB DRAM only system reduces it by 70%
(speedup of 3.3X). Whereas, the hybrid configuration reduces it by
66.6% (speedup of 3X). For five out of the eight benchmarks, exe-
cution time reduces by more than 50% with the hybrid memory sys-
tem. Thus, the hybrid configuration provides the performance ben-
efit similar to increasing the memory capacity by 4X using DRAM,
while incurring only about 13% area overhead while the DRAM-
only system would require 4X the area.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

 N
o
rm

a
li

ze
d

 E
x
ec

u
ti

o
n

 T
im

e

8GB DRAM 32GB PCM 32GB DRAM 1GB DRAM+32GB PCM

db
1

db
2

qs
or

t

bs
ea

rc
h

km
ea

ns

ga
us

s

da
xp

y

vd
ot

p

G
m

ea
n

Figure 10: Execution time (normalized to 8GB DRAM).

5.4 Impact of Hard-Disk Optimizations
In our baseline we used an aggressive Flash-based disk cache

with 99% hit rate. Figure 11 shows the speedup obtained with the
hybrid memory (1GB DRAM + 32GB PCM) over 8GB DRAM for
four systems: a Flash only disk system, a Flash-cache with 99%
hit rate, 90% hit rate, and a traditional system with no Flash-based
disk cache. As, the benchmark bsearch has very large speedups
the geometric mean without bsearch, namely GmeanNoB, is also
shown. For current systems with limited size (or without) Flash-
based disk cache the speedups are much higher than reported with
our aggressive baseline. For the Flash-only disk system, the hybrid
memory system provides an average speedup of 2.5X (2X exclud-
ing bsearch). For a limited sized disk cache with 90% hit-rate,
the hybrid memory system provides an average speedup of 4.46X
(3.27X excluding bsearch). Whereas, for a traditional disk-only
system, the hybrid memory provides an average speedup of 5.3X
(3.7X excluding bsearch). Thus, regardless of the HDD optimiza-
tions, hybrid main memory provides significant speedups.

 OnlyFlashNoHDD

 FlashHit-99%

 FlashHit-90%

 NoFlashOnlyHDD

S
p

ee
d

u
p

 U
si

n
g

 P
C

M

db
1

db
2

qs
or

t

bs
ea

rc
h

km
ea

ns

ga
us

s

da
xp

y

vd
ot

p

G
m

ea
n

G
m

ea
nN

oB
 1

2

4

8

16

32

64

3

6

12

24

48

Figure 11: Speedup of Hybrid Memory over baseline as Flash

cache is varied. Note: Y-axis is in log scale.

5.5 Impact of PCM Latency
We have assumed that PCM has 4X higher read latency than

DRAM. In this section, we analyze the benefit of hybrid memory
system as the read latency of PCM is varied. Figure 12 shows the
average execution time of the eight workloads normalized to the
8GB DRAM system for PCM-only system and the hybrid memory
system as PCM read latency is increased from 2X to 16X. For refer-
ence, the average execution time for the 32GB DRAM-only system
is also shown. As the read latency of PCM is increased from 2X to
16X, the average execution time of the PCM-only system increases
from 0.35 to 1.09. Thus, the higher read latency of PCM hurts per-
formance even with 4X boost in capacity. The PCM-based hybrid
system, however, is much more robust to PCM read latency. As
the read latency of PCM is increased from 2X to 16X, the average
execution time of the hybrid system increases from 0.33 to only
0.38.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 N
o
rm

a
li

ze
d

 E
x
ec

.
T

im
e

(A
v
er

a
g
e)

1X 2X 4X 8X 16X 2X 4X 8X 16X 1X

8GB DRAM 32GB Only-PCM 1GB DRAM+32GB PCM 32GB DRAM

Figure 12: Normalized Execution Time of PCM-only and hy-

brid systems as PCM read latency is varied (Note: PCM latency

is defined relative to DRAM latency (1X)).

