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Abstract 

Data dependence speculation is used in instruction-level 
parallel (ILP) processors to allow early execution of an 
instruction before a logically preceding instruction on which it 
may be data dependent. If the instruction is independent, data 
dependence speculation succeeds; if not, it fails, and the two 
instructions must be synchronized. The modern dynamically 
scheduled processors that use data dependence speculation do so 
blindly (i.e., every load instruction with unresolved dependences is 
speculated). In this papen we demonstrate that as dynamic 
instruction windows get large< significant performance benefits 
can result when intelligent decisions about data dependence 
speculation are made. We propose dynamic data dependence 
speculation techniques: (i) to predict tf the execution of an 
instruction is likely to result in a data dependence 
mis-specularion, and (ii) to provide the synchronization needed to 
avoid a mis-speculation. Experimental results evaluating the 
effectiveness of the proposed techniques are presented within the 
context of a Multiscalarprocesson 

1 Introduction 

Speculative execution is an integral part of modem ILP proces- 
sors, be they statically- or dynamically-scheduled designs. Specu- 
lation may take two forms: control speculation and data 
speculation. Control speculation implies the execution of an 
instruction before the execution of a preceding instruction on 
which it is control dependent. Data speculation implies the execu- 
tion of an instruction before the execution of a preceding instruc- 
tion on which it may be or is data dependent. 

To date, much attention has been focused on control specula- 
tion. This outlook is natural because control speculation is the first 
step. Control speculation (or some equivalent basic block enlarge- 
ment technique such as if-conversion with predicated execution) is 
required if we want to consider instructions from more than one 
basic block for possible issue. Given the sizes of basic blocks, the 
need to go beyond a basic block became apparent some time ago, 
and several techniques to permit control speculation were devel- 
oped, both in the context of statically- and dynamically-scheduled 
machine models. Improving the accuracy of control speculation 
(especially dynamic techniques) via the use of better branch pre- 
diction has been the subject of intensive research recently; a pleth- 
ora of papers on dynamic and static branch prediction techniques 
havebeenpublished. 

Data speculation has not received as much attention as control 
speculation. The two forms of data speculation that have received 
some attention are data & speculation and data denendence 
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speculation. In data value speculation an attempt is made to pre- 
dict the data value that an instruction is going to produce [15,19]. 
In data dependence speculation, no explicit attempt is made to pre- 
dict data values. Instead, a prediction is made on whether the input 
data value of an instruction has been generated and stored in the 
corresponding named location (memory or register). 

Most of the research on data dependence speculation has 
focused on ensuring correct execution while carrying out this form 
of speculation [8,9,10,18] and on static dependence analysis 
techniques [1,2,5,6,21]. So far, no attention has been given to 
dynamic techniques to improve the accuracy of data dependence 
speculation. This is because in the small instruction window sizes 
of modem dynamically scheduled processors [12,11,14], the prob- 
ability of a r&-speculation is small, and furthermore, the net per- 
formance loss that is due to erroneous data dependence 
speculation is small. 

In this paper, we argue that as dynamically-scheduled ILP pro- 
cessors are able to establish wider instruction windows, the net 
performance loss due to erroneous speculation can become signif- 
icant Accordingly, we are concerned with dynamic techniques for 
improving the accuracy of data dependence speculation while 
maintaining the performance benefits of aggressive speculation. 
We propose techniques that attempt: (i) to predict those instruc- 
tions whose immediate execution is going to violate a true data 
dependence, and (ii) to delay the execution of those instructions 
only as long as is necessary to avoid the r&-speculation. A pre- 
liminary evaluation’ of the ideas presented in this paper was first 
reported in [ 171. 

The rest of this paper is organized as follows: First, in section 2 
we review data dependence speculation and discuss how it affects 
IL.P execution. Then in section 3, we discuss the components of a 
method for accurate and aggressive memory data dependence 
speculation, while in section 4, we present an implementation 
framework for this method. In section 5, we provide experimental 
data on the dynamic behavior of memory dependences and present 
an evaluation of an implementation of the method we propose 
within the context of a Multiscalar processor [3,4,7,20]. Finally, in 
section 6 we list what, in our opinion, are the contributions of this 
work and offer concluding remarks. In the discussion that follows 
we are concerned with data dependence speculation; accordingly, 
we use the terms data dependence speculation, data speculation, 
and speculation interchangeably. 

2 Data Dependence Speculation 

Programs are written with an implied, total order. As a program 
executes, data values are produced and consumed by its instruc- 
tions. These values are conveyed from the producer to the con- 
sumer by binding the value to a named storage location, namely 
registers and memory. 

An ILP or other parallel machine, takes a suitable subset of the 
instructions (an instruction window) of a program and converts the 
total order within this subset into a partial order. This is done so 
that instructions may execute in parallel and/or in an execution 
order that might be different from the total order. The shape of the 
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Figure 1. Data dependence speculation examples. Arrows indicate dependences. Dependences through memory are marked with 
diamonds. Dotted arrows indicate ambiguous dependences that are resolved to no dependence during execution. 

partial order and the parallelism so obtained are heavhy influenced 
by the dependences that exist between the instructions in the total 
order. Dependences may be unambiguous (i.e., an instruction con- 
sumes a value that is known to be created by an instruction preced- 
ing it in the total order) or ambiguous (i.e., an instruction 
consumes a value that may be produced by an instruction preced- 
ing it in the total order). During execution, an ambiguous depen- 
dence gets resolved to either a true dependence, or to no 
dependence. 

