
Dynamic Speculation and Synchronization of Data Dependences

Andreas Moshovos, Scott E. Breach, T N. Vijaykumar, Gurindar S. Sohi
Computer Sciences Department

University of Wisconsin-Madison
1210 West Dayton St.
Madison, WI 53706

{moshovos, breach, vijay, .sohi)@cs.wisc.edu

Abstract

Data dependence speculation is used in instruction-level
parallel (ILP) processors to allow early execution of an
instruction before a logically preceding instruction on which it
may be data dependent. If the instruction is independent, data
dependence speculation succeeds; if not, it fails, and the two
instructions must be synchronized. The modern dynamically
scheduled processors that use data dependence speculation do so
blindly (i.e., every load instruction with unresolved dependences is
speculated). In this papen we demonstrate that as dynamic
instruction windows get large< significant performance benefits
can result when intelligent decisions about data dependence
speculation are made. We propose dynamic data dependence
speculation techniques: (i) to predict tf the execution of an
instruction is likely to result in a data dependence
mis-specularion, and (ii) to provide the synchronization needed to
avoid a mis-speculation. Experimental results evaluating the
effectiveness of the proposed techniques are presented within the
context of a Multiscalarprocesson

1 Introduction

Speculative execution is an integral part of modem ILP proces-
sors, be they statically- or dynamically-scheduled designs. Specu-
lation may take two forms: control speculation and data
speculation. Control speculation implies the execution of an
instruction before the execution of a preceding instruction on
which it is control dependent. Data speculation implies the execu-
tion of an instruction before the execution of a preceding instruc-
tion on which it may be or is data dependent.

To date, much attention has been focused on control specula-
tion. This outlook is natural because control speculation is the first
step. Control speculation (or some equivalent basic block enlarge-
ment technique such as if-conversion with predicated execution) is
required if we want to consider instructions from more than one
basic block for possible issue. Given the sizes of basic blocks, the
need to go beyond a basic block became apparent some time ago,
and several techniques to permit control speculation were devel-
oped, both in the context of statically- and dynamically-scheduled
machine models. Improving the accuracy of control speculation
(especially dynamic techniques) via the use of better branch pre-
diction has been the subject of intensive research recently; a pleth-
ora of papers on dynamic and static branch prediction techniques
havebeenpublished.

Data speculation has not received as much attention as control
speculation. The two forms of data speculation that have received
some attention are data & speculation and data denendence

Permission to make digital/hard copy of pars or all this work for

personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appear, and notice is given that copying is by permission of ACM,

Inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

ISCA ‘97 Denver, CO, USA

0 1997 ACM 0-89791-901-7/97/0006...$3.50

speculation. In data value speculation an attempt is made to pre-
dict the data value that an instruction is going to produce [15,19].
In data dependence speculation, no explicit attempt is made to pre-
dict data values. Instead, a prediction is made on whether the input
data value of an instruction has been generated and stored in the
corresponding named location (memory or register).

Most of the research on data dependence speculation has
focused on ensuring correct execution while carrying out this form
of speculation [8,9,10,18] and on static dependence analysis
techniques [1,2,5,6,21]. So far, no attention has been given to
dynamic techniques to improve the accuracy of data dependence
speculation. This is because in the small instruction window sizes
of modem dynamically scheduled processors [12,11,14], the prob-
ability of a r&-speculation is small, and furthermore, the net per-
formance loss that is due to erroneous data dependence
speculation is small.

In this paper, we argue that as dynamically-scheduled ILP pro-
cessors are able to establish wider instruction windows, the net
performance loss due to erroneous speculation can become signif-
icant Accordingly, we are concerned with dynamic techniques for
improving the accuracy of data dependence speculation while
maintaining the performance benefits of aggressive speculation.
We propose techniques that attempt: (i) to predict those instruc-
tions whose immediate execution is going to violate a true data
dependence, and (ii) to delay the execution of those instructions
only as long as is necessary to avoid the r&-speculation. A pre-
liminary evaluation’ of the ideas presented in this paper was first
reported in [171.

The rest of this paper is organized as follows: First, in section 2
we review data dependence speculation and discuss how it affects
IL.P execution. Then in section 3, we discuss the components of a
method for accurate and aggressive memory data dependence
speculation, while in section 4, we present an implementation
framework for this method. In section 5, we provide experimental
data on the dynamic behavior of memory dependences and present
an evaluation of an implementation of the method we propose
within the context of a Multiscalar processor [3,4,7,20]. Finally, in
section 6 we list what, in our opinion, are the contributions of this
work and offer concluding remarks. In the discussion that follows
we are concerned with data dependence speculation; accordingly,
we use the terms data dependence speculation, data speculation,
and speculation interchangeably.

2 Data Dependence Speculation

Programs are written with an implied, total order. As a program
executes, data values are produced and consumed by its instruc-
tions. These values are conveyed from the producer to the con-
sumer by binding the value to a named storage location, namely
registers and memory.

An ILP or other parallel machine, takes a suitable subset of the
instructions (an instruction window) of a program and converts the
total order within this subset into a partial order. This is done so
that instructions may execute in parallel and/or in an execution
order that might be different from the total order. The shape of the

181

I ,

. . - .

(b), Ideal dependence
speculation

(c). Blind dependence
speculation

I7 Es
(cl). Selective dependence

speculation

Figure 1. Data dependence speculation examples. Arrows indicate dependences. Dependences through memory are marked with
diamonds. Dotted arrows indicate ambiguous dependences that are resolved to no dependence during execution.

partial order and the parallelism so obtained are heavhy influenced
by the dependences that exist between the instructions in the total
order. Dependences may be unambiguous (i.e., an instruction con-
sumes a value that is known to be created by an instruction preced-
ing it in the total order) or ambiguous (i.e., an instruction
consumes a value that may be produced by an instruction preced-
ing it in the total order). During execution, an ambiguous depen-
dence gets resolved to either a true dependence, or to no
dependence.

To maintain program semantics, a producer/consumer instruc-
tion pair that is linked via a true dependence has to be executed in
the order implied by the program. However, any execution order is
permissible if the two instructions are linked via an ambiguous
dependence that gets resolved to no dependence. This latter case
represents an opporhmity for parallelism and hence for higher per-
formance. Unfortunately, the mere classification of a dependence
as ambiguous implies the inability to determine whether a true
dependence exists without actually executing the program. It is for
this reason that ambiguous dependences may obscure some of the
parallelism that is available. This problem is most acute in the case
where the production and consumption of data is through memory.
Thus, in this paper, we restrict our discussion to memory depen-
dences even though all the concepts we present could easily be
applied to the speculation of register dependence.%

To expose the parallelism that is hindered by ambiguous depen-
dence& data dependence speculation may be used. In data depen-
dence speculation, a load is allowed to execute before a store on
which it is ambiguously dependent. If no true dependence is vio-
lated in the resulting execution, the speculation is successful. If,
however, a true dependence is violated, the speculation is errone-
ous (i.e., a mis-speculation). In the latter case, the effects of the
speculation must be undone. Consequently, some means are
required for detecting erroneous speculation and for ensuring cor-
rect behavior. Several mechanisms that provide this functionality,
in either software and/or hardware, have been
proposed [7,8.9,10,16,18].

Though data dependence speculation may improve performance
when it is successful, it may as well lead to performance degrada-
tion because a penalty is typically incurred on mis-speculation.
Consequently, to gain the most out of data dependence speculation
we would like to use it as aggressively as possible while keeping
the net cost of mis-speculation as low as possible.

The modem dynamically-scheduled processors that use dam
dependence speculation [11,12,14] do so blindly (i.e., a load is
speculated whenever possible). No explicit attempt is made to
reduce the net cost of m&peculation. The reasons are simply that,

in this environment, mis-speculations are extremely infrequent,
and the cost incurred on mis-speculation is low. Both phenomena
are directly attributable to the window sizes that these processors
can establish (these are limited to a few tens of instructions in the
best case). As window sizes grow larger, however, WC argue that
minimizing the net cost of mis-speculation becomes important.
Under these new conditions, the mis-speculations become mom
frequent, and the cost of mis-speculations becomes relatively high.

To minimize the net cost of mis-speculation, while maintaining
the performance benefits of speculation, we may attempt: (i) to
minimize the amount of work that is lost on mis-speculation, (ii) to
reduce the time required to redo the work that is lost on mis-specu-
lation’, or (iii) to reduce the probability of m&peculation (or, in
other words, to reduce the absolute number of mis-speculations),
In this work we pursue the third alternative. We elaborate on this in
the next section.