5.6 Impact of DRAM-Buffer Size
The DRAM buffer reduces the effective memory access time

of the PCM-based memory system relative to an equal capacity
DRAM memory system. A large DRAM buffer reduces the latency
difference between the two memory systems, but incurs more area
overhead. Figure 13 shows the execution time of the hybrid sys-
tem with 32GB PCM and DRAM buffer size varying from 0.25GB
to 1GB to 2 GB to 8GB. Note that the execution time is normal-
ized to the 32GB DRAM-only system and not the baseline. Except
bsearch, all benchmarks have execution time with 1GB DRAM
buffer very close to the 32GB DRAM system. Thus, a 1GB DRAM
buffer provides a good trade-off between performance benefit and
area overhead.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
o
rm

a
li

ze
d

 E
x
ec

.
T

im
e

(3
2
G

B
 D

R
A

M
)

QGB 1GB 2GB 8GB

2.479

db
1

db
2

qs
or

t

bs
ea

rc
h

km
ea

ns

ga
us

s

da
xp

y

vd
ot

p

G
m

ea
n

Figure 13: Execution time of hybrid memory (with 32GB PCM)

when the size of the DRAM buffer is varied. All values are

normalized to the 32GB DRAM system.

5.7 Storage Overhead of Hybrid Memory
Table 4 shows the storage overhead for the hybrid memory con-

sisting of 32GB PCM and a 1GB DRAM. The significant addi-
tional area overhead is the DRAM buffer. In addition to data, each
entry in the DRAM buffer requires 31 bits of tag-store (1 valid bit
+ 16 dirty bits + 9-bit tag + 4-bit LRU + P bit). We assume that
the tags of the DRAM buffer are made of SRAM in order to have
fast latency. Relative to the 8GB of DRAM main memory for the
baseline, all the overhead is still less that 13% (We pesimistically
assume SRAM cells incur 20 times the area of DRAM cells [2]).

Table 4: Storage Overhead wrt 8GB DRAM Memory

Structure Storage overhead

1 GB DRAM Buffer Data 1GB DRAM
1GB DRAM Buffer Tag 1MB SRAM

(4byte/page * 256K pages)

100-entry PCM write queue 400KB SRAM

Wear-leveling counters 4MB DRAM
(4bit/page * 8M pages)

Total storage overhead (%) 1.005 GB (12.9%)

5.8 Power and Energy Implications
Figure 14 shows the three key metrics: power, energy, and energy-

delay product for the memory system of the baseline (8GB DRAM),
hybrid memory (1GB DRAM + 32GB DRAM) and 32GB DRAM-
only memory. All values are reported normalized to the baseline
and are computed as geometric mean over the 8 benchmarks. For
the DRAM storage we assumed DDR3 type memories and used
the Micron System Power Calculator [21]. For the PCM system
we used values of idle-power, read-power and write-power of PCM
relative to DRAM, based on the PCM prototypes [14].

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 N
o

rm
a

li
ze

d
 V

a
lu

es

PCM

DRAM

 Power Energy EnergyDelayProd

(a) Baseline 8GB DRAM

(b) 1GB DRAM + 32GB PCM

(c) 32GB DRAM

a b c a b c a b c

Figure 14: Power, Energy, and Energy Delay Product of mem-

ory systems normalized to the Baseline.

The hybrid memory system consumes 33% more power than the
baseline but most (80%) of the power is consumed by the DRAM
buffer. In comparison, the system with 32 GB DRAM, consumes
twice the power. The power increase for both of these systems
come from the reduced overall execution time relative to the base-
line. For the hybrid memory PCM consumes only 20% of the
power. This is because the DRAM buffer filters out most of the
PCM accesses and our proposed mechanisms further reduce write
accesses to PCM.

Both the hybrid memory and 32GB DRAM-only systems con-
sume much less energy than the baseline. On average, the hybrid
system consumes 45% the energy, compared to 59% for the 32GB
DRAM system. These results confirm that the PCM-based hybrid
memory is a practical power-performance efficient architecture to
increase memory capacity.

6. IMPACT OF WRITE ENDURANCE
PCM has significantly less write endurance compared to DRAM.

PCM storage in a hybrid memory system receives write traffic when
a newly fetched page from disk is installed in PCM, or when a page
already present in PCM gets writeback updates from the DRAM
buffer. To analyze the impact of write traffic on the lifetime of
PCM, we first develop an analytical model.