To maintain program semantics, a producer/consumer instruc- 
tion pair that is linked via a true dependence has to be executed in 
the order implied by the program. However, any execution order is 
permissible if the two instructions are linked via an ambiguous 
dependence that gets resolved to no dependence. This latter case 
represents an opporhmity for parallelism and hence for higher per- 
formance. Unfortunately, the mere classification of a dependence 
as ambiguous implies the inability to determine whether a true 
dependence exists without actually executing the program. It is for 
this reason that ambiguous dependences may obscure some of the 
parallelism that is available. This problem is most acute in the case 
where the production and consumption of data is through memory. 
Thus, in this paper, we restrict our discussion to memory depen- 
dences even though all the concepts we present could easily be 
applied to the speculation of register dependence.% 

To expose the parallelism that is hindered by ambiguous depen- 
dence& data dependence speculation may be used. In data depen- 
dence speculation, a load is allowed to execute before a store on 
which it is ambiguously dependent. If no true dependence is vio- 
lated in the resulting execution, the speculation is successful. If, 
however, a true dependence is violated, the speculation is errone- 
ous (i.e., a mis-speculation). In the latter case, the effects of the 
speculation must be undone. Consequently, some means are 
required for detecting erroneous speculation and for ensuring cor- 
rect behavior. Several mechanisms that provide this functionality, 
in either software and/or hardware, have been 
proposed [7,8.9,10,16,18]. 

Though data dependence speculation may improve performance 
when it is successful, it may as well lead to performance degrada- 
tion because a penalty is typically incurred on mis-speculation. 
Consequently, to gain the most out of data dependence speculation 
we would like to use it as aggressively as possible while keeping 
the net cost of mis-speculation as low as possible. 

The modem dynamically-scheduled processors that use dam 
dependence speculation [11,12,14] do so blindly (i.e., a load is 
speculated whenever possible). No explicit attempt is made to 
reduce the net cost of m&peculation. The reasons are simply that, 

in this environment, mis-speculations are extremely infrequent, 
and the cost incurred on mis-speculation is low. Both phenomena 
are directly attributable to the window sizes that these processors 
can establish (these are limited to a few tens of instructions in the 
best case). As window sizes grow larger, however, WC argue that 
minimizing the net cost of mis-speculation becomes important. 
Under these new conditions, the mis-speculations become mom 
frequent, and the cost of mis-speculations becomes relatively high. 

To minimize the net cost of mis-speculation, while maintaining 
the performance benefits of speculation, we may attempt: (i) to 
minimize the amount of work that is lost on mis-speculation, (ii) to 
reduce the time required to redo the work that is lost on mis-specu- 
lation’, or (iii) to reduce the probability of m&peculation (or, in 
other words, to reduce the absolute number of mis-speculations), 
In this work we pursue the third alternative. We elaborate on this in 
the next section. 

3 Components of a Solution 

The ideal data dependence speculation mechanism not only 
avoids n&speculations completely, but also allows loads to CXC- 
cute as earIy as possible. That is, loads with no true dependcnccs 
(within the instruction window) execute without delay, whereas 
loads that have true dependences are allowed to execute only after 
the store (or the stores) that produces the necessary datn has CXC- 
cuted. Equivalently, loads with true dependences are synchronized 
with the store (or the stores) they depend upon. It is implied that 
the ideal data dependence speculation mechanism has perfect 
knowledge of all the relevant data dependence% 

An example of how the ideal dependence speculation mecha- 
nism affects execution is shown in figure 1. In part (b), WC show 
how the code sequence of part (a) may execute under ideal dnta 
dependence speculation as compared to when speculation is used 
blindly, part (c). The example code sequence includes two store 
instructions, ST-7 and S%2, that are followed by two load instruc- 
tions, LD-1 and LD-2. Ambiguous dependences exist among thcsc 
four instructions as indicated by the diamond marked arrows. Dur- 
ing execution, however, only the dependence between S%f and 
LD-7 is resolved to a true dependence (as indicated by the continu- 
ous arrow). Under ideal dependence speculation, LD-2 is executed 
without delay, whereas LD-7 is forced to synchronize with SFf. 

In contrast to what is ideally possible, in a real implementation, 
the relevant data dependences are often unknown. Therefore, if WC 

are to mimic the ideal data dependence speculation mechanism, 
we have to attempt: (i) to predict whether the immediate execution 

1. One such technique is Dynamic Instruction Reuse [13]. 



of a load is likely to violate a true data dependence, and if so, (ii) to 
predict the store (or stores) the load depends upon, and, (iii) to 
enforce synchronization between the dependent instructions. How- 
ever, since thls scheme seems elaborate, it is only natural to 
attempt to simplify it. One possible simplification is to use selec- 
tive data dependence speculation, i.e., carry out only the first part 
of the (ideal) 3-part operation. In this scheme the loads that are 
likely to cause mis-speculation are not speculated. Instead, they 
wait until the data addresses of all preceding stores, that have not 
yet executed, are known to be different; explicit synchronization is 
not performed. c;Ve use the term selective data dependence specu- 
lation to signify that we make a decision on whether a load should 
be speculated or not. Loads with dependences are not speculated at 
all, whereas loads with no dependences can execute freely. In con- 
trast, in ideal dependence speculation, we make a decision on 
when is the right time to speculate a load.) An example of how 
selective speculation may affect execution is shown in part (d) of 
figure 1. In this example, NJ-2 is speculated, whereas LD-1 is not, 
since the prediction correctly indicates that M-2 has no true depen- 
dences while ILL? does. However, with this scheme, and due to the 
lack of explicit synchronization, a load may be delayed more than 
necessary (LB-I waits for S%2 also). In practice, and as we demon- 
strate in the evaluation section, selective data dependence specula- 
tion can lead to inferior performance when compared to blind 
speculation (part (c) of figure 1) even when perfect prediction of 
dependences is assumed. Even though other simplifications to the 
3-part ideal operation may be possible, in this paper we restrict our 
attention to dependence speculation schemes that attempt to mimic 
the ideal data dependence speculation system. We do so because 
our primary goal is to demonstrate the potential of dynamic depen- 
dence speculation and synchronization mechanisms, rather than to 
perform a thorough evaluation of a variety of mechanisms. 

