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Abstract 
The performance tradeoff between hardware complexity and 

clock speed is studied. First, a generic superscalar pipeline is de- 
fined. Then the specific areas of register renaming, instruction win- 
dow wakeup and selection logic, and operand bypassing are ana- 
lyzed. Each is modeled and Spice simulated for feature sizes of 
O&m, 0.35,um, and 0.18~7% Performance results and trends are 
expressed in terms of issue width and window size. Our analysis in- 
dicates that window wakeup and selection logic as well as operand 
bypass logic are likely to be the most critical in the future. 

A microarchitecture that simplifies wakeup and selection logic 
is proposed and discussed. This implementation puts chains of de- 
pendent instructions into queues, and issues instructions from mul- 
tiple queues in parallel. Simulation shows little slowdown as com- 
pared with a completely flexible issue window when performance is 
measured in clock cycles. Furthermore, because only instructions at 
queue heads need to be awakened and selected, issue logic is simpli- 
fied and the clock cycle is faster-consequently overall performance 
is improved. By grouping dependent instructions together, the pro- 
posed microarchitecture will help minimize performance degrada- 
tion due to slow bypasses in future wide-issue machines. 

1 Introduction 
For many years, a major point of contention among microproces- 

sor designers has revolved around complex implementations that at- 
tempt to maximize the number of instructions issued per clock cycle, 
and much simpler implementations that have a very fast clock cy- 
cle. These two camps are often referred to as “brainiacs” and “speed 
demons” -taken from an editorial in Microprocessor Report [7]. Of 
course the tradeoff is not a simple one, and through innovation and 
good engineering, it may be possible to achieve most, if not all, of 
the benefits of complex issue schemes, while still allowing a very 
fast clock in the implementation; that is, to develop microarchitec- 
hues we refer to as complexity-effective. One of two primary ob- 
jectives of this paper is to propose such a complexity-effective mi- 
croarchitecture. The proposed microarchitecture achieves high per- 
formance, as measured by instructions per cycle @PC), yet it permits 
a design with a very high clock frequency. 

Supporting the claim of high IPC with a fast clock leads to the 
second primary objective of this paper. It is commonplace to mea- 
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sure the effectiveness (i.e. IPC) of a new microarchitecture, typ- 
ically by using trace driven simulation. Such simulations count 
cIock cycles and can provide IPC in a fairly straightforward man- 
ner. However, the complexity (or simplicity) of a microarchitecturc 
is much more difficult to determine-to be very accurate, it requires 
a full implementation in a specific technology. What is very much 
needed are fairly straightforward measures of complexity that can 
be used by microarchitects at a fairly early stage of the design pro- 
cess. Such methods would allow the determination of complcxity- 
effectiveness. It is the second objective of this paper to take a step 
in the direction of characterizing complexity and complcxi ty trends, 

Before proceeding, it must be emphasized that while complexity 
can be variously quantified in terms such as number of transistors, 
die area, and power dissipated, in this paper complexity is mcnsurcd 
as the delay of the critical path through a piece of logic, and the 
longest critical path through any of the pipeline stages determines 
the clock cycle. 

The two primary objectives given above are covered in reverse 
order - first sources of pipeline complexity are analyzed, then a 
new complexity-effective microarchitecture is proposed nnd cval- 
uated. In the next section we describe those portions of a microar- 
chitecture that tend to have complexity that grows with increasing 
instruction-level parallelism. Of these, we focus on instruction dis- 
patch and issue logic, and data bypass logic. We analyze potential 
critical paths in these structures and develop models for quantifying 
their delays. We study the variation of these delays with micronrchi- 
tectural parameters of window size (the number of waiting instruc- 
tions from which ready instructions are selected for issue) and the IS- 

sue width (the number of instructions that can be issued in a cycle), 

We also study the impact of the technology trend towards smaller 
feature sizes. The complexity analysis shows that logic nssociated 
with the issue window and data bypasses are likely to be key lim- 
iters of clock speed since smaller feature sizes cause wire delays to 
dominate overall delay [20,3]. 

Taking sources of complexity into account, we propose and cvnl- 
uate a new microarchitecture. This microarchitecture is called 
dependence-bused because it focuses on grouping dependent in- 
structions rather than independent ones, as is often the case in supcr- 
scalar implementations. The dependence-based microarchitecturc 
simplifies issue window logic while exploiting similar lcvcls of par- 
allelism to that achieved by current superscalar microarchitectures 
using more complex logic. 

The rest of the paper is organized as follows. Section 2 describes 
the sources of complexity in a baseline microarchitecture. Section 
3 describes the methodology we use to study the critical pipeline 



structures identified in Section 2. Section 4 presents a detailed anal- 
ysis of each of the structures and shows how their delays vary with 
microarchitectural parameters and technology parameters. Section 
5 presents the proposed dependence-based microarchitecture and 
some preliminary performance results. Finally, we draw conclu- 
sions in Section 6. 

2 Sources of Complexity 
In this section, specific sources of pipeline complexity are consid- 

ered. We realize that it is impossible to capture all possible microar- 
chitectures in a single model, however, and any results have some 
obvious limitations. We can only hope to provide a fairly straight- 
forward model that is typical of most current superscalar processors, 
and suggest that analyses similar to those used here can be extended 
to other, more advanced techniques as they are developed. 

FETCH DECODE RENAME ;&!$j! 
ExEcoTE DCACHE REGWR 
BYPASS ACCESS 

Figure 1: Baseline superscalar model. 

Figure 1 shows the baseline model and the associated pipeline. 
The fetch unit reads multiple instructions every cycle from the in- 
struction cache, and branches encountered by the fetch unit are pre- 
dicted. Next, instructions are decoded and their register operands 
are renamed. Renamed instructions are dispatched to theinstruction 
window, where they wait for their source operands and the appro- 
priate functional unit to become available. As soon as these condi- 
tions are satisfied, instructions are issued and executed in the func- 
tional units. The operand values of an instruction are either fetched 
from the register file or are bypassed from earlier instructions in the 
pipeline. The data cache provides low latency access to memory 
operands. 

2.1 Basic Structures 
As mentioned earlier, probably the best way to identity the pri- 

mary sources of complexity in a microarchitecture is to actually im- 
plement the microarchitecture in a specific technology. However, 
this is extremely time consuming and costly. Instead, our approach 
is to select certain key structures for study, and develop relatively 
simple delay models that can be applied in a straightforward man- 
ner without relying on detailed design. 

Structures to be studied were selected using the following crite- 
ria. First, we consider structures whose delay is a function of issue 
window size and/or issue width; these structures are likely to be- 
come cycle-time limiters in future wide-issue superscalar designs. 
Second, we are interested in dispatch and issue-related structures 
because these structures form the core of a microarchitecture and 
largely determine the amount of parallelism that can be exploited. 
Third, some structures tend to rely on broadcast operations over 
long wires and hence their delays might not scale as well as logic- 
intensive structures in future technologies with smaller feature sizes. 

The structures we consider are: 

l Register rename logic. This logic translates logical register 
designators into physical register designators. 

Wakeup logic. This logic is part of the issue window and is 
responsible for waking up instructions waiting for their source 
operands to become available. 

Selection logic. This logic is another part of the issue window 
and is responsible for selecting instructions for execution from 
the pool of ready instructions. 

