
The Predictability of Data Values

Yiannakis Sazeides and James E. Smith
Department of Electrical and Computer Engineering

University of Wisconsin-Madison
1415 Engr. Dr.

Madison, WI 53706
(yanosjes} @ece.wisc.edu

Abstract
The predictability of data values is studied at a fnn-

damental level. Two basic predictor models are defined:
Computational predictors pelform an operation on pre-
vious values to yield predicted next values. Examples we
study are stride value prediction (which adds a delta to a
previous value) and last value prediction (which peforms
the trivial identity operation on the previous value);
Context Based predictors match recent value history (con-
text) with previous value history and predict values based
entirely on previously observed patterns.

To understand the potential of value prediction we per-
form simulations with unboundedprediction tables that are
immediately updated using correct data values. Simula-
tions of integerSPEC95 benchmarks show that data values
can be highly predictable. Best pe~onnance is obtained
with context based predictors; overall prediction accura-
cies are between 56% and 91 o/o, The context based pre-
dictor typically has an accuracy about 20% better than the
computational predictors (last value and stride). Compati-
son of context based prediction and stride prediction shows
that the higher accuracy of context based prediction is due
to relatively few static instructions giving large improve-
ments; this suggests the usefulness of hybrid predictors.
Among different instruction types, predictability varies sig-
nijicantly. In general, load and shift instructions are more
dificult to predict correctly, whereas add instructions are
more predictable.

1 Introduction
There is a clear trend in high performance processors to-

ward performing operations speculatively, based on predic-
tions. If predictions are correct, the speculatively executed
instructions usually translate into improved performance.

Although program execution contains a variety of infor-
mation that can be predicted, conditional branches have re-
ceived the most attention. Predicting conditional branches
provides a way of avoiding control dependences and of-
fers a clear performance advantage. Even more prevalent

248
107%4451/97$10.00@1997IEEE

than control dependences, however, are data dependences.
Virtually every instruction depends on the result of some
preceding instruction. As such, data dependences arc of-
ten thought to present a fundamental performance bar&r.
However, data values may also be predicted, and opcra-
tions can be performed speculatively based on these data
predictions.

An important difference between conditional branch
prediction and data value prediction is that data are taken
from a much larger range of values. This would appear to
severely limit the chances of successful prediction, How-
ever, it has been demonstrated recently [l] that data values
exhibit “locality” where values computed by some instruc-
tions tend to repeat a large fraction of the time.

We argue that establishing predictability limits for pro-
gram values is important for determining the performance
potential of processors that use value prediction. We be-
lieve that doing so first requires understanding the design
space of value predictors models. Consequently, the goals
of this paper are twofold. Firstly, we discuss some of the
major issues affecting data value prediction and lay down
a framework for studying data value prediction. Secondly,
for important classes of predictors, we use benchmark pro-
grams to establish levels of value predictability. This study
is somewhat idealized: for example, predictor costs are ig-
nored in order to more clearly understand limits of data
predictability. Furthermore, the ways in which data pre-
diction can be used in a processor microarchitecture are not
within the scope of this paper, so that we can concentrate
in greater depth on the prediction process, itself.

1.1 Classification of Value Sequences
The predictability of a sequence of values is a function

of both the sequence itself and the predictor used to predict
the sequence. Although it is beyond the scope of this paper
to study the actual sources of predictability, it is useful for
our discussion to provide an informal classification of data
sequences. This classification is useful for understanding
the behavior of predictors in later discussions. ‘Ihe follow-

ing classification contains simple value sequences that can
also be composed to form more complex sequences. They
are best defined by giving examples:

Constant(C) 5 5 5 5 5 5 5...
Stride(S) 1 2 3 4 5 6 7 S...
Non-Stride(NS) 28 -13 -99 107 23 456...

Constant sequences are the simplest, and result from
instructions that repeatedly produce the same result. Li-
pasti and Shen show that this occurs surprisingly often, and
forms the basis for their work reported in [11. A stride se-
quence has elements that differ by some constant delta. For
the example above, the stride is one, which is probably the
most common case in programs, but other strides are pos-
sible, including negative strides. Constant sequences can
be considered stride sequences with a zero delta. A stride
sequence might appear when a data structure such as an ar-
ray is being accessed in a regular fashion; loop induction
variables also have a stride characteristic.

The non-stride category is intended to include all other
sequences that do not belong to the constant or stride cat-
egory. This classification could be further divided, but we
choose not to do so. Non-strides may occur when a se-
quence of numbers is being computed and the computation
is more complex than simply adding a constant. Traversing
a linked list would often produce address values that have
a non-stride pattern.