To mimic the ideal data dependence speculation system, we 
need to implement all the 3 components of the ideal system as 
described before. That is, we must: (i) dynamically identify the 
store-load pairs that are likely to be data dependent (i.e., the 
dependences that are likely to cause n&s-speculation), (ii) assign a 
synchronization mechanism to dynamic instances of these depen- 
dences, and (iii) use this mechanism to synchronize the store and 
the load instructions. 

Dynamically tracking all possible ambiguous store-load pairs is 
not an option that we consider desirable, or even practical. Fortu- 
nately, our empirical observations suggest that the following phe- 
nomena exists: the static store-load instruction pairs that cause 
most of the dynamic data mis-speculations are relatively few and 
exhibit tempoml locality (we present empirical evidence in 
section 5). That is, at any given time, different dynamic instances 
of a few static store-load pairs, either operating repeatedly on the 
same memory location (scalar variable) or operating on different 
memory locations, account for the majority of the mis-specula- 
tions. This observation suggests that we may use past history to 
dynamically identify and track such store-load pairs, and cache 
this information in a storage structure of reasonable size. The 
remaining issue is by what means to synchronize the store-load 
pair. 

An apt method of providing the required synchronization 
dynamically is to build an association between the store-load 
instruction pair. Suppose this (dynamic) association is a condition 
variable on which only two operations are defined: wait and signal, 
which test and set the condition variable respectively. These opera, 
tions may be logically incorporated into the dynamic actions of the 
(dependent) load and store instructions to achieve the necessary 
synchronization. 

The above concept is illustrated in the example of figure2 

Condition Variable 

Figure 2. Synchronization example 
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Figure 3. Example code sequence that illustrates that multiple 
instances of the same static dependence can be active in 
the current instruction window. In parts (b), (c), and (d), 
the relevant store and load instructions from four 
iterations of the loop of part (a) are shown. 

where we assume that some means exist to dynamically associate 
store-load instruction pairs with condition variables (we discuss 
these means later in this section). As shown in part (a), an earlier 
mis-speculation results in the association of a condition variable 
with a subsequent dynamic instance of the offending store-load 
instruction pair. With the condition variable in place, consider the 
sequence of events in the two possible execution sequences of the 
load and store instructions. In part (b), the load is ready to execute 
before the store. However, before the load executes, it tests the 
condition variable; since the test of the condition variable fails, the 
load waits. After the store executes, it sets the condition variable 
and signals the waiting load, which subsequently continues its exe- 
cution as shown. No mis-speculation is observed, and the sequen- 
tial order is preserved. In part (c), the order of execution is a store 
followed by a load. After the stores executes, it sets the condition 
variable and records a signal for the load. Before the load executes, 
it tests the condition variable; since the test of the condition vari- 
able succeeds, the load continues its execution as shown (the con- 
dition variable is reset at this point). One may wonder why 
synchronization is provided even when the execution order follows 
the program order (i.e., store followed by load). This scenario rep- 
resents the case where the dependence prediction correctly indi- 
cates that a dependence exists but fails to detect that the order of 
execution has changed (most likely in response to external events 
whose behavior is not easy or desirable to track and predict, such 
as cache misses or resource conflicts). Synchronization is desirable 
even in this case since, otherwise, the load will be delayed unnec- 
essarily. 

Once condition variables are provided, some means are required 
to assign a condition variable to a dynamic instance of a store-load 
instruction pair that has to be synchronized. If synchronization is 
to occur as planned, the mapping of condition variables to dynamic 
dependences has to be unique at any given point of time. One 
approach is to use just the address of the memory location 
accessed by the store-load pair as a handle. This method provides 
an indirect means of identifying the store and load instructions that 
are to be synchronized. Unless the store location is accessed only 
by the corresponding store-load pair, the assignment will not be 
unique. 

Alternatively, we can use the dependence edge as a handle. The 
dependence edge may be specified using the (full or part of) 
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instruction addresses (PCs) of the store-load pair in question. 
Unfortunately, as exemplified by the code sequence of ligure 3 
part (b), using this information may not be sufficient to capture the 
actual behavior of the dependence during execution; the pair 
(PCsp PC,) matches against all four edges shown even though 
the dotted ones should not be synchronized. A static dependence 
between a given store-load pair may correspond to multiple 
dynamic dependences, which need to be tracked simultaneously. 

To distinguish between the different dynamic instances of the 
same static dependence edge, a tag (preferably unique) could be 
assigned to each instance. This tag, in addition to the instruction 
addresses of the store-load pair, can be used to specify the dynamic 
dependence edge. In order to be of practical use, the tag must be 
derived from information available during execution of the corre- 
sponding instructions. A possible source of the tag for the depen- 
dent store and load instructions is the data address of the memory 
location to be accessed, as shown in figure 3 part (c). An alternate 
way of generating instance tags is shown in figure 3 part (d), where 
dynamic store and load instruction instances are numbered based 
on their PCs2. The difference in the instance numbers of the 
instructions which are dependent, referred to as the dependence 
distance, may be used to tag dynamic instances of the static depen- 
dence edge3 (as may be seen for the example code, a dependence 
edge between ST1 and LDitiistance is tagged - in addition to the 
instruction PCs - with the value i-t-distance). Though both tagging 
schemes strive to provide unique tags, each may fall short of this 

goal under some circumstances (for example, the dependence dis- 
tance may change in a way that we fall to predict, or the address 
accessed may remain constant across all instances of the same 
dependence). 