For a FHz processor that operates for Y years, the PCM main
memory must last for Y · F · 225 processor cycles, given that there
are ≈ 225 seconds in a year. Let PCM be of size S bytes which is
written at a rate of B bytes per cycle. Let Wmax be the maximum
number of writes that can be done to any PCM cell. Assuming
writes can be made uniform for the entire PCM capacity, we have

S

B
· Wmax = Y · F · 225

(1)

Wmax =
Y · F · B

S
· 225

(2)

Thus, a 4GHz system with S=32GB written at 1 byte/cycle, must
have Wmax ≥ 224 to last 4 years. Table 5 shows the average bytes
per cycle (BPC) written to the 32 GB PCM storage. The PCM-only
system has BPC of 0.317 (average lifetime of 7.6 years), but that is
primarily because the system takes much more time than DRAM to
execute the same program. Therefore, the lifetime of the PCM-only
system is not useful, and in-fact misleading. The more practical
PCM memory system is the hybrid with 1GB DRAM which has an
average BPC of 0.807 (lifetime of 3 years). To improve PCM life-
time we proposed three2 techniques to reduce the write traffic from
DRAM to PCM. First, Lazy Write (Section 3.2) which avoids the
first write to PCM for dirty pages. Second, Line Level WriteBack
(LLWB) (Section 3.3), that tracks which lines in the page are dirty
and writes only those lines from DRAM to PCM when the DRAM
page is evicted. Third, Page Level Bypass (PLB) (Section 3.5) for
applications that have poor reuse in PCM. We enable PLB only for
daxpy and vdotp, for which PLB completely eliminates writes to
PCM.

Table 5 also shows the write traffic and average lifetime when
each of the three optimizations are added one after another to the
hybrid memory configuration. Lazy Write reduces BPC from 0.807
to 0.725 (lifetime of 3.4 years). LLWB reduces BPC to 0.316 (av-
erage lifetime of 7.6 years) and enabling PLB on top of LLWB in-
creases lifetime to 9.7 years. Thus, design choices and architecture
of main memory significantly affects the lifetime of PCM.

2The Fine-Grained Wear Leveling (FGWL) technique described in
Section 3.4 does not reduce write traffic. It tries to ensure uniform
wear-out of lines within a PCM page so that we can use average
write traffic in calculating the lifetime (assuming writes across dif-
ferent pages are made uniform using some page-level wear leveling
algorithm).

7. RELATED WORK
A NAND Flash based file buffer cache is used in [13] to reduce

the main memory power. However, Flash is still 28 times slower
than DRAM, implying that increasing DRAM capacity is still im-
portant to reduce accesses to the Flash-based disk cache. Our work
is complementary to [13], and in fact in our evaluations we do as-
sume that the HDD is supported by an aggressive FLASH cache.
Furthermore, [13] uses improved error correction for FLASH mem-
ories, which does not increase the lifetime of each individual cell.
Whereas, we focus on reducing the write traffic to PCM so that
each cell wears out after a longer time. Both approaches can be
used together for greater benefit than either scheme standalone.

Challenges and issues of using SRAMs for main memory is dis-
cussed in [17]. The first level of main memory is an SRAM, fol-
lowed by the traditional DRAM memory. The goal of the study
was to improve the memory speed, and not address the cost, or
power limits of the DRAM memory. The SRAM memory is in fact
lest denser, and consumes more power than the DRAM memory.
However, the challenges highlighted in their work, namely, effi-
cient address translation for a 2-level memory organization, page
size optimizations for the SRAM and DRAM, changes in the OS
to accommodate two level memories are still valid for our hybrid
DRAM and PCM memory systems.

In a related work [7, 8], a multi-level main memory organization
is evaluated showing that allocating only 30% of the memory to be
accessed in DRAM speed, and the rest at a slower rate does not
significantly impact performance, and allows the use of techniques
such as memory compression, and dynamic power management of
different regions of memory. Their work still uses DRAM as the
memory for the multiple levels in the hierarchy, and does not use
hybrid memory technologies. However, the key finding in [7] that
it is possible to tolerate a longer access latency to a major part of
the main memory inspired our work on using hybrid memory tech-
nologies to increase the overall main memory capacity.