Also very important are sequences formed by compos-
ing stride and non-stride sequences with themselves. Re-
peating sequences would typically occur in nested loops
where the inner loop produces either a stride or a non-stride
sequence, and the outer loop causes this sequence to be re-
peated.

Repeated Stride(RS) 1 2 3 1 2 3 1 2 3...
Repeated Non-Stride(RNS) 1-13 -99 7 l-13 -99 7...

Examination of the above sequences leads naturally to
two types of prediction models that are the subject of dis-
cussion throughout the remainder of this paper:
Computational predictors that make a prediction by com-
puting some function of previous values. An example of a
computational predictor is a stride predictor. This predic-
tor adds a stride to the previous value.
Context based predictors learn the value(s) that follow a
particular context - a finite ordered sequence of values - and
predict one of the values when the same context repeats.
This enables the prediction of any repeated sequence, stride
or non-stride.
1.2 Related Work

In [l], it was reported that data values produced by
instructions exhibit “locality” and as a result can be pre-
dicted. The potential for value predictability was reported

249

in terms of “history depth”, that is, how many times a value
produced by an instruction repeats when checked against
the most recent n values. A pronounced difference is ob-
served between the locality with history depth 1 and history
depth 16. The mechanism proposed for prediction, how-
ever, exploits the locality of history depth 1 and is based on
predicting that the most recent value will also be the next.
In [11, last value prediction was used to predict load values
and in a subsequent work to predict all values produced by
instructions and written to registers 121.

Address prediction has been used mainly for data
prefetching to tolerate long memory latency [3,4, 51, and
has been proposed for speculative execution of load and
store instructions 16, 71. Stride prediction for values was
proposed in [8] and its prediction and performance poten-
tial was compared against last value prediction.

Value prediction can draw from a wealth of work on
the prediction of control dependences [9, 10, 1 I]. The ma-
jority of improvements in the performance of control flow
predictors has been obtained by using correlation. The cor-
relation information that has been proposed includes lo-
cal and global branch history [lo], path address history
[11, 12, 131, and path register contents [141. An interesting
theoretical observation is the resemblance of the predictors
used for control dependence prediction to the prediction
models for text compression 1151. This is an important ob-
servation because it re-enforces the approach used for con-
trol flow prediction and also suggests that compression-like
methods can also be used for data value prediction.

A number of interesting studies report on the impor-
tance of predicting and eliminating data dependences.
Moshovos [161 proposes mechanisms that reduce misspec-
ulation by predicting when dependences exist between
store and load instructions. The potential of data depen-
dence elimination using prediction and speculation in com-
bination with collapsing was examined in [171. Elimina-
tion of redundant computation is the theme of a number of
software/hardware proposals [18, 19,201. These schemes
are similar in that they store in a cache the input and output
parameters of a function and when the same inputs are de-
tected the output is used without performing the function.
Virtually all proposed schemes perform predictions based
on previous architected state and values. Notable excep-
tions to this are the schemes proposed in [6], where it is
predicted that a fetched load instruction has no dependence
and the instruction is executed “early” without dependence
checking, and in [21], where it is predicted that the oper-
ation required to calculate an effective address using two
operands is a logical or instead of a binary addition.

In more theoretical work, Hammerstrom [22] used in-
formation theory to study the information content (en-
tropy) of programs. His study of the information content of

address and instruction streams revealed a high degree of
redundancy. This high degree of redundancy immediately
suggests predictability.
1.3 Paper Overview

The paper is organized as follows: in Section 2, differ-
ent data value predictors are described. Section 3 discusses
the methodology used for data prediction simulations. The
results obtained are presented and analyzed in Section 4.
We conclude with suggestions for future research in Sec-
tion 5.

2 Data Value Prediction Models
A typical data value predictor takes microarchitecture

state information as input, accesses a table, and produces
a prediction. Subsequently, the table is updated with state
information to help make future predictions. The state in-
formation could consist of register values, PC values, in-
struction fields, control bits in various pipehne stages, etc.

The variety and combinations of state information are
almost limitless. Therefore, in this study, we restrict our-
selves to predictors that use only the program counter value
of the instruction being predicted to access the prediction
table(s). The tables are updated using data values produced
by the instruction - possibly modified or combined with
other information already in the table. These restrictions
define a relatively fundamental class of data value predic-
tors. Nevertheless, predictors using other state informa-
tion deserve study and could provide a higher level of pre-
dictability than is reported here.

For the remainder of this paper, we further classify
data value predictors into two types - computational and
context-based. We describe each in detail in the next two
subsections.
2.1 Computational Predictors

Computational predictors make predictions by perform-
ing some operation on previous values that an instruction
has generated. We focus on two important members of this
class.

