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Abstract 
The predictability of data values is studied at a fnn- 

damental level. Two basic predictor models are defined: 
Computational predictors pelform an operation on pre- 
vious values to yield predicted next values. Examples we 
study are stride value prediction (which adds a delta to a 
previous value) and last value prediction (which peforms 
the trivial identity operation on the previous value); 
Context Based predictors match recent value history (con- 
text) with previous value history and predict values based 
entirely on previously observed patterns. 

To understand the potential of value prediction we per- 
form simulations with unboundedprediction tables that are 
immediately updated using correct data values. Simula- 
tions of integerSPEC95 benchmarks show that data values 
can be highly predictable. Best pe~onnance is obtained 
with context based predictors; overall prediction accura- 
cies are between 56% and 91 o/o, The context based pre- 
dictor typically has an accuracy about 20% better than the 
computational predictors (last value and stride). Compati- 
son of context based prediction and stride prediction shows 
that the higher accuracy of context based prediction is due 
to relatively few static instructions giving large improve- 
ments; this suggests the usefulness of hybrid predictors. 
Among different instruction types, predictability varies sig- 
nijicantly. In general, load and shift instructions are more 
dificult to predict correctly, whereas add instructions are 
more predictable. 

1 Introduction 
There is a clear trend in high performance processors to- 

ward performing operations speculatively, based on predic- 
tions. If predictions are correct, the speculatively executed 
instructions usually translate into improved performance. 

Although program execution contains a variety of infor- 
mation that can be predicted, conditional branches have re- 
ceived the most attention. Predicting conditional branches 
provides a way of avoiding control dependences and of- 
fers a clear performance advantage. Even more prevalent 
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than control dependences, however, are data dependences. 
Virtually every instruction depends on the result of some 
preceding instruction. As such, data dependences arc of- 
ten thought to present a fundamental performance bar&r. 
However, data values may also be predicted, and opcra- 
tions can be performed speculatively based on these data 
predictions. 

An important difference between conditional branch 
prediction and data value prediction is that data are taken 
from a much larger range of values. This would appear to 
severely limit the chances of successful prediction, How- 
ever, it has been demonstrated recently [l] that data values 
exhibit “locality” where values computed by some instruc- 
tions tend to repeat a large fraction of the time. 

We argue that establishing predictability limits for pro- 
gram values is important for determining the performance 
potential of processors that use value prediction. We be- 
lieve that doing so first requires understanding the design 
space of value predictors models. Consequently, the goals 
of this paper are twofold. Firstly, we discuss some of the 
major issues affecting data value prediction and lay down 
a framework for studying data value prediction. Secondly, 
for important classes of predictors, we use benchmark pro- 
grams to establish levels of value predictability. This study 
is somewhat idealized: for example, predictor costs are ig- 
nored in order to more clearly understand limits of data 
predictability. Furthermore, the ways in which data pre- 
diction can be used in a processor microarchitecture are not 
within the scope of this paper, so that we can concentrate 
in greater depth on the prediction process, itself. 

1.1 Classification of Value Sequences 
The predictability of a sequence of values is a function 

of both the sequence itself and the predictor used to predict 
the sequence. Although it is beyond the scope of this paper 
to study the actual sources of predictability, it is useful for 
our discussion to provide an informal classification of data 
sequences. This classification is useful for understanding 
the behavior of predictors in later discussions. ‘Ihe follow- 



ing classification contains simple value sequences that can 
also be composed to form more complex sequences. They 
are best defined by giving examples: 

Constant(C) 5 5 5 5 5 5 5... 
Stride(S) 1 2 3 4 5 6 7 S... 
Non-Stride(NS) 28 -13 -99 107 23 456... 

Constant sequences are the simplest, and result from 
instructions that repeatedly produce the same result. Li- 
pasti and Shen show that this occurs surprisingly often, and 
forms the basis for their work reported in [ 11. A stride se- 
quence has elements that differ by some constant delta. For 
the example above, the stride is one, which is probably the 
most common case in programs, but other strides are pos- 
sible, including negative strides. Constant sequences can 
be considered stride sequences with a zero delta. A stride 
sequence might appear when a data structure such as an ar- 
ray is being accessed in a regular fashion; loop induction 
variables also have a stride characteristic. 