Bypass logic. This logic is responsible for bypassing operand 
values from instructions that have completed execution, but 
have not yet written their results to the register file, to subse- 
quent instructions. 

There are other important pieces of pipeline logic that are not con- 
sidered in this paper, even though their delay is a function of dis- 
patch/issue width. In most cases, their delay has been considered 
elsewhere. These include register files and caches. Farkas et. al. [6] 
study how the access time of the register file varies with the number 
of registers and the number of ports. The access time of a cache is a 
function of the size of the cache and the associativity of the cache. 
Wada et. al. [18] and Wilton and Jouppi [21] have developed de- 
tailed models that estimate the access time of a cache given its size 
and associativity. 

2.2 Current Implementations 
The structures identified above were presented in the context 

of the baseline superscalar model shown in Figure 1. The MIPS 
RlOOOO [22] and the DEC 21264 [lo] are real implementations that 
directly fit this model. Hence, the structures identified above apply 
to these two processors. 

On the other hand, the Intel Pentium Pro [9], the HP PA-8000 
[12], the PowerPC 604 1161, and the HAL SPARC64 [8] do not 
completely fit the baseline model. These processors are based on 
a microarchitecture where the reorder buffer holds non-committed, 
renamed register values. In contrast, the baseline microarchitec- 
ture uses the physical register file for both committed and non- 
committed values. Nevertheless, the point to be noted is that the ba- 
sic structures identified earlier are present in both types of microar- 
chitecttrres. The only notable difference is the size of the physical 
register file. 

Finally, while the discussion about potential sources of complex- 
ity is in the context of an out-of-order baseline superscalar model, 
it must be pointed out that some of the critical structures identified 
apply to in-order processors, too. For example, part of the register 
rename logic (to be discussed later) and the bypass logic are present 
in in-order superscalar processors. 

3 Methodology 
The key pipeline structures were studied in two phases. In the 

first phase, we selected a representative CMOS circuit for the struc- 
ture. This was done by studying designs published in the literature 
(e.g. ISSCC i proceedings) and by collaborating with engineers at 
Digital Equipment Corporation. In cases where there was more than 
one possible design, we did a preliminary study of the designs to 
decide in favor of one that was most promising. By basing our cir- 
cuits on designs published by microprocessor vendors, we believe 
the studied circuits are similar to circuits used in microprocessor de- 
signs. In practice, many circuit tricks could be employed to optimize 
critical paths. However, we believe that the relative delays between 
different structures should be more accurate than the absolute de- 
lays. 
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In the second phase we implemented the circuit and optimized the 
circuit for speed. We used the Hspice circuit simulator [14] from 
Meta-Software to simulate the circuits. Primarily, static logic was 
used. However, in situations where dynamic logic helped in boost- 
ing the performance significantly, we used dynamic logic. For ex- 
ample, in the wakeup logic, a dynamic ‘I-input NOR gate is used 
for comparisons instead of a static gate. A number of optimizations 
were applied to improve the speed of the circuits. First, all the tran- 
sistors in the circuit were manually sized so that overall delay im- 
proved. Second, logic optimizations like two-level decomposition 
were applied to reduce fan-in requirements. We avoided using static 
gates with a fan-in greater than four. Third, in some cases transis- 
tor ordering was modified to shorten the critical path. Wire para- 
sitics were added at appropriate nodes in the Hspice model of the 
circuit. These parasitics were computed by calculating the length 
of the wires based on the layout of the circuit and using the values 
of I&tar and Getat, the resistance and parasitic capacitance of 
metal wires per unit length. 

To study the effect of reducing the feature size on the delays 
of the structures, we simulated the circuits for three different fea- 
ture sizes: 0.8pm, 0.35,om, and O.lB,%m respectively. Layouts for 
the 0.35pm and O.lBpm process were obtained by appropriately 
shrinking the layouts for the O.Bpm process. The Hspice models 
used for the three technologies are tabulated in [15]. 

4 Pipeline Complexity 
In this section, we analyze the critical pipeline structures. The 

presentation for each structure begins with a description of the log- 
ical function being implemented. Then, possible implementation 
schemes are discussed, and one is chosen. Next, we summarize our 
analysis of the overall delay in terms of the microarchitectural pa- 
rameters of issue width and issue window size; a much more de- 
tailed version of the analysis appears in [IS]. Finally, Hspice circuit 
simulation rest&s are presented and trends are identified and com- 
pared with the earlier analysis. 

4.1 Register Rename Logic 
Register rename logic translates logical register designators into 

physical register designators by accessing a map table with the log- 
ical register designator as the index. The map table holds the cur- 
rent logical to physical mappings and is multi-ported because mul- 
tiple instructions, each with multiple register operands, need to be 
renamed every cycle. The high level block diagram of the rename 
logic is shown in Figure 2. In addition to the map table, dependence 
check logic is required to detect cases where the logical register be- 
ing renamed is written by an earlier instruction in the current group 
of instructions being renamed. The dependence check Iogic detects 
such dependences and sets up the output MUXes so that the appro- 
priate physical register designators are selected. At the end of every 
rename operation, the map table is updated to reflect the new logical 
to physical mappings created for the result registers written by the 
current rename group. 

4.1.1 Structure 
The mapping and checkpointing functions of the rename logic 

can be implemented in at least two ways. These two schemes, called 
the RAM scheme and the CAM scheme, are described next. 

l RAM scheme 
In the RAM scheme, implemented in the MIPS RlOOOO [22], 
the map table is a register file where the logical register desig- 
nator directly accesses an entry that contains the physical reg- 
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Figure 2: Register rename logic. 

ister to which it is mapped. The number of entries in the map 
table is equal to the number of logical registers. 

An alternate scheme for register renaming uses a CAM 
(content-addressable memory) [19] to store the current map 
pings. Such a scheme is implemented in the HAL SPARC [2] 
and theDEC21264 [lo]. The number of entries in the CAM is 
equal to the number of physical registers. Each entry contains 
two fields: the logical register designator that is mapped to the 
physical register represented by the entry and a valid bit that IS 

set if the current mapping is valid. Renaming is accomplished 
by matching on the logical register designator field. 

In general, the CAM scheme is less scalable than the RAM schcmc 
because the number of CAM entries, which is equal to the number 
of physical registers, tends to increase with issue width. Also, for 
the design space we are interested in, the performance was found to 
be comparable. Consequently, we focus on the RAM method below, 
A more detailed discussion of the trade-offs involved can bc found 
in [15]. 

The dependence check logic proceeds in parallel with the map In- 
ble access. Every logical register designator being renamed is com- 
pared against the logical destination register designators of earllcr 
instructions in the current rename group. If there is a match, then 
the physical register assigned to the result of the earlier instruction is 

used instead of the one read from the map table. In the case of mul- 
tipIe matches, the register corresponding to the latest (in dynamic 
order) match is used. Dependence check logic for issue widths of 
2,4, and 8 was implemented. We found that for these issue widths, 
the delay of the dependence check logic is less than the delay of tho 
map table, and hence the check can be hidden behind tho map tablc * 
access. 