Last Value Predictors perform a trivial computational
operation: the identity function. In its simplest form, if the
most recent value produced by an instruction is v then the
prediction for the next value will also be v. However, there
are a number of variants that modify replacement policies
based on hysteresis. An example of a hysteresis mecha-
nism is a saturating counter that is associated with each
table entry. The counter is incremented/decremented on
prediction success/failure with the value held in the table
replaced only when the count is below some threshold. An-
other hysteresis mechanism does not change its prediction
to a new value until the new value occurs a specific num-
ber of times in succession. A subtle difference between the
two forms of hysteresis is that the former changes to a new

prediction foIlowing incorrect behavior (even though that
behavior may be inconsistent), whereas the latter changes
to a new prediction only after it has been consistently ob-
served.

Stride Predictors in their simplest form predict the next
value by adding the sum of the most recent value to the
difference of the two most recent values produced by an
instruction. That is if vn-r and v,,-2 are the two most
recent values, then the predictor computes v,,-1 I- (~~-1 -
h-2).

As with the last value predictors, there arc impor-
tant variations that use hysteresis. In [7] the stride
is only changed if a saturating counter that is incre-
mented/decremented on success/failure of the predictions
is below a certain threshold. This reduces the number of
mispredictions in repeated stride sequences from two per
repeated sequence to one. Another policy, the two-d&a
method, was proposed in [6]. In the two-delta method, two
strides are maintained. The one stride (sl) is always up-
dated by the difference between the two most recent val-
ues, whereas the other (~2) is the stride used for computing
the predictions. When stride sl occurs twice in a row then
it is used to update the prediction stride s2. The two-delta
strategy also reduces mispredictions to one per iteration for
repeated stride sequences and, in addition, only changes
the stride when the same stride occurs twice - instead of
changing the stride following mispredictions.

Other Computational Predictors using more complex
organizations can be conceived. For example, one could
use two different strides, an “inner” one and an “outer”
one - typicahy corresponding to loop nests - to eliminate
the mispredictions that occur at the beginning of repeating
stride sequences. This thought process illustrates a signifi-
cant limitation of computational prediction: the designer
must anticipate the computation to be used. One could
carry this to ridiculous extremes. For example, one could
envision a Fibonacci series predictor, and given a program
that happens to compute a Fibonacci series, the predictor
would do very well.

Going down this path would lead to large hybrid predic-
tors that combine many special-case computational prcdic-
tors with a “chooser”- as has been proposed for conditional
branches in [23,24]. While hybrid prediction for data val-
ues is in general a good idea, a potential pitfall is that it
may yield an ever-escalating collection of computational
predictors, each of which predicts a diminishing number
of additional values not caught by the others.

In this study, we focus on last value and stride meth-
ods as primary examples of computational predictors. WC
also consider hybrid predictors involving these predictors
and the context based predictors to be discussed in the next
section.

--- -___ -.-

2.2 Context Based Predictors
Context based predictors attempt to “learn” values that

follow a particular context - a finite ordered sequence of
previous values - and predict one of the values when the
same context repeats. An important type of context based
predictors is derived from finite context methods used in
text compression [25].

Finite Context Method Predictors (fcm) rely on
mechanisms that predict the next value based on a finite
number of preceding values. An order k fcm predictor
uses k preceding values. Fcms are constructed with coun-
ters that count the occurrences of a particular value im-
mediately following a certain context (pattern). Thus for
each context there must be, in general, as many counters
as values that are found to follow the context. The pre-
dicted value is the one with the maximum count. Figure 1
shows fcm models of different orders and predictions for
an example sequence.

In an actual implementation where it may be infeasible
to maintain exact value counts, smaller counters may be
used. The use of small counters comes from the area of
text compression. With small counters, when one counter
reaches the maximum count, all counters for the same con-
text are reset by half. Small counters provide an advantage
if heavier weighting should be given to more recent history
instead of the entire history.

In general, n different fcm predictors of orders 0 to n-
1 can be used for predicting the next value of a sequence,
with the highest order predictor that has a context match
being used to make the prediction. The combination of
more than one prediction model is known as blending [25].
There are a number of variations of blending algorithms,
depending on the information that is updated. Full blend-
ing updates all contexts, and &v exclusion selects the pre-
diction with the longer context match and only updates the
counts for the predictions with the longer match or higher,

Other variations of fcm predictors can be devised by
reducing the number of values that are maintained for a
given context. For example, only one value per context
might be maintained along with some update policy. Such
policies can be based on hysteresis-type update policies as
discussed above for last value and stride prediction.

Correlation predictors used for control dependence pre-
diction strongly resemble context based prediction. As far
as we know, context based prediction has not been consid-
ered for value prediction, though the last value predictor
can be viewed as a 0th order fcm with only one prediction
maintained per context.

