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Announcements 

 Reviews due today (November 1) 

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip 
Networks,” ISCA 2009. 

 Fallin et al., “CHIPPER: A Low-Complexity Bufferless Deflection 
Router,” HPCA 2011. 

 

 Project milestones on November 6 
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Readings 

 Required 

 Dally, “Route Packets, Not Wires: On-Chip Interconnection 
Networks,” DAC 2001. 

 Das et al., “Application-Aware Prioritization Mechanisms for 
On-Chip Networks,” MICRO 2009. 

 Chang et al., “HAT: Heterogeneous Adaptive Throttling for On-
Chip Networks,” SBAC-PAD 2012. 

 Fallin et al., “MinBD: Minimally-Buffered Deflection Routing for 
Energy-Efficient Interconnect,” NOCS 2012. 

 

 Please see website for more recommended readings 
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 Terminology review  

 More on interconnection networks 

 Network properties and performance metrics 

 Buffering and flow control 

 Router design and pipeline options 

 

 Research on NoCs 

 The problem with packet scheduling 

 Application-aware packet scheduling 

 Aergia: Latency slack-based packet scheduling 

 Bufferless networks 
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Basic Terminology (review) 

 Topology 

 Specifies way switches are wired 

 

 Routing (algorithm) 

 How does a message get from source to destination 

 

 Buffering and Flow Control 

 Managing and communicating buffer space 

 

 Switch/router 

 Connects fixed set of inputs to fixed set of outputs 

 

 Channel 

 A single logical connection between routers/switches 
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Basic Terminology (review) 

 Node 

 A switch/router or client/endpoint that is part of the network 

 

 Message 

 Unit of transfer for network’s clients (processors, memory) 

 

 Packet 

 Unit of transfer for network  

 

 Flit 

 Flow control digit 

 Unit of flow control within network 
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Properties of a Topology/Network 

 Regular or Irregular 

 Regular if topology is regular graph (e.g. ring, mesh). 

 

 Routing Distance  

 Number of links/hops along route  

 

 Diameter  

 Maximum routing distance 

 

 Average Distance 

 Average number of hops across all valid routes 
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Properties of a Topology/Network 
 Direct or Indirect Networks 

 Endpoints sit “inside” (direct) or “outside” (indirect) the network 

 E.g. mesh is direct; every node is both endpoint and switch 
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Properties of a Topology/Network 

 Bisection Bandwidth 

 Often used to describe network performance 

 Cut network in half and sum bandwidth of links severed 

 (Min # channels spanning two halves) * (BW of each channel) 

 Meaningful only for recursive topologies 

 Can be misleading, because does not account for switch and 
routing efficiency 

 

 Blocking vs. Non-Blocking 

 If connecting any permutation of sources & destinations is 
possible, network is non-blocking; otherwise network is blocking. 

 Rearrangeable non-blocking: Same as non-blocking but might 
require rearranging connections when switching from one 
permutation to another. 
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Blocking vs. Non-Blocking Example 

 What type of topology/network is this? 

 Multistage Logarithmic (Omega) 

 Is this blocking or non-blocking? 

 Blocking 
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Interconnection Network Performance 

 Load-Latency behavior 

 Can heavily depend on traffic pattern 
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Latency 

Load - Offered Traffic (bits/sec) 

Min latency 
given by 
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Min latency 
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algorithm 

Zero load or  
idle latency 

(topology+routing
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given by 
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given by 
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throughput (given 
by flow control) 



Ideal Latency 

 Ideal latency 

 Solely due to wire delay between source and destination 

 

 

 

 

 D = Manhattan distance 

 L = packet size 

 b = channel bandwidth 

 v = propagation velocity 
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Actual Latency 

 Dedicated wiring impractical 

 Long wires segmented with insertion of routers 

 

 

 

 D = Manhattan distance 

 L = packet size 

 b = channel bandwidth 

 v = propagation velocity 

 H = hops 

 Trouter = router latency 

 Tc = latency due to contention 
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Circuit vs. Packet Switching (review) 
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 Circuit switching sets up full path 
 Establish route then send data 

 (no one else can use those links) 

 faster and higher bandwidth 

 setting up and bringing down links slow 

 

 Packet switching routes per packet 
 Route each packet individually (possibly via different paths) 

 if link is free can use 

 potentially slower (must dynamically switch) 

 no setup, bring down time 

 



Packet Switched Networks: Packet Format 

 Header 

 routing and control information 

 at start so router can start forwarding early 

 Payload/Body 

 carries data (non HW specific information) 

 can be further divided (framing, protocol stacks…) 

 Tail 

 contains control information, e.g. error code 

 at end of packet so it can be generated on the way out 
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Handling Contention 

 

 

 

 

 

 

 Two packets trying to use the same link at the same time 

 What do you do? 