4.12 Delay Analysis 
As the name suggests, the RAM scheme operates like a standard 

RAM. Address decoders drive word lines; an access stack at the ad- 
dressed cell pulls a bitline low. The bitline changes arc scnscd by n 
sense amplifier which in turn produces the output. Symbolically tho 
rename delay can be written as, 

T rename = Tdeeode + Twordlinc + Tbitlinc -b Tecnaclamp 

The analysis presented here and in following subsections focuses 
on those parts of the delay that are a function of the issue width and 
window size. All sources of delay are considered in detail in [ 151. 
In the rename logic, the window size is not a factor, and the issue 

width affects delay through its impact on wire lengths, Increasing 



the issue width increases the number of bitlines and wordlines in 
each cell thus making each cell bigger. This in turn increases the 
length of the predecode, wordline, and bitline wires and the associ- 
ated wire delays. The net effect is the following relationships for the 
delay components: 

Tdecode , !km+dline, Tbitline = a -i- cl x Iw + c2 x Iw2 

where IW is the issue width and co, cl, and c2 are constants that are 
fixed for a given technology and instruction set architecture; deriva- 
tion of the constants for each component is given in [15]. In each 
case, the quadratic component, resulting from the intrinsic RC de- 
lay of wires, is relatively small for the design space and technolo- 
gies we explored. Hence, the decode, wordline, and bitline delays 
are effectively linear functions of the issue width. 

For the sense amplifier, we found that even though its structural 
constitution is independent of the issue width, its delay is a function 
of the slope of the input - the bitline delay - and therefore varies 
linearly with issue width. 

4.1.3 Spice Results 

For our Hspice simulations, Figure 3 shows how the delay of the 
rename logic varies with the issue width i.e. the number of instruc- 
tions being renamed every cycle for the three technologies. The 
graph includes the breakdown of delay into components discussed 
in the previous section. 

A number of observations can be made from the graph. The to- 
tal delay increases linearly with issue width for all the technologies. 
This is in conformance with our analysis, summarized in the previ- 
ous section. Furthermore, each of the components shows a linear 
increase with issue width. The increase in the bitline delay is larger 
than the increase in the wordline delay as issue width is increased 
because the bitlines are longer than the wordlines in our design. The 
bitline length is proportional to the number of logical registers (32 in 
most cases) whereas the wordline length is proportional to the width 
of the physical register designator (less than 8 for the design space 
we explored). 

Another important observation that can be made from the graph is 
that the relative increase in wordline delay, bitline delay, and hence, 
total delay as a function of issue width worsens as the feature size is 
reduced. For example, as the issue width is increased from 2 to 8, 
the percentage increase in bitline delay shoots up from 37% to 53% 
as the feature size is reduced from 0.8~~~3 to 0.18,um. Logic delays 
in the various components are reduced in proportion to the feature 
size, while the presence of wire delays in the wordline and bitline 
components cause the wordline and bitline components to fall at a 
slower rate. In other words, wire delays in the wordline and bitline 
structures will become increasingly important as feature sizes are re- 
duced. 

4.2 Wakeup Logic 
Wakeup logic is responsible for updating source dependences for 

instructions in the issue window waiting for their source operands to 
become available. 

4.2.1 Structure 
Wakeup logic is illustrated in FigureA Every time a result is pro- 

duced, a tag associated with the result is broadcast to all the instruc- 
tions in the issue window. Each instruction then compares the tag 
with the tags of its source operands. If there is a match, the operand 
is marked as available by setting the rdyL or rdyR flag. Once all the 
operands of an instruction become available (both rdyL and rdyR 
are set), the instruction is ready to execute, and the ready flag is set 
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Figure 3: Rename delay versus issue width. 

to indicate this. The issue window is a CAh4 array holding one in- 
struction per entry. Buffers, shown at the top of the figure, are used 
to drive the result tags tug1 to tagIW, where IW is the issue width. 
Each entry of the CAM has 2 x IW comparators to compare each 
of the results tags against the two operand tags of the entry. The OR 
logic ORs the comparator outputs and sets the rdyL/rdyR flags. 

tagnv tag1 

insto 

. . 

rdyL opd ~6 opd tagR rdyR i&N-l 

Figure 4: Wakeup logic. 

4.2.2 Delay Analysis 

The delay consists of three components: the time taken by the 
buffers to drive the tag bits, the time taken by the comparators in a 
pull-down stack corresponding to a mismatching bit position to pull 
the matchline low 2 , and the time taken to OR the individual match 
signals (matchlines). Symbolically, 

Delay = Ttagdrive f Ttagmatch I- TmatchoR 

The time taken to drive the tags depends on the length of the tag 
lines and the number of comparators on the tag lines. Increasing the 
window size increases both these terms. For a given window size, 

2We assume that only one pull-down stack is turned on since we are in- 
terested in the worst-case delay. 



increasing issue width also increases both the terms in the follow- 
ing way. Increasing issue width increases the number of matchlines 
in each cell and hence increases the height of each cell. Also, in- 
creasing issue width increases the number of comparators in each 
cell. Note that we assume the maximum number of tags produced 
per cycle is equal to the maximum issue width. 

In simplified form (see [15] for a more detailed analysis), &he time 
taken to drive the tags is: 

T tagdrive = ~0 + (cl-+ c2 x IW) x WINSIZE + 

(c3 + c4 x IW + c5 x IW2) x WINSIZE 

The above equation shows that the tag drive time is a quadratic func- 
tion of the window size. The weighting factor of the quadratic term 
is a function of the issue width. The weighting factor becomes sig- 
nificant for issue widths beyond 2. For a given window size, the tag 
drive time is also a quadratic function of the issue width. For cur- 
rent technologies (0.35,um and longer) the quadratic component is 
relatively small and the tag drive time is largely a linear function of 
issue width. However, as the feature size is reduced to O.l8pm, the 
quadratic component also increases in significance. The quadratic 
component results from the intrinsic RC delay of the tag lines. 

In reality, both issue width and window size will be simulta- 
neously increased because a larger window is required for find- 
ing more independent instructions to take advantage of wider issue. 
Hence, the tag drive time will become significant in future designs 
with wider issue widths, bigger windows, and smaller feature sizes. 

The tag match time is primarily a function of the length of the 
matchline, which varies linearly with the issue width. The match 
OR time is the time taken to OR the match lines, and the number of 
matchlines is a linear function of issue width. Both of these (refer 
to [lSJ) have a delay: 

Ttagmatch, TmotchoR = co+clxIw+c2xIw2 

However, in both cases the quadratic term is very small for the de- 
sign space we consider, so these delays are linear functions of issue 
width. 

350 r /t 

2 200 - -y 

_....,....__. ~ . . . . . . .._..._ p ,........... a . . . . . ..- .~~~~-----” 
. . . . . . . . . . . . . e . . . . . A-...” 

8 16 24 v%ow i% 46 56 64 

Figure 5: Wakeup logic delay versus window size. 