3 Components of a Solution

The ideal data dependence speculation mechanism not only
avoids n&speculations completely, but also allows loads to CXC-
cute as earIy as possible. That is, loads with no true dependcnccs
(within the instruction window) execute without delay, whereas
loads that have true dependences are allowed to execute only after
the store (or the stores) that produces the necessary datn has CXC-
cuted. Equivalently, loads with true dependences are synchronized
with the store (or the stores) they depend upon. It is implied that
the ideal data dependence speculation mechanism has perfect
knowledge of all the relevant data dependence%

An example of how the ideal dependence speculation mecha-
nism affects execution is shown in figure 1. In part (b), WC show
how the code sequence of part (a) may execute under ideal dnta
dependence speculation as compared to when speculation is used
blindly, part (c). The example code sequence includes two store
instructions, ST-7 and S%2, that are followed by two load instruc-
tions, LD-1 and LD-2. Ambiguous dependences exist among thcsc
four instructions as indicated by the diamond marked arrows. Dur-
ing execution, however, only the dependence between S%f and
LD-7 is resolved to a true dependence (as indicated by the continu-
ous arrow). Under ideal dependence speculation, LD-2 is executed
without delay, whereas LD-7 is forced to synchronize with SFf.

In contrast to what is ideally possible, in a real implementation,
the relevant data dependences are often unknown. Therefore, if WC

are to mimic the ideal data dependence speculation mechanism,
we have to attempt: (i) to predict whether the immediate execution

1. One such technique is Dynamic Instruction Reuse [13].

of a load is likely to violate a true data dependence, and if so, (ii) to
predict the store (or stores) the load depends upon, and, (iii) to
enforce synchronization between the dependent instructions. How-
ever, since thls scheme seems elaborate, it is only natural to
attempt to simplify it. One possible simplification is to use selec-
tive data dependence speculation, i.e., carry out only the first part
of the (ideal) 3-part operation. In this scheme the loads that are
likely to cause mis-speculation are not speculated. Instead, they
wait until the data addresses of all preceding stores, that have not
yet executed, are known to be different; explicit synchronization is
not performed. c;Ve use the term selective data dependence specu-
lation to signify that we make a decision on whether a load should
be speculated or not. Loads with dependences are not speculated at
all, whereas loads with no dependences can execute freely. In con-
trast, in ideal dependence speculation, we make a decision on
when is the right time to speculate a load.) An example of how
selective speculation may affect execution is shown in part (d) of
figure 1. In this example, NJ-2 is speculated, whereas LD-1 is not,
since the prediction correctly indicates that M-2 has no true depen-
dences while ILL? does. However, with this scheme, and due to the
lack of explicit synchronization, a load may be delayed more than
necessary (LB-I waits for S%2 also). In practice, and as we demon-
strate in the evaluation section, selective data dependence specula-
tion can lead to inferior performance when compared to blind
speculation (part (c) of figure 1) even when perfect prediction of
dependences is assumed. Even though other simplifications to the
3-part ideal operation may be possible, in this paper we restrict our
attention to dependence speculation schemes that attempt to mimic
the ideal data dependence speculation system. We do so because
our primary goal is to demonstrate the potential of dynamic depen-
dence speculation and synchronization mechanisms, rather than to
perform a thorough evaluation of a variety of mechanisms.

To mimic the ideal data dependence speculation system, we
need to implement all the 3 components of the ideal system as
described before. That is, we must: (i) dynamically identify the
store-load pairs that are likely to be data dependent (i.e., the
dependences that are likely to cause n&s-speculation), (ii) assign a
synchronization mechanism to dynamic instances of these depen-
dences, and (iii) use this mechanism to synchronize the store and
the load instructions.

Dynamically tracking all possible ambiguous store-load pairs is
not an option that we consider desirable, or even practical. Fortu-
nately, our empirical observations suggest that the following phe-
nomena exists: the static store-load instruction pairs that cause
most of the dynamic data mis-speculations are relatively few and
exhibit tempoml locality (we present empirical evidence in
section 5). That is, at any given time, different dynamic instances
of a few static store-load pairs, either operating repeatedly on the
same memory location (scalar variable) or operating on different
memory locations, account for the majority of the mis-specula-
tions. This observation suggests that we may use past history to
dynamically identify and track such store-load pairs, and cache
this information in a storage structure of reasonable size. The
remaining issue is by what means to synchronize the store-load
pair.

An apt method of providing the required synchronization
dynamically is to build an association between the store-load
instruction pair. Suppose this (dynamic) association is a condition
variable on which only two operations are defined: wait and signal,
which test and set the condition variable respectively. These opera,
tions may be logically incorporated into the dynamic actions of the
(dependent) load and store instructions to achieve the necessary
synchronization.

The above concept is illustrated in the example of figure2

Condition Variable

Figure 2. Synchronization example

knbm imtac#
for(i=O;icn;ii+)

sTJl=a~LD
c~lgjj$ g$z;: ri, $a:a

(a) @I+ (4 WI

Figure 3. Example code sequence that illustrates that multiple
instances of the same static dependence can be active in
the current instruction window. In parts (b), (c), and (d),
the relevant store and load instructions from four
iterations of the loop of part (a) are shown.

where we assume that some means exist to dynamically associate
store-load instruction pairs with condition variables (we discuss
these means later in this section). As shown in part (a), an earlier
mis-speculation results in the association of a condition variable
with a subsequent dynamic instance of the offending store-load
instruction pair. With the condition variable in place, consider the
sequence of events in the two possible execution sequences of the
load and store instructions. In part (b), the load is ready to execute
before the store. However, before the load executes, it tests the
condition variable; since the test of the condition variable fails, the
load waits. After the store executes, it sets the condition variable
and signals the waiting load, which subsequently continues its exe-
cution as shown. No mis-speculation is observed, and the sequen-
tial order is preserved. In part (c), the order of execution is a store
followed by a load. After the stores executes, it sets the condition
variable and records a signal for the load. Before the load executes,
it tests the condition variable; since the test of the condition vari-
able succeeds, the load continues its execution as shown (the con-
dition variable is reset at this point). One may wonder why
synchronization is provided even when the execution order follows
the program order (i.e., store followed by load). This scenario rep-
resents the case where the dependence prediction correctly indi-
cates that a dependence exists but fails to detect that the order of
execution has changed (most likely in response to external events
whose behavior is not easy or desirable to track and predict, such
as cache misses or resource conflicts). Synchronization is desirable
even in this case since, otherwise, the load will be delayed unnec-
essarily.

Once condition variables are provided, some means are required
to assign a condition variable to a dynamic instance of a store-load
instruction pair that has to be synchronized. If synchronization is
to occur as planned, the mapping of condition variables to dynamic
dependences has to be unique at any given point of time. One
approach is to use just the address of the memory location
accessed by the store-load pair as a handle. This method provides
an indirect means of identifying the store and load instructions that
are to be synchronized. Unless the store location is accessed only
by the corresponding store-load pair, the assignment will not be
unique.

Alternatively, we can use the dependence edge as a handle. The
dependence edge may be specified using the (full or part of)

183

instruction addresses (PCs) of the store-load pair in question.
Unfortunately, as exemplified by the code sequence of ligure 3
part (b), using this information may not be sufficient to capture the
actual behavior of the dependence during execution; the pair
(PCsp PC,) matches against all four edges shown even though
the dotted ones should not be synchronized. A static dependence
between a given store-load pair may correspond to multiple
dynamic dependences, which need to be tracked simultaneously.

To distinguish between the different dynamic instances of the
same static dependence edge, a tag (preferably unique) could be
assigned to each instance. This tag, in addition to the instruction
addresses of the store-load pair, can be used to specify the dynamic
dependence edge. In order to be of practical use, the tag must be
derived from information available during execution of the corre-
sponding instructions. A possible source of the tag for the depen-
dent store and load instructions is the data address of the memory
location to be accessed, as shown in figure 3 part (c). An alternate
way of generating instance tags is shown in figure 3 part (d), where
dynamic store and load instruction instances are numbered based
on their PCs2. The difference in the instance numbers of the
instructions which are dependent, referred to as the dependence
distance, may be used to tag dynamic instances of the static depen-
dence edge3 (as may be seen for the example code, a dependence
edge between ST1 and LDitiistance is tagged - in addition to the
instruction PCs - with the value i-t-distance). Though both tagging
schemes strive to provide unique tags, each may fall short of this

goal under some circumstances (for example, the dependence dis-
tance may change in a way that we fall to predict, or the address
accessed may remain constant across all instances of the same
dependence).