Since, our primary goal in this paper, is to introduce and evalu- 
ate novel mechanisms (and not to carry out a thorough analysis of 
a variety of options), we restrict our attention to the second scheme 
where the dependence distance is used to tag dependences. 

4 Implementation Aspects 

As we discussed in the previous section, in order to improve the 
accuracy of data dependence speculation, we attempt: (i) to predict 
dynamically, based on the history of mis-speculations, whether a 
store-load pair is likely to be mis-speculated and if so, (ii) to syn- 
chronize the two instructions. In this section, we describe an 
implementation framework for this technique. We partition the 
support structures into two interdependent tables: a Eemory 
dependence prediction Iable (MDPI’) and a semory dependence 
~nchronkation Iable (MDST). The MDPT is used to identify, 
through prediction, those instruction pairs that ought to be syn- 
chronized. The MDST provides a dynamic pool of condition vari- 
ables and the mechanisms necessary to associate them with 
dynamic store-load instruction pairs to be synchronized. In the dis- 
cussion that follows, we first describe the support structures and 
then proceed to explain their operation by means of an example. 

We present the support structures as separate, distinct compo- 
nents of the processor. We do so, since we believe that the crux of 

2. At this point we are not concerned with mechanisms that implement this func- 
tionality. However, note that only the difference between the instance numbers is 
relevant and not the absolute values. As we explain in the evaluation section, in 
Multiscalar we can approximate the instance numbers by using statically assigned 
stage identifiers. In a superscalar environment we may use a small associative 
pool of counters. Load and storeinstructions can then benumbered based on their 
PC as they are issued. To support invalidations due to mis-speculation, these 
counters will have to he treated as registers. Alternatively. a load (store) that has 
to synchronize, may perform a backward (forward) scan through the instruction 
window attempting to locate the appropriate store (load) instruction. 

3. To aid understanding, this scheme can be viewed as a dynamic, run-time imple- 
mentation of the linear recurrence dependence analysis done by compilers. 
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the proposed tcchniquc is hcttcr dcscrihcd when the support struc- 
lures arc considered in this fashion. Howcvcr, it is possible nnd 
probably desirable in an actual implementation, to combine the 
prediction and the synchronization structures and/or to integrate 
them with other components of the processor. For example, a sim- 
ple extension is to provide the synchronization functionality in the 
data cache or some other similar storage structure, so that both the 
data and the necessary synchronization are provided at the same 
point. Later in this paper, we describe the implementation of a sin- 
gle structure that provides both dependence prediction and syn- 
chronization and discuss its advantages and its limitations, 
However, since our goal is to demonstrate the utility of the pro- 
posed technique, we do not consider further integration or any 
other implementations. 

4.1 MDPT 

An entry of the MDPT identifies a static dependence nnd pro- 
vides a prediction as to whether or not subsequent dynamic 
instances of the corresponding static store-load pair will result in n 
r&-speculation (i.e., should the store and load instructions be syn- 
chronized). In particular, each entry of the MDPT consists of the 
following fields: (1) valid flag (V), (2) load instruction address 
(LDPC), (3) store instruction address (SIX), (4) dependence dis- 
tance (DIST), and (5) optional prediction (not shown in any of tho 
working examples). The valid flag indicates if the entry 1s cur- 
rently in use. The load and store instruction address fields hold the 
program counter values of a pair of load and store instructions, 
This combination of fields uniquely identifies the r&t& instruction 
pair for which it has been allocated. The dependence distance 
records the difference of the instance numbers of the store and load 
instructions whose n&-speculation caused the allocation of the 
entry (if we were to use the data address to tag dependence 
instances this field would not have been necessary). The purpose 
of the prediction field is to capture, in a reasonable way, the past 
behavior of m&speculations for the instruction pair in order to aid 
in avoiding future mis-speculations or unnecessary delays. Many 
options are possible for the prediction field (for example nn 
up-down counter or dependence history based schemes); a dlscus- 
sion is postponed until later in this section. The prediction field is 

optional since, if omitted, we can always predict that synchronizn- 
tion should take place. 

4.2 MDST 

An entry of the MDST supplies a condition variable and tho 
mechanism necessary to synchronize a dynamic instance of a static 
instruction pair (as predicted by the MDPI’). In particular, cnch 
entry of the MDST consists of the following fields: (1) valid flag 
(V), (2) load instruction address (LDPC), (3) store instruction 
address (SIX), (4) load identifier (LDID), (5) store identifier 
(STID), (6) instance tag (INSTANCE), and (7) full/empty flag 
(F/E). The valid flag indicates whether the entry is, or is not, in 
use. The load and store instruction address fields serve the same 
purpose as in the MDPT. The load and store identifiers have to 
uniquely identify, within the current instruction window, a 
dynamic instance of a load or a store instruction respectively. The 
exact encoding of this field depends on the implementation of the 
000 (cut-Qf-Qrder) execution engine (for example, in a superscn- 
lar machine that uses reservation stations we can USC the indox of 
the reservation station that holds the instruction as its LDID or 
SKID). The instance tag field is used to distinguish between differ- 
ent dynamic instances of the same static dependence edge (in tho 
working example that follows we show how to derive the value for 
this field). The full/empty flag provides the function of a condition 
variable. 
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Figure 4. Synchronization of memory dependences. 

