
Computer Architecture:

Interconnects (Part II)

Michael Papamichael

Carnegie Mellon University

Material partially based on Onur Mutlu’s 18-742 lecture slides from Spring 2010

Announcements

 Reviews due today (November 1)

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

 Fallin et al., “CHIPPER: A Low-Complexity Bufferless Deflection
Router,” HPCA 2011.

 Project milestones on November 6

2

Readings

 Required

 Dally, “Route Packets, Not Wires: On-Chip Interconnection
Networks,” DAC 2001.

 Das et al., “Application-Aware Prioritization Mechanisms for
On-Chip Networks,” MICRO 2009.

 Chang et al., “HAT: Heterogeneous Adaptive Throttling for On-
Chip Networks,” SBAC-PAD 2012.

 Fallin et al., “MinBD: Minimally-Buffered Deflection Routing for
Energy-Efficient Interconnect,” NOCS 2012.

 Please see website for more recommended readings

3

Agenda

 Terminology review

 More on interconnection networks

 Network properties and performance metrics

 Buffering and flow control

 Router design and pipeline options

 Research on NoCs

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack-based packet scheduling

 Bufferless networks

4

Basic Terminology (review)

 Topology

 Specifies way switches are wired

 Routing (algorithm)

 How does a message get from source to destination

 Buffering and Flow Control

 Managing and communicating buffer space

 Switch/router

 Connects fixed set of inputs to fixed set of outputs

 Channel

 A single logical connection between routers/switches

5

Basic Terminology (review)

 Node

 A switch/router or client/endpoint that is part of the network

 Message

 Unit of transfer for network’s clients (processors, memory)

 Packet

 Unit of transfer for network

 Flit

 Flow control digit

 Unit of flow control within network

6

Packet
F F F F F F

Flits

T

Head Flit Tail Flit

H

Agenda

 Terminology review

 More on interconnection networks

 Network properties and performance metrics

 Buffering and flow control

 Router design and pipeline options

 Research on NoCs

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack-based packet scheduling

 Bufferless networks

7

Properties of a Topology/Network

 Regular or Irregular

 Regular if topology is regular graph (e.g. ring, mesh).

 Routing Distance

 Number of links/hops along route

 Diameter

 Maximum routing distance

 Average Distance

 Average number of hops across all valid routes

8

diameter = 6

Properties of a Topology/Network
 Direct or Indirect Networks

 Endpoints sit “inside” (direct) or “outside” (indirect) the network

 E.g. mesh is direct; every node is both endpoint and switch

9

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

1

0

3

2

5

4

7

6

9

8

11

10

13

12

15

14

Router (switch), Radix of 2 (2 inputs, 2 outputs)

Abbreviation: Radix-ary

These routers are 2-ary

Indirect Direct

Properties of a Topology/Network

 Bisection Bandwidth

 Often used to describe network performance

 Cut network in half and sum bandwidth of links severed

 (Min # channels spanning two halves) * (BW of each channel)

 Meaningful only for recursive topologies

 Can be misleading, because does not account for switch and
routing efficiency

 Blocking vs. Non-Blocking

 If connecting any permutation of sources & destinations is
possible, network is non-blocking; otherwise network is blocking.

 Rearrangeable non-blocking: Same as non-blocking but might
require rearranging connections when switching from one
permutation to another.

 10

Blocking vs. Non-Blocking Example

 What type of topology/network is this?

 Multistage Logarithmic (Omega)

 Is this blocking or non-blocking?

 Blocking

11

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Omega Net w or k

conflict

Interconnection Network Performance

 Load-Latency behavior

 Can heavily depend on traffic pattern

12

Latency

Load - Offered Traffic (bits/sec)

Min latency
given by
topology

Min latency
given by routing

algorithm

Zero load or
idle latency

(topology+routing
+flow control)

Throughput
given by
topology

Throughput
given by
routing

Saturation
throughput (given
by flow control)

Ideal Latency

 Ideal latency

 Solely due to wire delay between source and destination

 D = Manhattan distance

 L = packet size

 b = channel bandwidth

 v = propagation velocity

13

Tideal
D

v

L

b

Actual Latency

 Dedicated wiring impractical

 Long wires segmented with insertion of routers

 D = Manhattan distance

 L = packet size

 b = channel bandwidth

 v = propagation velocity

 H = hops

 Trouter = router latency

 Tc = latency due to contention

14

crouteractual TTH
b

L

v

D
T

Direct

Review

Topology Crossbar Mesh

Indirect Direct/Indirect

Blocking/

Non-blocking
Non-blocking

Blocking

(this particular one)
Blocking

Multistage Logarith.

Indirect

Cost

Latency

O(N2) O(NlogN) O(N)

O(sqrt(N)) O(1) O(logN)

2

1

0

3

2 1 0 3

1

0

3

2

5

4

7

6

1

0

3

2

5

4

7

6

Agenda

 Terminology review

 More on interconnection networks

 Network properties and performance metrics

 Buffering and flow control

 Router design and pipeline options

 Research on NoCs

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack-based packet scheduling

 Bufferless networks

16

Circuit vs. Packet Switching (review)

17

 Circuit switching sets up full path
 Establish route then send data

 (no one else can use those links)

 faster and higher bandwidth

 setting up and bringing down links slow

 Packet switching routes per packet
 Route each packet individually (possibly via different paths)

 if link is free can use

 potentially slower (must dynamically switch)

 no setup, bring down time

Packet Switched Networks: Packet Format

 Header

 routing and control information

 at start so router can start forwarding early

 Payload/Body

 carries data (non HW specific information)

 can be further divided (framing, protocol stacks…)

 Tail

 contains control information, e.g. error code

 at end of packet so it can be generated on the way out

18

F H F F F T

Head Flit Body Flits Tail Flit

Handling Contention

 Two packets trying to use the same link at the same time

 What do you do?