 Buffer one 

 Drop one 

 Misroute one (deflection) 

 Assume buffering for now 
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Flow Control Methods 

 Circuit switching 

 

 Store and forward (Packet based) 

 

 Virtual cut through (Packet based) 

 

 Wormhole (Flit based) 

20 



Circuit Switching Revisited 

 Resource allocation granularity is high 

 

 Idea: Pre-allocate resources across multiple switches for a 
given “flow” 

 Need to send a probe to set up the path for pre-allocation 

 

+ No need for buffering 

+ No contention (flow’s performance is isolated) 

+ Can handle arbitrary message sizes 

- Lower link utilization: two flows cannot use the same link 

- Handshake overhead to set up a “circuit” 
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Store and Forward Flow Control 

 Packet based flow control 

 Store and Forward 

 Packet copied entirely into network router before moving to 
the next node 

 Flow control unit is the entire packet 

 Leads to high per-packet latency 

 Requires buffering for entire packet in each node 
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Cut through Flow Control 

 Another form of packet based flow control 

 Start forwarding as soon as header is received and 
resources (buffer, channel, etc) allocated 

 Dramatic reduction in latency 

 Still allocate buffers and channel bandwidth for full packets 

 

 

 

 

 

 

 What if packets are large? 
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Cut through Flow Control 

 What to do if output port is blocked? 

 Lets the tail continue when the head is blocked, absorbing 
the whole message into a single switch.  

 Requires a buffer large enough to hold the largest packet. 

 Degenerates to store-and-forward with high contention 

 

 Can we do better? 
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Wormhole Flow Control 

 Packets broken into (potentially) 
smaller flits (buffer/bw allocation unit) 

 Flits are sent across the fabric in a 
wormhole fashion 

 Body follows head, tail follows body 

 Pipelined 

 If head blocked, rest of packet stops 

 Routing (src/dest) information only in 
head 

 

 How does body/tail know where to go? 

 Latency almost independent of distance 
for long messages 
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Wormhole Flow Control 
 Advantages over “store and forward” flow control 

+ Lower latency 

+ More efficient buffer utilization 

 Limitations 

- Occupies resources across multiple routers  

- Suffers from head of line blocking 

   - if head flit cannot move due to contention, another worm cannot 
proceed even though links may be idle  
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Head of Line Blocking 
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Blocked by other 
packets 

Channel idle but 
red packet blocked 

behind blue 

Buffer full: blue 
cannot proceed 

Red holds this channel: 
channel remains idle 
until read proceeds 



Head of Line Blocking 

 A worm can be before another in the router input buffer 

 Due to FIFO nature, the second worm cannot be scheduled 
even though it may need to access another output port  
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Karo et al., “Input Versus Output Queuing on a Space-Division 
Packet Switch,” IEEE Transactions on Communications 1987 
 



Virtual Channel Flow Control 

 Idea: Multiplex multiple channels over one physical channel 

 Divide up the input buffer into multiple buffers sharing a 
single physical channel 

 Dally, “Virtual Channel Flow Control,” ISCA 1990. 

29 



Virtual Channel Flow Control 

 Idea: Multiplex multiple channels over one physical channel 

 Divide up the input buffer into multiple buffers sharing a 
single physical channel 

 Dally, “Virtual Channel Flow Control,” ISCA 1990. 
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Virtual Channel Flow Control 
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A Modern Virtual Channel Based Router 
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Other Uses of Virtual Channels 

 Deadlock avoidance 

 Enforcing switching to a different set of virtual channels on 
some “turns” can break the cyclic dependency of resources 

 Enforce order on VCs 

 Escape VCs: Have at least one VC that uses deadlock-free 
routing. Ensure each flit has fair access to that VC.  