2.3 An Initial Analysis
At this point, we briefly analyze and compare the pro-

posed predictors using the simple pattern sequences shown
in Section 1.1. This analysis highlights important issues as

Sequence:aaabcaaabcaaa?

0th o;de;hf;del 1st oferbhfo$4 2nd or$;fofel 3rd orfer;fo~l

1912121

FVdiction: a

Next Symbol
Frequency

;
c ii r

Prediction: a

aa

ab

ae

ba

bb

bc

ca

cb

cc

Prediction: a

aaa
aab

abc

bca

i caa

Prediction: b

Figure 1: Finite Context Models

well as advantages and disadvantages of the predictors to
be studied. As such, they can provide a basis for analyzing
quantitative results given in the following sections.

We informally define two characteristics that are im-
portant for understanding prediction behavior. One is the
Learning Time (LT) which is the number of values that
have to be observed before the first correct prediction. The
second is the Learning Degree (LD) which is the percent-
age of correct predictions following the first correct predic-
tion.

We quantify these two characteristics for the classes of
sequences given earlier in Section 1.1. For the repeating
sequences, we associate a period (p), the number of values
between repetitions, and frequency, the number of times
a sequence is repeated. We assume repeating sequences
where p is fixed. The frequency measure captures the
finiteness of a repeating sequence. For context predictors,
the order (0) of a predictor influences the learning time.

Table 1 summarizes how the different predictors per-
form for the basic value sequences. Note that the stride
predictor uses hysteresis for updates, so it gets only one in-
correct prediction per iteration through a sequence. A row
of the table with a “-” indicates that the given predictor is
not suitable for the given sequence, i.e., its performance is
very low for that sequence.

As illustrated in the table, last value prediction is only
useful for constant sequences -this is obvious. Stride pre-
diction does as well as last value prediction for constant
sequences because a constant sequence is essentially zero
stride. The fcm predictors also do very well on constant
sequences, but an order o predictor must see a length o
sequence before it gets matches in the table (unless some
form of blending is used).

For (non-repeating) stride sequences, only the stride

251

--- -_--.- - _--__ .

-r>-

Table 1: Behavior of various Prediction Models for Differ-
ent Value Sequences

predictor does well; it has a very short learning time and
then achieves a 100% prediction rate. The fcm predictors
cannot predict non-repeating sequences because they rely
on repeating patterns.

For repeating stride sequences, both stride and fcm pre-
dictors do well. The stride predictor has a shorter learning
time, and once it learns, it only gets a misprediction each
time the sequence begins to repeat. On the other hand,
the fcm predictor requires a longer learning time - it must
see the entire sequence before it starts to predict correctly
but once the sequence starts to repeat, it gets 100% ac-
curacy (Figure 2). This example points out an important
tradeoff between computational and context based predic-
tors. The computational predictor often learns faster - but
the context predictor tends to learn “better” when repeating
sequences occur.

Finally, for repeating non-stride sequences, only the
fcm predictor does well. And the flexibility this provides
is clearly the strong point of fcm predictors. Returning to
our Fibonacci series example - if there is a sequence con-
taining a repeating portion of the Fibonacci series, then an
fcm predictor will naturally begin predicting it correctly
following the first pass through the sequence.

Of course, in reality, value sequences can be complex
combinations of the simple sequences in Section 1.1, and
a given program can produce about as many different se-
quences as instructions are being predicted. Consequently,
in the remainder of the paper, we use simulations to get a
more realistic idea of predictor performance for programs.

3 Simulation Methodology
We adopt an implementation-independent approach for

studying predictability of data dependence values. The rea-
son for this choice is to remove microarchitecture and other
implementation idiosyncrasies in an effort to develop a ba-
sic understanding of predictability. Hence, these results
can best be viewed as bounds on performance; it will take
additional engineering research to develop realistic imple-
mentations.

252

\ VALUE 1
‘ti<QUENCEI Repeated Stride (period = 4)

\ \ 1 123412341234
PREDICTOR ‘\ , _______- _--------m-e--- \r

STRIDE
Prediction

i
454345434

I
I Learn Stendy Stnte
1 Time = 2 Repeats Same Mistnke

I
LD=lS%

________ --_-_-----m-e-- l-

CONTEXT I
Prediction (c

BASED 1
, I @41234 ,

wder = 2) 1
c

1 LeamTime= Steady Stnte
, period + order =6 No hlisspredlctlonr;
I LD = 100%

Figure 2: Computational vs Context Based Prediction

We study the predictability of instructions that write re-
sults into genera1 purpose registers (i.e. memory addresses,
stores, jumps and branches are not considered). Prediction
was done with no table aliasing; each static instructiofi was
given its own table entry. Hence, table sizes are effectively
unbounded. Finally, prediction tables are updated imme-
diately after a prediction is made, unlike the situation in
practice where it may take many cycles for the actual data
value to be known and available for prediction table up-
dates.