The non-stride category is intended to include all other 
sequences that do not belong to the constant or stride cat- 
egory. This classification could be further divided, but we 
choose not to do so. Non-strides may occur when a se- 
quence of numbers is being computed and the computation 
is more complex than simply adding a constant. Traversing 
a linked list would often produce address values that have 
a non-stride pattern. 

Also very important are sequences formed by compos- 
ing stride and non-stride sequences with themselves. Re- 
peating sequences would typically occur in nested loops 
where the inner loop produces either a stride or a non-stride 
sequence, and the outer loop causes this sequence to be re- 
peated. 

Repeated Stride(RS) 1 2 3 1 2 3 1 2 3... 
Repeated Non-Stride(RNS) 1-13 -99 7 l-13 -99 7... 

Examination of the above sequences leads naturally to 
two types of prediction models that are the subject of dis- 
cussion throughout the remainder of this paper: 
Computational predictors that make a prediction by com- 
puting some function of previous values. An example of a 
computational predictor is a stride predictor. This predic- 
tor adds a stride to the previous value. 
Context based predictors learn the value(s) that follow a 
particular context - a finite ordered sequence of values - and 
predict one of the values when the same context repeats. 
This enables the prediction of any repeated sequence, stride 
or non-stride. 
1.2 Related Work 

In [l], it was reported that data values produced by 
instructions exhibit “locality” and as a result can be pre- 
dicted. The potential for value predictability was reported 
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in terms of “history depth”, that is, how many times a value 
produced by an instruction repeats when checked against 
the most recent n values. A pronounced difference is ob- 
served between the locality with history depth 1 and history 
depth 16. The mechanism proposed for prediction, how- 
ever, exploits the locality of history depth 1 and is based on 
predicting that the most recent value will also be the next. 
In [ 11, last value prediction was used to predict load values 
and in a subsequent work to predict all values produced by 
instructions and written to registers 121. 

Address prediction has been used mainly for data 
prefetching to tolerate long memory latency [3,4, 51, and 
has been proposed for speculative execution of load and 
store instructions 16, 71. Stride prediction for values was 
proposed in [8] and its prediction and performance poten- 
tial was compared against last value prediction. 

Value prediction can draw from a wealth of work on 
the prediction of control dependences [9, 10, 1 I]. The ma- 
jority of improvements in the performance of control flow 
predictors has been obtained by using correlation. The cor- 
relation information that has been proposed includes lo- 
cal and global branch history [lo], path address history 
[ 11, 12, 131, and path register contents [ 141. An interesting 
theoretical observation is the resemblance of the predictors 
used for control dependence prediction to the prediction 
models for text compression 1151. This is an important ob- 
servation because it re-enforces the approach used for con- 
trol flow prediction and also suggests that compression-like 
methods can also be used for data value prediction. 

A number of interesting studies report on the impor- 
tance of predicting and eliminating data dependences. 
Moshovos [ 161 proposes mechanisms that reduce misspec- 
ulation by predicting when dependences exist between 
store and load instructions. The potential of data depen- 
dence elimination using prediction and speculation in com- 
bination with collapsing was examined in [ 171. Elimina- 
tion of redundant computation is the theme of a number of 
software/hardware proposals [ 18, 19,201. These schemes 
are similar in that they store in a cache the input and output 
parameters of a function and when the same inputs are de- 
tected the output is used without performing the function. 
Virtually all proposed schemes perform predictions based 
on previous architected state and values. Notable excep- 
tions to this are the schemes proposed in [6], where it is 
predicted that a fetched load instruction has no dependence 
and the instruction is executed “early” without dependence 
checking, and in [21], where it is predicted that the oper- 
ation required to calculate an effective address using two 
operands is a logical or instead of a binary addition. 