 Buffer one

 Drop one

 Misroute one (deflection)

 Assume buffering for now

19

Flow Control Methods

 Circuit switching

 Store and forward (Packet based)

 Virtual cut through (Packet based)

 Wormhole (Flit based)

20

Circuit Switching Revisited

 Resource allocation granularity is high

 Idea: Pre-allocate resources across multiple switches for a
given “flow”

 Need to send a probe to set up the path for pre-allocation

+ No need for buffering

+ No contention (flow’s performance is isolated)

+ Can handle arbitrary message sizes

- Lower link utilization: two flows cannot use the same link

- Handshake overhead to set up a “circuit”

21

Store and Forward Flow Control

 Packet based flow control

 Store and Forward

 Packet copied entirely into network router before moving to
the next node

 Flow control unit is the entire packet

 Leads to high per-packet latency

 Requires buffering for entire packet in each node

22

Can we do better?

S

D

Cut through Flow Control

 Another form of packet based flow control

 Start forwarding as soon as header is received and
resources (buffer, channel, etc) allocated

 Dramatic reduction in latency

 Still allocate buffers and channel bandwidth for full packets

 What if packets are large?

23

S

D

Cut through Flow Control

 What to do if output port is blocked?

 Lets the tail continue when the head is blocked, absorbing
the whole message into a single switch.

 Requires a buffer large enough to hold the largest packet.

 Degenerates to store-and-forward with high contention

 Can we do better?

24

Wormhole Flow Control

 Packets broken into (potentially)
smaller flits (buffer/bw allocation unit)

 Flits are sent across the fabric in a
wormhole fashion

 Body follows head, tail follows body

 Pipelined

 If head blocked, rest of packet stops

 Routing (src/dest) information only in
head

 How does body/tail know where to go?

 Latency almost independent of distance
for long messages

25

H

B

B

T

Wormhole Flow Control
 Advantages over “store and forward” flow control

+ Lower latency

+ More efficient buffer utilization

 Limitations

- Occupies resources across multiple routers

- Suffers from head of line blocking

 - if head flit cannot move due to contention, another worm cannot
proceed even though links may be idle

26

1 2

1 2 1

2

Switching Fabric Input Queues Outputs

1

2

1

2
HOL Blocking

Idle!

Head of Line Blocking

27

Blocked by other
packets

Channel idle but
red packet blocked

behind blue

Buffer full: blue
cannot proceed

Red holds this channel:
channel remains idle
until read proceeds

Head of Line Blocking

 A worm can be before another in the router input buffer

 Due to FIFO nature, the second worm cannot be scheduled
even though it may need to access another output port

28

Karo et al., “Input Versus Output Queuing on a Space-Division
Packet Switch,” IEEE Transactions on Communications 1987

Virtual Channel Flow Control

 Idea: Multiplex multiple channels over one physical channel

 Divide up the input buffer into multiple buffers sharing a
single physical channel

 Dally, “Virtual Channel Flow Control,” ISCA 1990.

29

Virtual Channel Flow Control

 Idea: Multiplex multiple channels over one physical channel

 Divide up the input buffer into multiple buffers sharing a
single physical channel

 Dally, “Virtual Channel Flow Control,” ISCA 1990.

30

Virtual Channel Flow Control

31

Blocked by other
packets

Buffer full: blue
cannot proceed

A Modern Virtual Channel Based Router

32

Other Uses of Virtual Channels

 Deadlock avoidance

 Enforcing switching to a different set of virtual channels on
some “turns” can break the cyclic dependency of resources

 Enforce order on VCs

 Escape VCs: Have at least one VC that uses deadlock-free
routing. Ensure each flit has fair access to that VC.

 Protocol level deadlock: Ensure address and data packets use
different VCs prevent cycles due to intermixing of different

packet classes

 Prioritization of traffic classes

 Some virtual channels can have higher priority than others

33

Communicating Buffer Availability

 Credit-based flow control

 Upstream knows how many buffers are downstream

 Downstream passes back credits to upstream

 Significant upstream signaling (esp. for small flits)

 On/Off (XON/XOFF) flow control

 Downstream has on/off signal to upstream

 Ack/Nack flow control

 Upstream optimistically sends downstream

 Buffer cannot be deallocated until ACK/NACK received

 Inefficiently utilizes buffer space

34

Credit-based Flow Control

 Round-trip credit delay:

 Time between when buffer empties and when next flit can be
processed from that buffer entry

 Significant throughput degradation if there are few buffers

 Important to size buffers to tolerate credit turn-around

35

Node 1 Node 2

Flit departs

router

t1

Process
t2

t3

Process
t4

t5

Credit round

trip delay

On/Off (XON/XOFF) Flow Control

 Downstream has on/off signal to upstream

36

Proces

s

Node 1 Node 2
t1

t2

Foffthreshold
reached

Proces

s

t3
t4

t5

t6

t7

t8

Foffset to
prevent flits

arriving before
t4 from

overflowing

Fonthreshold
reached

Fonset so that
Node 2 does
not run out of
flits between

t5 and t8

Review: Flow Control

Store and Forward

S

D

Cut Through / Wormhole
S

D

Blocked by other
packets

Channel idle but
red packet blocked
behind blue

Buffer full: blue
cannot proceed

Red holds this channel:
channel remains idle
until read proceeds

Shrink Buffers

Reduce latency

Any other

issues?

