
Complexity-Effective Superscalar Processors

Subbarao Palacharla Norman F? Jouppi J. E. Smith

Computer Sciences Department Western Research Laboratory Dept. of Electrical and Computer Engg.

University of Wisconsin-Madison Digital Equipment Corporation University of Wisconsin-Madison

Madison, WI 53706, USA Palo Alto, CA 94301, USA Madison, WI 53706, USA

subbarao@cs.wisc.edu jouppi@pa.dec.com jes@ece.wisc.edu

Abstract
The performance tradeoff between hardware complexity and

clock speed is studied. First, a generic superscalar pipeline is de-
fined. Then the specific areas of register renaming, instruction win-
dow wakeup and selection logic, and operand bypassing are ana-
lyzed. Each is modeled and Spice simulated for feature sizes of
O&m, 0.35,um, and 0.18~7% Performance results and trends are
expressed in terms of issue width and window size. Our analysis in-
dicates that window wakeup and selection logic as well as operand
bypass logic are likely to be the most critical in the future.

A microarchitecture that simplifies wakeup and selection logic
is proposed and discussed. This implementation puts chains of de-
pendent instructions into queues, and issues instructions from mul-
tiple queues in parallel. Simulation shows little slowdown as com-
pared with a completely flexible issue window when performance is
measured in clock cycles. Furthermore, because only instructions at
queue heads need to be awakened and selected, issue logic is simpli-
fied and the clock cycle is faster-consequently overall performance
is improved. By grouping dependent instructions together, the pro-
posed microarchitecture will help minimize performance degrada-
tion due to slow bypasses in future wide-issue machines.

1 Introduction
For many years, a major point of contention among microproces-

sor designers has revolved around complex implementations that at-
tempt to maximize the number of instructions issued per clock cycle,
and much simpler implementations that have a very fast clock cy-
cle. These two camps are often referred to as “brainiacs” and “speed
demons” -taken from an editorial in Microprocessor Report [7]. Of
course the tradeoff is not a simple one, and through innovation and
good engineering, it may be possible to achieve most, if not all, of
the benefits of complex issue schemes, while still allowing a very
fast clock in the implementation; that is, to develop microarchitec-
hues we refer to as complexity-effective. One of two primary ob-
jectives of this paper is to propose such a complexity-effective mi-
croarchitecture. The proposed microarchitecture achieves high per-
formance, as measured by instructions per cycle @PC), yet it permits
a design with a very high clock frequency.

Supporting the claim of high IPC with a fast clock leads to the
second primary objective of this paper. It is commonplace to mea-

Permission to make digital/hard copy of part or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

ISCA ‘97 Denver, CO, USA

0 1997 ACM 0-89791~SOI-7/97/0006...$3.50

206

sure the effectiveness (i.e. IPC) of a new microarchitecture, typ-
ically by using trace driven simulation. Such simulations count
cIock cycles and can provide IPC in a fairly straightforward man-
ner. However, the complexity (or simplicity) of a microarchitecturc
is much more difficult to determine-to be very accurate, it requires
a full implementation in a specific technology. What is very much
needed are fairly straightforward measures of complexity that can
be used by microarchitects at a fairly early stage of the design pro-
cess. Such methods would allow the determination of complcxity-
effectiveness. It is the second objective of this paper to take a step
in the direction of characterizing complexity and complcxi ty trends,

Before proceeding, it must be emphasized that while complexity
can be variously quantified in terms such as number of transistors,
die area, and power dissipated, in this paper complexity is mcnsurcd
as the delay of the critical path through a piece of logic, and the
longest critical path through any of the pipeline stages determines
the clock cycle.

The two primary objectives given above are covered in reverse
order - first sources of pipeline complexity are analyzed, then a
new complexity-effective microarchitecture is proposed nnd cval-
uated. In the next section we describe those portions of a microar-
chitecture that tend to have complexity that grows with increasing
instruction-level parallelism. Of these, we focus on instruction dis-
patch and issue logic, and data bypass logic. We analyze potential
critical paths in these structures and develop models for quantifying
their delays. We study the variation of these delays with micronrchi-
tectural parameters of window size (the number of waiting instruc-
tions from which ready instructions are selected for issue) and the IS-

sue width (the number of instructions that can be issued in a cycle),

We also study the impact of the technology trend towards smaller
feature sizes. The complexity analysis shows that logic nssociated
with the issue window and data bypasses are likely to be key lim-
iters of clock speed since smaller feature sizes cause wire delays to
dominate overall delay [20,3].

Taking sources of complexity into account, we propose and cvnl-
uate a new microarchitecture. This microarchitecture is called
dependence-bused because it focuses on grouping dependent in-
structions rather than independent ones, as is often the case in supcr-
scalar implementations. The dependence-based microarchitecturc
simplifies issue window logic while exploiting similar lcvcls of par-
allelism to that achieved by current superscalar microarchitectures
using more complex logic.

The rest of the paper is organized as follows. Section 2 describes
the sources of complexity in a baseline microarchitecture. Section
3 describes the methodology we use to study the critical pipeline

structures identified in Section 2. Section 4 presents a detailed anal-
ysis of each of the structures and shows how their delays vary with
microarchitectural parameters and technology parameters. Section
5 presents the proposed dependence-based microarchitecture and
some preliminary performance results. Finally, we draw conclu-
sions in Section 6.

2 Sources of Complexity
In this section, specific sources of pipeline complexity are consid-

ered. We realize that it is impossible to capture all possible microar-
chitectures in a single model, however, and any results have some
obvious limitations. We can only hope to provide a fairly straight-
forward model that is typical of most current superscalar processors,
and suggest that analyses similar to those used here can be extended
to other, more advanced techniques as they are developed.

FETCH DECODE RENAME ;&!$j!
ExEcoTE DCACHE REGWR
BYPASS ACCESS

Figure 1: Baseline superscalar model.

Figure 1 shows the baseline model and the associated pipeline.
The fetch unit reads multiple instructions every cycle from the in-
struction cache, and branches encountered by the fetch unit are pre-
dicted. Next, instructions are decoded and their register operands
are renamed. Renamed instructions are dispatched to theinstruction
window, where they wait for their source operands and the appro-
priate functional unit to become available. As soon as these condi-
tions are satisfied, instructions are issued and executed in the func-
tional units. The operand values of an instruction are either fetched
from the register file or are bypassed from earlier instructions in the
pipeline. The data cache provides low latency access to memory
operands.

2.1 Basic Structures
As mentioned earlier, probably the best way to identity the pri-

mary sources of complexity in a microarchitecture is to actually im-
plement the microarchitecture in a specific technology. However,
this is extremely time consuming and costly. Instead, our approach
is to select certain key structures for study, and develop relatively
simple delay models that can be applied in a straightforward man-
ner without relying on detailed design.

Structures to be studied were selected using the following crite-
ria. First, we consider structures whose delay is a function of issue
window size and/or issue width; these structures are likely to be-
come cycle-time limiters in future wide-issue superscalar designs.
Second, we are interested in dispatch and issue-related structures
because these structures form the core of a microarchitecture and
largely determine the amount of parallelism that can be exploited.
Third, some structures tend to rely on broadcast operations over
long wires and hence their delays might not scale as well as logic-
intensive structures in future technologies with smaller feature sizes.

The structures we consider are:

l Register rename logic. This logic translates logical register
designators into physical register designators.

Wakeup logic. This logic is part of the issue window and is
responsible for waking up instructions waiting for their source
operands to become available.

Selection logic. This logic is another part of the issue window
and is responsible for selecting instructions for execution from
the pool of ready instructions.

Bypass logic. This logic is responsible for bypassing operand
values from instructions that have completed execution, but
have not yet written their results to the register file, to subse-
quent instructions.