In more theoretical work, Hammerstrom [22] used in- 
formation theory to study the information content (en- 
tropy) of programs. His study of the information content of 



address and instruction streams revealed a high degree of 
redundancy. This high degree of redundancy immediately 
suggests predictability. 
1.3 Paper Overview 

The paper is organized as follows: in Section 2, differ- 
ent data value predictors are described. Section 3 discusses 
the methodology used for data prediction simulations. The 
results obtained are presented and analyzed in Section 4. 
We conclude with suggestions for future research in Sec- 
tion 5. 

2 Data Value Prediction Models 
A typical data value predictor takes microarchitecture 

state information as input, accesses a table, and produces 
a prediction. Subsequently, the table is updated with state 
information to help make future predictions. The state in- 
formation could consist of register values, PC values, in- 
struction fields, control bits in various pipehne stages, etc. 

The variety and combinations of state information are 
almost limitless. Therefore, in this study, we restrict our- 
selves to predictors that use only the program counter value 
of the instruction being predicted to access the prediction 
table(s). The tables are updated using data values produced 
by the instruction - possibly modified or combined with 
other information already in the table. These restrictions 
define a relatively fundamental class of data value predic- 
tors. Nevertheless, predictors using other state informa- 
tion deserve study and could provide a higher level of pre- 
dictability than is reported here. 

For the remainder of this paper, we further classify 
data value predictors into two types - computational and 
context-based. We describe each in detail in the next two 
subsections. 
2.1 Computational Predictors 

Computational predictors make predictions by perform- 
ing some operation on previous values that an instruction 
has generated. We focus on two important members of this 
class. 

Last Value Predictors perform a trivial computational 
operation: the identity function. In its simplest form, if the 
most recent value produced by an instruction is v then the 
prediction for the next value will also be v. However, there 
are a number of variants that modify replacement policies 
based on hysteresis. An example of a hysteresis mecha- 
nism is a saturating counter that is associated with each 
table entry. The counter is incremented/decremented on 
prediction success/failure with the value held in the table 
replaced only when the count is below some threshold. An- 
other hysteresis mechanism does not change its prediction 
to a new value until the new value occurs a specific num- 
ber of times in succession. A subtle difference between the 
two forms of hysteresis is that the former changes to a new 

prediction foIlowing incorrect behavior (even though that 
behavior may be inconsistent), whereas the latter changes 
to a new prediction only after it has been consistently ob- 
served. 

Stride Predictors in their simplest form predict the next 
value by adding the sum of the most recent value to the 
difference of the two most recent values produced by an 
instruction. That is if vn-r and v,,-2 are the two most 
recent values, then the predictor computes v,,-1 I- (~~-1 - 
h-2). 

As with the last value predictors, there arc impor- 
tant variations that use hysteresis. In [7] the stride 
is only changed if a saturating counter that is incre- 
mented/decremented on success/failure of the predictions 
is below a certain threshold. This reduces the number of 
mispredictions in repeated stride sequences from two per 
repeated sequence to one. Another policy, the two-d&a 
method, was proposed in [6]. In the two-delta method, two 
strides are maintained. The one stride (sl) is always up- 
dated by the difference between the two most recent val- 
ues, whereas the other (~2) is the stride used for computing 
the predictions. When stride sl occurs twice in a row then 
it is used to update the prediction stride s2. The two-delta 
strategy also reduces mispredictions to one per iteration for 
repeated stride sequences and, in addition, only changes 
the stride when the same stride occurs twice - instead of 
changing the stride following mispredictions. 

Other Computational Predictors using more complex 
organizations can be conceived. For example, one could 
use two different strides, an “inner” one and an “outer” 
one - typicahy corresponding to loop nests - to eliminate 
the mispredictions that occur at the beginning of repeating 
stride sequences. This thought process illustrates a signifi- 
cant limitation of computational prediction: the designer 
must anticipate the computation to be used. One could 
carry this to ridiculous extremes. For example, one could 
envision a Fibonacci series predictor, and given a program 
that happens to compute a Fibonacci series, the predictor 
would do very well. 