4.2.3 Spice Results 
The graph in Figure 5 shows how the delay of the wakeup logic 

varies with window size and issue width for 0.18pm technology. As 
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expected, the delay increases as window size and issue width arc jn- 
creased. The quadratic dependence of the total delay on the window 
sizeresultsfrom thequadraticincreasein tagdrive timcas discussed 
in the previous section. This effect is clearly visible for issue width 
of 8 and is less significant for issue width of 4. We found similnr 
curves for O.&m and 0.35,um technologies. The quadratic dcpcn- 
dence of delay on window size was more prominent in the curves for 
0.18pm technology than in the case of the other two technologies, 

Also, issue width has a greater impact on the delay than window 
size because increasing issue width increases all three components 
of the delay. On the other hand, increasing window size only Icngth- 
ens the tag drive time and to a small extent the tag match time. Ovcr- 
all, the results show that the delay increases by almost 34% going 
from Zway to Cway and by 46% going from 4-way to g-way for 
a window size of 64 instructions. In reality, the increase in delay 
is going to be even worse because in order to sustain a wider issue 
width, a larger window is required to find independent instructions. 

Figure 6 shows the effect of reducing feature sizes on the varl- 
ous components of the wakeup delay for an &way, 64entry win- 
dow processor. The tag drive and tag match delays do not scnlc as 
well as the match OR delay. This is expected since tag drive and tag 
match delays include wire delays whereas the match OR delay only 
consists of logic delays. Quantitatively, the fraction of the total dc- 
lay contributed by tag drive and tag match delay increases from 52% 
to 65% as the feature size is reduced from O.@m to 0.18pm, This 
shows that the performance of the broadcast operation will become 
more crucial in future technologies. 

1500, 
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123 Tag match delay 

Tag drive delay 
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Figure 6: Wakeup delay versus feature size. 

4.3 Selection Logic 
Selectionlogicis responsible for choosing instructions for cxccu- 

tion from the pool of ready instructions in the issue window. Some 
form of selection logic is required because the number and types of 
ready instructions may exceed the number and types of functional 
units available to execute them. 

Inputs to the selection logic are request (REQ) signals, one per 
instruction in the issue window. The request signal of an instruction 
is raised when the wakeup logic determines that all its operands arc 
available. The outputs of the selection logic aregrant (GRANT) sig- 
nals, one per request signal. On receipt of the GRANT signal, the 
associated instruction is issued to the functional unit. 

A selection p&y is used to decide which of the requesting in- 
structions is granted. An example selection policy is oldestfmt - 
the ready instruction that occurs earliest in program order is granted 



the functional unit. Butler and Patt [5] studied various policies for where ~0 and cl are constants determined by the propagation delays 
scheduling ready instructions and found that overall performance is of a single arbiter. We found the optimal number of arbiter inputs to 
largely independent of the selection policy. The HP PA-8000 uses be four in our case, so the logarithm is base 4. The selection logic 
a selection policy that is based on the location of the instruction in in the MIPS RlOOOO, described in [17], is also based on four-input 
the window. We assume the same selection policy in our study. arbiter cells. 

Figure 7: Selection logic. 

4.3.1 Structure 
The basic structure of selection logic is shown in Figure 7. Modi- 

fications to this scheme for handling multiple functional units of the 
same type are discussed in [15]. Selection logic consists of a tree of 
arbiters that works in two phases. In the first phase, request signals 
are propagated up the tree. Each cell raises the anyreq signal if any 
of its input request signals is high. This in turn raises the input re- 
quest signal of its parent arbiter cell. At the root cell one or more 
of the input request signals will be high if there are one or more in- 
structions that are ready. The root cell grants the functional unit to 
one of its children by raising one of its grant outputs. This initiates 
the second phase where the grant signal is propagated down the tree 
to the instruction that is selected. The enable signal to the root cell is 
high whenever the functional tit is ready to execute an instruction. 

The selection policy implemented is static and based strictly on 
location of the instruction in the issue window. The leftmost entries 
in the window have the highest priority. The obstfirst policy can 
be implemented using this scheme by compacting the issue window 
to the left every time instructions are issued and by inserting new in- 
structions at the right end. However, it is possible that the complex- 
ity of compaction could degrade performance. In this case, some 
restricted form of compacting can be used - so that overall perfor- 
mance is not affected. We did not analyze the complexity of com- 
pacting in this study. 

4.3.2 Delay Analysis 
The delay of the selection logic is the time it takes to generate the 

grant signal after the request signal has been raised. This is equal to 
the sum of three terms: the time taken for the request signal to prop- 
agate to the root of the tree, the delay of the root cell, and the time 
taken for the grant signal to propagate from the root to the selected 
instruction. Hence, the selection delay depends on the height of the 
arbitration tree and can be written as (see [15] for a more detailed 
analysis): 

T selection = co + Cl x Zog4(WINSIZE) 
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4.3.3 Spice Results 
Figure 8 shows the delay of the selection logic for various win- 

dow sizes and for the three feature sizes assuming a single ftmc- 
tional unit is being scheduled. The delay is broken down into the 
three components. From the graph we can see that for all the three 
technologies, the delay increases logarithmically with window size. 
Also, the increase in delay is less than 100% when the window size 
is increased from 16 instructions to 32 instructions (or from 64 in- 
structions to 128 instructions) since one of the components of the 
total delay, the delay at the root cell, is independent of the window 
size. 

3000 

1 

16 32 

n Grant propagation delay 

Root delay 

Request propagation delay 

i 163264128 16 32 64128 

0.8 0.35 0.18 

Figure 8: Selection delay versus window size. 

The various components of the total delay scale well as the fea- 
tnre size is reduced. This is not surprising since all the delays are 
logic delays. It must be pointed out that we do not consider the 
wires in the circuit, so the selection delays presented here are op- 
timistic, especially if the request signals (the ready flags discussed 
in the wakeup logic) originate from the CAM entries in which the 
instructions reside. On the other hand, it might be possible to mini- 
mize the effect of these wire delays if the ready signals are stored in 
a smaller, more compact array. 

4.4 Data Bypass Logic 
Data bypass logic is responsible for forwarding result values from 

completing instructions to dependent instructions, bypassing the 
register file. The number of bypass paths required is determined by 
the depth of the pipeline and the issue width of the microarchitec- 
ture. As pointed out in [l], if IW is the issue width, and if there are 
S pipestages after the first result-producing stage, then a fully by- 
passed design would require (2 x IW2 x S) bypass paths assuming 
Zinput functional units. In other words, the number of bypass paths 
grows quadratically with issue width. This is of critical importance, 
given the current trends toward deeper pipelines and wider issue. 

Bypass logic consists of two components: datapath and control. 
The datapath comprises result busses, that are used to broadcast by- 



II 

pass values from each functional unit source to all possible des- 
tinations. Buffers are used to drive the bypass values on the re- 
sult busses. In addition to the result busses, the datapath comprises 
operand MUXes. Operand MLJXes are required to gatein theappro- 
priate result on to the operand busses. The control logic is responsi- 
ble for controlling the operand MUXes. It compares the tags of the 
result values with the tag of source value required at each functional 
unit. If there is a match, the MUX control is set so that the result 
value is driven on the appropriate operand bus. The key factor that 
determines the speed of the bypass logic is the delay of the result 
wires that are used to transmit bypassed values, not the control. 