 Protocol level deadlock: Ensure address and data packets use 
different VCs  prevent cycles due to intermixing of different 

packet classes 

 

 Prioritization of traffic classes 

 Some virtual channels can have higher priority than others 
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Communicating Buffer Availability 

 Credit-based flow control 

 Upstream knows how many buffers are downstream 

 Downstream passes back credits to upstream 

 Significant upstream signaling (esp. for small flits) 

 

 On/Off (XON/XOFF) flow control 

 Downstream has on/off signal to upstream 

 

 Ack/Nack flow control 

 Upstream optimistically sends downstream 

 Buffer cannot be deallocated until ACK/NACK received 

 Inefficiently utilizes buffer space 
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Credit-based Flow Control 
 

 

 

 

 

 

 

 

 Round-trip credit delay:  

 Time between when buffer empties and when next flit can be 
processed from that buffer entry 

 Significant throughput degradation if there are few buffers 

 Important to size buffers to tolerate credit turn-around 
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On/Off (XON/XOFF) Flow Control 

 Downstream has on/off signal to upstream 
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On-chip Networks 
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Router Design: Functions of a Router 

 Buffering (of flits) 

 

 Route computation 

 

 Arbitration of flits (i.e. prioritization) when contention 

 Called packet scheduling 

 

 Switching 

 From input port to output port 

 

 Power management 

 Scale link/router frequency 
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Router Pipeline 

 

 

 

 

 Five logical stages 

 BW: Buffer Write 

 RC: Route computation 

 VA: Virtual Channel Allocation 

 SA: Switch Allocation 

 ST: Switch Traversal 

 

 LT: Link Traversal 
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Wormhole Router Timeline 
 
 
 
 
 
 
 
 
 
 
 

 Route computation performed once per packet 
 Virtual channel allocated once per packet 

 Body and tail flits inherit this information from head flit 
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Dependencies in a Router 

 

 

 

 

 

 

 

 

 

 Dependence between output of one module and input of 
another 
 Determine critical path through router 

 Cannot bid for switch port until routing performed 
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Pipeline Optimizations: Lookahead Routing 

 At current router perform routing computation for next 
router 

 Overlap with BW 

 

 

 

 Precomputing route allows flits to compete for VCs 
immediately after BW 

 RC decodes route header 

 Routing computation needed at next hop 

 Can be computed in parallel with VA 

 

 Galles, “Spider: A High-Speed Network Interconnect,” 
IEEE Micro 1997. 

 

BW 
RC 

VA SA ST LT 



Pipeline Optimizations: Speculation 

 Assume that Virtual Channel Allocation stage will be 
successful 

 Valid under low to moderate loads 

 Entire VA and SA in parallel 

 

 

 

 If VA unsuccessful (no virtual channel returned) 

 Must repeat VA/SA in next cycle 

 Prioritize non-speculative requests 

BW 
RC 

VA 
SA 

ST LT 



Pipeline Optimizations: Bypassing 

 When no flits in input buffer 

 Speculatively enter ST 

 On port conflict, speculation aborted 

 

 

 

 In the first stage, a free VC is allocated, next routing is 
performed and the crossbar is setup 

VA 
RC 

Setup 
ST LT 
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Packet Scheduling 

 Which packet to choose for a given output port? 

 Router needs to prioritize between competing flits 

 Which input port? 

 Which virtual channel? 

 Which application’s packet? 

 

 Common strategies 

 Round robin across virtual channels 

 Oldest packet first (or an approximation) 

 Prioritize some virtual channels over others 

 

 Better policies in a multi-core environment 

 Use application characteristics 
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The Problem: Packet Scheduling 
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The Problem: Packet Scheduling 

 Existing scheduling policies  

 Round Robin 

 Age 

 Problem 1: Local to a router 

 Lead to contradictory decision making between routers: packets 

from one application may be prioritized at one router, to be 

delayed at next.  

 Problem 2: Application oblivious 

 Treat all applications packets equally 

 But applications are heterogeneous 

 Solution : Application-aware global scheduling policies. 
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Motivation: Stall Time Criticality 

 Applications are not homogenous 

 

 Applications have different criticality with respect to the 

network 

 Some applications are network latency sensitive  

 Some applications are network latency tolerant 

 

 Application’s Stall Time Criticality (STC) can be measured by 

its average network stall time per packet (i.e. NST/packet) 

 Network Stall Time (NST) is number of cycles the processor 

stalls waiting for network transactions to complete 

 



Motivation: Stall Time Criticality 

 Why applications have different network stall time criticality 

(STC)?  

