
Exploiting Single-Usage for Effective Memory
Management�

Thomas Piquet, Olivier Rochecouste, and André Seznec

IRISA, Campus Beaulieu, 35042 Rennes Cedex, France

Abstract. Efficient memory management is crucial when designing high
performance processors. Upon a miss, the conventional operation mode of
a cache hierarchy is to retrieve the missing block from lower levels and to
store it into all hierarchy levels. It is however difficult to assert that stor-
ing the block into intermediate levels will be really useful. In particular,
this is unnecessary if a cache block is accessed only once before getting
evicted - i.e. a single-usage block. This paper is typically concerned with
reducing the number of single-usage blocks. Our observations reveal that
single-usage blocks are significant at runtime and especially in the lowest
cache level. We show that using an address-based prediction mechanism
is sufficient to identify this phenomenon. Two schemes are examined to
remove pollution caused by single-usage blocks: a bypass scheme and a
cache replacement policy. Our results show that leveraging single-usage
pollution is beneficial to memory-intensive applications running on su-
perscalar and multi-core architectures.

1 Introduction

Processor performance is strongly dependent on the memory hierarchy manage-
ment. Access time to off-chip memory now represents several hundreds of cy-
cles. In order to hide such huge latencies, modern processors feature a complete
memory hierarchy composed of multiple cache levels with variable latencies. In
addition, hardware prefetch mechanisms [1] are also often used to minimize the
impact of main memory access time.

On a cache miss, the conventional memory hierarchy propagates the missing
block from the lowest level in the memory hierarchy to the highest level, each
cache level getting a copy of the block. When this strategy is used, the cache
hierarchy acts as a set of more and more efficient filters that retains different
memory accesses. This strategy is in general quite efficient, since in case of a
subsequent miss on the same block in a lower memory hierarchy level, the block
remains accessible.

However, this strategy does not take into account that blocks have very dis-
parate usages across applications. In particular, in some cases, a block stored in

� This work was partially supported by an Intel research grant, an Intel research
equipment donation and by the European Commission in the context of the SARC
integrated project #27648 (FP6).

L. Choi, Y. Paek, and S. Cho (Eds.): ACSAC 2007, LNCS 4697, pp. 90–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Exploiting Single-Usage for Effective Memory Management 91

the cache after a miss may not be accessed again before it is evicted. We call such
a block, a single-usage block or a SU-block. Storing a SU-block in the cache may
cause severe performance degradation as it could evict another block that could
potentially be more useful. We refer to this phenomenon - storing SU-blocks in
a cache - as single-usage pollution or SU-pollution.

Our first contribution in this paper is the characterization and analysis of
the SU-pollution phenomenon. For a 2-level cache hierarchy, we show that most
applications only exhibit a limited amount of SU-pollution in the L1 data cache,
while some applications exhibit a high SU-pollution rate in lowest cache level.
Our analysis also reveals that the single-usage property of a block is closely
related to the memory instruction that triggers the L2 miss on this block.

Our second contribution is the proposal of a hardware mechanism for predict-
ing single-usage pollution. Two schemes are presented to exploit SU-pollution:
(1) a bypass scheme that prevents SU-blocks from entering the cache and (2)
a SU-based cache replacement policy. Experiments show that our proposal is
beneficial to both superscalar and multi-core architectures where the memory
subsystem is a bottleneck.

The remainder of this paper is organized as follows. Section 2 quantifies single-
usage pollution. In Section 3, we propose a single-usage prediction scheme and
two techniques to exploit single-usage blocks. Section 4 presents our experimental
results. Section 5 discusses the related work. Section 6 concludes this study.

2 Characterizing Single-Usage Pollution

We quantified the number of SU-blocks that are accessed at runtime for a subset
of the SPEC2000 applications. Our data has been collected on a 4-way super-
scalar architecture featuring a 2-level cache hierarchy (32KB 4-way L1 data cache
and 512KB 4-way L2 cache). A complete description of our baseline configuration
is available in Section 4.1.