There are other important pieces of pipeline logic that are not con-
sidered in this paper, even though their delay is a function of dis-
patch/issue width. In most cases, their delay has been considered
elsewhere. These include register files and caches. Farkas et. al. [6]
study how the access time of the register file varies with the number
of registers and the number of ports. The access time of a cache is a
function of the size of the cache and the associativity of the cache.
Wada et. al. [18] and Wilton and Jouppi [21] have developed de-
tailed models that estimate the access time of a cache given its size
and associativity.

2.2 Current Implementations
The structures identified above were presented in the context

of the baseline superscalar model shown in Figure 1. The MIPS
RlOOOO [22] and the DEC 21264 [lo] are real implementations that
directly fit this model. Hence, the structures identified above apply
to these two processors.

On the other hand, the Intel Pentium Pro [9], the HP PA-8000
[12], the PowerPC 604 1161, and the HAL SPARC64 [8] do not
completely fit the baseline model. These processors are based on
a microarchitecture where the reorder buffer holds non-committed,
renamed register values. In contrast, the baseline microarchitec-
ture uses the physical register file for both committed and non-
committed values. Nevertheless, the point to be noted is that the ba-
sic structures identified earlier are present in both types of microar-
chitecttrres. The only notable difference is the size of the physical
register file.

Finally, while the discussion about potential sources of complex-
ity is in the context of an out-of-order baseline superscalar model,
it must be pointed out that some of the critical structures identified
apply to in-order processors, too. For example, part of the register
rename logic (to be discussed later) and the bypass logic are present
in in-order superscalar processors.

3 Methodology
The key pipeline structures were studied in two phases. In the

first phase, we selected a representative CMOS circuit for the struc-
ture. This was done by studying designs published in the literature
(e.g. ISSCC i proceedings) and by collaborating with engineers at
Digital Equipment Corporation. In cases where there was more than
one possible design, we did a preliminary study of the designs to
decide in favor of one that was most promising. By basing our cir-
cuits on designs published by microprocessor vendors, we believe
the studied circuits are similar to circuits used in microprocessor de-
signs. In practice, many circuit tricks could be employed to optimize
critical paths. However, we believe that the relative delays between
different structures should be more accurate than the absolute de-
lays.

1 International Solid-State and Circuits Conference.

207

In the second phase we implemented the circuit and optimized the
circuit for speed. We used the Hspice circuit simulator [14] from
Meta-Software to simulate the circuits. Primarily, static logic was
used. However, in situations where dynamic logic helped in boost-
ing the performance significantly, we used dynamic logic. For ex-
ample, in the wakeup logic, a dynamic ‘I-input NOR gate is used
for comparisons instead of a static gate. A number of optimizations
were applied to improve the speed of the circuits. First, all the tran-
sistors in the circuit were manually sized so that overall delay im-
proved. Second, logic optimizations like two-level decomposition
were applied to reduce fan-in requirements. We avoided using static
gates with a fan-in greater than four. Third, in some cases transis-
tor ordering was modified to shorten the critical path. Wire para-
sitics were added at appropriate nodes in the Hspice model of the
circuit. These parasitics were computed by calculating the length
of the wires based on the layout of the circuit and using the values
of I&tar and Getat, the resistance and parasitic capacitance of
metal wires per unit length.

To study the effect of reducing the feature size on the delays
of the structures, we simulated the circuits for three different fea-
ture sizes: 0.8pm, 0.35,om, and O.lB,%m respectively. Layouts for
the 0.35pm and O.lBpm process were obtained by appropriately
shrinking the layouts for the O.Bpm process. The Hspice models
used for the three technologies are tabulated in [15].

4 Pipeline Complexity
In this section, we analyze the critical pipeline structures. The

presentation for each structure begins with a description of the log-
ical function being implemented. Then, possible implementation
schemes are discussed, and one is chosen. Next, we summarize our
analysis of the overall delay in terms of the microarchitectural pa-
rameters of issue width and issue window size; a much more de-
tailed version of the analysis appears in [IS]. Finally, Hspice circuit
simulation rest&s are presented and trends are identified and com-
pared with the earlier analysis.

4.1 Register Rename Logic
Register rename logic translates logical register designators into

physical register designators by accessing a map table with the log-
ical register designator as the index. The map table holds the cur-
rent logical to physical mappings and is multi-ported because mul-
tiple instructions, each with multiple register operands, need to be
renamed every cycle. The high level block diagram of the rename
logic is shown in Figure 2. In addition to the map table, dependence
check logic is required to detect cases where the logical register be-
ing renamed is written by an earlier instruction in the current group
of instructions being renamed. The dependence check Iogic detects
such dependences and sets up the output MUXes so that the appro-
priate physical register designators are selected. At the end of every
rename operation, the map table is updated to reflect the new logical
to physical mappings created for the result registers written by the
current rename group.

4.1.1 Structure
The mapping and checkpointing functions of the rename logic

can be implemented in at least two ways. These two schemes, called
the RAM scheme and the CAM scheme, are described next.

l RAM scheme
In the RAM scheme, implemented in the MIPS RlOOOO [22],
the map table is a register file where the logical register desig-
nator directly accesses an entry that contains the physical reg-

208

. CAM scheme

Figure 2: Register rename logic.

ister to which it is mapped. The number of entries in the map
table is equal to the number of logical registers.

An alternate scheme for register renaming uses a CAM
(content-addressable memory) [19] to store the current map
pings. Such a scheme is implemented in the HAL SPARC [2]
and theDEC21264 [lo]. The number of entries in the CAM is
equal to the number of physical registers. Each entry contains
two fields: the logical register designator that is mapped to the
physical register represented by the entry and a valid bit that IS

set if the current mapping is valid. Renaming is accomplished
by matching on the logical register designator field.

In general, the CAM scheme is less scalable than the RAM schcmc
because the number of CAM entries, which is equal to the number
of physical registers, tends to increase with issue width. Also, for
the design space we are interested in, the performance was found to
be comparable. Consequently, we focus on the RAM method below,
A more detailed discussion of the trade-offs involved can bc found
in [15].

The dependence check logic proceeds in parallel with the map In-
ble access. Every logical register designator being renamed is com-
pared against the logical destination register designators of earllcr
instructions in the current rename group. If there is a match, then
the physical register assigned to the result of the earlier instruction is

used instead of the one read from the map table. In the case of mul-
tipIe matches, the register corresponding to the latest (in dynamic
order) match is used. Dependence check logic for issue widths of
2,4, and 8 was implemented. We found that for these issue widths,
the delay of the dependence check logic is less than the delay of tho
map table, and hence the check can be hidden behind tho map tablc *
access.

4.12 Delay Analysis
As the name suggests, the RAM scheme operates like a standard

RAM. Address decoders drive word lines; an access stack at the ad-
dressed cell pulls a bitline low. The bitline changes arc scnscd by n
sense amplifier which in turn produces the output. Symbolically tho
rename delay can be written as,

T rename = Tdeeode + Twordlinc + Tbitlinc -b Tecnaclamp

The analysis presented here and in following subsections focuses
on those parts of the delay that are a function of the issue width and
window size. All sources of delay are considered in detail in [151.
In the rename logic, the window size is not a factor, and the issue

width affects delay through its impact on wire lengths, Increasing

the issue width increases the number of bitlines and wordlines in
each cell thus making each cell bigger. This in turn increases the
length of the predecode, wordline, and bitline wires and the associ-
ated wire delays. The net effect is the following relationships for the
delay components:

Tdecode , !km+dline, Tbitline = a -i- cl x Iw + c2 x Iw2

where IW is the issue width and co, cl, and c2 are constants that are
fixed for a given technology and instruction set architecture; deriva-
tion of the constants for each component is given in [15]. In each
case, the quadratic component, resulting from the intrinsic RC de-
lay of wires, is relatively small for the design space and technolo-
gies we explored. Hence, the decode, wordline, and bitline delays
are effectively linear functions of the issue width.