 Memory Level Parallelism (MLP)  

 Lower MLP  leads to higher STC 

 

 Shortest Job First Principle (SJF)  

 Lower network load leads to higher STC  

 

 Average Memory Access Time 

 Higher memory access time leads to higher STC 

 



 

 

 

 

 

 

 

 

 Observation 1: Packet Latency != Network Stall Time 
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 Observation 1: Packet Latency != Network Stall Time 

 Observation 2: A low MLP application’s  packets have higher 

criticality than a high MLP application’s 
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STC Principle 2 {Shortest-Job-First} 

4X network slow down 
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1.3X network slow down 

1.6X network slow down 

Overall system throughput{weighted speedup} increases by 34% 

Running ALONE 

Baseline (RR) Scheduling 
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Solution: Application-Aware Policies 

  Idea 

 Identify stall time critical applications (i.e. network 

sensitive applications) and prioritize their packets in 

each router. 

 

 Key components of scheduling policy: 

 Application Ranking 

 Packet Batching 

 

 Propose low-hardware complexity solution 



Component 1 : Ranking 

 Ranking distinguishes applications based on Stall Time 

Criticality (STC) 

 Periodically  rank applications based on Stall Time Criticality 

(STC). 

 Explored many heuristics for quantifying STC (Details & 

analysis in paper) 

 Heuristic based on outermost private cache Misses Per 

Instruction (L1-MPI) is the most effective 

 Low L1-MPI => high STC => higher rank 

 Why Misses Per Instruction (L1-MPI)? 

 Easy to Compute (low complexity) 

 Stable Metric (unaffected by interference in network) 



Component 1 : How to Rank? 
 Execution time is divided into fixed “ranking intervals” 

 Ranking interval is 350,000 cycles  

 At the end of an interval, each core calculates their L1-MPI and  

sends it to the Central Decision Logic (CDL) 

 CDL is located in the central node of mesh 

 CDL forms a ranking order and sends back its rank to each core 

 Two control packets per core every ranking interval 

 Ranking order is a “partial order” 

 

 Rank formation is not on the critical path 

 Ranking interval is significantly longer than rank computation time 

 Cores use older rank values until new ranking is available 



Component 2: Batching 

 Problem: Starvation 

 Prioritizing a higher ranked application can lead to starvation of 

lower ranked application 

 Solution: Packet Batching 

 Network packets are grouped into finite sized batches  

 Packets of older batches are prioritized over younger 

batches 

 Alternative batching policies explored in paper 

 Time-Based Batching 

 New batches are formed in a periodic, synchronous manner 

across all nodes in the network, every T cycles  

 

 



Putting it all together 

 Before injecting a packet into the network, it is tagged by  

 Batch ID (3 bits) 

 Rank ID (3 bits) 

 Three tier priority structure at routers 

 Oldest batch first (prevent starvation) 

 Highest rank first   (maximize performance) 

 Local Round-Robin        (final tie breaker) 

 Simple hardware support: priority arbiters 

 Global coordinated scheduling 

 Ranking order and batching order are same across all routers 

 



STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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STC Scheduling Example 
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Qualitative Comparison 
 Round Robin & Age 

 Local and application oblivious 

 Age is biased towards heavy applications 
 heavy applications flood the network 

 higher likelihood of an older packet being from heavy application 

 Globally Synchronized Frames (GSF) [Lee et al., ISCA 
2008] 

 Provides bandwidth fairness at the expense of system 
performance 

 Penalizes heavy and bursty applications  
 Each application gets equal and fixed quota of flits (credits) in each batch. 

 Heavy application quickly run out of credits after injecting into all active 
batches & stall till oldest batch completes and frees up fresh credits. 

 Underutilization of network resources 
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 Detailed case studies in the paper 
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Today 

 Review (Topology & Flow Control) 

 More on interconnection networks 

 Routing 

 Router design 

 Network performance metrics 

 On-chip vs. off-chip differences 

 

 Research on NoCs and packet scheduling 

 The problem with packet scheduling 

 Application-aware packet scheduling 

 Aergia: Latency slack based packet scheduling 
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What is Aérgia? 
 

 

 

 

 

 

 

 

 

 Ae ́rgia is the spirit of laziness in Greek mythology 

 Some packets can afford to slack! 



Slack of Packets 
 

 What is slack of a packet? 

 Slack of a packet is number of cycles it can be delayed in a 
router without reducing application’s performance 

 Local network slack 

 

 Source of slack: Memory-Level Parallelism (MLP) 

 Latency of an application’s packet hidden from application due 
to overlap with latency of pending cache miss requests 

 

 Prioritize packets with lower slack 

 

 

 



Concept of Slack  
Instruction 
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Load Miss  Causes  

 

   returns earlier than necessary 

Compute 

Slack (   ) = Latency (   ) – Latency (   ) = 26 – 6 = 20 hops 

Execution Time 

Packet(  ) can be delayed for available slack cycles  

without reducing performance! 