2.1 Quantifying SU-Pollution Within L1 and L2 Caches

We measured the number of dynamic accesses to SU-blocks within both the L1
and L2 caches. For a given cache level, a cache block is defined as single-usage if
it is accessed only once before getting evicted from this level. Figure 1 reports the
fraction of memory accesses that are single-usage at execution. We notice that
SU-pollution is quite negligible in the highest cache level as only 6%, on average,
of the dynamically accessed blocks are single-usage. The high usage behavior of
cache blocks, mainly stems from the fact that data contained in L1 data cache
exhibits high spatial and temporal localities. In our context, this means that
attempting to reduce SU-pollution in the L1 cache would only have a small im-
pact on overall performance. In contrast, the SU-pollution amount is much more
significant in the lowest cache level. On average, 33% of memory accesses in the
L2 cache are single-usage. We can even observe for some applications (wupwise,
swim, mgrid, applu, art, ammp), mostly based on memory-intensive scientific

92 T. Piquet, O. Rochecouste, and A. Seznec

Fig. 1. Single-usage pollution within L1 and L2 caches

category I category II category III

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

128KB 256KB 512KB 1MB 2MB

IP
C

L2 Cache Size

IPC
MPKI

128KB 256KB 512KB 1MB 2MB
 0

 10

 20

 30

 40

 50

 60

M
PK

I

L2 Cache Size

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

128KB 256KB 512KB 1MB 2MB

IP
C

L2 Cache Size

IPC
MPKI

128KB 256KB 512KB 1MB 2MB
 0

 5

 10

 15

 20

 25

 30

M
PK

I

L2 Cache Size

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

128KB 256KB 512KB 1MB 2MB

IP
C

L2 Cache Size

IPC
MPKI

128KB 256KB 512KB 1MB 2MB
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

M
PK

I

L2 Cache Size

art swim wupwise

Fig. 2. Applications sensitivity to varying L2 cache size in terms of IPC and MPKI

kernels, that SU-blocks are quite prominent at runtime. Other applications such
as gzip, gcc, crafty, bzip2 depict a small SU-pollution level and are unlikely to
benefit from our scheme.

2.2 Categorizing SPEC2000 Applications

Albeit some applications exhibit a high SU-pollution rate, minimizing this quan-
tity would not necessarily translate into speed improvement, especially if the
program performance is not dependent on the memory hierarchy behavior. We
studied the applications sensitivity by varying the L2 cache size (from 128KB
up to 2MB), using IPC and MPKI (miss per kilo-instruction) as metrics. Due
to space constrains, we only report results for a few programs.

Figure 2 classifies the SPEC2000 applications into three distinct categories.
The first category encompasses benchmarks in which performance and miss rate
are very sensitive to increasing the L2 cache size. In our context, these applica-
tions are very likely to benefit from a scheme that reduces SU-pollution. For art,
increasing L2 cache size from 512KB to 1MB has a significant impact on IPC
and MPKI. In addition, since art exhibits a considerable SU-pollution amount,
minimizing this quantity would also allow a substantial increase in the available
cache space; and hence, in a potential performance improvement. The second

Exploiting Single-Usage for Effective Memory Management 93

category comprises memory-intensive workloads that do not benefit from resiz-
ing the L2 cache from a performance viewpoint. Nonetheless, we observe that
doubling the L2 cache size does still lead to a noticeable reduction in terms of
miss rate. This would therefore allow to reduce the main memory bandwidth us-
age, which could be used to trigger prefetch requests instead. The last category
gathers applications in which performance and miss-rate are not dependent on
cache size. For these applications, attempting to reduce SU-pollution will have
only a marginal impact on performance, or worse, in case of a SU misprediction,
this could even result a performance loss.

3 Predicting and Exploiting Single-Usage Blocks

Minimizing the pollution due to SU-blocks can help improve the whole memory
hierarchy behavior as well as the processor performance. In this section, we first
show that the single-usage property of a dynamic L2 cache block is closely related
to the instruction that triggers the L2 cache miss. This observation makes a PC
based block-usage prediction mechanism viable. We also describe how a stride
prefetcher could be adapted at a minimum extra hardware cost for predicting
cache blocks usage. To decrease SU-pollution, we propose two distinct schemes:
(1) a bypass solution and (2) a SU-based cache replacement policy.

3.1 Single-Usage Property is Associated with the Instruction

In order to speculate over the cache block usage property, one can consider the
cache block address itself and quantify its usage over time. Johnson et al. used
this approach in [2]. However, we show below that a cache block usage property
is tied to the program instruction that triggers the memory access.