Since, our primary goal in this paper, is to introduce and evalu-
ate novel mechanisms (and not to carry out a thorough analysis of
a variety of options), we restrict our attention to the second scheme
where the dependence distance is used to tag dependences.

4 Implementation Aspects

As we discussed in the previous section, in order to improve the
accuracy of data dependence speculation, we attempt: (i) to predict
dynamically, based on the history of mis-speculations, whether a
store-load pair is likely to be mis-speculated and if so, (ii) to syn-
chronize the two instructions. In this section, we describe an
implementation framework for this technique. We partition the
support structures into two interdependent tables: a Eemory
dependence prediction Iable (MDPI’) and a semory dependence
~nchronkation Iable (MDST). The MDPT is used to identify,
through prediction, those instruction pairs that ought to be syn-
chronized. The MDST provides a dynamic pool of condition vari-
ables and the mechanisms necessary to associate them with
dynamic store-load instruction pairs to be synchronized. In the dis-
cussion that follows, we first describe the support structures and
then proceed to explain their operation by means of an example.

We present the support structures as separate, distinct compo-
nents of the processor. We do so, since we believe that the crux of

2. At this point we are not concerned with mechanisms that implement this func-
tionality. However, note that only the difference between the instance numbers is
relevant and not the absolute values. As we explain in the evaluation section, in
Multiscalar we can approximate the instance numbers by using statically assigned
stage identifiers. In a superscalar environment we may use a small associative
pool of counters. Load and storeinstructions can then benumbered based on their
PC as they are issued. To support invalidations due to mis-speculation, these
counters will have to he treated as registers. Alternatively. a load (store) that has
to synchronize, may perform a backward (forward) scan through the instruction
window attempting to locate the appropriate store (load) instruction.

3. To aid understanding, this scheme can be viewed as a dynamic, run-time imple-
mentation of the linear recurrence dependence analysis done by compilers.

184

the proposed tcchniquc is hcttcr dcscrihcd when the support struc-
lures arc considered in this fashion. Howcvcr, it is possible nnd
probably desirable in an actual implementation, to combine the
prediction and the synchronization structures and/or to integrate
them with other components of the processor. For example, a sim-
ple extension is to provide the synchronization functionality in the
data cache or some other similar storage structure, so that both the
data and the necessary synchronization are provided at the same
point. Later in this paper, we describe the implementation of a sin-
gle structure that provides both dependence prediction and syn-
chronization and discuss its advantages and its limitations,
However, since our goal is to demonstrate the utility of the pro-
posed technique, we do not consider further integration or any
other implementations.

4.1 MDPT

An entry of the MDPT identifies a static dependence nnd pro-
vides a prediction as to whether or not subsequent dynamic
instances of the corresponding static store-load pair will result in n
r&-speculation (i.e., should the store and load instructions be syn-
chronized). In particular, each entry of the MDPT consists of the
following fields: (1) valid flag (V), (2) load instruction address
(LDPC), (3) store instruction address (SIX), (4) dependence dis-
tance (DIST), and (5) optional prediction (not shown in any of tho
working examples). The valid flag indicates if the entry 1s cur-
rently in use. The load and store instruction address fields hold the
program counter values of a pair of load and store instructions,
This combination of fields uniquely identifies the r&t& instruction
pair for which it has been allocated. The dependence distance
records the difference of the instance numbers of the store and load
instructions whose n&-speculation caused the allocation of the
entry (if we were to use the data address to tag dependence
instances this field would not have been necessary). The purpose
of the prediction field is to capture, in a reasonable way, the past
behavior of m&speculations for the instruction pair in order to aid
in avoiding future mis-speculations or unnecessary delays. Many
options are possible for the prediction field (for example nn
up-down counter or dependence history based schemes); a dlscus-
sion is postponed until later in this section. The prediction field is

optional since, if omitted, we can always predict that synchronizn-
tion should take place.

4.2 MDST

An entry of the MDST supplies a condition variable and tho
mechanism necessary to synchronize a dynamic instance of a static
instruction pair (as predicted by the MDPI’). In particular, cnch
entry of the MDST consists of the following fields: (1) valid flag
(V), (2) load instruction address (LDPC), (3) store instruction
address (SIX), (4) load identifier (LDID), (5) store identifier
(STID), (6) instance tag (INSTANCE), and (7) full/empty flag
(F/E). The valid flag indicates whether the entry is, or is not, in
use. The load and store instruction address fields serve the same
purpose as in the MDPT. The load and store identifiers have to
uniquely identify, within the current instruction window, a
dynamic instance of a load or a store instruction respectively. The
exact encoding of this field depends on the implementation of the
000 (cut-Qf-Qrder) execution engine (for example, in a superscn-
lar machine that uses reservation stations we can USC the indox of
the reservation station that holds the instruction as its LDID or
SKID). The instance tag field is used to distinguish between differ-
ent dynamic instances of the same static dependence edge (in tho
working example that follows we show how to derive the value for
this field). The full/empty flag provides the function of a condition
variable.

\ \

�
LDx) STpC 1 21 1 @ mie-speculation

q (
(b) II-4

•-?-~-.4-~

iterath 1 itereffon 2 iteration 3

(a)
MDST F/EV

. .
MDST F/EV

@I
Figure 4. Synchronization of memory dependences.

4.3 Working Example

The exact function and use of the fields in the MDF’T and the
MDST are best understood by means of an example. In the discus-
sion that follows we am using the working example of figure 4. For
the working example, assume that execution takes place on a pro-
cessor which: (i) issues multiple memory accesses per cycle from a
pool of load and store instructions and (ii) provides a mechanism
to detect and correct m&speculations due to memory dependence
speculation. For the sake of clarity, we assume that once an entry is
allocated in the MDFT it will always cause a synchronization to be
predicted.

Consider the memory operations for three iterations of the loop,
which constitute the active pool of load and store instructions as
shown in part (a) of the figure. Further, assume that ck/t+>pafent
points to the same memory location for all values child takes. The
dynamic instances of the load and store instructions are shown
numbered, and the true dependences are indicated as dashed
arrows connecting the corresponding instructions in part (a). The
sequence of events that leads to the synchronization of the
SE!-LD3 dependence is shown in parts (b) through (d) of the fig-
ure. Initially, both tables are empty. As soon as a mis-speculation
(STI-LD2 dependence) is detected, a MDPT entry is allocated,
and the addresses of the load and the store instructions are
recorded (action 1, part (b)). The DIST field of the newly allocated
entry is set to 1, which is the difference of the instance numbers of
ST1 and LD2 (1 and 2 respectively). As a result of the mis-specu-
lation, instructions following the load are squashed and must be
re-issued. We do not show there-execution of LD2.

As execution continues, assume that the address of LD3 is cal-
culated before the address of ST2. At this point, LD3 may specula-
tively access the memory hierarchy. Before LD3 is allowed to do
so, its instruction address. its instance number (which is 3), and its
assigned load identifier (the exact value of LDID is immaterial) are
sent to the MDPT (action 2, part (c)). The instruction address of
LD3 is matched against the contents of all load instruction address
fields of the MDPT (shown in grey). Since a match is found, the
MDPT inspects the entry predictor to determine if a synchroniza-
tion is warranted. Assuming the predictor indicates a synchroniza-
tion, the MDPT allocates an entry in the MDST using the load
instruction address, the store instruction address, the instance num-

ber of LD3, and the LDID assigned to LD3 by the 000 core
(action 3, part (c)). At the same time, the fullfempty flag of the
newly allocated entry is set to empty. Finally, the MDST returns
the load identifier to the load/store pool indicating that the load
must wait (action 4, part (c)).

When ST2 is ready to access the memory hierarchy, its instruc-
tion address and its instance number (which is 2) are sent to the
MDFT (action 5, part(d)). (We do not show the STID since, as we
later explain, it is only needed to support control speculation.) The
instruction address of ST2 is matched against the contents of all
store instruction address fields of the MDPT (shown in grey).
Since a match is found, the MDPT inspects the contents of the
entry and initiates a synchronization in the MDST As a result, the
MDFT adds the contents of the DIST field to the instance number
of the store (that is, 2 + 1) to determine the instance number of the
load that should be synchronized. It then uses this result, in combi-
nation with the load instruction address and the store instruction
address, to search through the MDST (action 6, part (d)), where it
finds the allocated synchronization entry. Consequently, the
full/empty field is set to full, and the MDST returns the load identi-
fier to the load/store pool to signal the waiting load (action 7, part
(d)). At this point, LD3 is free to continue execution. Furthermore,
since the synchronization is complete, the entry in the MDST is
not needed and may be freed (action 8, part(d)).