4.3 Working Example 

The exact function and use of the fields in the MDF’T and the 
MDST are best understood by means of an example. In the discus- 
sion that follows we am using the working example of figure 4. For 
the working example, assume that execution takes place on a pro- 
cessor which: (i) issues multiple memory accesses per cycle from a 
pool of load and store instructions and (ii) provides a mechanism 
to detect and correct m&speculations due to memory dependence 
speculation. For the sake of clarity, we assume that once an entry is 
allocated in the MDFT it will always cause a synchronization to be 
predicted. 

Consider the memory operations for three iterations of the loop, 
which constitute the active pool of load and store instructions as 
shown in part (a) of the figure. Further, assume that ck/t+>pafent 
points to the same memory location for all values child takes. The 
dynamic instances of the load and store instructions are shown 
numbered, and the true dependences are indicated as dashed 
arrows connecting the corresponding instructions in part (a). The 
sequence of events that leads to the synchronization of the 
SE!-LD3 dependence is shown in parts (b) through (d) of the fig- 
ure. Initially, both tables are empty. As soon as a mis-speculation 
(STI-LD2 dependence) is detected, a MDPT entry is allocated, 
and the addresses of the load and the store instructions are 
recorded (action 1, part (b)). The DIST field of the newly allocated 
entry is set to 1, which is the difference of the instance numbers of 
ST1 and LD2 (1 and 2 respectively). As a result of the mis-specu- 
lation, instructions following the load are squashed and must be 
re-issued. We do not show there-execution of LD2. 

As execution continues, assume that the address of LD3 is cal- 
culated before the address of ST2. At this point, LD3 may specula- 
tively access the memory hierarchy. Before LD3 is allowed to do 
so, its instruction address. its instance number (which is 3), and its 
assigned load identifier (the exact value of LDID is immaterial) are 
sent to the MDPT (action 2, part (c)). The instruction address of 
LD3 is matched against the contents of all load instruction address 
fields of the MDPT (shown in grey). Since a match is found, the 
MDPT inspects the entry predictor to determine if a synchroniza- 
tion is warranted. Assuming the predictor indicates a synchroniza- 
tion, the MDPT allocates an entry in the MDST using the load 
instruction address, the store instruction address, the instance num- 

ber of LD3, and the LDID assigned to LD3 by the 000 core 
(action 3, part (c)). At the same time, the fullfempty flag of the 
newly allocated entry is set to empty. Finally, the MDST returns 
the load identifier to the load/store pool indicating that the load 
must wait (action 4, part (c)). 

When ST2 is ready to access the memory hierarchy, its instruc- 
tion address and its instance number (which is 2) are sent to the 
MDFT (action 5, part(d)). (We do not show the STID since, as we 
later explain, it is only needed to support control speculation.) The 
instruction address of ST2 is matched against the contents of all 
store instruction address fields of the MDPT (shown in grey). 
Since a match is found, the MDPT inspects the contents of the 
entry and initiates a synchronization in the MDST As a result, the 
MDFT adds the contents of the DIST field to the instance number 
of the store (that is, 2 + 1) to determine the instance number of the 
load that should be synchronized. It then uses this result, in combi- 
nation with the load instruction address and the store instruction 
address, to search through the MDST (action 6, part (d)), where it 
finds the allocated synchronization entry. Consequently, the 
full/empty field is set to full, and the MDST returns the load identi- 
fier to the load/store pool to signal the waiting load (action 7, part 
(d)). At this point, LD3 is free to continue execution. Furthermore, 
since the synchronization is complete, the entry in the MDST is 
not needed and may be freed (action 8, part(d)). 

If ST2 accesses the memory hierarchy before LD3, it is unnec- 
essary for LD3 to be delayed. Accordingly, the synchronization 
scheme allows LD3 to issue and execute without any delays. Con- 
sider the sequence of relevant events shown in parts (e) and (f) of 
figure 4. When ST2 is ready to access the memory hierarchy, it 
passes through the MDFT as before with a match found (action 2, 
part (e)). Since a match is found, the MDFT inspects the contents 
of the entry and initiates a synchronization in the MDST. However, 
no matching entry is found there since LD3 has yet to be seen. 
Consequently, a new entry is allocated, and its full/empty flag is 
set to full (action 3, part (e)). Later, when LD3 is ready to access 
the memory hierarchy, it passes through the MDPT and determines 
that a synchronization is warranted as before (action 4, part 0). 
The MDPT searches the MDST, where it now finds an allocated 
entry with the full/empty flag set to full (action 5, part (f)). At this 
point, the MDST returns the load identifier to the load/store pool 
so the load may continue execution immediately (action 6, part 
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(f)). It also frees the MDST entry (action 7, part (0). 

4.4 Issues 

We now discuss a few issues which relate to the implementation 
we have described. 

4.4.1 Intelligent Prediction 

Upon matching a MDPT entry, a determination must be made as 
to whether the instruction pair in question warrants synchroniza- 
tion. The simplest approach is to assume that any matching entry 
ought to be synchronized (i.e., the predictor field is optional). 
However, this approach may lead to unnecessary delays in cases 
where the store-load instruction pairs are mis-speculated only 
some of the time. Instead, a more intelligent approach may be 
effective. Any of the plethora of known methods (counters, voting 
schemes, adaptive predictors, etc.) used to provide the intelligent 
prediction of control dependences may be applied, with appropri- 
ate modifications, to the prediction of data dependences. Regard- 
less of the actual choice of mechanism, the prediction method 
ought to exhibit the quality that it strengthens the prediction when 
speculation succeeds and weakens the prediction when speculation 
fails. 