For the sense amplifier, we found that even though its structural
constitution is independent of the issue width, its delay is a function
of the slope of the input - the bitline delay - and therefore varies
linearly with issue width.

4.1.3 Spice Results

For our Hspice simulations, Figure 3 shows how the delay of the
rename logic varies with the issue width i.e. the number of instruc-
tions being renamed every cycle for the three technologies. The
graph includes the breakdown of delay into components discussed
in the previous section.

A number of observations can be made from the graph. The to-
tal delay increases linearly with issue width for all the technologies.
This is in conformance with our analysis, summarized in the previ-
ous section. Furthermore, each of the components shows a linear
increase with issue width. The increase in the bitline delay is larger
than the increase in the wordline delay as issue width is increased
because the bitlines are longer than the wordlines in our design. The
bitline length is proportional to the number of logical registers (32 in
most cases) whereas the wordline length is proportional to the width
of the physical register designator (less than 8 for the design space
we explored).

Another important observation that can be made from the graph is
that the relative increase in wordline delay, bitline delay, and hence,
total delay as a function of issue width worsens as the feature size is
reduced. For example, as the issue width is increased from 2 to 8,
the percentage increase in bitline delay shoots up from 37% to 53%
as the feature size is reduced from 0.8~~~3 to 0.18,um. Logic delays
in the various components are reduced in proportion to the feature
size, while the presence of wire delays in the wordline and bitline
components cause the wordline and bitline components to fall at a
slower rate. In other words, wire delays in the wordline and bitline
structures will become increasingly important as feature sizes are re-
duced.

4.2 Wakeup Logic
Wakeup logic is responsible for updating source dependences for

instructions in the issue window waiting for their source operands to
become available.

4.2.1 Structure
Wakeup logic is illustrated in FigureA Every time a result is pro-

duced, a tag associated with the result is broadcast to all the instruc-
tions in the issue window. Each instruction then compares the tag
with the tags of its source operands. If there is a match, the operand
is marked as available by setting the rdyL or rdyR flag. Once all the
operands of an instruction become available (both rdyL and rdyR
are set), the instruction is ready to execute, and the ready flag is set

1600

1
1200-

3

3
2 SOO-

ii

8

z 400-

0 1

Sense Amp delay

Bitline delay

Wordline delay

Decoder delay

0.8 0.35 0.18

Figure 3: Rename delay versus issue width.

to indicate this. The issue window is a CAh4 array holding one in-
struction per entry. Buffers, shown at the top of the figure, are used
to drive the result tags tug1 to tagIW, where IW is the issue width.
Each entry of the CAM has 2 x IW comparators to compare each
of the results tags against the two operand tags of the entry. The OR
logic ORs the comparator outputs and sets the rdyL/rdyR flags.

tagnv tag1

insto

. .

rdyL opd ~6 opd tagR rdyR i&N-l

Figure 4: Wakeup logic.

4.2.2 Delay Analysis

The delay consists of three components: the time taken by the
buffers to drive the tag bits, the time taken by the comparators in a
pull-down stack corresponding to a mismatching bit position to pull
the matchline low 2 , and the time taken to OR the individual match
signals (matchlines). Symbolically,

Delay = Ttagdrive f Ttagmatch I- TmatchoR

The time taken to drive the tags depends on the length of the tag
lines and the number of comparators on the tag lines. Increasing the
window size increases both these terms. For a given window size,

2We assume that only one pull-down stack is turned on since we are in-
terested in the worst-case delay.

increasing issue width also increases both the terms in the follow-
ing way. Increasing issue width increases the number of matchlines
in each cell and hence increases the height of each cell. Also, in-
creasing issue width increases the number of comparators in each
cell. Note that we assume the maximum number of tags produced
per cycle is equal to the maximum issue width.

In simplified form (see [15] for a more detailed analysis), &he time
taken to drive the tags is:

T tagdrive = ~0 + (cl-+ c2 x IW) x WINSIZE +

(c3 + c4 x IW + c5 x IW2) x WINSIZE

The above equation shows that the tag drive time is a quadratic func-
tion of the window size. The weighting factor of the quadratic term
is a function of the issue width. The weighting factor becomes sig-
nificant for issue widths beyond 2. For a given window size, the tag
drive time is also a quadratic function of the issue width. For cur-
rent technologies (0.35,um and longer) the quadratic component is
relatively small and the tag drive time is largely a linear function of
issue width. However, as the feature size is reduced to O.l8pm, the
quadratic component also increases in significance. The quadratic
component results from the intrinsic RC delay of the tag lines.

In reality, both issue width and window size will be simulta-
neously increased because a larger window is required for find-
ing more independent instructions to take advantage of wider issue.
Hence, the tag drive time will become significant in future designs
with wider issue widths, bigger windows, and smaller feature sizes.

The tag match time is primarily a function of the length of the
matchline, which varies linearly with the issue width. The match
OR time is the time taken to OR the match lines, and the number of
matchlines is a linear function of issue width. Both of these (refer
to [lSJ) have a delay:

Ttagmatch, TmotchoR = co+clxIw+c2xIw2

However, in both cases the quadratic term is very small for the de-
sign space we consider, so these delays are linear functions of issue
width.

350 r /t

2 200 - -y

_....,....__. ~_..._ p ,........... a- .~~~~-----”
. e A-...”

8 16 24 v%ow i% 46 56 64

Figure 5: Wakeup logic delay versus window size.

4.2.3 Spice Results
The graph in Figure 5 shows how the delay of the wakeup logic

varies with window size and issue width for 0.18pm technology. As

210

expected, the delay increases as window size and issue width arc jn-
creased. The quadratic dependence of the total delay on the window
sizeresultsfrom thequadraticincreasein tagdrive timcas discussed
in the previous section. This effect is clearly visible for issue width
of 8 and is less significant for issue width of 4. We found similnr
curves for O.&m and 0.35,um technologies. The quadratic dcpcn-
dence of delay on window size was more prominent in the curves for
0.18pm technology than in the case of the other two technologies,

Also, issue width has a greater impact on the delay than window
size because increasing issue width increases all three components
of the delay. On the other hand, increasing window size only Icngth-
ens the tag drive time and to a small extent the tag match time. Ovcr-
all, the results show that the delay increases by almost 34% going
from Zway to Cway and by 46% going from 4-way to g-way for
a window size of 64 instructions. In reality, the increase in delay
is going to be even worse because in order to sustain a wider issue
width, a larger window is required to find independent instructions.

Figure 6 shows the effect of reducing feature sizes on the varl-
ous components of the wakeup delay for an &way, 64entry win-
dow processor. The tag drive and tag match delays do not scnlc as
well as the match OR delay. This is expected since tag drive and tag
match delays include wire delays whereas the match OR delay only
consists of logic delays. Quantitatively, the fraction of the total dc-
lay contributed by tag drive and tag match delay increases from 52%
to 65% as the feature size is reduced from O.@m to 0.18pm, This
shows that the performance of the broadcast operation will become
more crucial in future technologies.

1500,

n Match OR dclny

123 Tag match delay

Tag drive delay

01 I I
0.8 0.35 0.18

Feature size

Figure 6: Wakeup delay versus feature size.

4.3 Selection Logic
Selectionlogicis responsible for choosing instructions for cxccu-

tion from the pool of ready instructions in the issue window. Some
form of selection logic is required because the number and types of
ready instructions may exceed the number and types of functional
units available to execute them.

Inputs to the selection logic are request (REQ) signals, one per
instruction in the issue window. The request signal of an instruction
is raised when the wakeup logic determines that all its operands arc
available. The outputs of the selection logic aregrant (GRANT) sig-
nals, one per request signal. On receipt of the GRANT signal, the
associated instruction is issued to the functional unit.