 Head-of-Line

Blocking

Use Virtual

Channels

Review: Flow Control

Store and Forward

S

D

Cut Through / Wormhole
S

D

Shrink Buffers

Reduce latency

Any other

issues?

 Head-of-Line

Blocking

Use Virtual

Channels

Blocked by other
packets

Buffer full: blue
cannot proceed

Agenda

 Terminology review

 More on interconnection networks

 Network properties and performance metrics

 Buffering and flow control

 Router design and pipeline options

 Research on NoCs

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack-based packet scheduling

 Bufferless networks

39

On-chip Networks

40

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Router

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

Router Design: Functions of a Router

 Buffering (of flits)

 Route computation

 Arbitration of flits (i.e. prioritization) when contention

 Called packet scheduling

 Switching

 From input port to output port

 Power management

 Scale link/router frequency

41

Router Pipeline

 Five logical stages

 BW: Buffer Write

 RC: Route computation

 VA: Virtual Channel Allocation

 SA: Switch Allocation

 ST: Switch Traversal

 LT: Link Traversal

42

BW RC VA SA ST LT

Wormhole Router Timeline

 Route computation performed once per packet
 Virtual channel allocated once per packet

 Body and tail flits inherit this information from head flit

43

BW RC VA SA ST LT

BW

BW

BW

SA ST LT

SA ST LT

SA ST LT

Head

Body 1

Body 2

Tail

Dependencies in a Router

 Dependence between output of one module and input of
another
 Determine critical path through router

 Cannot bid for switch port until routing performed

 44

Decode + Routing Switch Arbitration Crossbar Traversal

Wormhole Router

Decode +
Routing

Switch
Arbitration

Crossbar
Traversal

Virtual Channel Router

VC
Allocation

Decode +
Routing Speculative Switch

Arbitration

Crossbar
Traversal

Speculative Virtual Channel

Router

VC
Allocation

Pipeline Optimizations: Lookahead Routing

 At current router perform routing computation for next
router

 Overlap with BW

 Precomputing route allows flits to compete for VCs
immediately after BW

 RC decodes route header

 Routing computation needed at next hop

 Can be computed in parallel with VA

 Galles, “Spider: A High-Speed Network Interconnect,”
IEEE Micro 1997.

BW
RC

VA SA ST LT

Pipeline Optimizations: Speculation

 Assume that Virtual Channel Allocation stage will be
successful

 Valid under low to moderate loads

 Entire VA and SA in parallel

 If VA unsuccessful (no virtual channel returned)

 Must repeat VA/SA in next cycle

 Prioritize non-speculative requests

BW
RC

VA
SA

ST LT

Pipeline Optimizations: Bypassing

 When no flits in input buffer

 Speculatively enter ST

 On port conflict, speculation aborted

 In the first stage, a free VC is allocated, next routing is
performed and the crossbar is setup

VA
RC

Setup
ST LT

Agenda

 Terminology review

 More on interconnection networks

 Network properties and performance metrics

 Buffering and flow control

 Router design and pipeline options

 Research on NoCs

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack-based packet scheduling

 Bufferless networks

48

Packet Scheduling

 Which packet to choose for a given output port?

 Router needs to prioritize between competing flits

 Which input port?

 Which virtual channel?

 Which application’s packet?

 Common strategies

 Round robin across virtual channels

 Oldest packet first (or an approximation)

 Prioritize some virtual channels over others

 Better policies in a multi-core environment

 Use application characteristics

49

The Problem: Packet Scheduling

Network-on-Chip

L2$ L2$
L2$

L2$

Bank

mem

cont

Memory

Controller

P

Accelerator
L2$

Bank

L2$

Bank

P P P P P P P

Network-on-Chip

Network-on-Chip is a critical resource

shared by multiple applications

App1 App2 App N App N-1

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

The Problem: Packet Scheduling

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Routers

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA

)

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch
Allocator (SA

)

VC 1

VC 2

From East

From West

From North

From South

From PE

The Problem: Packet Scheduling

Conceptual

View

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

The Problem: Packet Scheduling

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch

VC 1

VC 2

From East

From West

From North

From South

From PE

Allocator (SA)

Sc
h

e
d

u
le

r

Conceptual

View

VC 0
Routing Unit

(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

VC 1

VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?

The Problem: Packet Scheduling

The Problem: Packet Scheduling

 Existing scheduling policies

 Round Robin

 Age

 Problem 1: Local to a router

 Lead to contradictory decision making between routers: packets

from one application may be prioritized at one router, to be

delayed at next.

 Problem 2: Application oblivious

 Treat all applications packets equally

 But applications are heterogeneous

 Solution : Application-aware global scheduling policies.