We simulate three types of predictors: last value pre-
diction (1) with an always-update policy (no hysteresis),
stride prediction using the 2-delta method (s2), and a fi-
nite context method (fcm) that maintains exact counts for
each value that follows a particular context and uses the
blending algorithm with lazy exclusion, described in Sec-
tion 2. Fcm predictors are studied for orders 1,2 and 3. To
form a context for the fcm predictor we use full concatcna-
tion of history values so there is no aliasing when matching
contexts.

Trace driven simulation was conducted using the Sim-
plescalar toolset [26] for the integer SPEC95 benchmarks
shown in Table 2’. The benchmarks were compiled using
the simplescalar compiler with -03 optimization. Integer
benchmarks were selected because they tend to have less
data parallelism and may therefore benefit more from data
predictions.

For collecting prediction results, instruction types were
grouped into categories as shown in Table 3. The ab-

‘For ijpeg the simulations used the reference flngs with the follovling
changes: compression.quality 45 and compression.smoothing-fnctor 45.

[Benchmark Input 1 Dynamic 1 Instructions

Table 2: Benchmarks Characteristics

Table 3: Instruction Categories

breviations shown after each group will be used subse-
quently when results are presented. The percentage of pre-
dicted instructions in the different benchmarks ranged be-
tween 62%-84%. Recall that some instructions like stores,
branches and jumps are not predicted. A breakdown of the
static count and dynamic percentages of predicted instruc-
tion types is shown in Tables 4-5. The majority of predicted
values are the results of addition and load instructions.

We collected results for each instruction type. However,
we do not discuss results for the other, multdiv and lui in-
struction types due to space limitations. In the benchmarks
we studied, the multdiv instructions are not a significant
contributor to dynamic instruction count, and the lui and
“other” instructions rarely generate more than one unique
value and are over 95% predictable by all predictors. We
note that the effect of these three types of instructions is
included in the calculations for the overall results.

For averaging we used arithmetic mean, so each bench-
mark effectively contributes the same number of total pre-
dictions.

4 Simulation Results
4.1 Predictability

Figure 3 shows the overall predictability for the selected
benchmarks, and Figures 4-7 show results for the important
instruction types. From the figures we can draw a number

253

Table 4: Predicted Instructions - Static Count

Table 5: Predicted Instructions - Dynamic(%)

of conclusions. Overall, last value prediction is less ac-
curate than stride prediction, and stride prediction is less
accurate than fcm prediction. Last value prediction varies
in accuracy from about 23% to 61% with an average of
about 40%. This is in agreement with the results obtained
in [2]. Stride prediction provides accuracy of between 38%
and 80% with an average of about 56%. Fcm predictors of
orders 1,2, and 3 all perform better than stride prediction;
and the higher the order, the higher the accuracy. The or-
der 3 predictor is best and gives accuracies of between 56%
and over 90% with an average of 78%. For the three fcm
predictors studied, improvements diminish as the order is
increased. In particular, we observe that for every addi-
tional value in the context the performance gain is halved.
The effect on predictability with increasing order is exam-
ined in more detail in Section 4.4. Performance of the
stride and last value predictors varies significantly across
different instruction types for the same benchmark. The
performance of the fcm predictors varies less significantly
across different instruction types for the same benchmark.
This reflects the flexibility of the fcm predictors-they per-
form well for any repeating sequence, not just strides.

In general both stride and fcm prediction appear to have
higher predictability for add/subtracts than loads. Logical
instructions also appear to be very predictable especially
by the fcm predictors. Shift instructions appear to be the
most difficult to predict.

Stride prediction does particularly well foiadd/subtract

-_ .; .i

,

go ijpeg mSSk ped xl&p

Figure 3: Prediction Success for All Instructions

instructions. But for non-add/subtract instructions the per-
formance of the stride predictor is close to last value pre-
diction. This indicates that when the operation of a compu-
tational predictor matches the operation of the instruction
(e.g. addition), higher predictability can be expected. This
suggests new computational predictors that better capture
the functionaIity of non-add/subtract instructions could be
useful. For example, for shifts a computational predictor
might shift the last value according to the last shift distance
to arrive at a prediction. This approach would tend to lead
to hybrid predictors, however, with a separate component
predictor for each instruction type.
4.2 Correlation of CorrectIy Predicted Sets

In effect, the results in the previous section essentially
compare the sizes of the sets of correctly predicted values.
It is also interesting to consider relationships among the
specific sets of correctly predicted values. Primarily, these
relationships suggest ways that hybrid predictors might be
constructed - although the actual construction of hybrid
predictors is beyond the scope of this paper.