A selection p&y is used to decide which of the requesting in-
structions is granted. An example selection policy is oldestfmt -
the ready instruction that occurs earliest in program order is granted

the functional unit. Butler and Patt [5] studied various policies for where ~0 and cl are constants determined by the propagation delays
scheduling ready instructions and found that overall performance is of a single arbiter. We found the optimal number of arbiter inputs to
largely independent of the selection policy. The HP PA-8000 uses be four in our case, so the logarithm is base 4. The selection logic
a selection policy that is based on the location of the instruction in in the MIPS RlOOOO, described in [17], is also based on four-input
the window. We assume the same selection policy in our study. arbiter cells.

Figure 7: Selection logic.

4.3.1 Structure
The basic structure of selection logic is shown in Figure 7. Modi-

fications to this scheme for handling multiple functional units of the
same type are discussed in [15]. Selection logic consists of a tree of
arbiters that works in two phases. In the first phase, request signals
are propagated up the tree. Each cell raises the anyreq signal if any
of its input request signals is high. This in turn raises the input re-
quest signal of its parent arbiter cell. At the root cell one or more
of the input request signals will be high if there are one or more in-
structions that are ready. The root cell grants the functional unit to
one of its children by raising one of its grant outputs. This initiates
the second phase where the grant signal is propagated down the tree
to the instruction that is selected. The enable signal to the root cell is
high whenever the functional tit is ready to execute an instruction.

The selection policy implemented is static and based strictly on
location of the instruction in the issue window. The leftmost entries
in the window have the highest priority. The obstfirst policy can
be implemented using this scheme by compacting the issue window
to the left every time instructions are issued and by inserting new in-
structions at the right end. However, it is possible that the complex-
ity of compaction could degrade performance. In this case, some
restricted form of compacting can be used - so that overall perfor-
mance is not affected. We did not analyze the complexity of com-
pacting in this study.

4.3.2 Delay Analysis
The delay of the selection logic is the time it takes to generate the

grant signal after the request signal has been raised. This is equal to
the sum of three terms: the time taken for the request signal to prop-
agate to the root of the tree, the delay of the root cell, and the time
taken for the grant signal to propagate from the root to the selected
instruction. Hence, the selection delay depends on the height of the
arbitration tree and can be written as (see [15] for a more detailed
analysis):

T selection = co + Cl x Zog4(WINSIZE)

211

4.3.3 Spice Results
Figure 8 shows the delay of the selection logic for various win-

dow sizes and for the three feature sizes assuming a single ftmc-
tional unit is being scheduled. The delay is broken down into the
three components. From the graph we can see that for all the three
technologies, the delay increases logarithmically with window size.
Also, the increase in delay is less than 100% when the window size
is increased from 16 instructions to 32 instructions (or from 64 in-
structions to 128 instructions) since one of the components of the
total delay, the delay at the root cell, is independent of the window
size.

3000

1

16 32

n Grant propagation delay

Root delay

Request propagation delay

i 163264128 16 32 64128

0.8 0.35 0.18

Figure 8: Selection delay versus window size.

The various components of the total delay scale well as the fea-
tnre size is reduced. This is not surprising since all the delays are
logic delays. It must be pointed out that we do not consider the
wires in the circuit, so the selection delays presented here are op-
timistic, especially if the request signals (the ready flags discussed
in the wakeup logic) originate from the CAM entries in which the
instructions reside. On the other hand, it might be possible to mini-
mize the effect of these wire delays if the ready signals are stored in
a smaller, more compact array.

4.4 Data Bypass Logic
Data bypass logic is responsible for forwarding result values from

completing instructions to dependent instructions, bypassing the
register file. The number of bypass paths required is determined by
the depth of the pipeline and the issue width of the microarchitec-
ture. As pointed out in [l], if IW is the issue width, and if there are
S pipestages after the first result-producing stage, then a fully by-
passed design would require (2 x IW2 x S) bypass paths assuming
Zinput functional units. In other words, the number of bypass paths
grows quadratically with issue width. This is of critical importance,
given the current trends toward deeper pipelines and wider issue.

Bypass logic consists of two components: datapath and control.
The datapath comprises result busses, that are used to broadcast by-

II

pass values from each functional unit source to all possible des-
tinations. Buffers are used to drive the bypass values on the re-
sult busses. In addition to the result busses, the datapath comprises
operand MUXes. Operand MLJXes are required to gatein theappro-
priate result on to the operand busses. The control logic is responsi-
ble for controlling the operand MUXes. It compares the tags of the
result values with the tag of source value required at each functional
unit. If there is a match, the MUX control is set so that the result
value is driven on the appropriate operand bus. The key factor that
determines the speed of the bypass logic is the delay of the result
wires that are used to transmit bypassed values, not the control.

1 Issue I Wire I Delay 1
width length (A) (ps)

‘-1

Table 1: Bypass delays for a Cway and a g-way processor,

Considering the result wires as distributed RC lines, the delay IS
given by

4.4.1 Structure Tbypas~ = 0.5 X %&a(X Cmctof X L2
A commonly used structure for bypass logic is shown in Figure 9.

The figure shows a bit-slice of the datapath. There are four func-
tional units marked FUO to FU3. Consider the bit slice of FUO. It
gets its two operand bits from the opdO-l and opdO-r wires. The re-
sult bit is driven on the res0 result wire by the result driver. Tris-
tate buffers are used to drive the result bits on to the operand wires
from the result wires of the functional units. These buffers imple-
ment the MUXes shown in the figure. To bypass the result of func-
tional unit FLJI to the left input of functional unit FUO, the tristate
driver marked A is switched on. The driver A connects the resl wire
and the opdO-1 wire. In the case where bypasses are not activated,
operand bits are placed on the operand wires by the register file read
ports 3. The result bits are written to the register file in addition to
being bypassed.

where L is the length of the result wires, and I&:,,l and Cmata(
are the resistance and parasitic capacitance of metal wires per unit
length respectively.

Increasing issue width increases the length of the result wires,
and hence causes the bypass delay to grow quadratically with ~SSUC
width. Increasing the depth of the pipeline also increases the delny
of the bypass logic in the following manner. Making the pipeline
deeper increases the fan-in of the operand MUXes connected to a
given result wire. This in turn increases the amount of capacitance
on the result wires, and hence adds to the delay of the result wires,
However, this component of the delay is not captured by our simple
model. This component of the delay is likely to become relatively
less significant as feature size is reduced.

result
wires

Figure 9: Bypass logic.

4.4.2 Delay Analysis

The delay of the bypass logic is largely determined by the amount
of time it takes for the driver at the output of each functional unit
to drive the result value on the corresponding result wire. This in
turn depends on the length of the result wires. From the figure it is
apparent that the length of the wires is a function of the layout. For
the layout presented in the figure, the length of the result wires is
determined by the height of the functional units and the register file.

31n a reservation-station based microarchitecture, the operand bits come
from the data field of the reservation station entry.

212

4.4.3 Spice Results

We computed the wire delays for hypothetical 4-way and g-way
machines assuming common mixes of functional units and func-
tional unit heights reported in the literature. Table 1 shows the rc-
sults. Wire lengths are shown in terms of A, where X is half the fca-
ture size. The delays are the same for the three technologies since
wire delays are constant according to the scaling model assumed,
See [15] for the detailed data and analysis.

4.4.4 Alternative Layouts

The results presented above assume a particular layout; the func-
tional units are placed on either side of the register file. Howcvcr,
as mentioned before, the length of the result wires is a function of
the layout. Hence, VLSI designers will have to study alternative Iny-
outs in order to reduce bypass delays. Alternative layouts alone will
ordy decrease constants; the quadratic delay growth with number of
bypasses will remain.

In the long term, microarchitects will have to consider cbsfered
organizations where each cluster of functional units has its own copy
of the register file and bypasses within a cluster complete in a sin-
gle cycle while inter-cluster bypasses take two or more cycles, The
hardware or the compiler or both will have to ensure that inter-
cluster bypasses occur infrequently. In addition to mitigating the dc-
lay of the bypass logic, this organization also has the advantage of
faster register files since there are fewer ports on each register h!c.