Quantifying Single-Usage I-Sequences. We refer to the sequence of L2
cache accesses initiated by a single program instruction as an I-sequence. Let
us also define a single-usage I-sequence as a I-sequence for which the amount of
SU-blocks exceeds 95%. Note that the SU I-sequences property depends on the
memory hierarchy configuration. On average, we found that over 90% of SU-
blocks are referenced by SU I-sequences across SPEC2000 benchmarks. Hence,
a mechanism capable of detecing SU I-sequences at runtime could help decrease
SU-pollution.

3.2 Hardware Support to Predict Block Usage

The block-usage (BU) predictor (see Figure 3), mainly consists of a block-usage
prediction table and on two extra tags associated with each L2 cache line. Each
entry in the block-usage prediction table consists of two fields: 1) the instruction
address (IA) and 2) a saturated single-usage detection (SUD) counter. Two tags
attached to a L2 cache line are the SU tag, a single bit that records whether or
not the block has been re-accessed after being stored into the L2 cache, and the
instruction address tag (or IA tag) that records the address of the instruction

94 T. Piquet, O. Rochecouste, and A. Seznec

Query on miss

L2

tag data IA tag SUTo L1
To Main
Memory

BUP
IA tag SUD

Update on
eviction

Fig. 3. Block-usage predictor (BUP)

generating the miss. The predictor operates in two main phases : 1) query and
2) update.

Query. On a miss on the L2 cache, a query is sent to the BU predictor. The
address of the instruction that incurred the miss is used as an index. If an entry
matches, the predictor delivers a SU or non-SU verdict depending on SUD value.
A SU verdict is only delivered upon a saturated SUD counter state, else a non-SU
verdict is returned.

Update. The BU table is updated whenever a block is evicted from L2 cache.
The IA tag of the evicted block is used to get the corresponding I-sequence in
the BU table. The SUD counter associated with the BU table entry is updated
according to the SU tag of the block. If the tag indicates that the block is single
usage, the counter is incremented, otherwise the counter is reset to zero.

The BU predictor can suffer from two misprediction types : 1) the block is
predicted as non-SU, but is single usage and 2) the block is predicted as single
usage but might have been accessed several times if it was stored into L2 cache -
this is referred to as a SU misprediction. Due to the potential performance loss
induced by a SU misprediction, our BU predictor favors accuracy over coverage.
This is done through delivering SU verdicts only upon a saturated SUD counter
state and by resetting counters on non-SU updates.

Adapting a Stride Prefetcher for Block-Usage Prediction. One can eas-
ily extend a stride prefetcher [1] for block-usage prediction as this mechanism
also uses the instruction address to initiate prefetch requests. This would en-
able to mitigate the hardware overhead due to the BU predictor. To do so, each
entry in the stride prefetcher table has to be augmented with a SUD counter.
The main overhead induced by the BU predictor is the additional tags on the
L2 cache. In our experiments, each L2 cache line is augmented with a 1-bit SU
tag and a 13-bit partial IA tag (9-bit are actually used to index the 512-entry
stride prefetcher table, the purpose of the remaining 4-bit is to reduce aliasing).
For the 128-byte cache blocks considered in the paper, these extra tags account
for 2% of the cache storage budget.

Exploiting Single-Usage for Effective Memory Management 95

3.3 Reducing SU-Pollution

We propose two distinct techniques to exploit SU-pollution reduction in the L2
cache: (1) a bypass scheme and (2) a SU-based cache replacement policy.

Bypass Scheme. In order to prevent SU-pollution, we suggest to directly for-
ward missing SU-blocks - identified by means of the BU predictor - from memory
to the L1 data cache; thus bypassing the L2 cache to enable more useful data to
remain cached. Note that non-SU blocks are still processed in a standard way.
Performing bypassing could however have a detrimental effect on the predictor
accuracy. Once an I-sequence is marked as single-usage, its corresponding SUD
counter could remain saturated forever. To overcome this issue, we propose to
re-inject a SU-block into the L2 cache once in a while. This allows to update the
SUD counter. If the I-sequence behavior changes, the SUD counter will be reset.
The decision of re-injecting a SU-block is taken using a low probability.