1 Issue I Wire I Delay 1 
width length (A) (ps) 

‘-1 

Table 1: Bypass delays for a Cway and a g-way processor, 

Considering the result wires as distributed RC lines, the delay IS 
given by 

4.4.1 Structure Tbypas~ = 0.5 X %&a( X Cmctof X L2 
A commonly used structure for bypass logic is shown in Figure 9. 

The figure shows a bit-slice of the datapath. There are four func- 
tional units marked FUO to FU3. Consider the bit slice of FUO. It 
gets its two operand bits from the opdO-l and opdO-r wires. The re- 
sult bit is driven on the res0 result wire by the result driver. Tris- 
tate buffers are used to drive the result bits on to the operand wires 
from the result wires of the functional units. These buffers imple- 
ment the MUXes shown in the figure. To bypass the result of func- 
tional unit FLJI to the left input of functional unit FUO, the tristate 
driver marked A is switched on. The driver A connects the resl wire 
and the opdO-1 wire. In the case where bypasses are not activated, 
operand bits are placed on the operand wires by the register file read 
ports 3. The result bits are written to the register file in addition to 
being bypassed. 

where L is the length of the result wires, and I&:,,l and Cmata( 
are the resistance and parasitic capacitance of metal wires per unit 
length respectively. 

Increasing issue width increases the length of the result wires, 
and hence causes the bypass delay to grow quadratically with ~SSUC 
width. Increasing the depth of the pipeline also increases the delny 
of the bypass logic in the following manner. Making the pipeline 
deeper increases the fan-in of the operand MUXes connected to a 
given result wire. This in turn increases the amount of capacitance 
on the result wires, and hence adds to the delay of the result wires, 
However, this component of the delay is not captured by our simple 
model. This component of the delay is likely to become relatively 
less significant as feature size is reduced. 

result 
wires 

Figure 9: Bypass logic. 

4.4.2 Delay Analysis 

The delay of the bypass logic is largely determined by the amount 
of time it takes for the driver at the output of each functional unit 
to drive the result value on the corresponding result wire. This in 
turn depends on the length of the result wires. From the figure it is 
apparent that the length of the wires is a function of the layout. For 
the layout presented in the figure, the length of the result wires is 
determined by the height of the functional units and the register file. 

31n a reservation-station based microarchitecture, the operand bits come 
from the data field of the reservation station entry. 
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4.4.3 Spice Results 

We computed the wire delays for hypothetical 4-way and g-way 
machines assuming common mixes of functional units and func- 
tional unit heights reported in the literature. Table 1 shows the rc- 
sults. Wire lengths are shown in terms of A, where X is half the fca- 
ture size. The delays are the same for the three technologies since 
wire delays are constant according to the scaling model assumed, 
See [15] for the detailed data and analysis. 

4.4.4 Alternative Layouts 

The results presented above assume a particular layout; the func- 
tional units are placed on either side of the register file. Howcvcr, 
as mentioned before, the length of the result wires is a function of 
the layout. Hence, VLSI designers will have to study alternative Iny- 
outs in order to reduce bypass delays. Alternative layouts alone will 
ordy decrease constants; the quadratic delay growth with number of 
bypasses will remain. 

In the long term, microarchitects will have to consider cbsfered 
organizations where each cluster of functional units has its own copy 
of the register file and bypasses within a cluster complete in a sin- 
gle cycle while inter-cluster bypasses take two or more cycles, The 
hardware or the compiler or both will have to ensure that inter- 
cluster bypasses occur infrequently. In addition to mitigating the dc- 
lay of the bypass logic, this organization also has the advantage of 
faster register files since there are fewer ports on each register h!c. 

4.5 Summary of Delays and Pipeline Issues 
We now summarize the pipeline delay results and consider the 

implications for future complexity-effective microarchitectures, It 
is easiest to frame this discussion in terms of satisfying the goal of 
permitting a very fast pipeline clock while, at the same time, exploit- 
ing high ILP through relatively wide, out-of-order superscalar opcr- 
ation. 



Issue Window Rename Wakeup-tSelect Bypass 
width size deW(~d delay (PS> delay (PS) 

0.8pm technology 
4 32 1577.9 2903.7 184.9 
8 64 1710.5 3369.4 1056.4 

0.35pm technology 
4 32 627.2 1248.4 184.9 
8 64 726.6 1484.8 1056.4 

0.18pm technology 
4 32 351.0 578.0 184.9 
8 64 427.9 724.0 1056.4 

Table 2: Overall delay results. 

To aid in this discussion, consider the overall results for a Cway 
and a 8-way microarchitecture in 0.18pm technology shown in Ta- 
ble 2. We chose the 0.18,um technology because of our interest in 
future generation microarchitectures. For the Cway machine, the 
window logic (wakeup + select) has the greatest delay among all the 
structures considered, and hence determines the critical path delay. 
The register rename delay comes next; it is about 39% faster than 
the delay of the window logic. The bypass delay is relatively small 
in this case. The results are similar for the 8-way machine, with one 
very notable exception: the bypass delay grows by a factor of over 
5, and is now worse than the (wakeup + select) delay. 

Now, let’s turn to the problem of designing a future generation 
microarchitecture with a faster clock cycle. Of the structures we 
have examined here, the window logic and the bypasses seem to 
pose the largest problems. Moreover, both of these cause difficulties 
if we wish to divide them into more pipeline segments; these diffi- 
culties will be discussed in the following paragraphs. All the other 
structures either will not cause a clock cycle problem, or if they do, 
they can be pipelined. The pipelining aspects of these structures is 
discussed in [ 151. This additional pipelining can cause some per- 
formance impact, although it is beyond the scope of this paper to 
evaluate the exact impact. 

. . . AKEuPsELEcr EXEC ,.. 

. . . AauPsELEcrExEc 
. . . Ala33 SatEa ESEC ... subrl,r10,2 

Figure 10: Pipelining wakeup and select. 

Wakeup and select together constitute what appears to be an 
arornic operation. That is, if they are divided into multiple pipeline 
stages, dependent instructions cannot issue in consecutive cycles. 
Consider the pipeline example shown in Figure 10. The add and the 
sub instructions cannot be executed back-to-back because the re- 
sult of the select stage has to feed the wakeup stage. Hence, wakeup 
and select together constitute an atomic operation and must be ac- 
complished in a single cycle, at least if dependent instructions are to 
be executed on consecutive cycles. 

Data bypassing is another example of what appears to be an 
atomic operation. In order for dependent operations to execute in 
consecutive cycles, the bypass value must be made available to the 
dependent instruction within a cycle. Results presented in table Ta- 
ble 2 show that this is feasible for a Cway machine. However, by- 
pass delay can easily become a bottleneck for wider issue-widths. 

One solution is to include only a proper subset of bypass paths 
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[1], and take a penalty for those that are not present. For an S-way 
machine with deep pipelines, this would exclude a large number of 
bypass paths. Another solution is to generalize the method used in 
the DEC 21264 [lo] and use multiple copies of the register file. This 
is the “cluster” method referred to in Section 4.4. 

In the following section we tackle both the window logic and 
bypass problems by proposing a microarchitecture that simplifies 
window logic and which naturally supports clustering of functional 
Units. 

5 A Complexity-Effective Microarchitecture 
From the analysis presented in the previous sections we see that 

the issue window logic is one of the primary contributors of com- 
plexity in typical out-of-order microarchitectures. Also, as archi- 
tects employ wider issue-widths and deeper pipelines, the delay of 
the bypass logic becomes even more critical. In this section, we pro- 
pose a dependence-based microarchitecture that replaces the issue 
window with a simpler structure that facilitates a faster clock while 
exploiting similar levels of parallelism. In addition, the proposed 
microarchitecture naturally lends itself to clustering and helps miti- 
gate the bypass problem to a large extent. 