4.4.2 IncompIete Synchronization 

So far, it has been assumed that any load, that waits on the 
full/empty flag of an entry in the MDST, eventually sees a match- 
ing store that signals to complete the synchronization. Since an 
MDPT entry only provides a prediction, this expectation may not 
always be fulfilled. If this situation arises, the two main consider- 
ations are: (i) to avoid deadlock and (ii) to free the MDST entry 
allocated for a synchronization that will never occur. The deadlock 
problem is easily solved, as it is reasonable to assume that a load is 
always free to execute once all prior stores are known to have exe- 
cuted. At that point, the load identifier has to be send to the MDST 
where it is used to free the entry that was allocated for the particu- 
lar Ioad.The information recorded in the MDST entry can then be 
used to locate update the corresponding prediction entry in the 
MDPT 

Under similar circumstances to those described above, a store 
may allocate an MDST entry for which no matching load is ever 
seen. Since stores never delay their execution, there is no deadlock 
problem in this case. However, it is still necessary to eventually 
free the MDST entry. Unfortunately, we cannot de-allocate this 
entry when the store retires (recall that in section 3 we explained 
that we would like to synchronize a store-load pair when the pre- 
diction indicates that we should, even if the execution order does 
not violate the dependence). A possible solution is to free entries 
whose full/empty flag is set to full whenever an entry is needed 
and no table entries are not in use. Another possible solution is to 
allocate entries using random or LRU replacement, in which case 
entries are freed as needed. 

4.4.3 M&-speculations 

In the event of control or data mis-speculation, it is desirable, 
although not necessary, to invalidate any MDST entries that were 
allocated to the instructions that are squashed. The LDID and the 
STID fields can be used to identify the entries that have to be inval- 
idated. 

‘Qpically, many instructions continuous in the program order, 
are invalidated when a mis-speculation occurs. Thus, we may have 
to invalidate multiple MDST entries on mis-speculation. Fortu- 
nately, the MDST has to be notified only of those instructions that 
have entries allocated to them, which are typically going to be few. 
To support multiple invalidations per cycle, several options exist 
such as (i) providing multiple ports to the STID and LDID tags, or 

(ii) using a suitable encoding of the STID and LDID tags that 
would allow for the invalidation of a range of instructions. For 
example, we can use as many bits as the maximum number of 
simultaneously, unresolved control transfer instructions allowed, 
This encoding allows us to invalidate at a basic block granularity 
with an associative lookup. 

4.4.4 Multiple Table Entry Matches 

Although not illustrated in the examples, it is possible for a load 
or a store to match multiple entries of the MDPT and/or of the 
MDST. This case represents multiple memory dcpendcnccs 
involving the same static load and/or store instructions (for exam- 
ple in the code if [md) store1 M else store: M; load M, there arc two 
dependences [store,, load) and (store2, load)). There arc several ways 
of addressing this issue. 

A straightforward approach is to ensure, by means of the 
replacement and allocation policies, that a unique mapping with 
respect to both loads and stores is maintained in the tables. For 
example, in the MDPT we may allow a new entry to be created 
only after any pre-existing entries for the same static load or store 
are de-allocated. To maintain a unique mapping in the MDST, we 
may force a load or a store to stall and retry if there is another 
entry for either of the instructions that have to synchronize (altcr- 
natively we may de-allocate the pre-existing entry). This approach 
is acceptable when: (i) multiple dependences per static load and 
store are relatively uncommon or (ii) when the dynamic dcpcn- 
dence pattern consists of long series during which only one of the 
many dependences is active for the most part. In both CBSCS, the 
adaptive nature of the prediction mechanism is likely to discard all 
but the most frequent mis-speculations. If multiple dependenccs 
are relatively common, a more aggressive approach that evaluntcs 
multiple entries simultaneously is expedient. One approach is to 
support multiple stores per load or vice versa. This can be achieved 
by modifying the entries MDPT and MDST to include multiple 
fields for store PCs per load (or the other way around). 

If multiple dependences are to be fully supported within the 
implementation framework we presented in this section, the fol- 
lowing considerations must be addressed: (i) when multiple depcn- 
dences are predicted from the MDPT, how to allocate multiple 
entries, one per predicted dependence, in the MDST, (ii) when 
synchronization happens on an MDST entry, how to determine 
whether the particular load has other entries it has to wait for, and 
(iii) when a store synchronizes simultaneously with many loads in 
the MDST, how to go about sending all the LDIDs. Again several 
options exist. For the purposes of this paper, we address all three 
considerations by combining the two tables into a single structure 
where each prediction entry carries with it a predefined number of 
synchronization entries (note that in this organization, the PCS of 
the instructions need not be recorded in each synchronization 
entry). We next explain how this organization addresses the aforc- 
mentioned issues. Allocating multiple synchronization entries, 
each for a different prediction entry, is straightforward since the 
prediction and synchronization entries are now physically adja- 
cent. To determine whether a load has other synchronization 
entries when a synchronization occurs, we do a second associntivc 
lookup using the load’s LDID. If no other entries are found the 
load is allowed to continue execution. Finally, when multiple loads 
are simultaneously synchronized, we allow only up to a predcfincd 
number of them to do so at any given cycle (selecting the loads to 
wake up among those that have been signalled is no different than 
selecting the instructions to execute from those that are ready in an 
000 processor). 