Agenda

 Terminology review

 More on interconnection networks

 Network properties and performance metrics

 Buffering and flow control

 Router design and pipeline options

 Research on NoCs

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack-based packet scheduling

 Bufferless networks

56

Motivation: Stall Time Criticality

 Applications are not homogenous

 Applications have different criticality with respect to the

network

 Some applications are network latency sensitive

 Some applications are network latency tolerant

 Application’s Stall Time Criticality (STC) can be measured by

its average network stall time per packet (i.e. NST/packet)

 Network Stall Time (NST) is number of cycles the processor

stalls waiting for network transactions to complete

Motivation: Stall Time Criticality

 Why applications have different network stall time criticality

(STC)?

 Memory Level Parallelism (MLP)

 Lower MLP leads to higher STC

 Shortest Job First Principle (SJF)

 Lower network load leads to higher STC

 Average Memory Access Time

 Higher memory access time leads to higher STC

 Observation 1: Packet Latency != Network Stall Time

STALL STALL

STALL of Red Packet = 0

LATENCY

LATENCY

LATENCY

Application with high MLP

STC Principle 1 {MLP}
Compute

 Observation 1: Packet Latency != Network Stall Time

 Observation 2: A low MLP application’s packets have higher

criticality than a high MLP application’s

STALL STALL

STALL of Red Packet = 0

LATENCY

LATENCY

LATENCY

Application with high MLP

STALL

LATENCY

STALL

LATENCY

STALL

LATENCY

Application with low MLP

STC Principle 1 {MLP}

STC Principle 2 {Shortest-Job-First}

4X network slow down

1.2X network slow down

1.3X network slow down

1.6X network slow down

Overall system throughput{weighted speedup} increases by 34%

Running ALONE

Baseline (RR) Scheduling

SJF Scheduling

Light Application Heavy Application

Compute

Solution: Application-Aware Policies

 Idea

 Identify stall time critical applications (i.e. network

sensitive applications) and prioritize their packets in

each router.

 Key components of scheduling policy:

 Application Ranking

 Packet Batching

 Propose low-hardware complexity solution

Component 1 : Ranking

 Ranking distinguishes applications based on Stall Time

Criticality (STC)

 Periodically rank applications based on Stall Time Criticality

(STC).

 Explored many heuristics for quantifying STC (Details &

analysis in paper)

 Heuristic based on outermost private cache Misses Per

Instruction (L1-MPI) is the most effective

 Low L1-MPI => high STC => higher rank

 Why Misses Per Instruction (L1-MPI)?

 Easy to Compute (low complexity)

 Stable Metric (unaffected by interference in network)

Component 1 : How to Rank?
 Execution time is divided into fixed “ranking intervals”

 Ranking interval is 350,000 cycles

 At the end of an interval, each core calculates their L1-MPI and

sends it to the Central Decision Logic (CDL)

 CDL is located in the central node of mesh

 CDL forms a ranking order and sends back its rank to each core

 Two control packets per core every ranking interval

 Ranking order is a “partial order”

 Rank formation is not on the critical path

 Ranking interval is significantly longer than rank computation time

 Cores use older rank values until new ranking is available

Component 2: Batching

 Problem: Starvation

 Prioritizing a higher ranked application can lead to starvation of

lower ranked application

 Solution: Packet Batching

 Network packets are grouped into finite sized batches

 Packets of older batches are prioritized over younger

batches

 Alternative batching policies explored in paper

 Time-Based Batching

 New batches are formed in a periodic, synchronous manner

across all nodes in the network, every T cycles

Putting it all together

 Before injecting a packet into the network, it is tagged by

 Batch ID (3 bits)

 Rank ID (3 bits)

 Three tier priority structure at routers

 Oldest batch first (prevent starvation)

 Highest rank first (maximize performance)

 Local Round-Robin (final tie breaker)

 Simple hardware support: priority arbiters

 Global coordinated scheduling

 Ranking order and batching order are same across all routers

STC Scheduling Example

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 0

Packet Injection Order at Processor

Core1 Core2 Core3

Batching interval length = 3 cycles

Ranking order =

Batch 1

Batch 2

STC Scheduling Example

4 8

5

1 7

2

1

6 2

1

3

Router

Sc
h

e
d

u
le

r

In
je

ct
io

n
C

yc
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 2

Batch 1

Batch 0

Applications

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

3 2 8 7 6

STALL CYCLES Avg

RR 8 6 11 8.3

Age

STC

Time

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

3 3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC

Time

Time

STC Scheduling Example

4 8

5

1 7

3

2

6 2

2

3

Router

Sc
h

e
d

u
le

r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

2 3 3 5 4 6 7 8 1 2 2

STC

3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC 1 3 11 5.0

Ranking order

Time

Time

Time

Qualitative Comparison
 Round Robin & Age

 Local and application oblivious

 Age is biased towards heavy applications
 heavy applications flood the network

 higher likelihood of an older packet being from heavy application

 Globally Synchronized Frames (GSF) [Lee et al., ISCA
2008]

 Provides bandwidth fairness at the expense of system
performance

 Penalizes heavy and bursty applications
 Each application gets equal and fixed quota of flits (credits) in each batch.