4.5 Summary of Delays and Pipeline Issues
We now summarize the pipeline delay results and consider the

implications for future complexity-effective microarchitectures, It
is easiest to frame this discussion in terms of satisfying the goal of
permitting a very fast pipeline clock while, at the same time, exploit-
ing high ILP through relatively wide, out-of-order superscalar opcr-
ation.

Issue Window Rename Wakeup-tSelect Bypass
width size deW(~d delay (PS> delay (PS)

0.8pm technology
4 32 1577.9 2903.7 184.9
8 64 1710.5 3369.4 1056.4

0.35pm technology
4 32 627.2 1248.4 184.9
8 64 726.6 1484.8 1056.4

0.18pm technology
4 32 351.0 578.0 184.9
8 64 427.9 724.0 1056.4

Table 2: Overall delay results.

To aid in this discussion, consider the overall results for a Cway
and a 8-way microarchitecture in 0.18pm technology shown in Ta-
ble 2. We chose the 0.18,um technology because of our interest in
future generation microarchitectures. For the Cway machine, the
window logic (wakeup + select) has the greatest delay among all the
structures considered, and hence determines the critical path delay.
The register rename delay comes next; it is about 39% faster than
the delay of the window logic. The bypass delay is relatively small
in this case. The results are similar for the 8-way machine, with one
very notable exception: the bypass delay grows by a factor of over
5, and is now worse than the (wakeup + select) delay.

Now, let’s turn to the problem of designing a future generation
microarchitecture with a faster clock cycle. Of the structures we
have examined here, the window logic and the bypasses seem to
pose the largest problems. Moreover, both of these cause difficulties
if we wish to divide them into more pipeline segments; these diffi-
culties will be discussed in the following paragraphs. All the other
structures either will not cause a clock cycle problem, or if they do,
they can be pipelined. The pipelining aspects of these structures is
discussed in [151. This additional pipelining can cause some per-
formance impact, although it is beyond the scope of this paper to
evaluate the exact impact.

. . . AKEuPsELEcr EXEC ,..

. . . AauPsELEcrExEc
. . . Ala33 SatEa ESEC ... subrl,r10,2

Figure 10: Pipelining wakeup and select.

Wakeup and select together constitute what appears to be an
arornic operation. That is, if they are divided into multiple pipeline
stages, dependent instructions cannot issue in consecutive cycles.
Consider the pipeline example shown in Figure 10. The add and the
sub instructions cannot be executed back-to-back because the re-
sult of the select stage has to feed the wakeup stage. Hence, wakeup
and select together constitute an atomic operation and must be ac-
complished in a single cycle, at least if dependent instructions are to
be executed on consecutive cycles.

Data bypassing is another example of what appears to be an
atomic operation. In order for dependent operations to execute in
consecutive cycles, the bypass value must be made available to the
dependent instruction within a cycle. Results presented in table Ta-
ble 2 show that this is feasible for a Cway machine. However, by-
pass delay can easily become a bottleneck for wider issue-widths.

One solution is to include only a proper subset of bypass paths

213

[1], and take a penalty for those that are not present. For an S-way
machine with deep pipelines, this would exclude a large number of
bypass paths. Another solution is to generalize the method used in
the DEC 21264 [lo] and use multiple copies of the register file. This
is the “cluster” method referred to in Section 4.4.

In the following section we tackle both the window logic and
bypass problems by proposing a microarchitecture that simplifies
window logic and which naturally supports clustering of functional
Units.

5 A Complexity-Effective Microarchitecture
From the analysis presented in the previous sections we see that

the issue window logic is one of the primary contributors of com-
plexity in typical out-of-order microarchitectures. Also, as archi-
tects employ wider issue-widths and deeper pipelines, the delay of
the bypass logic becomes even more critical. In this section, we pro-
pose a dependence-based microarchitecture that replaces the issue
window with a simpler structure that facilitates a faster clock while
exploiting similar levels of parallelism. In addition, the proposed
microarchitecture naturally lends itself to clustering and helps miti-
gate the bypass problem to a large extent.

Flms

FETCH EXECUTE DCACHE RECWRlTE
BYPASS ACCESS COMMlT

Figure 11: Dependence-based microarchitectnre.

The idea behind the dependence-based microarchitectureis to ex-
ploit the natural dependences among instructions. A key point is
that dependent instructions cannot execute in parallel. In the pro-
posed microarchitecture, shown in Figure 11, the issue window is
replaced by a small number of FIFO buffers. The FIFO buffers are
constrained to issue in-order, and dependent instructions are steered
to the same FIFO. This ensures that the instructions in a particular
FIFO buffer can only execute sequentially. Hence, unlike the typ-
ical issue window where result tags have to be broadcast to all the
entries, the register availability only needs to be fanned out to the
heads of the FIFO buffers. The instructions at the FIFO heads mon-
itor reservation bits (one per physical register) to check for operand
availability. This is discussed in detail later. Furthermore, the selec-
tion logic only has to monitor instructions at the heads of the FIFO
buffers.

The steering of dependent instructions to the FIFO buffers is
performed at run-time during the rename stage. Dependence in-
formation between instructions is maintained in a table called the
SRC-FIFO table. This table is indexed using logical register des-
ignators. SRC-FIFO (Ra 1, the entry for logical register Ra, con-
tains the identity of the FIFO buffer that contains the instruction
that will write register Ra. If that instruction has already completed
i.e. register Ra contains its computed value, then SRC-FIFO (Ra)
is invalid. This table is similar to the map table used for reg-
ister renaming and can be accessed in parallel with the rename
table. In order to steer an instruction to a particular FIFO, the
SRC-FIFO table is accessed with the register identifiers of the
source operands of an instruction. For example, for steering the in-
struction add r10, r5,l where r10 is the destination register,

the SRC-FIFO table is indexed with 5. The entry is then used to
steer the instruction to the appropriate FIFO.

5.1 Instruction Steering Heuristics
A number of heuristics are possible for steering instructions to

the FlFOs. A simple heuristic that we found to work well for our
benchmark programs is described next.

Let I be the instruction under consideration. Depending upon the
availability of I’S operands, the following cases are possible: s

l All the operands of I have already been computed and are re-
siding in the register file. In this case, I is steered to a new

(empty) FIFO acquired from a pool of free FIFOS.

l I requires a single outstanding operand to be produced by in-
struction Isource residing in FIFO Fa. In this case, if there
is no instruction behind Isource in Fa then I is steered to
Fa, else I is steered to a new FIFO.

l I requires two outstanding operands to be produced by in-
structions Ilef t and Iright residing in FlFOs Fa and Fb
respectively. In this case, apply the heuristic in the previous
bullet to the left operand. If the resulting FlFO is not suitable
(it is either full or there is an instruction behind the source in-
struction), then apply the same heuristic to the right operand.

If all the FlFOs are full or if no empty FIFO is available then the
decoder/steering logic stalls. A FlFO is returned to the free pool
when the last instruction in the FIFO is issued. Initially, all the FI-
FOs are in the free pool. Figure 12 illustrates the heuristic on a code

Fetch width
I-cache
Branch Predictor

any 8 instructions
Perfect instruction cache
McFarIing’s gshare 1131
4K 2-bit counters. 12 bit history
unconditional control instruclidns
predicted perfectly

Issue window size 64
Max. in-flight 128

16
8 synunet&aI units 1

-1 out-of-order lssuc of up to 8 ops/cyclo

Physical Registers
D-cache

store add&es am known
120 inff 120 fp
32KB. P-way SA
write-back, &te-allocate
32 byte lines, 1 cycle hit,6 cycle miss
four load/store ports

Table 3: Baseline simulation model.