The predicted set relationships are shown in Figure 8.
Three predictors are used: last value, stride (delta-2), and
fcm (order 3). All subsets of predictors are represented.
Specifically: 1 is the fraction of predictions for which only
the last value predictor is correct; s and fare similarly de-
fined for the stride and fcm predictors respectively; 1s is the
fraction of predictions for which both the last value and the
stride predictors are correct but the fcm predictor is not; lf
and sf are similarly defined; Isf is the fraction of predictions
for which all predictors are correct; and np is the fraction
for which none of the predictors is correct.

In the figure results are averaged over all benchmarks,
but the qualitative conclusions are similar for each of the

Figure 4: Prediction Success for Add/Subtract Instructions

Figure 5: Prediction Success for Loads Instructions

Figure 6: Prediction Success for Logic Instructions

Figure 7: Prediction Success for Shift Instructions

254

c .___ __ --___. -. ~- _-._ .._, - _ - .:, ;I __,.. 3----T. .;., ..-i - r <.y ,, ,: ,-- -,
, ‘,

I_ .- - .._--

Add&

Figure 8: Contribution of different Predictors

individual benchmarks. Overall, Figure 8 can be briefly
summarized:

l A small number, close to 18%, of values are not pre-
dicted correctly by any model.

l A large portion, around 40%, of correct predictions is
captured by all predictors.

l A significant fraction, over 20%, of correct predic-
tions is only captured by fem.

l Stride and last value prediction capture less than 5%
of the correct predictions that fcm misses.

The above confirms that data values are very pre-
dictable. And it appears that context based prediction is
necessary for achieving the highest levels of predictabil-
ity. However, almost 60% of the correct predictions are
also captured by the stride predictor. Assuming that con-
text based prediction is the more expensive approach, this
suggest that a hybrid scheme might be useful for enabling
high prediction accuracies at lower cost. That is, one
should try to use a stride predictor for most predictions,
and use fcm prediction to get the remaining 20%.

Another conclusion is that last value prediction adds
very little to what the other predictors achieve. So, if ei-
ther stride or fcm prediction is implemented, there is no
point in adding last value prediction to a hybrid predictor.

The important classes of load and add instructions yield
results similar to the overall average. Finally, we note that
for non-add/subtract instructions the contribution of stride
prediction is smaller, this is likely due to the earlier ob-
servation that stride prediction does not match the func-

lo of Statichfructions that FCM does better than Stride

Figure 9: Cumulative Improvement of FCM over Stride

tionality of other instruction types. This suggests a hybrid
predictor based on instruction types.

Proceeding along the path of a hybrid fcm-stride pre-
dictor, one reasonable approach would be to. choose among
the two component predictors via the PC address of the in-
struction being predicted. This would appear to work well
if the performance advantage of the fcm predictor is due to
a relatively small number of static instructions.

To determine if this is true, we first constructed a list
of static instructions for which the fcm predictor gives bet-
ter performance. For each of these static instructions, we
determined the difference in prediction accuracy between
fcm and stride. We then sorted the static instructions in
descending order of improvement. Then, in Figure 9 we
graph the cumulative fraction of the total improvement ver-
sus the accumulated percentage of static instructions. The
graph shows that overall, about 20% of the static instruc-
tions account for about 97% of the total improvement of
fcm over stride prediction. For most of individual instruc-
tion types, the result is similar, with shifts showing slightly
worse performance.

The results do suggest that improvements due to con-
text based prediction are mainly due to a relatively small
fraction of static instructions. Hence, a hybrid fcm-stride
predictor with choosing seems to be a good approach.
4.3 Value Characteristics

At this point, it is clear that context based predictors
perform well, but may require large tables that store his-
tory values. We assume unbounded tables in our study,
but when real implementations are considered, of course
this will not be possible. To get a handle on this issue, we
study the value characteristics of instructions. In particu-

t

Figure 10: Values and Instruction Behavior

lar we report on the number of unique values generated
by predicted instructions. The overall numbers of differ-
ent values could give a rough indication of the numbers of
values that might have to be stored in a table.

In the left half of Figure 10, we show the number dif-
ferent values produced by percentages of static instructions
(an s prefix). In the right half, we determine the fractions
of dynamic instructions (ad prefix) that correspond to each
of the static categories. From the figure, we observe:

l A large number, ISO%, of static instructions generate
only one value.

l The majority of static instructions, >90%, generate
fewer than 64 values.

l The majority, >SO%, of dynamic instructions corre-
spond to static instructions that generate fewer than
64 values.

l Over 90% of the dynamic instructions are due to static
instructions that generate at most 4096 unique values.

l The number of values generated varies among instruc-
tion types. In general add/subtract and load instruc-
tions generate more values as compared with logic
and shift operations.

l The more frequently an instruction executes the more
values it generates.