If ST2 accesses the memory hierarchy before LD3, it is unnec-
essary for LD3 to be delayed. Accordingly, the synchronization
scheme allows LD3 to issue and execute without any delays. Con-
sider the sequence of relevant events shown in parts (e) and (f) of
figure 4. When ST2 is ready to access the memory hierarchy, it
passes through the MDFT as before with a match found (action 2,
part (e)). Since a match is found, the MDFT inspects the contents
of the entry and initiates a synchronization in the MDST. However,
no matching entry is found there since LD3 has yet to be seen.
Consequently, a new entry is allocated, and its full/empty flag is
set to full (action 3, part (e)). Later, when LD3 is ready to access
the memory hierarchy, it passes through the MDPT and determines
that a synchronization is warranted as before (action 4, part 0).
The MDPT searches the MDST, where it now finds an allocated
entry with the full/empty flag set to full (action 5, part (f)). At this
point, the MDST returns the load identifier to the load/store pool
so the load may continue execution immediately (action 6, part

185

(f)). It also frees the MDST entry (action 7, part (0).

4.4 Issues

We now discuss a few issues which relate to the implementation
we have described.

4.4.1 Intelligent Prediction

Upon matching a MDPT entry, a determination must be made as
to whether the instruction pair in question warrants synchroniza-
tion. The simplest approach is to assume that any matching entry
ought to be synchronized (i.e., the predictor field is optional).
However, this approach may lead to unnecessary delays in cases
where the store-load instruction pairs are mis-speculated only
some of the time. Instead, a more intelligent approach may be
effective. Any of the plethora of known methods (counters, voting
schemes, adaptive predictors, etc.) used to provide the intelligent
prediction of control dependences may be applied, with appropri-
ate modifications, to the prediction of data dependences. Regard-
less of the actual choice of mechanism, the prediction method
ought to exhibit the quality that it strengthens the prediction when
speculation succeeds and weakens the prediction when speculation
fails.

4.4.2 IncompIete Synchronization

So far, it has been assumed that any load, that waits on the
full/empty flag of an entry in the MDST, eventually sees a match-
ing store that signals to complete the synchronization. Since an
MDPT entry only provides a prediction, this expectation may not
always be fulfilled. If this situation arises, the two main consider-
ations are: (i) to avoid deadlock and (ii) to free the MDST entry
allocated for a synchronization that will never occur. The deadlock
problem is easily solved, as it is reasonable to assume that a load is
always free to execute once all prior stores are known to have exe-
cuted. At that point, the load identifier has to be send to the MDST
where it is used to free the entry that was allocated for the particu-
lar Ioad.The information recorded in the MDST entry can then be
used to locate update the corresponding prediction entry in the
MDPT

Under similar circumstances to those described above, a store
may allocate an MDST entry for which no matching load is ever
seen. Since stores never delay their execution, there is no deadlock
problem in this case. However, it is still necessary to eventually
free the MDST entry. Unfortunately, we cannot de-allocate this
entry when the store retires (recall that in section 3 we explained
that we would like to synchronize a store-load pair when the pre-
diction indicates that we should, even if the execution order does
not violate the dependence). A possible solution is to free entries
whose full/empty flag is set to full whenever an entry is needed
and no table entries are not in use. Another possible solution is to
allocate entries using random or LRU replacement, in which case
entries are freed as needed.

4.4.3 M&-speculations

In the event of control or data mis-speculation, it is desirable,
although not necessary, to invalidate any MDST entries that were
allocated to the instructions that are squashed. The LDID and the
STID fields can be used to identify the entries that have to be inval-
idated.

‘Qpically, many instructions continuous in the program order,
are invalidated when a mis-speculation occurs. Thus, we may have
to invalidate multiple MDST entries on mis-speculation. Fortu-
nately, the MDST has to be notified only of those instructions that
have entries allocated to them, which are typically going to be few.
To support multiple invalidations per cycle, several options exist
such as (i) providing multiple ports to the STID and LDID tags, or

(ii) using a suitable encoding of the STID and LDID tags that
would allow for the invalidation of a range of instructions. For
example, we can use as many bits as the maximum number of
simultaneously, unresolved control transfer instructions allowed,
This encoding allows us to invalidate at a basic block granularity
with an associative lookup.

4.4.4 Multiple Table Entry Matches

Although not illustrated in the examples, it is possible for a load
or a store to match multiple entries of the MDPT and/or of the
MDST. This case represents multiple memory dcpendcnccs
involving the same static load and/or store instructions (for exam-
ple in the code if [md) store1 M else store: M; load M, there arc two
dependences [store,, load) and (store2, load)). There arc several ways
of addressing this issue.

A straightforward approach is to ensure, by means of the
replacement and allocation policies, that a unique mapping with
respect to both loads and stores is maintained in the tables. For
example, in the MDPT we may allow a new entry to be created
only after any pre-existing entries for the same static load or store
are de-allocated. To maintain a unique mapping in the MDST, we
may force a load or a store to stall and retry if there is another
entry for either of the instructions that have to synchronize (altcr-
natively we may de-allocate the pre-existing entry). This approach
is acceptable when: (i) multiple dependences per static load and
store are relatively uncommon or (ii) when the dynamic dcpcn-
dence pattern consists of long series during which only one of the
many dependences is active for the most part. In both CBSCS, the
adaptive nature of the prediction mechanism is likely to discard all
but the most frequent mis-speculations. If multiple dependenccs
are relatively common, a more aggressive approach that evaluntcs
multiple entries simultaneously is expedient. One approach is to
support multiple stores per load or vice versa. This can be achieved
by modifying the entries MDPT and MDST to include multiple
fields for store PCs per load (or the other way around).

If multiple dependences are to be fully supported within the
implementation framework we presented in this section, the fol-
lowing considerations must be addressed: (i) when multiple depcn-
dences are predicted from the MDPT, how to allocate multiple
entries, one per predicted dependence, in the MDST, (ii) when
synchronization happens on an MDST entry, how to determine
whether the particular load has other entries it has to wait for, and
(iii) when a store synchronizes simultaneously with many loads in
the MDST, how to go about sending all the LDIDs. Again several
options exist. For the purposes of this paper, we address all three
considerations by combining the two tables into a single structure
where each prediction entry carries with it a predefined number of
synchronization entries (note that in this organization, the PCS of
the instructions need not be recorded in each synchronization
entry). We next explain how this organization addresses the aforc-
mentioned issues. Allocating multiple synchronization entries,
each for a different prediction entry, is straightforward since the
prediction and synchronization entries are now physically adja-
cent. To determine whether a load has other synchronization
entries when a synchronization occurs, we do a second associntivc
lookup using the load’s LDID. If no other entries are found the
load is allowed to continue execution. Finally, when multiple loads
are simultaneously synchronized, we allow only up to a predcfincd
number of them to do so at any given cycle (selecting the loads to
wake up among those that have been signalled is no different than
selecting the instructions to execute from those that are ready in an
000 processor).

4.4.5 Centralized Versus Distributed Structures

So far it has been assumed that the MDPT and the MDST arc

186

centralized structures. However, as greater levels of instruc-
tion-level parallelism are exploited, greater numbers of concurrent
memory accesses must be sustained. Under such conditions, the
support structures are likely to play a key role in execution. As a
consequence, it is important to assure that neither structure
becomes a bottleneck. The most straightforward way to meet this
demand is to multi-port the tables. While such an approach pro-
vides the needed bandwidth, its access latency and area grow
quickly as the number of ports is increased. It is also possible to
divide the table entries into banks indexed by the load and store
instruction addresses. This solution is likely to be inadequate since
temporal and spatial locality in instruction reference patterns may
cause many conllicting bank accesses.

An alternative approach is to actually distribute the structures,
with identical copies of the MDPT and the MDST provided at each
source of memory accesses (assuming multiple load/store queues,
multiple load/store reservation stations, etc.). Each source of mem-
ory accesses need only use its local copy of the two tables most of
the time. As soon as a m&speculation is detected, this fact is
broadcast to all copies of the MDPT, causing an entry to be allo-
cated in each copy as needed. A load instruction uses both tables in
the same manner as described earlier, A store instruction, on the
other hand, behaves somewhat differently. In the event a match for
a store is found in a local MDPT, all identifying information for
the entry is broadcast to all copies of the MDST. Each copy of the
MDST searches its entries to find any allocated synchronization
entry. The outcomes with respect to whether a match is or is not
found are similar to those described earlier. In addition, any pre-
diction update to an entry of a local MDPT must be broadcast in
order to maintain a similar view among all of the copies of this
table.