An aggressive instruction fetch mechanism is used to stress the is-
sue and execution subsystems. We ran seven benchmarks from the
SPEC’95 suite, using their training input datasets. Each benchmark
was run for a maximum of OSB instructions.

4.0-

3.5

3 3.0-

‘z” 2.5

I4
2 2.0-

-3

2 15-

3 l.O-

0.5

o.o-
cc

u Baseline microarch.

n Dependence-based microarch.
segment from one of the SPEC benchmarks.

T

0: addu $18,$0,$2
1: addiu $2,$0.-l

: k%%%&28,
41 sllv $i,$l8,$20
5: xor$16,$2,$19
6: Iw %3i32676($28)
7: sll .S2,$16,Ox2
8: addu $2.$2.$23 1

bmprer

21
7541
61

2,4,6 issue

9: Iw %2,0@2)
lo: sllv $4,%18.$4
11: addu $17,.%$19
12: nddiu $3,$3.1
13: SW $3.-32676($28)
14: beq $2,$17,L3

per1 m

Figure 13: Performance (lPC) of dependence-based microarchitcc-
ture.

111
1m 131y 7,11,12 issue

, Figure 12: Instruction steering example.

This figure shows how instructions are steered to FIFOs using the heuristic
presented in Section 5.1 for a sample code segment. Instructions can issue
only from the heads of the four FIFOs. The steering logic steers four instruc-
tions every cycle and a maximum of four instructions can issue every cycle.

The performance results (in terms of instructions committed per
cycle) are shown in Figure 13. The dependence-based microarchi-
tecture is nearly as effective (extracts similar parallelism) as the typ-
ical window-based microarchitecture. The cycle count numbers are
within 5% for five of the seven benchmarks and the maximum pcf-
formance degradation is 8% in the case of li.

5.2 Performance Results 5.3 Complexity Analysis
We compare the performance of the dependence-based microar-

chitecture against that of a typical microarchitecture with an issue
window. The proposed microarchitecture has 8 FlFOs, with each
FIFO having S-entries. The issue window of the conventional pro-
cessor has 64 entries. Both microarchitectures can decode, rename,
and execute a niaximum of 8 instructions per cycle. The timing sim-
ulator, a modified version of SimpleScalar [4], is detailed in Table 3.

First, consider the delay of the wakeup and selection logic,
Wakeup logic is required to detect cross-FIFO dcpendcnccs, For CX-
ample, if the instruction Ia at the head of FlFO Fa is dependent on
an instruction Ib waiting in FlFO Fb, then Ia cannot issue until Ib
completes. However, the wakeup logic in this case does not involve
broadcasting the result tags to all the waiting instructions. Instead,
only the instructions at the FIFO heads have to determine when all

214

Issue No. physical No. table Bits per Total
width registers entries entry delay (PS>

4 80 10 8 192.1
8 128 16 8 251.7

Table 4: Delay of reservation table in 0.18~m technology.

their operands are available. This is accomplished by interrogating
a table called the reservation tubIe. The reservation table contains a
single bit per physical register that indicates whether the register is
waiting for its data. When an instruction is dispatched, the reserva-
tion bit corresponding to its result register is set. The bit is cleared
when the instruction executes and the result value is produced. An
instruction at the FIFO head waits until the reservation bits corre-
sponding to its operands are cleared. Hence, the delay of the wakeup
logic is determined by the delay of accessing the reservation table.
The reservation table is relatively small in size compared to the re-
name table and the register file. For example, for a Cway machine
with 80 physical registers, the reservation table can be laid out as a
IO-entry table with each entry storing 8 bits 4. Table 4 shows the
delay of the reservation table for Cway and g-way machines. For
both cases, the wakeup delay is much smaller than the wakeup delay
for a 4-way, 32-entry issue window-based microarchitecture. Also,
this delay is smaller than the corresponding register renaming delay.
The selection logic in the proposed microarchitecture is simple be-
cause only the instructions at the FIFO heads need to be considered
for selection.

Instruction steering is done in parallel with register renaming.
Because the SRC-FIFO table is smaller than the rename table, we
expect the delay of steering to be less than the rename delay. In case
a more complex steering heuristic is used, the extra delay can easily
be moved into the wakeup/select stage, or a new pipestage can be
introduced -at the cost of an increase in branch mispredict penalty.

In summary, the complexity analysis presented above shows that
by reducing the delay of the window logic significantly, it is likely
that the dependence-based microarchitecture can be clocked faster
than the typical microarchitecture. In fact, from the overall delay
results shown in Table 2, if the window logic (wakeup + select)
is reduced substantially, register rename logic becomes the critical
stage for a Cway microarchitecture. Consequently, the dependence-
based microarchitecture can improve the clock period by as much as
(an admittedly optimistic) 39% in 0.18pm technology. Of course,
this may require that other stages not studied here be more deeply
pipelined. Combining the potential for a much faster clock with the
results in Figure 13 indicates that the dependence-based microarchi-
tecture is capable of superior performance relative to a typical super-
scalar microarchitecture.

5.4 Clustering the Dependence-based Microarchi-
tecture

The real advantage of the proposed microarchitecture is for build-
ing machines with issue widths greater than four where, as shown
by Table 2, the delay of both the large window and the long bypass
busses can be significant and can considerably slow the clock. Clus-
tered microarchitectures based on the dependence-based microar-
chitecture are ideally suited for such situations because they sim-
plify both the window logic and the bypass logic. We describe one
such microarchitecture for building an g-way machine next.

4A column MUX is used to select the appropriate bit from each entry.

215

Figure 14: Clustering the dependence-based microarchitecture: 8-
way machine organized as two Cway clusters (2 X Cway).

Consider the 2x4way clustered system shown in Figure 14. ‘Iwo
clusters are used, each of which contains four FIFOs, one copy of
the register file, and four functional units. Renamed instructions are
steered to aFIF0 in one of the two clusters. Local bypasses within a
cluster (shown using thick lines) are responsible for bypassing result
values produced in the cluster to the inputs of the functional units in
the same cluster. As shown by the delay results in Table 2, local
bypassing can be accomplished in a single cycle. Inter-cluster by-
passes are responsible for bypassing values between functional units
residing in different clusters. Because inter-cluster bypasses require
long wires, it is likely that these bypasses will be relatively slower
and take two or more cycles in future technologies. The two copies
of the register file are identical, except for the one or more cycles
difference in propagating results from one cluster to another.

This clustered, dependence-based microarchitecture has a num-
ber of advantages. First, wakeup and selection logic are simplified
as noted previously. Second, because of the heuristic for assigning
dependent instructions to FIFOs, and hence indirectly to clusters,
local bypasses are used much more frequently than inter-cluster by-
passes, reducing overall bypass delays. Third, using multiple copies
of the register file reduces the number of ports on the register file and
will make the access time of the register file faster.

5.5 Performance of Clustered Dependence-based
Microarchitecture

The graph in Figure 15 compares performance, in terms of in-
structions committed per cycle (PC), for the 2x4-way dependence-
based microarchitecture against that of a conventional g-way mi-
croarchitecture with a single 64-entry issue window. For the
dependence-based system, instructions are steered using the heuris-
tic described in Section 5.1 with a slight modification. Instead of
using a single free list of empty FIFOs, we maintain two free lists
of empty FIFOs, one per cluster. A request for a free FIFO is sat-
isfied if possible from the currenr free list. If the current free list is
empty, then the second free list is interrogated for a new FIFO and
the second free list is made current. This scheme ensures that in-
structions adjacent in the dynamic stream are assigned to the same
cluster to minimize inter-cluster communication. Local bypasses
take one cycle while inter-cluster bypasses take 2 cycles. Also, in
the conventional g-way system, all bypasses are assumed to com-

!