 Heavy application quickly run out of credits after injecting into all active
batches & stall till oldest batch completes and frees up fresh credits.

 Underutilization of network resources

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
al

iz
e

d
 S

y
st

e
m

 S
p

e
e

d
u

p

LocalRR LocalAge

GSF STC

0

2

4

6

8

10

N
et

w
o

rk
 U

n
fa

ir
n

e
ss

LocalRR LocalAge

GSF STC

System Performance

 STC provides 9.1% improvement in weighted speedup over

the best existing policy{averaged across 96 workloads}

 Detailed case studies in the paper

Agenda

 Terminology review

 More on interconnection networks

 Network properties and performance metrics

 Buffering and flow control

 Router design and pipeline options

 Research on NoCs

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack-based packet scheduling

 Bufferless networks

74

Today

 Review (Topology & Flow Control)

 More on interconnection networks

 Routing

 Router design

 Network performance metrics

 On-chip vs. off-chip differences

 Research on NoCs and packet scheduling

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack based packet scheduling

75

What is Aérgia?

 Ae ́rgia is the spirit of laziness in Greek mythology

 Some packets can afford to slack!

Slack of Packets

 What is slack of a packet?

 Slack of a packet is number of cycles it can be delayed in a
router without reducing application’s performance

 Local network slack

 Source of slack: Memory-Level Parallelism (MLP)

 Latency of an application’s packet hidden from application due
to overlap with latency of pending cache miss requests

 Prioritize packets with lower slack

Concept of Slack
Instruction

 Window

Stall

Network-on-Chip

Load Miss Causes

 returns earlier than necessary

Compute

Slack () = Latency () – Latency () = 26 – 6 = 20 hops

Execution Time

Packet() can be delayed for available slack cycles

without reducing performance!

Causes Load Miss

Latency ()

Latency ()

Slack Slack

Prioritizing using Slack

Core A

Core B

Packet Latency Slack

13 hops 0 hops

3 hops 10 hops

10 hops 0 hops

4 hops 6 hops

Causes

Causes Load Miss

Load Miss

Prioritize

Load Miss

Load Miss Causes

Causes

Interference at 3 hops

Slack() > Slack ()

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f
a

ll
P

a
c
k
e

ts
 (

%
)

Slack in cycles

Gems

50% of packets have 350+ slack cycles

10% of packets have <50 slack cycles

Non-critical

critical

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

art

68% of packets have zero slack cycles

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref

Slack varies between packets of different applications

Slack varies between packets of a single application

Estimating Slack Priority

Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P

 Predecessors(P) are the packets of outstanding cache miss

requests when P is issued

 Packet latencies not known when issued

 Predicting latency of any packet Q

 Higher latency if Q corresponds to an L2 miss

 Higher latency if Q has to travel farther number of hops

 Slack of P = Maximum Predecessor Latency – Latency of P

 Slack(P) =

PredL2: Set if any predecessor packet is servicing L2 miss

MyL2: Set if P is NOT servicing an L2 miss

HopEstimate: Max (# of hops of Predecessors) – hops of P

Estimating Slack Priority

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)

Estimating Slack Priority

 How to predict L2 hit or miss at core?

 Global Branch Predictor based L2 Miss Predictor

 Use Pattern History Table and 2-bit saturating counters

 Threshold based L2 Miss Predictor

 If #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss.

 Number of miss predecessors?

 List of outstanding L2 Misses

 Hops estimate?

 Hops => ∆X + ∆ Y distance

 Use predecessor list to calculate slack hop estimate

Starvation Avoidance

 Problem: Starvation

 Prioritizing packets can lead to starvation of lower priority

packets

 Solution: Time-Based Packet Batching

 New batches are formed at every T cycles

 Packets of older batches are prioritized over younger batches

Qualitative Comparison

 Round Robin & Age

 Local and application oblivious

 Age is biased towards heavy applications

 Globally Synchronized Frames (GSF)
[Lee et al., ISCA 2008]

 Provides bandwidth fairness at the expense of system performance

 Penalizes heavy and bursty applications

 Application-Aware Prioritization Policies (SJF)
[Das et al., MICRO 2009]

 Shortest-Job-First Principle

 Packet scheduling policies which prioritize network sensitive

applications which inject lower load

System Performance

 SJF provides 8.9% improvement

in weighted speedup

 Ae ́rgia improves system

throughput by 10.3%

 Ae ́rgia+SJF improves system

throughput by 16.1%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 S
y

st
e

m
 S

p
e

ed
u

p

Age RR

GSF SJF

Aergia SJF+Aergia

Agenda

 Terminology review

 More on interconnection networks

 Network properties and performance metrics

 Buffering and flow control

 Router design and pipeline options

 Research on NoCs

 The problem with packet scheduling

 Application-aware packet scheduling

 Aergia: Latency slack-based packet scheduling

 Bufferless networks

90

$

Thomas Moscibroda, Microsoft Research

• Connect cores, caches, memory controllers, etc…

• Examples:

• Intel 80-core Terascale chip

• MIT RAW chip

• Design goals in NoC design:

• High throughput, low latency

• Fairness between cores, QoS, …

• Low complexity, low cost

• Power, low energy consumption

On-Chip Networks (NoC)

$

Thomas Moscibroda, Microsoft Research

• Connect cores, caches, memory controllers, etc…

• Examples:

• Intel 80-core Terascale chip

• MIT RAW chip

• Design goals in NoC design:

• High throughput, low latency

• Fairness between cores, QoS, …

• Low complexity, low cost

• Power, low energy consumption

On-Chip Networks (NoC)

Energy/Power in On-Chip Networks

• Power is a key constraint in the design

 of high-performance processors

• NoCs consume substantial portion of system

 power

• ~30% in Intel 80-core Terascale [IEEE Micro’07]

• ~40% in MIT RAW Chip [ISCA’04]

• NoCs estimated to consume 100s of Watts

 [Borkar, DAC’07]

$

Thomas Moscibroda, Microsoft Research

• Existing approaches differ in numerous ways:

• Network topology [Kim et al, ISCA’07, Kim et al, ISCA’08 etc]

• Flow control [Michelogiannakis et al, HPCA’09, Kumar et al, MICRO’08, etc]

• Virtual Channels [Nicopoulos et al, MICRO’06, etc]

• QoS & fairness mechanisms [Lee et al, ISCA’08, etc]

• Routing algorithms [Singh et al, CAL’04]

• Router architecture [Park et al, ISCA’08]

• Broadcast, Multicast [Jerger et al, ISCA’08, Rodrigo et al, MICRO’08]

Current NoC Approaches

Existing work assumes existence of

buffers in routers!

$

Thomas Moscibroda, Microsoft Research

A Typical Router

Routing Computation

VC Arbiter

Switch Arbiter

VC1

VC2

VCv

VC1

VC2

VCv

Input Port N

Input Port 1

N x N Crossbar

Input Channel 1

Input Channel N

Scheduler

Output Channel 1

Output Channel N

Credit Flow

to upstream

router

Buffers are integral part of

existing NoC Routers

Credit Flow

to upstream

router

$

Thomas Moscibroda, Microsoft Research

• Buffers are necessary for high network throughput

 buffers increase total available bandwidth in network

Buffers in NoC Routers

Injection Rate

A
vg

. p
ac

ke
t

la
te

n
cy

large

buffers

medium

buffers

small

buffers

$

Thomas Moscibroda, Microsoft Research

• Buffers are necessary for high network throughput

 buffers increase total available bandwidth in network

• Buffers consume significant energy/power

• Dynamic energy when read/write

• Static energy even when not occupied

• Buffers add complexity and latency

• Logic for buffer management

• Virtual channel allocation

• Credit-based flow control

• Buffers require significant chip area

• E.g., in TRIPS prototype chip, input buffers occupy 75% of

total on-chip network area [Gratz et al, ICCD’06]

Buffers in NoC Routers

$

Thomas Moscibroda, Microsoft Research

• How much throughput do we lose?

 How is latency affected?

• Up to what injection rates can we use bufferless routing?

 Are there realistic scenarios in which NoC is

 operated at injection rates below the threshold?

• Can we achieve energy reduction?

 If so, how much…?

• Can we reduce area, complexity, etc…?

Going Bufferless…?

Injection Rate

la
te

n
cy

buffers
no

buffers

Answers in

our paper!

$

Thomas Moscibroda, Microsoft Research

• Introduction and Background

• Bufferless Routing (BLESS)

• FLIT-BLESS

• WORM-BLESS

• BLESS with buffers

• Advantages and Disadvantages

• Evaluations

• Conclusions

Overview

$

Thomas Moscibroda, Microsoft Research

• Always forward all incoming flits to some output port

• If no productive direction is available, send to another

direction

• packet is deflected

 Hot-potato routing [Baran’64, etc]

BLESS: Bufferless Routing

Buffered BLESS

Deflected!

$

Thomas Moscibroda, Microsoft Research

BLESS: Bufferless Routing

Routing

VC Arbiter

Switch Arbiter

Flit-Ranking

Port-

Prioritization

arbitration policy

Flit-Ranking 1. Create a ranking over all incoming flits

Port-

Prioritization 2. For a given flit in this ranking, find the best free output-port

 Apply to each flit in order of ranking

$

Thomas Moscibroda, Microsoft Research

• Each flit is routed independently.

• Oldest-first arbitration (other policies evaluated in paper)

• Network Topology:
 Can be applied to most topologies (Mesh, Torus, Hypercube, Trees, …)
 1) #output ports ¸ #input ports at every router
 2) every router is reachable from every other router

• Flow Control & Injection Policy:

 Completely local, inject whenever input port is free

• Absence of Deadlocks: every flit is always moving

• Absence of Livelocks: with oldest-first ranking

FLIT-BLESS: Flit-Level Routing

Flit-Ranking 1. Oldest-first ranking

Port-

Prioritization
2. Assign flit to productive port, if possible.

Otherwise, assign to non-productive port.

$

Thomas Moscibroda, Microsoft Research

• Potential downsides of FLIT-BLESS

• Not-energy optimal (each flits needs header information)

• Increase in latency (different flits take different path)

• Increase in receive buffer size

• BLESS with wormhole routing…?

• Problems:

• Injection Problem

(not known when it is safe to inject)

• Livelock Problem
(packets can be deflected forever)

WORM-BLESS: Wormhole Routing

new worm!