Going down this path would lead to large hybrid predic- 
tors that combine many special-case computational prcdic- 
tors with a “chooser”- as has been proposed for conditional 
branches in [23,24]. While hybrid prediction for data val- 
ues is in general a good idea, a potential pitfall is that it 
may yield an ever-escalating collection of computational 
predictors, each of which predicts a diminishing number 
of additional values not caught by the others. 

In this study, we focus on last value and stride meth- 
ods as primary examples of computational predictors. WC 
also consider hybrid predictors involving these predictors 
and the context based predictors to be discussed in the next 
section. 
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2.2 Context Based Predictors 
Context based predictors attempt to “learn” values that 

follow a particular context - a finite ordered sequence of 
previous values - and predict one of the values when the 
same context repeats. An important type of context based 
predictors is derived from finite context methods used in 
text compression [25]. 

Finite Context Method Predictors (fcm) rely on 
mechanisms that predict the next value based on a finite 
number of preceding values. An order k fcm predictor 
uses k preceding values. Fcms are constructed with coun- 
ters that count the occurrences of a particular value im- 
mediately following a certain context (pattern). Thus for 
each context there must be, in general, as many counters 
as values that are found to follow the context. The pre- 
dicted value is the one with the maximum count. Figure 1 
shows fcm models of different orders and predictions for 
an example sequence. 

In an actual implementation where it may be infeasible 
to maintain exact value counts, smaller counters may be 
used. The use of small counters comes from the area of 
text compression. With small counters, when one counter 
reaches the maximum count, all counters for the same con- 
text are reset by half. Small counters provide an advantage 
if heavier weighting should be given to more recent history 
instead of the entire history. 

In general, n different fcm predictors of orders 0 to n- 
1 can be used for predicting the next value of a sequence, 
with the highest order predictor that has a context match 
being used to make the prediction. The combination of 
more than one prediction model is known as blending [25]. 
There are a number of variations of blending algorithms, 
depending on the information that is updated. Full blend- 
ing updates all contexts, and &v exclusion selects the pre- 
diction with the longer context match and only updates the 
counts for the predictions with the longer match or higher, 

Other variations of fcm predictors can be devised by 
reducing the number of values that are maintained for a 
given context. For example, only one value per context 
might be maintained along with some update policy. Such 
policies can be based on hysteresis-type update policies as 
discussed above for last value and stride prediction. 

Correlation predictors used for control dependence pre- 
diction strongly resemble context based prediction. As far 
as we know, context based prediction has not been consid- 
ered for value prediction, though the last value predictor 
can be viewed as a 0th order fcm with only one prediction 
maintained per context. 

2.3 An Initial Analysis 
At this point, we briefly analyze and compare the pro- 

posed predictors using the simple pattern sequences shown 
in Section 1.1. This analysis highlights important issues as 

Sequence:aaabcaaabcaaa? 

0th o;de;hf;del 1st oferbhfo$4 2nd or$;fofel 3rd orfer;fo~l 
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bca 
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Prediction: b 

Figure 1: Finite Context Models 

well as advantages and disadvantages of the predictors to 
be studied. As such, they can provide a basis for analyzing 
quantitative results given in the following sections. 

We informally define two characteristics that are im- 
portant for understanding prediction behavior. One is the 
Learning Time (LT) which is the number of values that 
have to be observed before the first correct prediction. The 
second is the Learning Degree (LD) which is the percent- 
age of correct predictions following the first correct predic- 
tion. 

We quantify these two characteristics for the classes of 
sequences given earlier in Section 1.1. For the repeating 
sequences, we associate a period (p), the number of values 
between repetitions, and frequency, the number of times 
a sequence is repeated. We assume repeating sequences 
where p is fixed. The frequency measure captures the 
finiteness of a repeating sequence. For context predictors, 
the order (0) of a predictor influences the learning time. 