SU-Based Replacement Policy. Another way to reduce SU-pollution is to
use the BU predictor for a cache replacement purpose. Let us suppose a set-
associative cache featuring a LRU replacement policy. Our proposal is to aug-
ment the LRU algorithm with block usage information. Upon selecting a block
for eviction, our technique favors the replacement of least-recently-used blocks
marked as single-usage instead of solely using the recency information. If there
are no SU-block in the current set, the LRU block is selected. The architectural
support needed for this scheme consists of extending each L2 cache block with a
single bit that reflects whether or not this block is single-usage. This prediction
bit is updated each time a cache block is loaded from memory. As for the bypass
scheme, however, SUD counters could remain saturated. To avoid this scenario,
we take an arbitrary decision using a low probability to decide if we should select
the LRU-block as a victim instead of the SU-block.

4 Evaluation

This sections evaluates the performance of the BU predictor in terms of accuracy
and coverage. It also examines the impact on performance, miss-rate and memory
traffic induced by the SU-based cache replacement policy and the bypass scheme.

4.1 Experimental Setup

Our experiments were performed on SESC, an execution-driven simulator devel-
oped by [3]. Our baseline processor is a 4-way out-of-order superscalar architec-
ture. Table 1 summarizes the configuration we used as a reference. Our memory
subsystem models a 512-entry stride prefetcher [1] that is coupled with a 32-entry
prefetch buffer [4, 5] to filter pollution related to aggressive prefetching.

Benchmarks. We evaluate our proposal on a subset of SPEC2000 benchmarks
that run on SESC: wupwise, swim, mgrid, applu, mesa, art, equake, ammp, apsi,

96 T. Piquet, O. Rochecouste, and A. Seznec

Table 1. Simulated machine parameters

Parameter Configuration
Decode / Issue / width 4
Retire width 5
ROB size 36 Issue + 32 entries
LSQ size 20 Issue + 32 entries
Branch predictor O-GEHL [6], 64-Kbit, 6-cycle mispred. penalty
L1 inst. 64kB, direct-map, 128B/block, LRU, 1-cycle
L1 data 32kB, 4-way, 128B/block, LRU, 1-cycle
L2 unified 512kB, 4-way, 128B/block, LRU, 11-cycle
Main Memory latency 500-cycle

Table 2. BU predictor coverage and accuracy (512-entry table + 3-bit SUD counters)

coverage accuracy SU-
rate

#cache
accesses
(*M)

coverage accuracy SU-
rate

#cache
accesses
(*M)

mgrid 96.4% 99.53% 71.64% 4.96 swim 87.74% 99.64% 69.52% 31.3

art 83.72% 99.8% 70.18% 69.91 mesa 88.23% 99.98% 12.35% 1.54

ammp 99.63% 99.98% 96.23% 86.76 vpr 1.39% 80.2% 11.77% 19.45

mcf 71.71% 98.16% 46.31% 88.41 equake 59.16% 99.77% 21.58% 4.57

applu 98.01% 99.84% 68.84% 6.34 twolf 0.81% 74.08% 17.79% 25.43

parser 4.81% 81.65% 19.87% 9.45 apsi 67.19% 98.06% 3.6% 2.58

gcc 49.04% 97.92% 3.42% 13.47 crafty 0.02% 91.67% 0.54% 11.78

gzip 67.05% 97.2% 0.87% 7.85 wupwise 97.65% 99.74% 51.19% 2.22

bzip2 41.61% 89.26% 1.05% 9.75

gzip, vpr, gcc, mcf, crafty, parser, bzip2, twolf. All applications were compiled
for the MIPS ISA with the -O3 optimization flag enabled. We used the reference
data as an input. The first billion instructions were skipped and the next billion
instructions were simulated.

4.2 Block-Usage Predictor Accuracy and Coverage

We define the BU predictor coverage as the fraction of the number of SU-blocks
that are correctly predicted. The BU predictor accuracy as the fraction of SU
verdicts that are correct. Table 2 reports the coverage and accuracy of a 512-
entry BU predictor table featuring 3-bit SUD counters. Overall, the BU predictor
provides high accuracy on most benchmarks. The rationale is that we deliver SU
verdicts exclusively on a counter saturated state while resetting the count value
on non-SU verdicts. Although this slightly impairs the predictor coverage, we
observe that we still identify a large fraction of SU-blocks for memory-intensive
applications. For other applications such as crafty, vpr, twolf, our predictor is
quite inefficient. This is due to the fact that these applications only exhibit a
small SU-pollution rate as mentioned in Section 2.1.