A virtualization-based methodology to study hybrid memories is
presented in [28]. However, that work focuses only on methodol-
ogy, whereas we focus on management and organization of hybrid
memories to get larger capacity while improving the overall system
cost, power, and lifetime.

Mangalagiri et al. [18] propose to use PCM based on-chip caches
to reduce power. However, we believe that the slower latency and
limited endurance of PCM makes it useful only after DRAM and
not as on-chip caches.

For increasing DRAM capacity, MetaRAM [20] use the MetaS-
DRAM chipset between the memory controller and the DRAM
which allows up to 4X more mainstream DRAM to be integrated
into existing DIMMs without any changes to hardware. However,
this still does not address the issue of growth in the cost or power
for main memory. It only allows the users who are willing to pay
a higher cost for DRAM to have higher capacity within the same
motherboard space.

Table 5: Average number of bytes per cycle written to PCM (and PCM lifetime if Wmax = 107)

Configuration db1 db2 qsort bsearch kmeans gauss daxpy vdotp Average Average Lifetime

PCM 32GB 0.161 0.186 0.947 0.127 0.138 0.305 0.400 0.269 0.317 7.6 yrs

+1GB DRAM 1.909 1.907 1.119 0.150 0.190 0.468 0.422 0.288 0.807 3.0 yrs

+ Lazy Write 1.854 1.866 1.004 0.078 0.096 0.354 0.274 0.276 0.725 3.4 yrs

+ LLWB 0.324 0.327 0.797 0.078 0.096 0.354 0.274 0.276 0.316 7.6 yrs

+ PLB 0.324 0.327 0.797 0.078 0.096 0.354 0 0 0.247 9.7 yrs

8. SUMMARY
The need for memory capacity continues to increase while the

main memory system consisting of DRAM has started hitting the
cost and power wall. An emerging memory technology, Phase
Change Memory (PCM), promises much higher density than DRAM
and can increase the main memory capacity substantially. However,
PCM comes with the drawback of increased access latency and lim-
ited number of writes. In this paper we studied the impact of using
PCM as main memory and make the following contributions:

1. To our knowledge, this is the first architectural study that pro-
poses and evaluates PCM for main memory systems. We pro-
vide an abstract model for PCM and show that for currently
projected values, PCM can increase main memory capacity
by 4X and reduce page faults by 5X on average.

2. As PCM is slower than DRAM, we recommend that it be
used in conjunction with a DRAM buffer. Our evaluations
show that a small DRAM buffer (3% the size of PCM stor-
age) can bridge the latency gap between PCM and DRAM.
We also show that for a wide variety of workloads the PCM-
based hybrid system provides an average speedup of 3X while
requiring only 13% area overhead.

3. We propose three techniques: Lazy Write, Line Level Write-
back, and Page Level Bypass to reduce the write traffic to
PCM. We show that these simple techniques can reduce the
write traffic by 3X and increase the average lifetime of PCM
from 3 years to 9.7 years.

4. We propose Fine Grained Wear Leveling (FGWL), a simple
and low-overhead technique to make the wear-out of PCM
storage uniform across all lines in a page. FGWL requires
4-bit per 4KB page.

We believe the architecture-level abstractions used in this work
will serve as a starting point for system architects to address the
challenges posed by PCM, which will make PCM attractive for the
main memory of future systems.

Acknowledgments

The authors thank Ravi Nair, Robert Montoye, Partha Ranganathan
and the anonymous reviewers for their comments and feedback. We
also thank Pradip Bose for his support during this work.

9. REFERENCES

[1] The Basics of Phase Change Memory Technology.
http://www.numonyx.com/Documents/WhitePapers/
PCM_Basics_WP.pdf.

[2] International Technology Roadmap for Semiconductors,
ITRS 2007.

[3] Apple Computer Inc. Apple Products. http://www.apple.com.
[4] F. Bedeschil et al. A multi-level-cell bipolar-selected

phase-change memory. In 2008 IEEE International
Solid-State Circuits Conference, pages 428–430, Feb. 2008.

[5] E. Doller. Flash Memory Trends and Technologies. Intel
Developer Forum, 2006.

[6] E.Grochowski and R. Halem. Technological impact of
magnetic hard disk drives on storage systems. IBM Systems.
Journal, 42(2):338–346, 2003.