5 Experimental Evaluation

In this section we present experimental evidence in support of
our observations on the dynamic behavior of memory depen-
dences, and we evaluate the utility of the mechanism we proposed
in the previous section. To do so, we require a processing model
where dynamic data dependence speculation is heavily used and
where the dynamic window size is relatively large. One processing
model that satisfies both requirements is the Multiscalar process-
ing model [7, 201. Accordingly, we use various con&rations of
Multiscalar processors for most of the experiments we perform.
However, for some of our experiments we use an unrealistic 000
execution model. We do so in order to demonstrate that our obser-
vations on the dynamic behavior of memory dependences are not
specific to the Multiscalar processing model.

The unrealistic 000 execution model we use corresponds to a
processor that is capable of establishing a perfect, continuous win-
dow of a given size. Under this model and for a window size of it,
a load is always r&-speculated if a preceding store, on which it is
data dependent, appears within less than n instructions apart in the
sequential execution order. This model represents the worst case
scenario with respect to the number of mis-speculations that can be
observed at run-time since it assumes that every dependence that is
visible from within the given instruction window is mis-specu-
lated. We use this model not only to show that our observations
about the dynamic behavior of memory dependences hold even
under these extreme conditions, but also, to provide some insight
on how the number of possible n&-speculations and dependences
varies as a function of the dynamic window size.

To demonstrate the utility of the proposed mechanisms, we sim-
ulate various configurations of a Multiscalar processors. A Multi-
scalar processor relies on a combination of hardware and software
to extract parallelism from ordinary (sequential) programs. In this
model of execution, the control flow graph (CFG) of a sequential

187

program is partitioned into portions called tasks. These tasks may
be control and data dependent. A Multiscalar processor sequences
through the CFG speculatively, a task at a time, without pausing to
inspect any of the instructions within a task. A task is assigned to
one of a collection of processing units for execution by passing the
initial program counter of the task. Multiple tasks execute in paral-
lel on the processing units, resulting in an aggregate execution rate
of multiple instructions per cycle. In this organization, the instruc-
tion window is bounded by the first instruction in the earliest exe-
cuting task and the last instruction in the latest executing task.
More details of the Multiscalar model can be found in [3,4,7,8,20].

In a Multiscalar processor, dependences may be characterized
as irztru-task (within a task) or inter-task (between individual
tasks). The results herein are all simulated executions in which
in&a-task memory data dependences are not speculated, but
inter-task memory dam dependences are freely speculated. That is,
m&speculations may only occur for store-load instruction pairs
whose dependence edge crosses dynamic task boundaries. Further-
more, the results reflect execution with no compiler supported dis-
ambiguation of these memory dependences. This detail implies
that even in cases where an unambiguous memory dependence
exists, it is treated no differently than an ambiguous memory
dependence during execution. At first glance, the reader may be
tempted to conclude that the results of this section are not very
useful since many dependences could be classified as unambigu-
ous, even with a rudimentary compiler. However, this conclusion is
not necessarily correct, and we elaborate on this next.

The goal of any 000 execution processor, be it superscalar or
Multiscalar, is to execute a sequential program in parallel. In doing
so, any processor of this kind, dynamically converts the sequential
program order into a parallel execution order. In this environment,
the only condition that prevents the 000 execution of two instmc-
tions is the existence of a dependence that the 000 execution
engine can detect without executing the instructions. This implies
that even if the compiler knows that a particular memory depen-
dence exists, nothing prevents the dynamic speculation of the cor-
responding load instruction. Consequently, to prevent the
speculation of a dependence, the compiler has to identify by some
means (for example through ISA extensions) that a load should not
be speculated immediately and to enforce synchronization
between unambiguously-dependent instructions (perhaps by using
signal and wait operations on compiler generated synchronization
variables or via full/empty bits). This is not a trivial task and futh-
ermore, a program in which synchronization has been inserted is
not a sequential program any more.

5.1 Methodology

The results we present have been collected on a simulator that
faithfully represents a Multiscalar processor. The simulator
accepts annotated big endian MIPS instruction set binaries (with-
out architected delay slots of any kind) produced by the Multisca-
lar compiler, a modified version of GNU GCC 2.5.8 compiler (the
SPECint95 benchmarks were compiled with the newest Multisca-
lar compiler which was built on top of GCC 2.7.2). In order to pro-
vide results which reflect reality with as much accuracy as
possible, the simulator performs all of the operations of a Multi-
scalar processor and executes all of the program code, except sys-
tem calls, on a cycle-by-cycle basis. (System calls are handled by
trapping to the OS of the simulation host.)

We performed the bulk of our experimentation with programs
taken from the SPECint92 benchmark suite (with inputs indicated
in parentheses): compress (in), espresso (ti.in), gee (integrate.i), SC
(loadal), and x&p (7 queens). However, to demonstrate the utility
of the proposed data dependence speculation mechanism, we also
report performance results (for one Multiscalar configuration) for

the SPECintBS and SPECfp95 suite. However, in order to keep the
simulation time of the SPEC95 programs reasonable, we used
either the train or the test input data sets (which sometimes are in
the order of a few billion instructions). We used the train data set
for the following programs: 099.g0, 129.compress, 132.ijpeg,
134.per1 (jumble), 147.vortex. IOLtomcatv, llO.applu, 14l.apsi,
145.jpppp, and 146.wave5. For l24.m88ksim, 126.gcc, 13O.h,
102swim, 103.su2cor, 104.hydro2d, 107.mgrid and 125.turb3d,
we used the test data set. All programs, except lOl.tomcatv,
125turb3d, and 146.wave5, were ran to completion for the input
used. Table 1 reports the dynamic, useful (i.e., committed),
instruction counts for the corresponding Multiscalar execution.
Only one version of a Multiscalar binary is created per benchmark
the same Multiscalar binary is used for all the Multiscalar configu-
rations in these experiments. The Multiscalar binaries are also

used by the unrealistic 000 execution model, however in this
case, the Multiscalar specific annotations are ignored.

Table 1. Dynamic instruction count per benchmark (committed
instructions).

5.2 Configuration

In this section we give the details of the Multiscalar processor
configurations we used in our experimentation. We simulate Multi-
scalar processor configurations of 4 and 8 processing units (or
stages) with a global sequencer to orchestrate task assignment. The
sequencer maintains a 1024 entry 2-way set associative cache of
task descriptors. The control flow predictor of the sequencer uses
the path based scheme described in [13]. The control flow predic-
tor also includes a 64 entry return address stack.

The pipeline structure of a processing unit is a traditional 5
stage pipeline (IF/ID/EX/MEM/WB) which is configured with
2-way, out-of-order issue characteristics. (Thus the peak execution
rate of a Cunit configuration is 8 instructions per cycle). The
instructions are executed by a collection of pipelined functional
units (2 simple integer FU, 1 complex integer FU, 1 floating point
FU, 1 branch FU, and 1 memory FU) according to the class of the
particular instruction and with the latencies indicated in table 2. A
unidirectional, point-to-point ring connects the processing units to
provide a communication path, with a 2 word width and I cycle
latency between adjacent processing units. AlI memory requests
are handled by a single Qword, split transaction memory bus.
Each memory access requires a 10 cycle access latency for the first
4 words and 1 cycle for each additional 4 words, plus any bus con-
tention.

Each processing unit is configured with 32 kilobytes of Zway
set associative instruction cache in 64 byte blocks. (An instruction
cache access returns 4 words in a hit time of 1 cycle, with an addi-
tional penalty of 10+3 cycles, plus any bus contention, on a miss.)
A crossbar interconnects the processing units to twice as many
interleaved data banks. Each data bank is configured as 8 kilobytes

Table 2. Functional Unit Latencies (“SP/DP” stands for “Sin-
gle/Double precision”).

of direct mapped data cache in 64 byte blocks with a 32 entry
address resolution buffer, for a total of 64 kilobytes and 128 kilo-
bytes of banked data storage as well as 256 and 512 address reso-
lution entries for I-stage and S-stage Multiscalar processors
respectively. (A data bank access returns 1 word in a hit time of 2
cycles, with an additional penalty of 10+3 cycles, plus nny bus
contention, on a miss.) Both loads and stores are non-blocking,

5.3 Dynamic behavior of memory dependences

As we noted in section 3, the number of mis-speculations
increases with the window size. Furthermore, the vast majority of

the mis-speculations observed dynamically can be attributed to ml-
atively few static dependences (store-load pairs) that exhibit tcm-
poral locality. In this section, we present experimental evidence in
support of these observations. To do so, we simulate data depen-
dence caches, or DDCs, of various sizes. A DDC of size n, records
the data dependences that caused the n most recent mis-spccula-
tions. We count two events, hits and misses. These WC d&c as
follows: whenever a mis-speculation occurs we search through the
DDC using the instruction PCs of the offending store nnd lottd
instructions. If a matching entry is found, we count a hit, other-
wise, we count a miss. A low data dependence cache miss rntc
implies that the relevant data dependences exhibit temporal locnl-
ity.