Exploiting Single-Usage for Effective Memory Management 97

Fig. 4. IPC normalized to baseline for our different schemes

Varying BU Predictor Parameters. We varied the main BU predictor pa-
rameters (number of predictor entries and SUD counter width) to study their
influence on coverage and accuracy. Increasing the number of entries from 128 to
1024 has a positive, but small impact on coverage. Increasing the SUD counter
width decreases the coverage of the BU predictor but increases the SU-verdict
accuracy. Our results indicate that a suitable trade-off between the predictor
efficiency and its hardware complexity is to use a 512-entry predictor table com-
prised of 3-bit saturating counters.

4.3 Impact on Performance, Miss-Rate and Memory Traffic

Figure 4, Figure 5 and Figure 6 compare our cache management policies using
three metrics, namely the IPC, the L2 cache miss rate (in MPKI) and the bus
traffic (number of accesses) between L2 cache and main memory. These results
are normalized to our baseline architecture described in Table 1. The first bar
corresponds to our SU-based replacement policy described in Section 3.3. The
second bar represents the bypass scheme (see Section 3.3). The following bar is
the baseline architecture enhanced with a stride prefetcher. The last bar corre-
sponds to the stride prefetching scheme adapted for block-usage prediction.

Figure 4 points out that our proposal performs well with workloads from the
first category (see Section 2.2) whereas applications from other categories show
little or no performance gains. mgrid performs well on both schemes by achieving
a speed-up close to 30% along with a noticeable decrease in the L2 cache miss-
rate. This is consistent with our analysis as we observed that mgrid performance
is very sensitive to adapting the L2 cache size - especially from 512KB to 1MB.

When a performance gain is observed, the bypass scheme usually performs
better than the SU-based cache replacement policy. This is somewhat coherent
as bypassing SU-blocks allows existing multi-usage data to remain cached in
L2. In contrast, with the SU-based replacement policy, a few SU-blocks can still
reside in L2 cache; hence the lower performance gain.

For most applications, using a stride prefetcher for block-usage prediction is
beneficial to performance and miss rate. Due to a reduced memory traffic - see

98 T. Piquet, O. Rochecouste, and A. Seznec

Fig. 5. Normalized L2 cache miss-rate

Fig. 6. Normalized memory traffic between L2 and main memory

Figure 6 - the number of prefetching opportunities is accordingly increased;
hence an extra performance gain as compared to a basic bypass scheme. On
some applications such as gzip, no performance gain is observed as this program
has a small miss rate. Note that the performance improvement obtained with
the prefetcher-based BU predictor is not as significant as that of a basic BU
predictor scheme - e.g. see mgrid. This stems from the fact that the usage of
prefetching overrides part of the benefits achieved by our scheme.

Our proposal slightly degrades performance of ammp when used with a stride
prefetcher - from a 0.0732 IPC to 0.0718. This is due to the management of the
memory bus. Prefetches are initiated only when the bus is free. Bypassing the
L2 cache on write-backs of SU-block tends to create a burst of traffic that could
prevent prefetches. When data are first stored in the L2 cache, the write-back
traffic is smoothened, creating new opportunities for triggering prefetch requests.

4.4 Exploiting SU-Pollution Reduction in Multi-core Systems

Managing the memory hierarchy is a crucial issue in multi-core architectures
where processing cores often share the lowest cache level. We examined the po-
tential gains that could be achieved by our bypass scheme in this context. To do

Exploiting Single-Usage for Effective Memory Management 99

Table 3. Weighted IPC, L2 cache miss-rate and SU-pollution for a dual-core system