Table 1 summarizes how the different predictors per- 
form for the basic value sequences. Note that the stride 
predictor uses hysteresis for updates, so it gets only one in- 
correct prediction per iteration through a sequence. A row 
of the table with a “-” indicates that the given predictor is 
not suitable for the given sequence, i.e., its performance is 
very low for that sequence. 

As illustrated in the table, last value prediction is only 
useful for constant sequences -this is obvious. Stride pre- 
diction does as well as last value prediction for constant 
sequences because a constant sequence is essentially zero 
stride. The fcm predictors also do very well on constant 
sequences, but an order o predictor must see a length o 
sequence before it gets matches in the table (unless some 
form of blending is used). 

For (non-repeating) stride sequences, only the stride 
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Table 1: Behavior of various Prediction Models for Differ- 
ent Value Sequences 

predictor does well; it has a very short learning time and 
then achieves a 100% prediction rate. The fcm predictors 
cannot predict non-repeating sequences because they rely 
on repeating patterns. 

For repeating stride sequences, both stride and fcm pre- 
dictors do well. The stride predictor has a shorter learning 
time, and once it learns, it only gets a misprediction each 
time the sequence begins to repeat. On the other hand, 
the fcm predictor requires a longer learning time - it must 
see the entire sequence before it starts to predict correctly 
but once the sequence starts to repeat, it gets 100% ac- 
curacy (Figure 2). This example points out an important 
tradeoff between computational and context based predic- 
tors. The computational predictor often learns faster - but 
the context predictor tends to learn “better” when repeating 
sequences occur. 

Finally, for repeating non-stride sequences, only the 
fcm predictor does well. And the flexibility this provides 
is clearly the strong point of fcm predictors. Returning to 
our Fibonacci series example - if there is a sequence con- 
taining a repeating portion of the Fibonacci series, then an 
fcm predictor will naturally begin predicting it correctly 
following the first pass through the sequence. 

Of course, in reality, value sequences can be complex 
combinations of the simple sequences in Section 1.1, and 
a given program can produce about as many different se- 
quences as instructions are being predicted. Consequently, 
in the remainder of the paper, we use simulations to get a 
more realistic idea of predictor performance for programs. 

3 Simulation Methodology 
We adopt an implementation-independent approach for 

studying predictability of data dependence values. The rea- 
son for this choice is to remove microarchitecture and other 
implementation idiosyncrasies in an effort to develop a ba- 
sic understanding of predictability. Hence, these results 
can best be viewed as bounds on performance; it will take 
additional engineering research to develop realistic imple- 
mentations. 
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Figure 2: Computational vs Context Based Prediction 

We study the predictability of instructions that write re- 
sults into genera1 purpose registers (i.e. memory addresses, 
stores, jumps and branches are not considered). Prediction 
was done with no table aliasing; each static instructiofi was 
given its own table entry. Hence, table sizes are effectively 
unbounded. Finally, prediction tables are updated imme- 
diately after a prediction is made, unlike the situation in 
practice where it may take many cycles for the actual data 
value to be known and available for prediction table up- 
dates. 

We simulate three types of predictors: last value pre- 
diction (1) with an always-update policy (no hysteresis), 
stride prediction using the 2-delta method (s2), and a fi- 
nite context method (fcm) that maintains exact counts for 
each value that follows a particular context and uses the 
blending algorithm with lazy exclusion, described in Sec- 
tion 2. Fcm predictors are studied for orders 1,2 and 3. To 
form a context for the fcm predictor we use full concatcna- 
tion of history values so there is no aliasing when matching 
contexts. 

Trace driven simulation was conducted using the Sim- 
plescalar toolset [26] for the integer SPEC95 benchmarks 
shown in Table 2’. The benchmarks were compiled using 
the simplescalar compiler with -03 optimization. Integer 
benchmarks were selected because they tend to have less 
data parallelism and may therefore benefit more from data 
predictions. 

For collecting prediction results, instruction types were 
grouped into categories as shown in Table 3. The ab- 

‘For ijpeg the simulations used the reference flngs with the follovling 
changes: compression.quality 45 and compression.smoothing-fnctor 45. 