I
I *

b
!

plete in a single cycle. From the graph we can see that for most of
the benchmarks, the dependence-based microarchitecture is nearly
as effective as the window-based microarchitecture even though the
dependence-based microarchitecture is handicapped by slow inter-
cluster bypasses that take 2 cycles. However, for two of the bench-
marks, m88ksim and compress, the performance degradation is close
to 12% and 9% respectively. We found that this degradation is
mainly due to extra latency introduced by the slow inter-cluster by-

signs. In each case there are two clusters with inter-cluster bypasses
taking an extra cycle to complete.

passes.

64-entry window-based Sway

2-cluster dependence-based 8-wa

Ipress gee per1

Figure 15: Performance of clustered dependence-based microarchi-
tecture.

Because the dependence-based microarchitecture will facilitate a
faster clock, a fair performance comparison must take clock speed
into account. The local bypass structure within a cluster is equiva-
lent to a conventional Cway superscalar machine, and inter-cluster
bypasses are removed from the critical path by taking an extra clock
cycle. Consequently, the clock speed of the dependence-based mi-
croarchitecture is at least as fast as the clock speed of a 4-way, 32-
entry window-based microarchitecture, and is likely to be signifi-
cantly faster because of the smaller (wakeup + selection) delay com-
pared to a conventional issue window as discussed in Section 5.3.
Hence, if C&p is the clock speed of the dependence-based microar-
chitecture, and Cw;,, is the clock speed of the window-based mi-
croarchitecture, then from Table 2 for O.lQm technology:

cdw > delay of 8 way 64 entry window c win = 1 ’ 252 -
delay

of 4 way 32 entry window

In other words, the dependence-based microarchitecture is capa-
ble of supporting a clock that is 25% faster than the clock of
the window-based microarchitecture. Taking this factor into ac-
count (and ignoring other pipestages that may have to be more
deeply pipelined), we can estimate the potential speedup with a
dependence-based microarchitecture. The performance improve-
ments vary from 10% to 22% with an average improvement of 16%.

5.6 Other Clustered Microarchitectures

226

The microarchitecture presented in the previous section is one
point in the design space of clustered super-scalar microarchitec-
tures. The dependence-based microarchitecture simplifies both the
window logic and naturally reduces the performance degradation
due to slow inter-cluster bypass paths. In order to further explore
the space, we studied the performance of some other interesting de-

CENTRAL WINDOW

I_.

CLUSTER 0

oz

CLUSTER 1

t CLUSTl?R I

(3)

Figure 16: Clustered microarchitectures,

56.1 Single Window, Execution-Driven Steering

In the dependence-based microarchitecture described above, in-
structions are pre-assigned to a cluster when they are dispatched; WC

refer to this as dispadz-driven instruction steering. In contrast, Flg-
ure 16(a) illustrates a microarchitecture where instructions reside in
a central window while waiting for their operands and functional
units to become available. Instructions are assigned to the clusters
at the time they begin execution; this is execurion-driven instruction
steering.

With this method, cluster assignment works as follows. The reg-
ister values in the clusters become available at slightly different
times; that is, the result register value produced by a cluster is avall-
able in that cluster one cycle earlier than in the other cluster. Consc-
quently, an instruction waiting for the value may be enabled for exc-
cution one cycle earlier in one cluster than in the other. The selection
logic monitors the instructions in the window and attempts to assign
them to the cluster which provides their source values first (nssum-
ing there is a free functional unit in the cluster). Instructions that
have their source operands available in both clusters are first con-
sidered for assigmnent to cluster 0. Static instruction order is USN!

to break ties in this case.
The execution-driven approach uses a greedy policy to minimize

the use of slow inter-cluster bypasses while maintaining a high uti-

lization of the functional units. It does so by postponing the as-
sigmnent of instructions to clusters until execution time. While this
greedy approach may gain some IPC advantages, this organization
suffers from the previously discussed drawbacks of a central wln-
dow and complex selection logic.

5.6.2 Two Windows, Dispatch-Driven Steering

This microarchitecture, shown in Figure 16(b), is identical to
the dependence-based clustered microarchitecture except that each

cluster has a completely flexible window instead of FIFOs. Instruc-

tions are steered to the windows using a heuristic that takes both de-
pendences between instructions and the relative load of the clusters
into account. We tried a number of heuristics and found a simple ex-
tension of the FIFO heuristic presented in Section 5.1 to work best.
In our scheme the window is modeled as if it is a collection of FI-
FOs with instructions capable of issuing from any slot within each
individual FIFO. In this particular case, we treat each 32-entry win-
dow as eight FIFOs with four slots each. Note that these FIFOs are a
conceptual device used only by the assignment heuristic-in reality,
instructions issue from the window with complete flexibility.

Kemp and Franklin [1 I] studied an organization called PEWS
(Parallel Execution Windows) for simplifying the logic associated
with a central window. PEWS simplifies window logic by splitting
the central instruction window among multiple windows much like
the clustered microarchitecture described above. Register values are
communicated between clusters (called pews) via hardware queues
and a ring interconnection network. In contrast, we assume a broad-
cast mechanism for the same purpose. Instructions are steered to
the pews based on instruction dependences with a goal to minimize
inter-pew communication. However, for their experiments they as-
sume that each of the pews has as many functional units as the cen-
tral window organization. This assumption implies that the reduc-
tion in complexity achieved is limited since the wakeup and selec-
tion logic of the windows in the individual pews still have the same
porting requirements as the central window.

5.6.3 Two Windows, Random Steering
This microarchitecture, using the structure presented in Fig-

ure 16(b), is a basis for comparisons. Instructions are steered ran-
domly to one of the clusters. If the window for the selected cluster
is full, then the instruction is inserted into the other (free) cluster.
This design point was evaluated in order to determine the degree to
which clustered microarchitectures are capable of tolerating the ex-
tra latency introduced by slow inter-cluster bypasses and the impor-
tance of dependence-aware scheduling. Each window has 32 entries
in this case.

5.6.4 Performance of Clustered Microarchitectures
The top graph in Figure 17 shows the performance of various mi-

croarchitectures in terms of instructions committed per cycle (IPC).
The leftmost bar in each group shows the performance of the ideal
microarchitecture: a single 64-entry window with single cycle by-
pass between all functional units. A number of observations can
be made from the figure. First, random steering consistently per-
forms worse than the other schemes. The performance degradation
with respect to the ideal case varies from 17% in the case of vor-
tex to 26% in the case of m88ksim. Hence, it is essential for the
steering logic to consider dependences when routing instructions.
Second, the microarchitecture with a central window and execution-
driven steering performs nearly as well as the ideal microarchitec-
ture with a maximum degradation of 6% in the case of m88kGm.
However, as discussed earlier in Section 5.6.1, this microarchitec-
ture requires a centralized window with complex selection logic.
Third, both the dependence-based microarchitecture and the flex-
ible window microarchitecture using dispatch-driven steering per-
form competitively in comparison to the ideal microarchitecture.

The bottom graph in Figure 17 shows the frequency of inter-
cluster communication for each organization. We measure inter-
cluster communication in terms of the fraction of total instructions
that exercise inter-cluster bypasses. This does not include cases
where an instruction reads its operands from the register file in the

217

cluster i.e. cases in which the operands arrived from the remote clus-
ter in advance. As expected, we see that there is a high correlation
between the frequency of inter-cluster communication and perfor-
mance - organizations that exhibit higher inter-cluster communica-
tion commit fewer instructions per cycle. The inter-cluster commu-
nication is particularly high in the case of random steering, reaching
as high as 35% in the case of m88ksim.

I-clusteclwindow

3.6

3.2

u 2.8
5
O2.4

E
s 2.0
.s

Pa6
B 1.2

‘,‘I 2-cluster.FIFOs.dispatch_steer

111 2-cluster.windows.dispatch-steer

2-cluster.lwindow.exec_steer

2-cluster.windows.r

0.0
compress gee

c 40 v 1

Ii mS8k.h per1 vortex

m88ksim per1 vortex compress gee go 1

Figure 17: Performance of clustered microarchitectures.