Causes  Load Miss  

Latency (   ) 

Latency (   ) 

Slack Slack 



Prioritizing using Slack  

Core A 

Core B 

Packet Latency Slack 

13 hops 0   hops 

3  hops 10 hops 

10 hops 0 hops 

4  hops  6 hops 

Causes 

Causes Load Miss  

Load Miss  

Prioritize   

Load Miss  

Load Miss  Causes 

Causes 

Interference at 3 hops 

Slack(   )   >  Slack (   )  



Slack in Applications 
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Diversity in Slack 
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Diversity in Slack 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0 50 100 150 200 250 300 350 400 450 500 

P
e
rc

e
n
ta

g
e
 o

f 
a
ll 

P
a
c
k
e
ts

 (
%

) 

Slack in cycles 

Gems 

omnet 

tpcw 

mcf 

bzip2 

sjbb 

sap 

sphinx 

deal 

barnes 

astar 

calculix 

art 

libquantum 

sjeng 

h264ref 

Slack varies between packets of  different applications 

Slack varies between packets of  a single application 



Estimating Slack Priority 

Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P 
 

 Predecessors(P) are the packets of outstanding cache miss 

requests when P is issued 
 

 Packet latencies not known when issued 

 

 Predicting latency of any packet Q 

 Higher latency if Q corresponds to an L2 miss 

 Higher latency if Q has to travel farther number of hops 

 



 Slack of P = Maximum Predecessor Latency – Latency of P 

 

 Slack(P) =  

 

PredL2: Set if any predecessor packet is servicing L2 miss 

 

MyL2:  Set if  P is NOT servicing an L2 miss 

 

HopEstimate: Max (# of hops of Predecessors) – hops of P 

 

Estimating Slack Priority 

PredL2 

(2 bits) 

MyL2 

(1 bit) 

HopEstimate 

(2 bits) 



Estimating Slack Priority 

 How to predict L2 hit or miss at core? 

 Global Branch Predictor based L2 Miss Predictor  

 Use Pattern History Table and 2-bit saturating counters 

 Threshold based L2 Miss Predictor 

 If  #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss.  

 Number of miss predecessors? 

 List of outstanding L2 Misses 

 Hops estimate? 

 Hops => ∆X + ∆ Y distance 

 Use predecessor list to calculate slack hop estimate 



Starvation Avoidance 

 Problem: Starvation 

 Prioritizing packets can lead to starvation of lower priority 

packets 

 

 Solution: Time-Based Packet Batching 

 New batches are formed at every T cycles  

 

 Packets of older batches are prioritized over younger batches 

 

 



Qualitative Comparison 

 Round Robin & Age 

 Local and application oblivious 

 Age is biased towards heavy applications 

 Globally Synchronized Frames (GSF)  
[Lee et al., ISCA 2008] 

 Provides bandwidth fairness at the expense of system performance 

 Penalizes heavy and bursty applications  

 Application-Aware Prioritization Policies (SJF)  
[Das et al., MICRO 2009] 

 Shortest-Job-First Principle 

 Packet scheduling policies which prioritize network sensitive 

applications which inject lower load  

 

 



System Performance 
 

 SJF provides 8.9% improvement 

in weighted speedup 

 Ae ́rgia improves system  

throughput by 10.3% 

 Ae ́rgia+SJF improves system  

throughput by 16.1% 
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Agenda 

 Terminology review  

 More on interconnection networks 

 Network properties and performance metrics 

 Buffering and flow control 

 Router design and pipeline options 

 

 Research on NoCs 

 The problem with packet scheduling 

 Application-aware packet scheduling 

 Aergia: Latency slack-based packet scheduling 

 Bufferless networks 

90 
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• Connect cores, caches, memory controllers, etc… 

• Examples:  

• Intel 80-core Terascale chip 

• MIT RAW chip 

 

• Design goals in NoC design: 

• High throughput, low latency 

• Fairness between cores, QoS, …  

• Low complexity, low cost  

• Power, low energy consumption 

 

 

 

 

 

On-Chip Networks (NoC) 
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• Connect cores, caches, memory controllers, etc… 

• Examples:  

• Intel 80-core Terascale chip 

• MIT RAW chip 

 

• Design goals in NoC design: 

• High throughput, low latency 

• Fairness between cores, QoS, …  

• Low complexity, low cost  

• Power, low energy consumption 

 

 

 

 

 

On-Chip Networks (NoC) 

Energy/Power in On-Chip Networks 

 

• Power is a key constraint in the design 

  of high-performance processors 

 