[Dally, Seitz’86]

$

Thomas Moscibroda, Microsoft Research

WORM-BLESS: Wormhole Routing

Flit-Ranking 1. Oldest-first ranking

Port-Prioritization
2. If flit is head-flit

 a) assign flit to unallocated, productive port

 b) assign flit to allocated, productive port

 c) assign flit to unallocated, non-productive port

 d) assign flit to allocated, non-productive port

else,

 a) assign flit to port that is allocated to worm

Deflect worms

if necessary!

Truncate worms

if necessary!

Head-flit: West

This worm

is truncated!

& deflected!

At low congestion, packets

travel routed as worms

allocated

to North

allocated

to West

Body-flit turns

 into head-flit

See paper for details…

$

Thomas Moscibroda, Microsoft Research

• BLESS without buffers is extreme end of a continuum

• BLESS can be integrated with buffers

• FLIT-BLESS with Buffers

• WORM-BLESS with Buffers

• Whenever a buffer is full, it’s first flit becomes

must-schedule

• must-schedule flits must be deflected if necessary

BLESS with Buffers

See paper for details…

$

Thomas Moscibroda, Microsoft Research

• Introduction and Background

• Bufferless Routing (BLESS)

• FLIT-BLESS

• WORM-BLESS

• BLESS with buffers

• Advantages and Disadvantages

• Evaluations

• Conclusions

Overview

$

Thomas Moscibroda, Microsoft Research

Advantages

• No buffers

• Purely local flow control

• Simplicity
- no credit-flows

- no virtual channels

- simplified router design

• No deadlocks, livelocks

• Adaptivity
- packets are deflected around

congested areas!

• Router latency reduction

• Area savings

BLESS: Advantages & Disadvantages

Disadvantages

• Increased latency

• Reduced bandwidth

• Increased buffering at

receiver

• Header information at

each flit

Impact on energy…?

$

Thomas Moscibroda, Microsoft Research

• BLESS gets rid of input buffers

and virtual channels

Reduction of Router Latency

BW

RC

VA

SA
ST

LT

BW SA ST
LT

RC ST
LT

RC ST
LT

LA LT

BW: Buffer Write

RC: Route Computation

VA: Virtual Channel Allocation

SA: Switch Allocation

ST: Switch Traversal

LT: Link Traversal

LA LT: Link Traversal of Lookahead

Baseline

Router

(speculative)

head

flit

body

flit

BLESS

Router

(standard)

RC ST
LT

RC ST
LT

Router 1

Router 2

Router 1

Router 2

BLESS

Router

(optimized)

Router Latency = 3

Router Latency = 2

Router Latency = 1

Can be improved to 2.

[Dally, Towles’04]

$

Thomas Moscibroda, Microsoft Research

Advantages

• No buffers

• Purely local flow control

• Simplicity
- no credit-flows

- no virtual channels

- simplified router design

• No deadlocks, livelocks

• Adaptivity
- packets are deflected around

congested areas!

• Router latency reduction

• Area savings

BLESS: Advantages & Disadvantages

Disadvantages

• Increased latency

• Reduced bandwidth

• Increased buffering at

receiver

• Header information at

each flit

Impact on energy…?

Extensive evaluations in the paper!

$

Thomas Moscibroda, Microsoft Research

• 2D mesh network, router latency is 2 cycles

o 4x4, 8 core, 8 L2 cache banks (each node is a core or an L2 bank)

o 4x4, 16 core, 16 L2 cache banks (each node is a core and an L2 bank)

o 8x8, 16 core, 64 L2 cache banks (each node is L2 bank and may be a core)

o 128-bit wide links, 4-flit data packets, 1-flit address packets

o For baseline configuration: 4 VCs per physical input port, 1 packet deep

• Benchmarks

o Multiprogrammed SPEC CPU2006 and Windows Desktop applications

o Heterogeneous and homogenous application mixes

o Synthetic traffic patterns: UR, Transpose, Tornado, Bit Complement

• x86 processor model based on Intel Pentium M

o 2 GHz processor, 128-entry instruction window

o 64Kbyte private L1 caches

o Total 16Mbyte shared L2 caches; 16 MSHRs per bank

o DRAM model based on Micron DDR2-800

Evaluation Methodology

Most of our evaluations

with perfect L2 caches

 Puts maximal stress

on NoC

Simulation is cycle-accurate

 Models stalls in network

 and processors

 Self-throttling behavior

 Aggressive processor model

$

Thomas Moscibroda, Microsoft Research

• Energy model provided by Orion simulator [MICRO’02]

o 70nm technology, 2 GHz routers at 1.0 Vdd

• For BLESS, we model

o Additional energy to transmit header information

o Additional buffers needed on the receiver side

o Additional logic to reorder flits of individual packets at receiver

• We partition network energy into

buffer energy, router energy, and link energy,

each having static and dynamic components.

• Comparisons against non-adaptive and aggressive

adaptive buffered routing algorithms (DO, MIN-AD, ROMM)

Evaluation Methodology

$

Thomas Moscibroda, Microsoft Research

Evaluation – Synthethic Traces

• First, the bad news

• Uniform random injection

• BLESS has significantly lower

 saturation throughput

 compared to buffered

 baseline.