[7] M. Ekman and P. Stenstrom. A case for multi-level main
memory. InWMPI ’04: Proceedings of the 3rd workshop on
Memory performance issues, pages 1–8, 2004.

[8] M. Ekman and P. Stenstrom. A cost-effective main memory
organization for future servers. In IPDPS ’05: Proceedings
of the 19th IEEE International Parallel and Distributed
Processing Symposium, 2005.

[9] R. Freitas and W. Wilcke. Storage-class memory: The next
storage system technology. IBM Journal of R. and D.,
52(4/5):439–447, 2008.

[10] HP.Memory technology evolution: an overview of system
memory technologies, technology brief, 7th edition, 1999.

[11] C.-G. Hwang. Semiconductor memories for IT era. In 2002
IEEE International Solid-State Circuits Conference, pages
24–27, Feb. 2002.

[12] J. Javanifard et al. A 45nm Self-Aligned-Contact Process
1Gb NOR Flash with 5MB/s Program Speed. In 2008 IEEE
International Solid-State Circuits Conference, pages
424–426, Feb. 2008.

[13] T. Kgil, D. Roberts, and T. Mudge. Improving NAND Flash
Based Disk Caches. In ISCA ’08: Proceedings of the 35th
annual international symposium on Computer architecture,
pages 327–338, 2008.

[14] K. J. Lee et al. A 90nm 1.8V 512Mb Diode-Switch PRAM
with 266 MB/s Read Throughput. isscc08, 43(1):150–162,
2008.

[15] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,
and T. W. Keller. Energy management for commercial
servers. IEEE Computer, 36(12):39–48, Dec. 2003.

[16] M-Systems. TrueFFS Wear-leveling Mechanism.
http://www.dataio.com/pdf/NAND/MSystems/
TrueFFS_Wear_Leveling_Mechanism.pdf.

[17] P. Machanick. The Case for SRAM Main Memory.
Computer Architecture News, 24(5):23–30, 1996.

[18] P. Mangalagiri, K. Sarpatwari, A. Yanamandra,
V. Narayanan, Y. Xie, M. J. Irwin, and O. A. Karim. A
low-power phase change memory based hybrid cache
architecture. In Proceedings of the 18th ACM Great Lakes
symposium on VLSI, pages 395–398, 2008.

[19] J. McCalpin. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer
Society Technical Committee on Computer Architecture
(TCCA) Newsletter, Dec. 1995.

[20] MetaRAM, Inc. MetaRAM. http://www.metaram.com/.
[21] Micron. Micron System Power Calculator.

http://www.micron.com/support/part_info/powercalc.
[22] D. Nobunagal et al. A 50nm 8Gb NAND Flash Memory with

100MB/s Program Throughput and 200MB/s DDR Interface.
In 2008 IEEE International Solid-State Circuits Conference,
pages 426–427, Feb. 2008.

[23] S. R. Ovshinsky. Reversible electrical switching phenomena
in disordered structures. Phys. Rev. Lett., 21(20), 1968.

[24] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C.
Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L.
Lung, and C. H. Lam. Phase-change random access memory:
A scalable technology. IBM Journal of R. and D.,
52(4/5):465–479, 2008.

[25] J. Tominaga, T. Kikukawa, M. Takahashi, and R. T. Phillips.
Structure of the Optical Phase Change Memory Alloy,
AgVInSbTe, Determined by Optical Spectroscopy and
Electron Diffraction,. J. Appl. Phys., 82(7), 1997.

[26] C. Weissenberg. Current & Future Main Memory Technology
for IA Platforms. Intel Developer Forum, 2006.

[27] N. Yamada, E. Ohno, K. Nishiuchi, and N. Akahira.
Rapid-Phase Transitions of GeTe-Sb2Te3 Pseudobinary
Amorphous Thin Films for an Optical Disk Memory. J. Appl.
Phys., 69(5), 1991.

[28] D. Ye, A. Pavuluri, C. Waldspurger, B. Tsang, B. Rychlik,
and S. Woo. Prototyping a hybrid main memory using a
virtual machine monitor. In Proceedings of the IEEE
International Conference on Computer Design, 2008.