Overall, the above results show that clustered microarchitectures
using distributed windows coupled with dispatch-driven steering
can deliver performance similar, in terms of instructions committed
per cycle, to that of an ideal microarchitecture with a large window
and uniform single cycle bypasses between all functional units.

6 Conclusions
We studied the variation of delays of key structures in a generic

superscalar processor with two important microarchitectural param-
eters: issue width and issue window size. We also analyzed the im-
pact of advanced technologies with smaller feature sizes on the de-
lay of these structures. Our results show that the logic associated
with the issue window and the data bypass logic are going to become
increasingly critical as future designs employ wider issue widths,
bigger windows, and smaller feature sizes. Furthermore, both of
these structures rely on broadcasting values on long wires, and in
future technologies wire delays will increasingly dominate total de-
lay.

This is not to say that the delay of other structures, for exam-
ple register files and caches, will not cause problems. However,

these structures can be pipelined to some extent. In contrast, win-
dow logic and data bypass logic implement atomic operations that
cannot be pipeIined while allowing dependent instructions to exe-
cute in successive cycles. This characteristic makes the delay of the
window logic and the data bypass logic even more crucial.

Hence, as architects build machines with wider issue widths and
larger window sizes in advanced technologies, it is essential to con-
sider microarchitectures that are complexity-effective i.e. microar-
chitectures that facilitate a fast clock while exploiting similar levels
of ILP as an ideal large-window machine.

In the second half of the paper, we proposed one such mi-
croarcbitecture called tbe dependence-based microarchitecture. The
dependence-based microarchitecture detects chains of dependent in-
structions and steers the chains to FIFOs which are constrained to
execute in-order. Since only the instructions at the FIFO heads have
to be monitored for execution, tbe dependence-based microarchitec-
ture simplifies window logic. Furthermore, the dependence-based
microarchitecture naturally lends itself to clustering by grouping de-
pendent instructions together. This grouping of dependent instruc-
tions helps mitigate the bypass problem to a large extent by using
fast local bypasses more frequently than slow inter-cluster bypasses.
We compared the performance of a 2x4-way dependence-based mi-
croarchitecture with a typical 8-way superscalar. Our results show
two things. First, the proposed microarchitecture has IFC perfor-
mance close to that of a typical microarchitecture (average degra-
dation in IPC! performance is 6.3%). Second, when taking the clock
speed advantage of the dependence-based microarchitecture into ac-
count the 8-way dependence-based microarchitecture is 16% faster
than the typical window-based microarchitecture on average.

Acknowledgements
This work was supported in part by an internship at DEC West-

em Research Laboratory, and by grants from the NSF Grant MIP-
9505853, and the U.S. Army Intelligence Center and Fort Huachuca
under Contract DABT63-95-C-0127 and ARPA order no. D346.
The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing tbe official
policies or endorsements, either expressed or implied, of the U. S.
Army Intelligence Center and Fort Huachuca, or the U.S. Govem-
ment.

We thank the staff at DEC-WRL, especially Annie Warren and
Jason Wold, for providing us with the CAD tools used in tbis study.
Thanks to Andy Glew for answering specific questions regarding the
implementation of the Intel Pentium Pro and for related discussions.
Thanks also to Todd Austin, Scott Breach, and Shamik Das Sharma
for comments on a draft of this paper.

References

[l] P. S. Ahuja, D. W. Clark, and A. Rogers. The Performance Impact of
Incomplete Bypassing in Processor Pipelines. In Proceedings of the
28th Annual International Symposium on Microarchitecture, Novem-
ber 1995.

[2] C. Asato, R. Montoye, J. Gmuender, E. W. Simmons, A. Ike, and J. Za-
sio. A 14-uort 3.8ns 116-word 64b Read-Renaming Register File. _--.
In 199s IEkE International Sold-State Circuits Conference Digest of
TecImical Papers, pages 104-105. February 1995.

[3] Mark T. Bohr. Interconnect Scaling -The Real Limiter to High Perfor-
mance ULSI. In I995 International Electron Devices Meeting Techni-
cal Digest, pages 241-244.1995.

[4] Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating Future
Microprocessors: The Simplescalar Tool Set. Technical Report CS-

TR-96-1308 (Available from http~/www.cs.wisc.edu/trs.html), Uni-
versity of Wisconsin-Madison, July 1996.

[5] M. Butler and Y. N. Patt. An Investigation of the Performaace of Var-
ious Dynamic Scheduling Techniques. In Proceedings ofthe 25/h An-
nual International Symposium on Microarchitecture, pages 1-9, De-
cember 1992.

[6] Keith I. F&as, Norman P. Jouppi, and Paul Chow. Register Filo Dc-
sign Considerations in Dynamically Scheduled Processors. In Pro-
ceedings of the Second IEEE Symposium on High-Performance Com-
puter Architecture, February 1996.

[7l Liiey Gwennap. Speed Kills? Not for RISC Processors. Micropro-
cessor Report, 7(3):3, March 1993.

[8] Liiey Gwennap. HAL Reveals Multichip SPARC Processor. Mkro-
processor Report, 9(3), March 1995.

[9] Liey Gwennap. Intel’s P6 Uses Decoupled Superscnlar Design, Mi-
croprocessor Report, 9(2), February 1995.

[lo] Jii Keller. The 21264: A Superscalar Alpha Processor with Oat-of-
Order Execution, October 1996. 9th Annual Microprocessor Forum,
San Jose, California.

[ll] Gregory A. Kemp and Manoj Franklin, PEWS: A Decentralized Dy-
namic Scheduler for ILP Processing. In Proceedings of the Interna-
tional Conference on Parallel Processing. volume I, pages 239-246,
1996.

[12] Ashok Kumar. The HP-PA8000 RISC CPU: A High Performance Out-
of-order Processor. In Proceedings of the Hot Chips WI, pages 9-20,
August 1996.

[13] Scott McFarling. Combining Branch Predictors. DEC WRLTcchnicnl
Note TN-36, DEC Western Research Labomtory, 1993.

[I41 Meta-Software Inc. HSpice User’s Manual, June 1987.

[15] Subbarao Palacharla, Norman P. Jouppi, and James E. Smith. Qunnti-
fyingthe Complexity of Superscalar Processor. Technical Report CS-
TR-96-1328 (Available from httpJ/www.cs.wisc.edu/trs,html), Unl-
versity of Wisconsin-Madison, November 1996.

[16] S. Peter Song, Marvin Denman, and Joe Chang. The PowerPC 604
RISC Microprocessor. In IEEE Micro, pages 8-17, October 1995,

[17] N. Vasseghi et al. 200 MHz Superscalnr RISC Processor Circuit DC-
sign Issues. In 1996 IEEE International Sold-State Circuits Cor$er-
ence Digest of Technical Papers, pages 356-357, February 1996,

[18] Tomohisa Wada, Suresh Rajan, and Steven A. Przybylskl, An Annlyt-
ical Access Tie Model for On-Chip Cache Memories. IEEE Joma/
of Solid-State Circuits, 27(8):1147-l 156, August 1992.

[19] Neil H.E. W&e and Kammn Eshmghian. Principles of CMOS VLSI
Design. Addison Wesley, second edition, 1993.

1201 Neil C. Whelm. Why Wire Delays Will No Longer Scala for VLSI
Chips. Technical Report SMLI TR-95-44, Sun Microsystems Labora-
tories, August 1995.

[21] Steven J. E. Wilton and Norman P. Jouppi. An Enhanced ACCCSS nnd
Cycle Time Model for On-Chip Caches. Technical Report 93/5, DEC
Western Research Labomtory, July 1994.

[22] K. C. Yeager. MIPS RlOOOO Superscalar Microprocessor, In !EEE
Micro, April 1996.