2-core - 1MB L2 2-core - 2MB L2 2-core - 1MB L2 + bypass
WIPC Miss Rate SU rate WIPC Miss Rate SU rate WIPC Miss Rate SU rate

wupwise 1.00 0.50 98.52 1.00 0.50 97.20 1.00 0.50 4.14
mgrid 0.87 3.48 44.99 1.00 2.96 35.12 1.00 2.98 3.51

applu 1.00 4.47 90.90 1.00 4.47 90.83 1.00 4.47 3.05
mcf 0.98 51.39 68.42 1.08 45.95 57.51 1.21 43.17 18.78

mgrid 0.71 4.54 72.59 1.00 2.97 35.38 0.94 3.53 4.59
ammp 0.57 9.34 4.37 1.00 0.19 0.07 0.93 1.14 0.17

art 0.94 35.23 44.62 2.73 0.26 0.11 1.09 23.81 12.35
gzip 0.79 1.68 11.08 0.99 0.21 1.65 0.81 1.55 3.93

so, we modeled with SESC a dual-core system that features private 32KB 4-way
L1 data caches and a shared 4-way 1MB L2 cache. A 1k-entry BU predictor
table is considered. We mixed together applications from distinct categories (see
Section 2.2) to study the performance impact on our scheme. As a performance
guide, we use the weighted speed-up metric [7, 8]. For each benchmark, we simu-
lated 250M instructions. If a benchmark completes 250M instructions before the
other, we keep on executing the finished benchmark till the second benchmark
finishes its processing.

Results. Table 3 reports the weighted IPC, the L2 cache miss-rate and the
associated SU-pollution rate for different memory configurations of the baseline
dual-core system. For each programs mix, we report the contribution of individ-
ual programs for the considered metrics. For instance, running wupwise-mgrid
on the baseline CMP shows that wupwise does not suffer from cache sharing
(WIPC = 1) while mgrid (WIPC < 1) does. Table 3 shows that executing our
mixed applications with a larger L2 cache often improves the considered met-
rics. Overall, our bypass scheme applied to a multi-core architecture provides
noticeable performance gains. It does even outperform a CMP system featuring
a twice as large L2 cache when executing applu-mcf. While applu by itself does
not benefit from reducing SU-pollution, it does however makes room for mcf,
thus allowing substantial performance gain on this latter application. The same
phenomenon occurs with mgrid/ammp. Reducing mgrid SU-pollution essentially
reduces ammp miss rate.

5 Related Work

Tyson et al. [9] observed that, on many applications only a few load instructions
are responsible for the majority of data cache misses. They proposed a scheme
to decide whether or not a load instruction should allocate data in the L1 cache.
The authors suggest using PC-indexed counters that are incremented on a miss
and decremented on a hit. In practice, a load instruction is classified as a ”to
be bypassed” if in general it is the first to touch a memory block and if further

100 T. Piquet, O. Rochecouste, and A. Seznec

instances of the same load do not touch back the same block in the near future.
This scheme is able to capture instructions exhibiting no spatial locality on the
L1 cache, such as loads exhibiting a stride longer than a cache block. However it is
not able to capture future reuse of the cache block by other loads or writes. This
may sometimes lead to dramatically poor behavior, particularly on optimized
code. For example, on a streaming application, unrolling a loop with an unrolling
factor larger then the cache line size may push the hardware to classify the first
access to each data in a cache block as a ”bypass access”.

Dybdahl et al. studied block bypassing in the last cache level in [10]. They
extended the dynamic scheme for the L1 cache proposed by Tyson [9] to the
lowest cache level. They noticed that this extension sometimes leads to a severe
performance loss. They proposed a new hardware scheme to address this issue.
The result is mitigated: performance losses are reduced on some applications,
performance benefits are also reduced on other applications. The hardware cost
of their scheme is relatively high, since each block in the last-level cache is aug-
mented with voluminous information (shadow address tag, instruction address,
status). Moreover the management algorithm is quite complex.

Chi et al. [11] proposed a software scheme to address single-usage cache pol-
lution. The compiler determines for each memory reference its cachability. Since
an architecture with a single cache level is considered, on a reference marked as
not cachable, the data is not stored in the L1 cache. The main limitation of this
software solution is that it does not take into account the spatial locality within
a cache block.

Rivers and Davidson [12] proposed a hardware mechanism to capture the tem-
porality of a data block. Data blocks are classified as temporal or non temporal
(NT). A block is classified as NT if none of its words is re-referenced before its
eviction. A NT bit is added to each block in the first and second levels of the
cache. The main memory does not have the NT bit, therefore once a block is
evicted from the L2 cache, the information is lost. In contrast to this proposal,
we associate the single-usage property to memory access instructions rather than
to cache blocks, and we address the L2 cache.

Wong and Baer [13] described a cache replacement policy enhanced with tem-
poral locality information to guide block replacement. Instead of systematically
evicting LRU blocks, their scheme favors replacing non-temporal blocks instead.
The temporal information is obtained through profiling or by means of a hard-
ware predictor.