4.4.5 Centralized Versus Distributed Structures 

So far it has been assumed that the MDPT and the MDST arc 
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centralized structures. However, as greater levels of instruc- 
tion-level parallelism are exploited, greater numbers of concurrent 
memory accesses must be sustained. Under such conditions, the 
support structures are likely to play a key role in execution. As a 
consequence, it is important to assure that neither structure 
becomes a bottleneck. The most straightforward way to meet this 
demand is to multi-port the tables. While such an approach pro- 
vides the needed bandwidth, its access latency and area grow 
quickly as the number of ports is increased. It is also possible to 
divide the table entries into banks indexed by the load and store 
instruction addresses. This solution is likely to be inadequate since 
temporal and spatial locality in instruction reference patterns may 
cause many conllicting bank accesses. 

An alternative approach is to actually distribute the structures, 
with identical copies of the MDPT and the MDST provided at each 
source of memory accesses (assuming multiple load/store queues, 
multiple load/store reservation stations, etc.). Each source of mem- 
ory accesses need only use its local copy of the two tables most of 
the time. As soon as a m&speculation is detected, this fact is 
broadcast to all copies of the MDPT, causing an entry to be allo- 
cated in each copy as needed. A load instruction uses both tables in 
the same manner as described earlier, A store instruction, on the 
other hand, behaves somewhat differently. In the event a match for 
a store is found in a local MDPT, all identifying information for 
the entry is broadcast to all copies of the MDST. Each copy of the 
MDST searches its entries to find any allocated synchronization 
entry. The outcomes with respect to whether a match is or is not 
found are similar to those described earlier. In addition, any pre- 
diction update to an entry of a local MDPT must be broadcast in 
order to maintain a similar view among all of the copies of this 
table. 

5 Experimental Evaluation 

In this section we present experimental evidence in support of 
our observations on the dynamic behavior of memory depen- 
dences, and we evaluate the utility of the mechanism we proposed 
in the previous section. To do so, we require a processing model 
where dynamic data dependence speculation is heavily used and 
where the dynamic window size is relatively large. One processing 
model that satisfies both requirements is the Multiscalar process- 
ing model [7, 201. Accordingly, we use various con&rations of 
Multiscalar processors for most of the experiments we perform. 
However, for some of our experiments we use an unrealistic 000 
execution model. We do so in order to demonstrate that our obser- 
vations on the dynamic behavior of memory dependences are not 
specific to the Multiscalar processing model. 

The unrealistic 000 execution model we use corresponds to a 
processor that is capable of establishing a perfect, continuous win- 
dow of a given size. Under this model and for a window size of it, 
a load is always r&-speculated if a preceding store, on which it is 
data dependent, appears within less than n instructions apart in the 
sequential execution order. This model represents the worst case 
scenario with respect to the number of mis-speculations that can be 
observed at run-time since it assumes that every dependence that is 
visible from within the given instruction window is mis-specu- 
lated. We use this model not only to show that our observations 
about the dynamic behavior of memory dependences hold even 
under these extreme conditions, but also, to provide some insight 
on how the number of possible n&-speculations and dependences 
varies as a function of the dynamic window size. 

To demonstrate the utility of the proposed mechanisms, we sim- 
ulate various configurations of a Multiscalar processors. A Multi- 
scalar processor relies on a combination of hardware and software 
to extract parallelism from ordinary (sequential) programs. In this 
model of execution, the control flow graph (CFG) of a sequential 
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program is partitioned into portions called tasks. These tasks may 
be control and data dependent. A Multiscalar processor sequences 
through the CFG speculatively, a task at a time, without pausing to 
inspect any of the instructions within a task. A task is assigned to 
one of a collection of processing units for execution by passing the 
initial program counter of the task. Multiple tasks execute in paral- 
lel on the processing units, resulting in an aggregate execution rate 
of multiple instructions per cycle. In this organization, the instruc- 
tion window is bounded by the first instruction in the earliest exe- 
cuting task and the last instruction in the latest executing task. 
More details of the Multiscalar model can be found in [3,4,7,8,20]. 

In a Multiscalar processor, dependences may be characterized 
as irztru-task (within a task) or inter-task (between individual 
tasks). The results herein are all simulated executions in which 
in&a-task memory data dependences are not speculated, but 
inter-task memory dam dependences are freely speculated. That is, 
m&speculations may only occur for store-load instruction pairs 
whose dependence edge crosses dynamic task boundaries. Further- 
more, the results reflect execution with no compiler supported dis- 
ambiguation of these memory dependences. This detail implies 
that even in cases where an unambiguous memory dependence 
exists, it is treated no differently than an ambiguous memory 
dependence during execution. At first glance, the reader may be 
tempted to conclude that the results of this section are not very 
useful since many dependences could be classified as unambigu- 
ous, even with a rudimentary compiler. However, this conclusion is 
not necessarily correct, and we elaborate on this next. 

The goal of any 000 execution processor, be it superscalar or 
Multiscalar, is to execute a sequential program in parallel. In doing 
so, any processor of this kind, dynamically converts the sequential 
program order into a parallel execution order. In this environment, 
the only condition that prevents the 000 execution of two instmc- 
tions is the existence of a dependence that the 000 execution 
engine can detect without executing the instructions. This implies 
that even if the compiler knows that a particular memory depen- 
dence exists, nothing prevents the dynamic speculation of the cor- 
responding load instruction. Consequently, to prevent the 
speculation of a dependence, the compiler has to identify by some 
means (for example through ISA extensions) that a load should not 
be speculated immediately and to enforce synchronization 
between unambiguously-dependent instructions (perhaps by using 
signal and wait operations on compiler generated synchronization 
variables or via full/empty bits). This is not a trivial task and futh- 
ermore, a program in which synchronization has been inserted is 
not a sequential program any more. 