Flms 

FETCH EXECUTE DCACHE RECWRlTE 
BYPASS ACCESS COMMlT 

Figure 11: Dependence-based microarchitectnre. 

The idea behind the dependence-based microarchitectureis to ex- 
ploit the natural dependences among instructions. A key point is 
that dependent instructions cannot execute in parallel. In the pro- 
posed microarchitecture, shown in Figure 11, the issue window is 
replaced by a small number of FIFO buffers. The FIFO buffers are 
constrained to issue in-order, and dependent instructions are steered 
to the same FIFO. This ensures that the instructions in a particular 
FIFO buffer can only execute sequentially. Hence, unlike the typ- 
ical issue window where result tags have to be broadcast to all the 
entries, the register availability only needs to be fanned out to the 
heads of the FIFO buffers. The instructions at the FIFO heads mon- 
itor reservation bits (one per physical register) to check for operand 
availability. This is discussed in detail later. Furthermore, the selec- 
tion logic only has to monitor instructions at the heads of the FIFO 
buffers. 

The steering of dependent instructions to the FIFO buffers is 
performed at run-time during the rename stage. Dependence in- 
formation between instructions is maintained in a table called the 
SRC-FIFO table. This table is indexed using logical register des- 
ignators. SRC-FIFO ( Ra 1, the entry for logical register Ra, con- 
tains the identity of the FIFO buffer that contains the instruction 
that will write register Ra. If that instruction has already completed 
i.e. register Ra contains its computed value, then SRC-FIFO (Ra) 
is invalid. This table is similar to the map table used for reg- 
ister renaming and can be accessed in parallel with the rename 
table. In order to steer an instruction to a particular FIFO, the 
SRC-FIFO table is accessed with the register identifiers of the 
source operands of an instruction. For example, for steering the in- 
struction add r10, r5,l where r10 is the destination register, 



the SRC-FIFO table is indexed with 5. The entry is then used to 
steer the instruction to the appropriate FIFO. 

5.1 Instruction Steering Heuristics 
A number of heuristics are possible for steering instructions to 

the FlFOs. A simple heuristic that we found to work well for our 
benchmark programs is described next. 

Let I be the instruction under consideration. Depending upon the 
availability of I’S operands, the following cases are possible: s 

l All the operands of I have already been computed and are re- 
siding in the register file. In this case, I is steered to a new 

(empty) FIFO acquired from a pool of free FIFOS. 

l I requires a single outstanding operand to be produced by in- 
struction Isource residing in FIFO Fa. In this case, if there 
is no instruction behind Isource in Fa then I is steered to 
Fa, else I is steered to a new FIFO. 

l I requires two outstanding operands to be produced by in- 
structions Ilef t and Iright residing in FlFOs Fa and Fb 
respectively. In this case, apply the heuristic in the previous 
bullet to the left operand. If the resulting FlFO is not suitable 
(it is either full or there is an instruction behind the source in- 
struction), then apply the same heuristic to the right operand. 

If all the FlFOs are full or if no empty FIFO is available then the 
decoder/steering logic stalls. A FlFO is returned to the free pool 
when the last instruction in the FIFO is issued. Initially, all the FI- 
FOs are in the free pool. Figure 12 illustrates the heuristic on a code 

Fetch width 
I-cache 
Branch Predictor 

any 8 instructions 
Perfect instruction cache 
McFarIing’s gshare 1131 
4K 2-bit counters. 12 bit history 
unconditional control instruclidns 
predicted perfectly 

Issue window size 64 
Max. in-flight 128 

16 
8 synunet&aI units 1 

-1 out-of-order lssuc of up to 8 ops/cyclo 

Physical Registers 
D-cache 

store add&es am known 
120 inff 120 fp 
32KB. P-way SA 
write-back, &te-allocate 
32 byte lines, 1 cycle hit,6 cycle miss 
four load/store ports 

Table 3: Baseline simulation model. 

An aggressive instruction fetch mechanism is used to stress the is- 
sue and execution subsystems. We ran seven benchmarks from the 
SPEC’95 suite, using their training input datasets. Each benchmark 
was run for a maximum of OSB instructions. 
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Figure 13: Performance (lPC) of dependence-based microarchitcc- 
ture. 
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, Figure 12: Instruction steering example. 

This figure shows how instructions are steered to FIFOs using the heuristic 
presented in Section 5.1 for a sample code segment. Instructions can issue 
only from the heads of the four FIFOs. The steering logic steers four instruc- 
tions every cycle and a maximum of four instructions can issue every cycle. 

The performance results (in terms of instructions committed per 
cycle) are shown in Figure 13. The dependence-based microarchi- 
tecture is nearly as effective (extracts similar parallelism) as the typ- 
ical window-based microarchitecture. The cycle count numbers are 
within 5% for five of the seven benchmarks and the maximum pcf- 
formance degradation is 8% in the case of li. 

5.2 Performance Results 5.3 Complexity Analysis 
We compare the performance of the dependence-based microar- 

chitecture against that of a typical microarchitecture with an issue 
window. The proposed microarchitecture has 8 FlFOs, with each 
FIFO having S-entries. The issue window of the conventional pro- 
cessor has 64 entries. Both microarchitectures can decode, rename, 
and execute a niaximum of 8 instructions per cycle. The timing sim- 
ulator, a modified version of SimpleScalar [4], is detailed in Table 3. 

First, consider the delay of the wakeup and selection logic, 
Wakeup logic is required to detect cross-FIFO dcpendcnccs, For CX- 
ample, if the instruction Ia at the head of FlFO Fa is dependent on 
an instruction Ib waiting in FlFO Fb, then Ia cannot issue until Ib 
completes. However, the wakeup logic in this case does not involve 
broadcasting the result tags to all the waiting instructions. Instead, 
only the instructions at the FIFO heads have to determine when all 
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Issue No. physical No. table Bits per Total 
width registers entries entry delay (PS> 

4 80 10 8 192.1 
8 128 16 8 251.7 

Table 4: Delay of reservation table in 0.18~m technology. 

their operands are available. This is accomplished by interrogating 
a table called the reservation tubIe. The reservation table contains a 
single bit per physical register that indicates whether the register is 
waiting for its data. When an instruction is dispatched, the reserva- 
tion bit corresponding to its result register is set. The bit is cleared 
when the instruction executes and the result value is produced. An 
instruction at the FIFO head waits until the reservation bits corre- 
sponding to its operands are cleared. Hence, the delay of the wakeup 
logic is determined by the delay of accessing the reservation table. 
The reservation table is relatively small in size compared to the re- 
name table and the register file. For example, for a Cway machine 
with 80 physical registers, the reservation table can be laid out as a 
IO-entry table with each entry storing 8 bits 4. Table 4 shows the 
delay of the reservation table for Cway and g-way machines. For 
both cases, the wakeup delay is much smaller than the wakeup delay 
for a 4-way, 32-entry issue window-based microarchitecture. Also, 
this delay is smaller than the corresponding register renaming delay. 
The selection logic in the proposed microarchitecture is simple be- 
cause only the instructions at the FIFO heads need to be considered 
for selection. 