0
10
20
30
40
50
60
70
80
90

100

0

0
.0

7

0
.1

0
.1

3

0
.1

6

0
.1

9

0
.2

2

0
.2

5

0
.2

8

0
.3

1

0
.3

4

0
.3

7

0
.4

0
.4

3

0
.4

6

0
.4

9

A
v
e

ra
g
e

 L
a
te

n
c
y

Injection Rate (flits per cycle per node)

FLIT-2

WORM-2

FLIT-1

WORM-1

MIN-AD

BLESS Best

Baseline

$

Thomas Moscibroda, Microsoft Research

Evaluation – Homogenous Case Study

• milc benchmarks

 (moderately intensive)

• Perfect caches!

• Very little performance

 degradation with BLESS

 (less than 4% in dense

 network)

• With router latency 1,

 BLESS can even

 outperform baseline

 (by ~10%)

• Significant energy

 improvements

 (almost 40%)

0
2
4
6
8

10
12
14
16
18

W
-S

p
e
e
d

u
p

4x4, 8x milc 4x4, 16x milc 8x8, 16x milc

0

0.2

0.4

0.6

0.8

1

1.2
E

n
e
rg

y
 (

n
o

rm
a
li
z
e
d

)
BufferEnergy LinkEnergy RouterEnergy

4x4, 16x milc 8x8, 16x milc 4x4, 8x milc

Baseline BLESS RL=1

$

Thomas Moscibroda, Microsoft Research

Evaluation – Homogenous Case Study

0
2
4
6
8

10
12
14
16
18

W
-S

p
e
e
d

u
p

4x4, 8x milc 4x4, 16x milc 8x8, 16x milc

0

0.2

0.4

0.6

0.8

1

1.2
E

n
e
rg

y
 (

n
o

rm
a
li
z
e
d

)
BufferEnergy LinkEnergy RouterEnergy

4x4, 8 8x milc 4x4, 16x milc 8x8, 16x milc

Baseline BLESS RL=1

• milc benchmarks

 (moderately intensive)

• Perfect caches!

• Very little performance

 degradation with BLESS

 (less than 4% in dense

 network)

• With router latency 1,

 BLESS can even

 outperform baseline

 (by ~10%)

• Significant energy

 improvements

 (almost 40%)

Observations:

1) Injection rates not extremely high

on average

 self-throttling!

2) For bursts and temporary hotspots,

use network links as buffers!

$

Thomas Moscibroda, Microsoft Research

Evaluation – Further Results

• BLESS increases buffer requirement

at receiver by at most 2x

 overall, energy is still reduced

• Impact of memory latency

 with real caches, very little slowdown! (at most 1.5%)

See paper for details…

0
2
4
6
8

10
12
14
16
18

D
O

M
IN

-A
D

R
O

M
M

F
L
IT

-2

W
O

R
M

-2

F
L
IT

-1

W
O

R
M

-1

D
O

M
IN

-A
D

R
O

M
M

F
L
IT

-2

W
O

R
M

-2

F
L
IT

-1

W
O

R
M

-1

D
O

M
IN

-A
D

R
O

M
M

F
L
IT

-2

W
O

R
M

-2

F
L
IT

-1

W
O

R
M

-1
 W

-S
p

e
e
d

u
p

4x4, 8x matlab 4x4, 16x matlab

8x8, 16x matlab

$

Thomas Moscibroda, Microsoft Research

Evaluation – Further Results

• BLESS increases buffer requirement

at receiver by at most 2x

 overall, energy is still reduced

• Impact of memory latency

 with real caches, very little slowdown! (at most 1.5%)

• Heterogeneous application mixes

 (we evaluate several mixes of intensive and non-intensive applications)

 little performance degradation

 significant energy savings in all cases

 no significant increase in unfairness across different applications

• Area savings: ~60% of network area can be saved!

See paper for details…

$

Thomas Moscibroda, Microsoft Research

• Aggregate results over all 29 applications

Evaluation – Aggregate Results

Sparse Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -39.4% -28.1% -46.4% -41.0%

∆ System Performance -0.5% -3.2% -0.15% -0.55%

0

0.2

0.4

0.6

0.8

1

Mean Worst-Case

E
n

e
rg

y

(n
o

rm
a
li
z
e
d

)

BufferEnergy LinkEnergy RouterEnergy

FLIT WORM BASE FLIT WORM BASE 0
1
2
3
4
5
6
7
8

Mean Worst-Case

W
-S

p
e
e
d

u
p

FL
IT

W
O

R
M

B
A

SE

FL
IT

W
O

R
M

B
A

SE

$

Thomas Moscibroda, Microsoft Research

• Aggregate results over all 29 applications

Evaluation – Aggregate Results

Sparse Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -39.4% -28.1% -46.4% -41.0%

∆ System Performance -0.5% -3.2% -0.15% -0.55%

Dense Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -32.8% -14.0% -42.5% -33.7%

∆ System Performance -3.6% -17.1% -0.7% -1.5%

$

Thomas Moscibroda, Microsoft Research

• For a very wide range of applications and network settings,
buffers are not needed in NoC

• Significant energy savings
(32% even in dense networks and perfect caches)

• Area-savings of 60%

• Simplified router and network design (flow control, etc…)

• Performance slowdown is minimal (can even increase!)

 A strong case for a rethinking of NoC design!

• We are currently working on future research.

• Support for quality of service, different traffic classes, energy-
management, etc…

Conclusion