6 Conclusion

This paper proposes to exploit reduction in single-usage cache pollution for a
better memory hierarchy management. We observed that the single-usage prop-
erty of a cache block is very tied to the load/store instruction that causes a cache
miss (on this block). Hence, we suggest using a PC-based hardware predictor to
uncover SU-blocks at runtime. Our experiments show that our predictor pro-
vides high coverage and accuracy on most programs. We evaluate two schemes

Exploiting Single-Usage for Effective Memory Management 101

to reduce SU-pollution: (1) a bypass technique and (2) a SU-based cache replace-
ment policy. Our results point out that using either technique is beneficial to a
superscalar architecture. Extra gain is further observed when adapting a stride
prefetcher for block-usage prediction - while mitigating the storage overhead
due to our predictor. Our proposal is also evaluated in a multi-core environment
using multi-programmed workloads. Exploring the benefits on multi-threaded
programs is part of our future work.

References

[1] Fu, J.W.C., Patel, J.H., Janssens, B.L.: Stride directed prefetching in scalar pro-
cessors. In: Proceedings of the 25th annual international symposium on Microar-
chitecture (1992)

[2] Johnson, T.L., Connors, D.A., Merten, M.C., mei W. Hwu, W.: Run-time cache
bypassing. IEEE Trans. Comput. 48(12) (1999)

[3] Renau, J., Fraguela, B., Tuck, J., Liu, W., Prvulovic, M., Ceze, L., Sarangi,
S., Sack, P., Strauss, K., Montesinos, P.: SESC simulator (2005), http://sesc.
sourceforge.net

[4] Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: Proceedings of the 17th
annual international symposium on Computer Architecture (1990)

[5] Chen, W.Y., Mahlke, S.A., Chang, P.P., mei W. Hwu, W.: Data access microar-
chitectures for superscalar processors with compiler-assisted data prefetching. In:
Proceedings of the 24th annual international symposium on Microarchitecture
(1991)

[6] Seznec, A.: Analysis of the o-geometric history length branch predictor. In: Pro-
ceedings of the 32nd Annual International Symposium on Computer Architecture
(2005)

[7] Snavely, A., Tullsen, D.M., Voelker, G.: Symbiotic jobscheduling with priorities for
a simultaneous multithreading processor. In: Proceedings of the 2002 international
conference on Measurement and modeling of computer systems (2002)

[8] Hsu, L.R., Reinhardt, S.K., Iyer, R., Makineni, S.: Communist, utilitarian, and
capitalist cache policies on cmps: caches as a shared resource. In: Proceedings
of the 15th international conference on Parallel architectures and compilation
techniques (2006)

[9] Tyson, G., Farrens, M., Matthews, J., Pleszkun, A.R.: A modified approach to
data cache management. In: Proceedings of the 28th annual international sympo-
sium on Microarchitecture (1995)

[10] Dybdahl, H., Stenström, P.: Enhancing last-level cache performance by block
bypassing and early miss determination. In: Asia-Pacific Computer Systems Ar-
chitecture Conference (2006)

[11] Chi, C. H., Dietz, H.: Improving cache performance by selective cache bypass. In:
22nd Hawaii International Conference on System Sciences (1989)

[12] Rivers, J., Davidson, E.: Reducing conflicts in direct-mapped caches with a
temporality-based design. icpp 01 (1996)

[13] Wong, W.A., Baer, J.L.: Modified lru policies for improving second-level cache
behavior. In: HPCA (2000)

http://sesc.sourceforge.net
http://sesc.sourceforge.net

	Exploiting Single-Usage for Effective Memory Management
	Introduction
	Characterizing Single-Usage Pollution
	Quantifying SU-Pollution Within L1 and L2 Caches
	Categorizing SPEC2000 Applications

	Predicting and Exploiting Single-Usage Blocks
	Single-Usage Property is Associated with the Instruction
	Hardware Support to Predict Block Usage
	Reducing SU-Pollution

	Evaluation
	Experimental Setup
	Block-Usage Predictor Accuracy and Coverage
	Impact on Performance, Miss-Rate and Memory Traffic
	Exploiting SU-Pollution Reduction in Multi-core Systems

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