• NoCs consume substantial portion of system 

  power 

•  ~30% in Intel 80-core Terascale [IEEE Micro’07] 

•  ~40% in MIT RAW Chip [ISCA’04] 

 

• NoCs estimated to consume 100s of Watts 

  [Borkar, DAC’07] 
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• Existing approaches differ in numerous ways:  

• Network topology  [Kim et al, ISCA’07, Kim et al, ISCA’08 etc] 

• Flow control [Michelogiannakis et al, HPCA’09, Kumar et al, MICRO’08, etc] 

• Virtual Channels [Nicopoulos et al, MICRO’06, etc] 

• QoS & fairness mechanisms [Lee et al, ISCA’08, etc] 

• Routing algorithms [Singh et al, CAL’04] 

• Router architecture [Park et al, ISCA’08] 

• Broadcast, Multicast [Jerger et al, ISCA’08, Rodrigo et al, MICRO’08] 

 

 

  

 

 

 

 

 

Current NoC Approaches 

Existing work assumes existence of  

buffers in routers! 
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A Typical Router 

Routing Computation  

VC Arbiter 

Switch Arbiter 

VC1 

VC2 

VCv 

VC1 

VC2 

VCv 

Input Port N 

Input Port 1 

N x N Crossbar 

Input Channel 1 

Input Channel N 

Scheduler 

Output Channel 1 

Output Channel N 

Credit Flow 

to upstream 

router 

Buffers are integral part of  

existing NoC Routers 

Credit Flow 

to upstream 

router 
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• Buffers are necessary for high network throughput 

  buffers increase total available bandwidth in network 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffers in NoC Routers 

Injection Rate 
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• Buffers are necessary for high network throughput 

  buffers increase total available bandwidth in network 

 

• Buffers consume significant energy/power 

• Dynamic energy when read/write 

• Static energy even when not occupied 

• Buffers add complexity and latency  

• Logic for buffer management 

• Virtual channel allocation 

• Credit-based flow control  

• Buffers require significant chip area 

• E.g., in TRIPS prototype chip, input buffers occupy 75% of  

total on-chip network area [Gratz et al, ICCD’06] 

 

 

Buffers in NoC Routers 
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• How much throughput do we lose?  

 How is latency affected?  

 

 

• Up to what injection rates can we use bufferless routing? 

  Are there realistic scenarios in which NoC is  

    operated at injection rates below the threshold?  

 

• Can we achieve energy reduction? 

 If so, how much…?   

 

• Can we reduce area, complexity, etc…?  

 

 

 

Going Bufferless…?  

Injection Rate 

la
te

n
cy

 

buffers 
no 

buffers 

Answers in  

our paper! 
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• Introduction and Background 

 

• Bufferless Routing (BLESS) 

• FLIT-BLESS 

• WORM-BLESS 

• BLESS with buffers 

 

• Advantages and Disadvantages 

 

• Evaluations 

 

• Conclusions 

 

 

 

Overview 
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• Always forward all incoming flits to some output port 

• If no productive direction is available, send to another 

direction 

•  packet is deflected 

  Hot-potato routing [Baran’64,  etc] 

 

 

 

 

 

 

 

 

 

 

BLESS: Bufferless Routing 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buffered BLESS 

Deflected! 
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BLESS: Bufferless Routing 

 

 

 

 

 

 

 

 

 

 

 

 

 

Routing  

VC Arbiter 

Switch Arbiter 

Flit-Ranking 

Port-

Prioritization 

arbitration policy 

Flit-Ranking 1. Create a ranking over all incoming flits 

Port-

Prioritization 2. For a given flit in this ranking, find the best free output-port 

 Apply to each flit in order of ranking 
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• Each flit is routed independently.  

• Oldest-first arbitration   (other policies evaluated in paper) 

 

 

 

 

• Network Topology:  
 Can be applied to most topologies (Mesh, Torus, Hypercube, Trees, …)  
 1) #output ports ¸ #input ports      at every router 
 2) every router is reachable from every other router 

• Flow Control & Injection Policy:  

 Completely local, inject whenever input port is free   

• Absence of Deadlocks:  every flit is always moving 

• Absence of Livelocks:  with oldest-first ranking 
 

 

 

 

FLIT-BLESS: Flit-Level Routing 

Flit-Ranking 1. Oldest-first ranking 

Port-

Prioritization 
2. Assign flit to productive port, if possible. 