[ Benchmark Input 1 Dynamic 1 Instructions 

Table 2: Benchmarks Characteristics 

Table 3: Instruction Categories 

breviations shown after each group will be used subse- 
quently when results are presented. The percentage of pre- 
dicted instructions in the different benchmarks ranged be- 
tween 62%-84%. Recall that some instructions like stores, 
branches and jumps are not predicted. A breakdown of the 
static count and dynamic percentages of predicted instruc- 
tion types is shown in Tables 4-5. The majority of predicted 
values are the results of addition and load instructions. 

We collected results for each instruction type. However, 
we do not discuss results for the other, multdiv and lui in- 
struction types due to space limitations. In the benchmarks 
we studied, the multdiv instructions are not a significant 
contributor to dynamic instruction count, and the lui and 
“other” instructions rarely generate more than one unique 
value and are over 95% predictable by all predictors. We 
note that the effect of these three types of instructions is 
included in the calculations for the overall results. 

For averaging we used arithmetic mean, so each bench- 
mark effectively contributes the same number of total pre- 
dictions. 

4 Simulation Results 
4.1 Predictability 

Figure 3 shows the overall predictability for the selected 
benchmarks, and Figures 4-7 show results for the important 
instruction types. From the figures we can draw a number 
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Table 4: Predicted Instructions - Static Count 

Table 5: Predicted Instructions - Dynamic(%) 

of conclusions. Overall, last value prediction is less ac- 
curate than stride prediction, and stride prediction is less 
accurate than fcm prediction. Last value prediction varies 
in accuracy from about 23% to 61% with an average of 
about 40%. This is in agreement with the results obtained 
in [2]. Stride prediction provides accuracy of between 38% 
and 80% with an average of about 56%. Fcm predictors of 
orders 1,2, and 3 all perform better than stride prediction; 
and the higher the order, the higher the accuracy. The or- 
der 3 predictor is best and gives accuracies of between 56% 
and over 90% with an average of 78%. For the three fcm 
predictors studied, improvements diminish as the order is 
increased. In particular, we observe that for every addi- 
tional value in the context the performance gain is halved. 
The effect on predictability with increasing order is exam- 
ined in more detail in Section 4.4. Performance of the 
stride and last value predictors varies significantly across 
different instruction types for the same benchmark. The 
performance of the fcm predictors varies less significantly 
across different instruction types for the same benchmark. 
This reflects the flexibility of the fcm predictors-they per- 
form well for any repeating sequence, not just strides. 

In general both stride and fcm prediction appear to have 
higher predictability for add/subtracts than loads. Logical 
instructions also appear to be very predictable especially 
by the fcm predictors. Shift instructions appear to be the 
most difficult to predict. 

Stride prediction does particularly well foiadd/subtract 

-_ .; .i 
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Figure 3: Prediction Success for All Instructions 

instructions. But for non-add/subtract instructions the per- 
formance of the stride predictor is close to last value pre- 
diction. This indicates that when the operation of a compu- 
tational predictor matches the operation of the instruction 
(e.g. addition), higher predictability can be expected. This 
suggests new computational predictors that better capture 
the functionaIity of non-add/subtract instructions could be 
useful. For example, for shifts a computational predictor 
might shift the last value according to the last shift distance 
to arrive at a prediction. This approach would tend to lead 
to hybrid predictors, however, with a separate component 
predictor for each instruction type. 
4.2 Correlation of CorrectIy Predicted Sets 

In effect, the results in the previous section essentially 
compare the sizes of the sets of correctly predicted values. 
It is also interesting to consider relationships among the 
specific sets of correctly predicted values. Primarily, these 
relationships suggest ways that hybrid predictors might be 
constructed - although the actual construction of hybrid 
predictors is beyond the scope of this paper. 