The above suggest that a relatively small number of val-
ues would be required to predict correctly the majority of

dynamic instructions using context based prediction - a
positive result.

From looking at individual benchmark results (not
shown) there appears to be a positive correlation between
programs that are more difficult to predict and the pro-
grams that produce more values. For example, the highly
predictable m88ksim has many more instructions that pro-
duce few values as compared with the less predictable gee
and go. This would appear to be an intuitive result, but
there may be cases where it does not hold; for example if
values are generated in a fashion that is predictable with
computational predictors or if a small number of values
occur in many different sequences.
4.4 Sensitivity Experiments for Context Based

Prediction
In this section we discuss the results of experiments that

illustrate the sensitivity of fcm predictors to input data and
predictor order. For these experiments, we focus on the gee
benchmark and report average correct predictions among
all instruction types.
Sensitivity to input data: We studied the effects of diffcr-
ent input files and flags on correct prediction. The fcm prc-
dictor used in these experiments was order 2. The predic-
tion accuracy and the number of predicted instructions for
the different input files is shown in Table 6. The fraction of
correct predictions shows only small variations across the
different input files. We note that these results are for un-
bounded tables, so aliasing affects caused by different data
set sizes will not appear. This may not be the case with
fixed table sizes.
In Table 7 we show the predictability for gee for the same
input file, but with different compilation flags, again using
an order 2 fcm predictor. The results again indicate that
variations are very small.
Sensitivity to the order: experiments were performed for
increasing order for the same input file (gcc.i) and flags.
The results for the different orders are shown in Figure
11. The experiment suggests that higher order means bet-
ter performance but returns are diminishing with increasing
order. The above also indicate that few previous values arc
required to predict well.

5 Conchsions
We considered representatives from two classes of pre-

diction models: (i) computational and (ii) context based.
Simulations demonstrate that values are potentially highly
predictable. Our results indicate that context based predic-
tion outperforms previously proposed computational pre-
diction (stride and last value) and that if high prediction
correctness is desired context methods probably need to be
used either alone or in a hybrid scheme. The obtained rc-
sults also indicate that the performance of computational
prediction varies between instruction types indicating that

256

__--- -_-_:.

File Predictions (mil) Correct (%)
jump.i 106 76.5
emit-rt1.i 114 76.0
gcc.i 137 77.1
rec0g.i 192 78.6
stmt.i 372 77.x

Table 6: Sensitivity of 126.gcc to Different Input Files

Table 7: Sensitivity of 126.gcc to Input Flags with input
file gcc.i

Figure 11: Sensitivity of 126.gcc to the Order with input
file gcc.i

its performance can be further improved if the prediction
function matches the functionality of the predicted instruc-
tion. Analysis of the improvements of context prediction
over computational prediction suggest that about 20% of
the instructions that generate relatively few values are re-
sponsible for the majority of the improvement. With re-
spect to the value characteristics of instructions, we ob-
serve that the majority of instructions do not generate many
unique values. The number of values generated by instruc-
tions varies among instructions types. This result suggests
that different instruction types need to be studied sepa-
rately due to the distinct predictability and value behavior.

We believe that value prediction has significant poten-
tial for performance improvement. However, a lot of inno-
vative research is needed for value prediction to become an
effective performance approach.

257

6 Acknowledgements
This work was supported in part by NSF Grants MIP-

9505853 and MIP-9307830 and by the U.S. Army Intelli-
gence Center and Fort Huachuca under Contract DABT63-
95-C-0127 and ARPA order no. D346. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or im-
plied, of the U. S. Army Intelligence Center and Fort
Huachuca, or the U.S. Government.

The authors would like to thank Stamatis Vassiliadis for
his helpful suggestions and constructive critique while this
work was in progress.

References
Ul

PI

r31

141

PI

161

[71

PI

PI

UOI

1111

M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, ‘Value lo-
cality and data speculation,” in Proceedings of the 7th Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 138-147, Oc-
tober 1996.

M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit
via value prediction,” in Proceedings of the 29th Annual
ACM/IEEE International Symposium and Workshop on Mi-
croarchitecture, pp. 226-237, December 1996.

T. F. Chen and J. L. Baer, “Effective hardware-based data
prefetching for high perfohance processors,” IEEE Trans-
actions on Computers, vol. 44, pp. 609-623, May 1995.

S. Mehrotra and L. Harrison, “Examination of a memory
access classification scheme for pointer intensive and nu-
meric programs,” in Proceedings of the 10th International
Conference on Supercomputing, May 1996.