188

In table 3, we report the number of mis-speculations observed
under the unrealistic 000 model for various window sizes (WS
column). As it can be seen, moving from a window of 8 instruc-
tions to a window of 32 instructions results in a dramatic incrcasc
in the number of m&speculations. It is implied that most of the
dynamic dependences are spread across several instructions
(which may include many unrelated stores). This observation pro-
vides a hint to why selective data dependence speculation (ie,, not
speculating the loads with dependences within the current win-
dow) may cause performance degradation when compared to blind
speculation; when a dependence is spread across several, unrelated
stores, it is often the case that it takes more time to wait until all
the unrelated stores are resolved than to incur a mis-spcculntion
and re-execute the load and the instructions that follow it,

In table 4, we show the number of static dependences that arc
responsible for 99.9% of all dynamic mis-speculations. Note thnt
as the window size increases more static dependcnces arc exposed,
These newly exposed dependences may be far more frequent than
the dependences observed when the window is smaller, This
explains, for example, why in compress fewer dependenccs nrc
responsible for the vast majority of mis-speculations when the
window increases from 8 to 16 or 8 to 32. Finally, in table 5 WC

show the miss-rate of DDCs of 32, 128, and 512 entrlcs. As it can
be seen, even when all the dynamic dependences (that arc visible
from within the given instruction window) are mis-spcculatcd,
only a few static dependences cause most of the mis-speculations,
Furthermore, DDCs of moderate size capture most of these depen-
dences.

For the Multiscalar model we use two configurations, one with
four stages and one with eight stages. The number of mis-specula-
tions observed for these configurations are shown in table 6, As it

128 1 4.31M 1 10.87M

5.02 M 35.59 M 26.66 M

Table 3. Unrealistic 000 model: Number of dynamic memory
dependences observed as a function of window size (WS).

128 18 848 4446 589 266

256 25 1500 6083 1 122 333

512 24 2021 8001 851 367

Table 4. Unrealistic 000 model: number of static dependences
responsible for 99.9% of all mis-speculations observed
(“WY start& for “window size”).

Table 5. Unrealistic 000 model: Miss-Rate (percentage) of DDC
as a junction of window size and DDC size. WS stands for
“window size”‘, and CS stana!s for ‘DDC size”.

SfOgeS COlllp?SS .%p?SSO SC SC XltSP

4 1.04M 2.38 M 285 K 257 M 218M

8 1.99M 286 M 464K 4.81 M 2.76 M

Table 6. Multiscalar model: number of mis-speculations observed

can be observed, m&speculations are more frequent when the
window size is larger (8 stages as opposed to 4 stages). In table 7,
we report the miss-rates of DDCs of various sizes for the 8-stage

Table 7. &stage Multiscalar: DDC miss-rates (percentage) as a
function of the DDC size (“CL?’ stands for DDC size).

configuration only (i.e., for this experiment we use the configura-
tion with the higher number of r&-speculations). As it can be
seen, even a DDC of 64 entries exhibits a miss rate of less than
10% for all benchmarks. Furthermore, a DDC with 1024 entries
captures virtually all static dependences for all benchmarks except
gee. For the Multiscalar model, we do not show measurements on
the number of static dependences that cause most of the mis-spec-
ulations. That these dependences are few is implied by the results
of the next section.

5.4 Comparison of dependence speculation policies

In this section we: (i) demonstrate that selective speculation
may lead to inferior performance when compared to blind specula-
tion and (ii) obtain an upper bound on the performance improve-
ment that is possible through the use of the data dependence
prediction and synchronization approach we described in
section 3.

To do so, we compare the following four data dependence spec-
ulation policies: (i) NEVER, (ii) ALWAYS, (ii) WAIT, and (vi)
PSYNC (for perfect synchronization). Under NEVER, no data
dependence speculation is performed. Under ALWAYS, depen-
dence speculation is used blindly (this is the policy used in the
modem ILP processors that implement dependence speculation).
Under policy WAIT, data dependence speculation is used selec-
tively, that is loads with true dependences are not synchronized;
instead they are forced to wait until the addresses of all previous
stores are known to be different. Finally, under PSYNC, loads with
no dependences execute as early as possible, whereas loads with
true dependences synchronize with the corresponding stores. POE
icy PSYNC provides an upper limit on the performance improve-
ment that is possible through the use of the mechanisms we
presented in section 3. For PSYNC and WAIT we make use of per-
fect dependence prediction.

4-Stages

n ALWAYS liii WAl? q PSYNC

Figure 5. Comparison of three data dependence speculation
policies. Speedups (%) are relative to policy NEVER.

189

-- - i -7,:. ‘&-,yi.x&L /.., :...;, . -.,. . .

In figure 5, we report (along the X-axis) the IPC of Multiscalar
processor configurations that do not use data dependence specula-
tion (policy NEVER) and the speedups obtained when policies
ALWAYS, WAIT, or PSYNC are used instead. Since the dynamic
window size is an important consideration we simulate Multiscalar
configurations of four and eight stages. It can be observed that
even blind data dependence speculation (policy ALWAYS) signifi-
cantly improves performance in all cases. Furthermore, in contrast
to when dependence speculation is not used, increasing the win-
dow size results in sizeable performance benefits.

Focusing on policy PSYNC, we can observe that it constantly
improves performance over policy ALWAYS, sometimes signifi-
cantly and furthermore, that the difference between PSYNC and
ALWAYS becomes greater as the window size increases (8 stages
compared to 4 stages). In addition, under policy PSYNC, increas-
ing the window size typically results in higher performance. The
results about policy PSYNC demonstrate that the technique we
described in section 3 has the potential for performance improve-
ments that are often significant (even when compared to blind
speculation). Finally, selective data dependence speculation (pol-
icy WAIT) generally outperforms blind speculation (policy
ALWAYS) and performs comparably to policy PSYNC in the
Cstage configuration for three of the benchmarks (espresso, gee,
and xlisp). However, for compress and SC, it performs worse than
both PSYNC and ALWAYS (the cause of this phenomenon we
explained in section 3, figure 1). As we move to larger windows (8
stages) the difference between PSYNC and WAIT becomes more
significant for all benchmarks except xlisp.

5.5 Evaluation of the proposed mechanism

In the previous section we demonstrated the performance poten-
tial of our data dependence speculation technique. In this section
we evaluate an implementation of this technique. The implementa-
tion we simulate is based on the mechanism we detailed in
section 4. In this implementation, the MDPT and MDST are com-
bined into a single structure where each MDPT entry carries as
many MDST entries as there are stages. This implementation
allows us to support multiple dependences per static store or static
load as we explained in section 4. However, with this organization,
only a single synchronization entry is allowed per static depen-
dence and per stage. The simulated structure is a centralized, fully
associative resource that provides as many ports as need for a par-
ticular Multiscalar processor conliguration. For prediction pur-
poses, each entry contains a 3-bit up-down saturating counter
which takes on values 0 through 7. The predictor uses a threshold
value of 3 for prediction; values less than the threshold predict no
dependence, and values greater than or equal predict dependence
and consequent synchronization. We also maintain LRU informa-
tion for purposes of replacement. An entry within the table may be
allocated speculatively without cleanup if bogus, but updates to the
prediction mechanism within an entry only occur non-specula-
tively when a stage commits. To distinguish between instances of
the same static dependence we use a variation of the instance dis-
tance scheme which we discussed in section 3. In this scheme we
approximate the instance numbers via the use of stage identifiers
which are statically assigned to each stage. A load that is forced to
synchronize on multiple dependences is allowed to execute only
after all of them are satisfied. All simulation runs are performed
for the Multiscalar processor configurations described earlier, and
unless otherwise noted, the MDPT/MDST structure we simulate
has 64 entries.

The results presented in this section are in support of a new con-
cept. Consequently, our primary goal is to demonstrate the utility
of the proposed mechanism. Though a thorough evaluation of the
design space is highly desirable, it is not possible to include in this

paper since the design space is vast, and the simulation method
that is necessary (instruction driven, timing simulation) is
extremely time consuming.