The predicted set relationships are shown in Figure 8. 
Three predictors are used: last value, stride (delta-2), and 
fcm (order 3). All subsets of predictors are represented. 
Specifically: 1 is the fraction of predictions for which only 
the last value predictor is correct; s and fare similarly de- 
fined for the stride and fcm predictors respectively; 1s is the 
fraction of predictions for which both the last value and the 
stride predictors are correct but the fcm predictor is not; lf 
and sf are similarly defined; Isf is the fraction of predictions 
for which all predictors are correct; and np is the fraction 
for which none of the predictors is correct. 

In the figure results are averaged over all benchmarks, 
but the qualitative conclusions are similar for each of the 

Figure 4: Prediction Success for Add/Subtract Instructions 

Figure 5: Prediction Success for Loads Instructions 

Figure 6: Prediction Success for Logic Instructions 

Figure 7: Prediction Success for Shift Instructions 
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Figure 8: Contribution of different Predictors 

individual benchmarks. Overall, Figure 8 can be briefly 
summarized: 

l A small number, close to 18%, of values are not pre- 
dicted correctly by any model. 

l A large portion, around 40%, of correct predictions is 
captured by all predictors. 

l A significant fraction, over 20%, of correct predic- 
tions is only captured by fem. 

l Stride and last value prediction capture less than 5% 
of the correct predictions that fcm misses. 

The above confirms that data values are very pre- 
dictable. And it appears that context based prediction is 
necessary for achieving the highest levels of predictabil- 
ity. However, almost 60% of the correct predictions are 
also captured by the stride predictor. Assuming that con- 
text based prediction is the more expensive approach, this 
suggest that a hybrid scheme might be useful for enabling 
high prediction accuracies at lower cost. That is, one 
should try to use a stride predictor for most predictions, 
and use fcm prediction to get the remaining 20%. 

Another conclusion is that last value prediction adds 
very little to what the other predictors achieve. So, if ei- 
ther stride or fcm prediction is implemented, there is no 
point in adding last value prediction to a hybrid predictor. 

The important classes of load and add instructions yield 
results similar to the overall average. Finally, we note that 
for non-add/subtract instructions the contribution of stride 
prediction is smaller, this is likely due to the earlier ob- 
servation that stride prediction does not match the func- 

lo of Statichfructions that FCM does better than Stride 

Figure 9: Cumulative Improvement of FCM over Stride 

tionality of other instruction types. This suggests a hybrid 
predictor based on instruction types. 

Proceeding along the path of a hybrid fcm-stride pre- 
dictor, one reasonable approach would be to. choose among 
the two component predictors via the PC address of the in- 
struction being predicted. This would appear to work well 
if the performance advantage of the fcm predictor is due to 
a relatively small number of static instructions. 

To determine if this is true, we first constructed a list 
of static instructions for which the fcm predictor gives bet- 
ter performance. For each of these static instructions, we 
determined the difference in prediction accuracy between 
fcm and stride. We then sorted the static instructions in 
descending order of improvement. Then, in Figure 9 we 
graph the cumulative fraction of the total improvement ver- 
sus the accumulated percentage of static instructions. The 
graph shows that overall, about 20% of the static instruc- 
tions account for about 97% of the total improvement of 
fcm over stride prediction. For most of individual instruc- 
tion types, the result is similar, with shifts showing slightly 
worse performance. 

The results do suggest that improvements due to con- 
text based prediction are mainly due to a relatively small 
fraction of static instructions. Hence, a hybrid fcm-stride 
predictor with choosing seems to be a good approach. 
4.3 Value Characteristics 

At this point, it is clear that context based predictors 
perform well, but may require large tables that store his- 
tory values. We assume unbounded tables in our study, 
but when real implementations are considered, of course 
this will not be possible. To get a handle on this issue, we 
study the value characteristics of instructions. In particu- 
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Figure 10: Values and Instruction Behavior 

lar we report on the number of unique values generated 
by predicted instructions. The overall numbers of differ- 
ent values could give a rough indication of the numbers of 
values that might have to be stored in a table. 