D. Joseph and D. Grunwald, “Prefetching using markov pre-
dictors,” in Proceedings of the 24th International Sympo-
sium on Computer Architecture, pp. 252-263, June 1997.

R. J. Eickemeyer and S. Vassiliadis, “A load instruction unit
for pipelined processors,” IBM Journal of Research and De-
velopment, vol. 37, pp. 547-564, July 1993.

J. Gonzalez and A. Gonzalez, “Speculative execution via
address prediction and data prefetching,” in Proceedings
of the IIth International Conference on Supercomputing,
pp. 196-203, July 1997.

A. Mendelson and F. Gabbay, “Speculative execution
based on value prediction,” Tech. Rep. (Available from
http://www-ee.technion.ac.il/fredg), Technion, 1997.

J. E. Smith, “A study of branch prediction strategies,” in
Proceedings of the 8th International Symposium on Com-
puter Architecture, pp. 135-148, May 198 1.

T.-Y. Yeh and Y. N. Patt, “Alternative implementations of
two-level adaptive branch prediction,” in Proceedings of the
19th International Symposium on Computer Architecture,
pp. 124-134, May 1992.

P.-Y. Chang, E. Hao, and Y. N. Patt, ‘Target prediction for
indirect jumps,” in Proceedings of the 24th International

--

I . - - - - . - - - - -

[16] A. Moshovos, S. E. Breach, T. J. Vijaykumar, and G. Sohi,
“Dynamic speculation and synchronization of data depen-
dences,” in Proceedings of the 24th International Sympo-
sium on Computer Architecture, pp. 181-193, June 1997.

ill ‘1 Y. Sazeides, S. Vassiliadis, and J. E. Smith, ‘The perfor-
mance potential of data dependence speculation & collaps-
ing,” in Proceedings of the 29th Annual ACM/IEEE Inter-
national Symposium and Workshop on Microarchitecture,
pp. 238-247, December 1996.

Symposium on Computer Architecture, pp. 274-283, June
1997.

[12] C. Young and M. D. Smith, “Improving the accuracy of
static branch prediction using branch correlation,” in Pro-
ceedings of the 6th International Conference on Architec-
tural Support for Programming Languages hnd Operating
Systems, pp. 232-241, October 1994.

[13] R. Nair, “Dynamic path-based branch correlation,” in Pro-
ceedings of the 28th Annual ACM/IEEE International Sym-
posium and Workshop on Microarchitecture, pp. 15-23, De-
cember 1995.

context switches,” in Proceedings of the 23rd Internationa/
Symposium on Computer Architecture, pp. 3-l 1, May 1996.

[25] T. C. Bell, J. G. Cleary, and I. H. Witten, Text Compression.
Prentice-Hall Inc., New Jersey, 1990.

[26] D. Burger, T. M. Austin, and S. Bennett, “Evaluating future
microprocessors: The simplescalar tool set,“Tech. Rep. CS-
TR-96-1308, University of Wisconsin-Madison, July 1996,

[14] S. Mahlke and B. Natarajan, “Compiler synthesized dy-
namic branch prediction,” in Proceedings of the 29th An-
nual ACM/IEEE International Symposium and Workshop on
Microarchitecture, pp. 153-164, December 1996.

[151 I.-C. K. Cheng, J. T. Coffey, and T. N. Mudge, “Analysis
of branch prediction via data compression,” in Proceedings
of the 7th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
October 1996.

[181 S. P. Harbison, “An architectural alternative to optimizing
compilers,” in Proceedings of the International Conference
on Architectural Support for Programming Lunguages and
Operating Systems, pp. 57-65, March 1982.

[191 S. E. Richardson, “Caching function results: Faster arith-
metic by avoiding unnecessary computation,” Tech. Rep.
SMLI TR-92-1, Sun Microsystems Laboratories, Septem-
ber 1992.

1201 A. Sodani and G. S. Sohi, “Dynamic instruction reuse,” in
Proceedings of the 24th International Symposium on Com-
puter Architecture, pp. 194-205, June 1997.

[21] T. M. Austin and G. S. Sohi, “Zero-cycle loads: Microarchi-
tecture support for reducing load latency,” in Proceedings of
the 28th Annual ACM/IEEE International Symposium and
Workshop on Microarchitecture, pp. 82-92, June 1995.

[22] D. Hammerstrom and E. Davidson, “Information content
of cpu memory referencing behavior,” in Proceedings of
the 4th International Symposium on Computer Architecture,
pp. 184-192, March 1977.

[23] S. McFarling, “Combining branch predictors,” Tech. Rep.
DEC WRL TN-36, Digital Western Research Laboratory,
June 1993.

[24] M. Evers, P.-Y. Chang, and Y. N. Patt, “Using hybrid branch
predictors to improve branch prediciton in the presence of

258