Even though we do not attempt an exhaustive evaluation of the
design space, we do simulate two different dependence predictors
which we refer to as (i) SYNC and (ii) ESYNC (the “E” is for
enhanced). SYNC is our baseline predictor that uses an up/down
saturating counter (as described in the beginning of this section),
ESYNC, in addition to the up/down counter, also records for each
dependence the PC of the task that issued the corresponding store
instruction. Synchronization is enforced on a load thnt matches n
MDPT entry only if the task PC of the stage at distance DIST (as

recorded in the MDST entry) matches the task PC recorded in the
predictor. This enhancement targets loads that have multiple static
dependences which occur via different execution paths. In this
case, the load does not have to wait for all the dependenccs, only
for the dependence that lies on the proper execution path, HOW-

ever, since the task PC represents only minimal control path infor-
mation, this predictor may fall short of its goal under some
circumstances.

In the rest of this section, we first present and discuss results on
the SPECint92 programs. We report the accuracy of the dcpcn-
dence prediction mechanism, the m&speculation rate, and the per-
formance improvement obtained. The speedups reported are
relative to blind speculation (policy ALWAYS of section 5.4),
which is the policy currently implemented in several modern pro-

cessors. We later present and discuss results on the SPEC95 pro-

grams. For the latter programs, we report only performance
numbers (due to space limitations).

In table 8, we report the breakdown of the dynamic dependcncc
predictions for the SPECint92 programs. Since a load on which a
dependence prediction is made may not necessarily have a depcn-
dence, a single number cannot be used to describe the accuracy of
dependence prediction (in contrast to what is possible in control
prediction). Instead, a dependence prediction has to be classified
into one of four possible categories depending on whether a dcpcn-
dence is predicted and on whether a dependence actually exists. In
the results shown, we count the dependence predictions done on
loads that were either committed or have been issued from tasks
that were squashed as a result of a dependence mis-speculation
(we do not count predictions on loads that were squashed for other
reasons). Predictions are recorded only once per dynamic load and
at the time the load is ready to access the memory hierarchy. Fur-
thermore, for those loads on which a dependence is predicted, the
prediction is recorded after we have checked the synchronization
entries for the first time. That is, in the case when a dependcncc is
predicted, we count a “no dependence” outcome if a pm-existing,
matching, synchronization entry allows the load to continue CXCCU-

tion without delay, otherwise we count a “dependence” outcome.
A dependence prediction is correct when the predicted and the
actual outcomes are the same (rows ‘NAr” and “Y/y”), otherwise
the prediction is incorrect (rows ‘N/y” and “Y/N”), An incorrect
dependence prediction may result in mis-speculation (“N/Y”), or it
may u~ece.ssary delay the load (“Ym”). We will refer to the latter
predictions as false dependence predictions.

In table 9, we report how the mis-speculation frequency
(defined as the numberof m&peculations over c&d-loads)
imoroves when the nronosed mechanism is in place for 4 and 8
stage configurations~ In nearly all cases, the -proposed predic-
tion/synchronization mechanism reduces the number of mis-spcc-
ulations by an order of magnitude. Furthermore, mis-speculations
are typically reduced to less than 1% of useful loads, However,
note that a decrease in the number of m&speculations does not
necessarily translate directly into a proportionate increase in pcr-
formance (after all, if we did not use speculation, the mis-spcculn-

Figure 7. Pe~ormance of our data dependence speculation mechanism for the SPEC95programs. We simulate an S-stage Multiscalar
processor and we report speedups relative to blind speculation (policy AL.WAYS)for the ESYNC predictor andforperfect depen-
dence speculation (policy PSYNC). Along the X-axis we report the IPC obtained when the ESYNCpredictor is in use.

r P/A compress esprtTs0 SC SC Xl&p

NIN 81.62 98.62 95.56 91.19 95.99

0 NN 0.18 0.02 1.38 0.26 0.08

YN 13.81 1.33 2.61 2.28 3.92

N/N 73.60 95.52 93.60 95.00 94.99

NN 0.15 0.20 1.65 0.62 0.08

YIN 4.95 0.18 1.61 0.26 0.14 t
H YN 21.31 4.09 3.15 4.11 4.19

2
A NIN 19.51 9.554 94.85 95.35 95.12

2 NN 0.07 0.05 1.48 0.66 0.00

0.00 0.07 0.09 0.04 0.01

YN 20.37 4.34 3.58 3.95 4.81
L

Table 8. Dependence prediction breakdown (%). ‘N” and “Y”
standfor “No dependence” and “Dependence” respec-
tively, whereas “P/A ” stands for “PredictetiActual”.

Table 9. Mis-speculations per committed load

tion rate would be zero). The main cause is twofold. First, the
synchronized instructions may only represent a shift of cycles
from time lost due to r&-speculations, to stall time in the overall
picture of execution. That is, even though a load is not mis-specu-
lated, there may be little other work to do while the load is waiting
to synchronize. Second, false dependence predictions may impose
unnecessary delays.

In figure 6, we show how the performance varies when our
mechanism is in place, as compared to the base case Multiscalar
processor that speculates all loads as early as possible (policy
ALWAYS of figure 5). For almost all cases, the proposed mecha-

m-SYNC q E&Y& Cl PSYNC

Figure 6. Pe$ormance of our data dependence speculation
mechanism on the SPECint92 programs. Speedups [?40) are
relative to policy ALWAYS.

nism with the ESYNC predictor, not only improves performance,
but also performs close to what is ideally possible @SYNC col-
umns). The SYNC predictor also improves performance for most
of the programs. However the SYNC predictor never outperforms
the ESYNC predictor. The SYNC predictor also offers virtually no
performance improvement (over blind speculation) for compress
and SC in the Cstage configuration. Furthermore, performance deg-
radation is observed for compress on the g-stage configuration.
False dependence predictions (“YN” marked rows in table 8) are
responsible for this poor behavior. The counter based SYNC pre-
dictor fails to capture the data dependence patterns exhibited by
this program. The ESYNC predictor, however, is able to success-
fully capture these patterns, since the dependences occur only via
specific execution paths. There are two causes for the marked
improvement demonstrated for espresso: (i) the average, dynamic
task size is about 100 instructions, and (ii) most of the mis-specu-
latlons are the result of simple recurrences that occur most of the
time (note however that the memory locations involved are often
accessed via pointers). Consequently, for this program, the cost of
r&-speculations is relatively high, whereas, even a simple
up/down counter based predictor can capture the dynamic behavior
of the most important dependences.

In figure 7, we report the performance results for the SPEC95
programs on an &stage Multiscalar processor. Along the X-axis
we report the IPC obtained when our data dependence specula-
tion/synchronization is used. The ESYNC bars represent the
speedup obtained relatively to blind speculation (policy ALWAYS
of section 5.4), whereas the PSYNC marked bars represent the
speedup possible when ideal speculation and synchronization is
used (policy PSYNC of section5.4). Overall, our dependence
speculation/synchronization mechanism improves performance,
often significantly, for almost all the programs studied. Further-

more, our mechanism quite often performs close to what is ideally
possible for the given configuration.

For the SPECint95 programs, the potential performance
improvement is appreciable, ranging from 5% to almost 40%. For
l24.m88ksim, 129.compress, and 13O.li, our mechanism performs
comparably to the idea1 mechanism. Though the mechanism does
not perform as well for 132.ijpeg, 134.per1, and 147.vortex, it does
capture a significant amount of the gain that is possible. Neverthe-
less, both 099.go and 126.gcc fall short of this potential as com-
pared to the ideal dependence speculation. The dependence
patterns of these programs are quite irregular and exhibit relatively
poor temporal locality as compared to the other programs. In par-
ticular, the performance of 099.go is limited by poor control pre-
diction (even with the fairly sophisticated control prediction
scheme used) and instruction supply.

For the SPECfp95 programs, most of the dependences we cap-
ture are loop recurrences. However, for 145.fpppp and 103.su2cor
our mechanism is unable to synchronize some of the dependences.
For these two programs, the size of the working set of dynamic
dependences exceeds the capacity of our dependence prediction
structures. Closer examination reveals that the instruction window
established by 145.fpppp can grow to be as large as a few thousand
instructions. (Most of the time is spent in a loop whose iterations
execute each around 1000 instructions. with the greedy task parti-
tioning policy currently used by the Multiscalar compiler, each
iteration executes as a single task.) Tasks of similar size are also
experienced in part of 103.su2cor. With the given instruction win-
dow size, it is no surprise that the working set of dependences is
quite large. Increasing the size of the dependence prediction struc-
tures or breaking up each iteration to several tasks are two possible
solutions. For lOl.tomcatv and llO.applu, our mechanism per-
forms very close to what is ideally possible. Our mechanism is
also able to synchronize dependences that would otherwise cause
performance degradation for 141,apsi and 146.wave5, but to a
lesser extent. It should be noted that we simulated the first 2.8 bil-
lion instructions for lOl.tomcatv and 146.wave5. Performance
improves when these programs are simulated to completion. For
example, at 10 billion instructions, the IPC for lOl.tomcatv with
the ESYNC mechanism is 5.68, whereas the IPC for 146.wave5 at
completion (6.4 billion instructions) is 3.79. For lOZswim,
104.hydro2d, 107.mgrid, and 125.turb3d, there is little to be
gained from dependence speculation and synchronization for the
given configuration. For those programs, some other part of the
processor (for example the functional units or the memory system)
is saturated.