In the left half of Figure 10, we show the number dif- 
ferent values produced by percentages of static instructions 
(an s prefix). In the right half, we determine the fractions 
of dynamic instructions (ad prefix) that correspond to each 
of the static categories. From the figure, we observe: 

l A large number, ISO%, of static instructions generate 
only one value. 

l The majority of static instructions, >90%, generate 
fewer than 64 values. 

l The majority, >SO%, of dynamic instructions corre- 
spond to static instructions that generate fewer than 
64 values. 

l Over 90% of the dynamic instructions are due to static 
instructions that generate at most 4096 unique values. 

l The number of values generated varies among instruc- 
tion types. In general add/subtract and load instruc- 
tions generate more values as compared with logic 
and shift operations. 

l The more frequently an instruction executes the more 
values it generates. 

The above suggest that a relatively small number of val- 
ues would be required to predict correctly the majority of 

dynamic instructions using context based prediction - a 
positive result. 

From looking at individual benchmark results (not 
shown) there appears to be a positive correlation between 
programs that are more difficult to predict and the pro- 
grams that produce more values. For example, the highly 
predictable m88ksim has many more instructions that pro- 
duce few values as compared with the less predictable gee 
and go. This would appear to be an intuitive result, but 
there may be cases where it does not hold; for example if 
values are generated in a fashion that is predictable with 
computational predictors or if a small number of values 
occur in many different sequences. 
4.4 Sensitivity Experiments for Context Based 

Prediction 
In this section we discuss the results of experiments that 

illustrate the sensitivity of fcm predictors to input data and 
predictor order. For these experiments, we focus on the gee 
benchmark and report average correct predictions among 
all instruction types. 
Sensitivity to input data: We studied the effects of diffcr- 
ent input files and flags on correct prediction. The fcm prc- 
dictor used in these experiments was order 2. The predic- 
tion accuracy and the number of predicted instructions for 
the different input files is shown in Table 6. The fraction of 
correct predictions shows only small variations across the 
different input files. We note that these results are for un- 
bounded tables, so aliasing affects caused by different data 
set sizes will not appear. This may not be the case with 
fixed table sizes. 
In Table 7 we show the predictability for gee for the same 
input file, but with different compilation flags, again using 
an order 2 fcm predictor. The results again indicate that 
variations are very small. 
Sensitivity to the order: experiments were performed for 
increasing order for the same input file (gcc.i) and flags. 
The results for the different orders are shown in Figure 
11. The experiment suggests that higher order means bet- 
ter performance but returns are diminishing with increasing 
order. The above also indicate that few previous values arc 
required to predict well. 

5 Conchsions 
We considered representatives from two classes of pre- 

diction models: (i) computational and (ii) context based. 
Simulations demonstrate that values are potentially highly 
predictable. Our results indicate that context based predic- 
tion outperforms previously proposed computational pre- 
diction (stride and last value) and that if high prediction 
correctness is desired context methods probably need to be 
used either alone or in a hybrid scheme. The obtained rc- 
sults also indicate that the performance of computational 
prediction varies between instruction types indicating that 
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File Predictions (mil) Correct (%) 
jump.i 106 76.5 
emit-rt1.i 114 76.0 
gcc.i 137 77.1 
rec0g.i 192 78.6 
stmt.i 372 77.x 

Table 6: Sensitivity of 126.gcc to Different Input Files 

Table 7: Sensitivity of 126.gcc to Input Flags with input 
file gcc.i 

Figure 11: Sensitivity of 126.gcc to the Order with input 
file gcc.i 

its performance can be further improved if the prediction 
function matches the functionality of the predicted instruc- 
tion. Analysis of the improvements of context prediction 
over computational prediction suggest that about 20% of 
the instructions that generate relatively few values are re- 
sponsible for the majority of the improvement. With re- 
spect to the value characteristics of instructions, we ob- 
serve that the majority of instructions do not generate many 
unique values. The number of values generated by instruc- 
tions varies among instructions types. This result suggests 
that different instruction types need to be studied sepa- 
rately due to the distinct predictability and value behavior. 

We believe that value prediction has significant poten- 
tial for performance improvement. However, a lot of inno- 
vative research is needed for value prediction to become an 
effective performance approach. 
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