Instruction steering is done in parallel with register renaming. 
Because the SRC-FIFO table is smaller than the rename table, we 
expect the delay of steering to be less than the rename delay. In case 
a more complex steering heuristic is used, the extra delay can easily 
be moved into the wakeup/select stage, or a new pipestage can be 
introduced -at the cost of an increase in branch mispredict penalty. 

In summary, the complexity analysis presented above shows that 
by reducing the delay of the window logic significantly, it is likely 
that the dependence-based microarchitecture can be clocked faster 
than the typical microarchitecture. In fact, from the overall delay 
results shown in Table 2, if the window logic (wakeup + select) 
is reduced substantially, register rename logic becomes the critical 
stage for a Cway microarchitecture. Consequently, the dependence- 
based microarchitecture can improve the clock period by as much as 
(an admittedly optimistic) 39% in 0.18pm technology. Of course, 
this may require that other stages not studied here be more deeply 
pipelined. Combining the potential for a much faster clock with the 
results in Figure 13 indicates that the dependence-based microarchi- 
tecture is capable of superior performance relative to a typical super- 
scalar microarchitecture. 

5.4 Clustering the Dependence-based Microarchi- 
tecture 

The real advantage of the proposed microarchitecture is for build- 
ing machines with issue widths greater than four where, as shown 
by Table 2, the delay of both the large window and the long bypass 
busses can be significant and can considerably slow the clock. Clus- 
tered microarchitectures based on the dependence-based microar- 
chitecture are ideally suited for such situations because they sim- 
plify both the window logic and the bypass logic. We describe one 
such microarchitecture for building an g-way machine next. 

4A column MUX is used to select the appropriate bit from each entry. 
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Figure 14: Clustering the dependence-based microarchitecture: 8- 
way machine organized as two Cway clusters (2 X Cway). 

Consider the 2x4way clustered system shown in Figure 14. ‘Iwo 
clusters are used, each of which contains four FIFOs, one copy of 
the register file, and four functional units. Renamed instructions are 
steered to aFIF0 in one of the two clusters. Local bypasses within a 
cluster (shown using thick lines) are responsible for bypassing result 
values produced in the cluster to the inputs of the functional units in 
the same cluster. As shown by the delay results in Table 2, local 
bypassing can be accomplished in a single cycle. Inter-cluster by- 
passes are responsible for bypassing values between functional units 
residing in different clusters. Because inter-cluster bypasses require 
long wires, it is likely that these bypasses will be relatively slower 
and take two or more cycles in future technologies. The two copies 
of the register file are identical, except for the one or more cycles 
difference in propagating results from one cluster to another. 

This clustered, dependence-based microarchitecture has a num- 
ber of advantages. First, wakeup and selection logic are simplified 
as noted previously. Second, because of the heuristic for assigning 
dependent instructions to FIFOs, and hence indirectly to clusters, 
local bypasses are used much more frequently than inter-cluster by- 
passes, reducing overall bypass delays. Third, using multiple copies 
of the register file reduces the number of ports on the register file and 
will make the access time of the register file faster. 

5.5 Performance of Clustered Dependence-based 
Microarchitecture 

The graph in Figure 15 compares performance, in terms of in- 
structions committed per cycle (PC), for the 2x4-way dependence- 
based microarchitecture against that of a conventional g-way mi- 
croarchitecture with a single 64-entry issue window. For the 
dependence-based system, instructions are steered using the heuris- 
tic described in Section 5.1 with a slight modification. Instead of 
using a single free list of empty FIFOs, we maintain two free lists 
of empty FIFOs, one per cluster. A request for a free FIFO is sat- 
isfied if possible from the currenr free list. If the current free list is 
empty, then the second free list is interrogated for a new FIFO and 
the second free list is made current. This scheme ensures that in- 
structions adjacent in the dynamic stream are assigned to the same 
cluster to minimize inter-cluster communication. Local bypasses 
take one cycle while inter-cluster bypasses take 2 cycles. Also, in 
the conventional g-way system, all bypasses are assumed to com- 
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plete in a single cycle. From the graph we can see that for most of 
the benchmarks, the dependence-based microarchitecture is nearly 
as effective as the window-based microarchitecture even though the 
dependence-based microarchitecture is handicapped by slow inter- 
cluster bypasses that take 2 cycles. However, for two of the bench- 
marks, m88ksim and compress, the performance degradation is close 
to 12% and 9% respectively. We found that this degradation is 
mainly due to extra latency introduced by the slow inter-cluster by- 

signs. In each case there are two clusters with inter-cluster bypasses 
taking an extra cycle to complete. 

passes. 

64-entry window-based Sway 

2-cluster dependence-based 8-wa 

Ipress gee per1 

Figure 15: Performance of clustered dependence-based microarchi- 
tecture. 

Because the dependence-based microarchitecture will facilitate a 
faster clock, a fair performance comparison must take clock speed 
into account. The local bypass structure within a cluster is equiva- 
lent to a conventional Cway superscalar machine, and inter-cluster 
bypasses are removed from the critical path by taking an extra clock 
cycle. Consequently, the clock speed of the dependence-based mi- 
croarchitecture is at least as fast as the clock speed of a 4-way, 32- 
entry window-based microarchitecture, and is likely to be signifi- 
cantly faster because of the smaller (wakeup + selection) delay com- 
pared to a conventional issue window as discussed in Section 5.3. 
Hence, if C&p is the clock speed of the dependence-based microar- 
chitecture, and Cw;,, is the clock speed of the window-based mi- 
croarchitecture, then from Table 2 for O.lQm technology: 

cdw > delay of 8 way 64 entry window c win = 1 ’ 252 - 
delay 

of 4 way 32 entry window 

In other words, the dependence-based microarchitecture is capa- 
ble of supporting a clock that is 25% faster than the clock of 
the window-based microarchitecture. Taking this factor into ac- 
count (and ignoring other pipestages that may have to be more 
deeply pipelined), we can estimate the potential speedup with a 
dependence-based microarchitecture. The performance improve- 
ments vary from 10% to 22% with an average improvement of 16%. 

5.6 Other Clustered Microarchitectures 
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The microarchitecture presented in the previous section is one 
point in the design space of clustered super-scalar microarchitec- 
tures. The dependence-based microarchitecture simplifies both the 
window logic and naturally reduces the performance degradation 
due to slow inter-cluster bypass paths. In order to further explore 
the space, we studied the performance of some other interesting de- 

CENTRAL WINDOW 

I_. 

CLUSTER 0 

oz 

CLUSTER 1 

t CLUSTl?R I 

(3) 

Figure 16: Clustered microarchitectures, 

56.1 Single Window, Execution-Driven Steering 

In the dependence-based microarchitecture described above, in- 
structions are pre-assigned to a cluster when they are dispatched; WC 

refer to this as dispadz-driven instruction steering. In contrast, Flg- 
ure 16(a) illustrates a microarchitecture where instructions reside in 
a central window while waiting for their operands and functional 
units to become available. Instructions are assigned to the clusters 
at the time they begin execution; this is execurion-driven instruction 
steering. 