Otherwise, assign to non-productive port.  
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• Potential downsides of FLIT-BLESS 

• Not-energy optimal (each flits needs header information) 

• Increase in latency (different flits take different path) 

• Increase in receive buffer size 

 

• BLESS with wormhole routing…? 

• Problems: 

• Injection Problem 

(not known when it is safe to inject) 

 

• Livelock Problem 
(packets can be deflected forever) 

 

 

 

 

WORM-BLESS: Wormhole Routing 

new worm! 

[Dally, Seitz’86] 
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WORM-BLESS: Wormhole Routing 

Flit-Ranking 1. Oldest-first ranking 

Port-Prioritization 
2. If flit is head-flit 

   a) assign flit to unallocated, productive port 

  b) assign flit to allocated, productive port 

  c) assign flit to unallocated, non-productive port 

  d) assign flit to allocated, non-productive port 

else,  

  a) assign flit to port that is allocated to worm  

Deflect worms 

if necessary! 

Truncate worms 

if necessary! 

Head-flit: West 

This worm  

is truncated! 

& deflected! 

At low congestion, packets 

travel routed as worms 

allocated 

to North 

allocated 

to West 

Body-flit turns 

 into head-flit 

See paper for details…  
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• BLESS without buffers is extreme end of a continuum 

• BLESS can be integrated with buffers  

• FLIT-BLESS with Buffers 

• WORM-BLESS with Buffers 

• Whenever a buffer is full, it’s first flit becomes  

must-schedule 

• must-schedule flits must be deflected if necessary 

 

 

 

 

 

 

 

 

BLESS with Buffers 

See paper for details…  
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• Introduction and Background 

 

• Bufferless Routing (BLESS) 

• FLIT-BLESS 

• WORM-BLESS 

• BLESS with buffers 

 

• Advantages and Disadvantages 

 

• Evaluations 

 

• Conclusions 

 

 

 

Overview 
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Advantages 

• No buffers 

• Purely local flow control 

• Simplicity  
- no credit-flows 

- no virtual channels 

- simplified router design 

• No deadlocks, livelocks 

• Adaptivity 
- packets are deflected around 

congested areas!  

• Router latency reduction 

• Area savings 

 

 

 

 

BLESS:  Advantages & Disadvantages  

 

Disadvantages 

• Increased latency 

• Reduced bandwidth 

• Increased buffering at 

receiver 

• Header information at 

each flit 

 

 

 

 

 

 

 

 

Impact on energy…?  
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• BLESS gets rid of input buffers  

and virtual channels 

  

 

 

 

 

 

 

 

 

 

 

 

 

Reduction of Router Latency 

BW 

RC 

VA 

SA 
ST 

LT 

BW SA ST 
LT 

RC ST 
LT 

RC ST 
LT 

LA LT 

BW:  Buffer Write 

RC:   Route Computation 

VA:    Virtual Channel Allocation 

SA:    Switch Allocation 

ST:    Switch Traversal 

LT:     Link Traversal 

LA LT:   Link Traversal of Lookahead  

Baseline 

Router 

(speculative) 

head 

flit 

body 

flit 

BLESS 

Router 

(standard) 

RC ST 
LT 

RC ST 
LT 

Router 1 

Router 2 

Router 1 

Router 2 

BLESS 

Router 

(optimized) 

Router Latency = 3 

Router Latency = 2 

Router Latency = 1 

Can be improved to 2.  

[Dally, Towles’04] 
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Advantages 

• No buffers 

• Purely local flow control 

• Simplicity  
- no credit-flows 

- no virtual channels 

- simplified router design 

• No deadlocks, livelocks 

• Adaptivity 
- packets are deflected around 

congested areas!  

• Router latency reduction 

• Area savings 

 

 

 

 

BLESS:  Advantages & Disadvantages  

 

Disadvantages 

• Increased latency 

• Reduced bandwidth 

• Increased buffering at 

receiver 

• Header information at 

each flit 

 

 

 

 

 

 

 

 

Impact on energy…?  