6 Implications and Conclusions

We make the following contributions in this paper:

l We demonstrate that, as the dynamic window sizes get larger,
the net performance loss due to data dependence mis-specula-
tions becomes significant.

l We identify three possible directions ,tiat can be followed to
minimize this performance loss: (1) minimizing the work lost
on mis-speculation, (2) minimizing the time required to redo
this work, and (3) improving the accuracy of speculation.

l We observe that the static data dependences that are responsi-
ble for the majority of mis-speculations are few and dynami-
cally exhibit temporal locality. The latter observation applies
even when all dependences visible from within the dynamic
instruction window are considered.

l We propose the concept of dynamic dependence prediction and
synchronization and use it to reduce the net performance loss
due to data dependence mis-speculation. We also identify the

key issues involved in designing such data dependence spccu-
lation structures.

l We describe a microarchitectural technique that can be used to
implement dynamic data dependence prediction and synchro-
nization. Further, we demonstrate that for a specific 000 pro-
cessor this technique can provide significant performance
improvements. We finally identify most of and address some of
the key design issues.

Our experimental results confirm the efficacy of the technique
we propose. However, since this work introduces a new concept,
we were not able to do a thorough evaluation of the design space
and to explore many alternatives and other possible applications of
the proposed technique. We believe that this fact does not diminish
the importance of our results and observations. In our opinion, this
work represents only a first step towards improving the accuracy of
data dependence speculation and towards using dynamic dcpen-
dence speculation and synchronization. Several directions for
future research exist in improving the mechanisms we presented,
in using the proposed technique in other processing models, nnd in
using data dependence speculation in ways different than those WC

have discussed.

Though we have worked with memory dependences, the pro-
posed techniques are general and applicable to a range of other
uses of data speculation. Such uses include register depcndenccs
(this is mostly relevant to multiple program counter exccudon
models such as MuItiscalar) and value prediction (for example ifl a
data speculation approach that uses value prediction only when
dependences are likely to exist). We also believe that exposing the
dependence prediction (MDPT) and/or the synchronization
(MDST) structures to the compiler (perhaps via ISA extensions)
opens new possibilities for statically orchestrated dependence
speculation. (For example the synchronization variables can be
allocated by the compiler to enforce synchronization of unamblgu-
ous dependences, whereas the prediction can be probed by the pro-
gram during run-time to make on-the-fly decisions on when and
which dependences to speculate.)

Even though in this work we considered fairly simple depcn-
dence predictors, any of the plethora of predictors used for branch
prediction may be used, with appropriate modificadons, IO

improve the accuracy of dependence prediction. Further improve-
ment of our mechanisms may be possible by considering altcrna-
tive dependence tagging schemes and synchronization primitives,
Furthermore, it would be interesting to consider integrating the
dependence prediction and synchronization structures with other
components of the processor (for example, we may implement the
synchronization functionality in the data cache or in a similar
structure so that both the data and the necessary synchronization
are provided from the same structure).

The techniques we proposed are applicable to processing mod-
els other than Multiscalar. However, further study is necessary,
since differences in the instruction window size and in the grnnu-
larity of checkpointing may influence the relative pcrformanco of
various dependence speculation and synchronization schemes, WC
maintain that as ILP processors continue to become more aggrcs-
sive, the use of data speculation will become even more wldc-
spread, and techniques (especially dynamic ones) to improve the
accuracy of data dependence speculation, such as those proposed
in this paper, will become important.

Acknowledgments
This work was supported in part by NSF Grants CCR-9303030

and MIP-9505853, ONR Grant NOO014-93-l-0465, and by US.
Army Intelligence Center and Fort Huachuca under Contract

192

DABT63-95-C-0127 and ARPA order no. D346. The views and
conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the U. S. Army
Intelligence Center and Fort Huachuca, or the U.S. Government.

We thank Jim Smith, Todd Austin, Andy Glew, Sridhar Gopal,
Stefanos Kaxiras, and Dionisios Pnevmatikatos for their valuable
comments and suggestions on this work.

References

PI

[31

[41

El

M

171

p31

[91

[lOI

[ill

WI

1131

[I41

[ISI

t161

u71

[lsl

D91

PO1

[211

R. Allen and K. Kennedv. Automatic Translation of FORTRAN Proarams to
Vector Form. ACM T&ktions on Programming Languages and&stems,
9(4):491-%52,Oct 1987.

U. Banejee. Dependence Analysis for Supercomputing. Boston, MA: Kluwer
Academic Publishers, 1988.

S. E. Breach, T. N. Vijaykumar, and G. S. Sohi. The anatomy of the register file
in a multiscalar processor. In Proc. of the 27th Annual International Symposium
on Microarchilecmre, pages 181-190, Dec. 1994.

B. Case. WI&s ncufor Microprocessor Design. Microprocessor Report, Oct.
1995.

J. R. Ellis. Bulldog: A Compilerfor VLIWArchi~ectures. Ph.D. thesis, Yale Uni-
versity, Feb. 1985.

M. Emami, R. Ghiya, and L. J. He&en. Context-sensitive interprocedural
points-to analysis in the presence of function pointers. In Proc. SlGPL4N ConJ
on Programming Language Design and Implementation, pages 242-256, June
1994.

M. Franklin. The MuKscaLzrArchitecture. Ph.D. thesis, University of Wiscon-
sin-Madison, Madison, WI 53706, Nov. 1993.

M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dynamic Mem-
ory Disambiguation. IEEE Transacrions on Computers, 45(5):552-571, May
1996.

D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu.
Dynamic Memory Disambignation Using the Memory Conflict Buffer. In Proc.
ASPLOS VI, pages 18s193. Oct. 1994.

A. S. Huang. G. Slavenburg, and J. P. Shen. Speculative disambiguation: A
compilation technique for dynamic memory disambiguadon. In Proc. 2Isl An-
nual Symposium on CompurerArchitecrure, pages 200-214 May 1994.

D. Hunt. Advanced performance features of the 64-bit PA-8000. In IEEE
CompCon, pages X23-128.1995.

PowerPC 620 RISC Microprocessor Technical Summary, IBM Order number
MPR62OTSU-01, Motorola Order Number MPC62O/D. Oct. 1994.

Q. Jacobson, S. Bennett, N. Sharma, and J. Smith. Control Flow Speculation in
Multiscnlar Processors. In Proc. 3rd Annual Inrernarional Symposium on
High-Perfomumce CompurerArchitecrure, Feb. 1997.

J. Keller. ?he 21264: A Superscalar Alpha Processor with Out-of-Order Execu-
tion. DigirOl Equipment Corp., Hudson, MA, Oct. 1996.

M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction.
In Proc. of Ihe 29th Annunf Inrernutionul Symposium on Microorchitecture,
Dec. 1996.

S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker. Sen-
tinel scheduling for VLlW and superscalar processors. In Proc. ASPUX V,
1992.

A. L Moshovos, S. E Breach, T. N. Vijaykumar, and G. S. Sohi. A dynamic ap-
preach to improve the accuracy of data speculation. Technical Report 1316,
Computer Sciences Dept, University of Wiicomin-Madison, March 1996.

A. Niwlau. Run-time disambiguation: Coping with statically unpredictable de-
pendencies. IEEE Tmnsactions on Computers, 38(5):663-678, May 1989.

A. Sodani and G. S. Sohi. Dynamic Instruction Reuse. In Proc. 24th Inr. Sympo-
sium on Computer Architecture, June 1997.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Muhiscahupnxessots. In Proc.
22ndInt. Symposium on Computer Architecture, pages 414-425, June 1995.

R. P. Wilson and M. S. Lam. Efficient Context-Sensitive Pointer Analysis for C
Programs. In Pmt. SIGPLAN ConJ on Programming Language Design and Im-
plementation. pages l-12, June 1995.

193