With this method, cluster assignment works as follows. The reg- 
ister values in the clusters become available at slightly different 
times; that is, the result register value produced by a cluster is avall- 
able in that cluster one cycle earlier than in the other cluster. Consc- 
quently, an instruction waiting for the value may be enabled for exc- 
cution one cycle earlier in one cluster than in the other. The selection 
logic monitors the instructions in the window and attempts to assign 
them to the cluster which provides their source values first (nssum- 
ing there is a free functional unit in the cluster). Instructions that 
have their source operands available in both clusters are first con- 
sidered for assigmnent to cluster 0. Static instruction order is USN! 

to break ties in this case. 
The execution-driven approach uses a greedy policy to minimize 

the use of slow inter-cluster bypasses while maintaining a high uti- 

lization of the functional units. It does so by postponing the as- 
sigmnent of instructions to clusters until execution time. While this 
greedy approach may gain some IPC advantages, this organization 
suffers from the previously discussed drawbacks of a central wln- 
dow and complex selection logic. 

5.6.2 Two Windows, Dispatch-Driven Steering 

This microarchitecture, shown in Figure 16(b), is identical to 
the dependence-based clustered microarchitecture except that each 



cluster has a completely flexible window instead of FIFOs. Instruc- 

tions are steered to the windows using a heuristic that takes both de- 
pendences between instructions and the relative load of the clusters 
into account. We tried a number of heuristics and found a simple ex- 
tension of the FIFO heuristic presented in Section 5.1 to work best. 
In our scheme the window is modeled as if it is a collection of FI- 
FOs with instructions capable of issuing from any slot within each 
individual FIFO. In this particular case, we treat each 32-entry win- 
dow as eight FIFOs with four slots each. Note that these FIFOs are a 
conceptual device used only by the assignment heuristic-in reality, 
instructions issue from the window with complete flexibility. 

Kemp and Franklin [ 1 I] studied an organization called PEWS 
(Parallel Execution Windows) for simplifying the logic associated 
with a central window. PEWS simplifies window logic by splitting 
the central instruction window among multiple windows much like 
the clustered microarchitecture described above. Register values are 
communicated between clusters (called pews) via hardware queues 
and a ring interconnection network. In contrast, we assume a broad- 
cast mechanism for the same purpose. Instructions are steered to 
the pews based on instruction dependences with a goal to minimize 
inter-pew communication. However, for their experiments they as- 
sume that each of the pews has as many functional units as the cen- 
tral window organization. This assumption implies that the reduc- 
tion in complexity achieved is limited since the wakeup and selec- 
tion logic of the windows in the individual pews still have the same 
porting requirements as the central window. 

5.6.3 Two Windows, Random Steering 
This microarchitecture, using the structure presented in Fig- 

ure 16(b), is a basis for comparisons. Instructions are steered ran- 
domly to one of the clusters. If the window for the selected cluster 
is full, then the instruction is inserted into the other (free) cluster. 
This design point was evaluated in order to determine the degree to 
which clustered microarchitectures are capable of tolerating the ex- 
tra latency introduced by slow inter-cluster bypasses and the impor- 
tance of dependence-aware scheduling. Each window has 32 entries 
in this case. 

5.6.4 Performance of Clustered Microarchitectures 
The top graph in Figure 17 shows the performance of various mi- 

croarchitectures in terms of instructions committed per cycle (IPC). 
The leftmost bar in each group shows the performance of the ideal 
microarchitecture: a single 64-entry window with single cycle by- 
pass between all functional units. A number of observations can 
be made from the figure. First, random steering consistently per- 
forms worse than the other schemes. The performance degradation 
with respect to the ideal case varies from 17% in the case of vor- 
tex to 26% in the case of m88ksim. Hence, it is essential for the 
steering logic to consider dependences when routing instructions. 
Second, the microarchitecture with a central window and execution- 
driven steering performs nearly as well as the ideal microarchitec- 
ture with a maximum degradation of 6% in the case of m88kGm. 
However, as discussed earlier in Section 5.6.1, this microarchitec- 
ture requires a centralized window with complex selection logic. 
Third, both the dependence-based microarchitecture and the flex- 
ible window microarchitecture using dispatch-driven steering per- 
form competitively in comparison to the ideal microarchitecture. 

The bottom graph in Figure 17 shows the frequency of inter- 
cluster communication for each organization. We measure inter- 
cluster communication in terms of the fraction of total instructions 
that exercise inter-cluster bypasses. This does not include cases 
where an instruction reads its operands from the register file in the 
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cluster i.e. cases in which the operands arrived from the remote clus- 
ter in advance. As expected, we see that there is a high correlation 
between the frequency of inter-cluster communication and perfor- 
mance - organizations that exhibit higher inter-cluster communica- 
tion commit fewer instructions per cycle. The inter-cluster commu- 
nication is particularly high in the case of random steering, reaching 
as high as 35% in the case of m88ksim. 
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Figure 17: Performance of clustered microarchitectures. 

Overall, the above results show that clustered microarchitectures 
using distributed windows coupled with dispatch-driven steering 
can deliver performance similar, in terms of instructions committed 
per cycle, to that of an ideal microarchitecture with a large window 
and uniform single cycle bypasses between all functional units. 

6 Conclusions 
We studied the variation of delays of key structures in a generic 

superscalar processor with two important microarchitectural param- 
eters: issue width and issue window size. We also analyzed the im- 
pact of advanced technologies with smaller feature sizes on the de- 
lay of these structures. Our results show that the logic associated 
with the issue window and the data bypass logic are going to become 
increasingly critical as future designs employ wider issue widths, 
bigger windows, and smaller feature sizes. Furthermore, both of 
these structures rely on broadcasting values on long wires, and in 
future technologies wire delays will increasingly dominate total de- 
lay. 

This is not to say that the delay of other structures, for exam- 
ple register files and caches, will not cause problems. However, 



these structures can be pipelined to some extent. In contrast, win- 
dow logic and data bypass logic implement atomic operations that 
cannot be pipeIined while allowing dependent instructions to exe- 
cute in successive cycles. This characteristic makes the delay of the 
window logic and the data bypass logic even more crucial. 

Hence, as architects build machines with wider issue widths and 
larger window sizes in advanced technologies, it is essential to con- 
sider microarchitectures that are complexity-effective i.e. microar- 
chitectures that facilitate a fast clock while exploiting similar levels 
of ILP as an ideal large-window machine. 

In the second half of the paper, we proposed one such mi- 
croarcbitecture called tbe dependence-based microarchitecture. The 
dependence-based microarchitecture detects chains of dependent in- 
structions and steers the chains to FIFOs which are constrained to 
execute in-order. Since only the instructions at the FIFO heads have 
to be monitored for execution, tbe dependence-based microarchitec- 
ture simplifies window logic. Furthermore, the dependence-based 
microarchitecture naturally lends itself to clustering by grouping de- 
pendent instructions together. This grouping of dependent instruc- 
tions helps mitigate the bypass problem to a large extent by using 
fast local bypasses more frequently than slow inter-cluster bypasses. 
We compared the performance of a 2x4-way dependence-based mi- 
croarchitecture with a typical 8-way superscalar. Our results show 
two things. First, the proposed microarchitecture has IFC perfor- 
mance close to that of a typical microarchitecture (average degra- 
dation in IPC! performance is 6.3%). Second, when taking the clock 
speed advantage of the dependence-based microarchitecture into ac- 
count the 8-way dependence-based microarchitecture is 16% faster 
than the typical window-based microarchitecture on average. 
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