Extensive evaluations in the paper! 
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• 2D mesh network, router latency is 2 cycles 

o 4x4, 8 core, 8 L2 cache banks  (each node is a core or an L2 bank) 

o 4x4, 16 core, 16 L2 cache banks (each node is a core and an L2 bank) 

o 8x8, 16 core, 64 L2 cache banks (each node is L2 bank and may be a core) 

o 128-bit wide links,  4-flit data packets,  1-flit address packets 

o For baseline configuration: 4 VCs per physical input port, 1 packet deep 

• Benchmarks 

o Multiprogrammed SPEC CPU2006 and Windows Desktop applications 

o Heterogeneous and homogenous application mixes 

o Synthetic traffic patterns: UR, Transpose, Tornado, Bit Complement 

• x86 processor model based on Intel Pentium M 

o 2 GHz processor, 128-entry instruction window 

o 64Kbyte private L1 caches 

o Total 16Mbyte shared L2 caches; 16 MSHRs per bank 

o DRAM model based on Micron DDR2-800 

 

 

Evaluation Methodology 

Most of our evaluations 

with perfect L2 caches 

 Puts maximal stress  

on NoC 

Simulation is cycle-accurate 

 Models stalls in network  

     and processors 

 Self-throttling behavior 

 Aggressive processor model 
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• Energy model provided by Orion simulator [MICRO’02] 

o 70nm technology,  2 GHz routers at 1.0 Vdd 

• For BLESS, we model  

o Additional energy to transmit header information 

o Additional buffers needed on the receiver side 

o Additional logic to reorder flits of individual packets at receiver 

• We partition network energy into 

buffer energy, router energy, and link energy,  

each having static and dynamic components.  

 

 

• Comparisons against non-adaptive and aggressive  

adaptive buffered routing algorithms (DO, MIN-AD, ROMM) 

 

 

 

 

Evaluation Methodology 
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Evaluation – Synthethic Traces 

• First, the bad news  

 

• Uniform random injection 

 

• BLESS has significantly lower 

   saturation throughput  

   compared to buffered  

   baseline.  
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Evaluation – Homogenous Case Study 

• milc benchmarks 

  (moderately intensive) 

 

• Perfect caches! 

 

•  Very little performance 

   degradation with BLESS 

   (less than 4% in dense 

    network) 

 

• With router latency 1,  

  BLESS can even  

  outperform baseline 

  (by ~10%) 

 

• Significant energy  

  improvements  

  (almost 40%) 
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Baseline BLESS RL=1 

• milc benchmarks 

  (moderately intensive) 

 

• Perfect caches! 

 

•  Very little performance 

   degradation with BLESS 

   (less than 4% in dense 

    network) 

 

• With router latency 1,  

  BLESS can even  

  outperform baseline 

  (by ~10%) 

 

• Significant energy  

  improvements  

  (almost 40%) 

   

Observations:  

 

1) Injection rates not extremely high 

on average 

       self-throttling! 

 

2) For bursts and temporary hotspots, 

use network links as buffers! 
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Evaluation – Further Results 
 

• BLESS increases buffer requirement 

at receiver by at most 2x   

 overall, energy is still reduced 

 

• Impact of memory latency  

  with real caches, very little slowdown! (at most 1.5%) 

See paper for details…  
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Evaluation – Further Results 
 

• BLESS increases buffer requirement 

at receiver by at most 2x   

 overall, energy is still reduced 

 

• Impact of memory latency  

  with real caches, very little slowdown! (at most 1.5%) 

 

• Heterogeneous application mixes 

 (we evaluate several mixes of intensive and non-intensive applications) 

  little performance degradation  

  significant energy savings in all cases 

  no significant increase in unfairness across different applications 

 

• Area savings: ~60% of network area can be saved! 

 

 

See paper for details…  
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• Aggregate results over all 29 applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluation – Aggregate Results 
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Average Worst-Case Average Worst-Case 

∆ Network Energy -39.4% -28.1% -46.4% -41.0% 

∆ System Performance -0.5% -3.2% -0.15% -0.55% 
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• Aggregate results over all 29 applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evaluation – Aggregate Results 
 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sparse Network Perfect L2 Realistic L2 

Average Worst-Case Average Worst-Case 

∆ Network Energy -39.4% -28.1% -46.4% -41.0% 

∆ System Performance -0.5% -3.2% -0.15% -0.55% 

Dense Network Perfect L2 Realistic L2 

Average Worst-Case Average Worst-Case 

∆ Network Energy -32.8% -14.0% -42.5% -33.7% 

∆ System Performance -3.6% -17.1% -0.7% -1.5% 
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• For a very wide range of applications and network settings, 
buffers are not needed in NoC 

• Significant energy savings  
(32% even in dense networks and perfect caches) 

• Area-savings of 60%  

• Simplified router and network design (flow control, etc…) 

• Performance slowdown is minimal (can even increase!) 

 

 A strong case for a rethinking of NoC design!   

 

 

• We are currently working on future research.  

• Support for quality of service, different traffic classes, energy-
management, etc…  

 

 

 

Conclusion 