5.1 Methodology 

The results we present have been collected on a simulator that 
faithfully represents a Multiscalar processor. The simulator 
accepts annotated big endian MIPS instruction set binaries (with- 
out architected delay slots of any kind) produced by the Multisca- 
lar compiler, a modified version of GNU GCC 2.5.8 compiler (the 
SPECint95 benchmarks were compiled with the newest Multisca- 
lar compiler which was built on top of GCC 2.7.2). In order to pro- 
vide results which reflect reality with as much accuracy as 
possible, the simulator performs all of the operations of a Multi- 
scalar processor and executes all of the program code, except sys- 
tem calls, on a cycle-by-cycle basis. (System calls are handled by 
trapping to the OS of the simulation host.) 

We performed the bulk of our experimentation with programs 
taken from the SPECint92 benchmark suite (with inputs indicated 
in parentheses): compress (in), espresso (ti.in), gee (integrate.i), SC 
(loadal), and x&p (7 queens). However, to demonstrate the utility 
of the proposed data dependence speculation mechanism, we also 
report performance results (for one Multiscalar configuration) for 



the SPECintBS and SPECfp95 suite. However, in order to keep the 
simulation time of the SPEC95 programs reasonable, we used 
either the train or the test input data sets (which sometimes are in 
the order of a few billion instructions). We used the train data set 
for the following programs: 099.g0, 129.compress, 132.ijpeg, 
134.per1 (jumble), 147.vortex. IOLtomcatv, llO.applu, 14l.apsi, 
145.jpppp, and 146.wave5. For l24.m88ksim, 126.gcc, 13O.h, 
102swim, 103.su2cor, 104.hydro2d, 107.mgrid and 125.turb3d, 
we used the test data set. All programs, except lOl.tomcatv, 
125turb3d, and 146.wave5, were ran to completion for the input 
used. Table 1 reports the dynamic, useful (i.e., committed), 
instruction counts for the corresponding Multiscalar execution. 
Only one version of a Multiscalar binary is created per benchmark 
the same Multiscalar binary is used for all the Multiscalar configu- 
rations in these experiments. The Multiscalar binaries are also 

used by the unrealistic 000 execution model, however in this 
case, the Multiscalar specific annotations are ignored. 

Table 1. Dynamic instruction count per benchmark (committed 
instructions). 

5.2 Configuration 

In this section we give the details of the Multiscalar processor 
configurations we used in our experimentation. We simulate Multi- 
scalar processor configurations of 4 and 8 processing units (or 
stages) with a global sequencer to orchestrate task assignment. The 
sequencer maintains a 1024 entry 2-way set associative cache of 
task descriptors. The control flow predictor of the sequencer uses 
the path based scheme described in [13]. The control flow predic- 
tor also includes a 64 entry return address stack. 

The pipeline structure of a processing unit is a traditional 5 
stage pipeline (IF/ID/EX/MEM/WB) which is configured with 
2-way, out-of-order issue characteristics. (Thus the peak execution 
rate of a Cunit configuration is 8 instructions per cycle). The 
instructions are executed by a collection of pipelined functional 
units (2 simple integer FU, 1 complex integer FU, 1 floating point 
FU, 1 branch FU, and 1 memory FU) according to the class of the 
particular instruction and with the latencies indicated in table 2. A 
unidirectional, point-to-point ring connects the processing units to 
provide a communication path, with a 2 word width and I cycle 
latency between adjacent processing units. AlI memory requests 
are handled by a single Qword, split transaction memory bus. 
Each memory access requires a 10 cycle access latency for the first 
4 words and 1 cycle for each additional 4 words, plus any bus con- 
tention. 

Each processing unit is configured with 32 kilobytes of Zway 
set associative instruction cache in 64 byte blocks. (An instruction 
cache access returns 4 words in a hit time of 1 cycle, with an addi- 
tional penalty of 10+3 cycles, plus any bus contention, on a miss.) 
A crossbar interconnects the processing units to twice as many 
interleaved data banks. Each data bank is configured as 8 kilobytes 

Table 2. Functional Unit Latencies (“SP/DP” stands for “Sin- 
gle/Double precision”). 

of direct mapped data cache in 64 byte blocks with a 32 entry 
address resolution buffer, for a total of 64 kilobytes and 128 kilo- 
bytes of banked data storage as well as 256 and 512 address reso- 
lution entries for I-stage and S-stage Multiscalar processors 
respectively. (A data bank access returns 1 word in a hit time of 2 
cycles, with an additional penalty of 10+3 cycles, plus nny bus 
contention, on a miss.) Both loads and stores are non-blocking, 

5.3 Dynamic behavior of memory dependences 

As we noted in section 3, the number of mis-speculations 
increases with the window size. Furthermore, the vast majority of 

the mis-speculations observed dynamically can be attributed to ml- 
atively few static dependences (store-load pairs) that exhibit tcm- 
poral locality. In this section, we present experimental evidence in 
support of these observations. To do so, we simulate data depen- 
dence caches, or DDCs, of various sizes. A DDC of size n, records 
the data dependences that caused the n most recent mis-spccula- 
tions. We count two events, hits and misses. These WC d&c as 
follows: whenever a mis-speculation occurs we search through the 
DDC using the instruction PCs of the offending store nnd lottd 
instructions. If a matching entry is found, we count a hit, other- 
wise, we count a miss. A low data dependence cache miss rntc 
implies that the relevant data dependences exhibit temporal locnl- 
ity. 
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In table 3, we report the number of mis-speculations observed 
under the unrealistic 000 model for various window sizes (WS 
column). As it can be seen, moving from a window of 8 instruc- 
tions to a window of 32 instructions results in a dramatic incrcasc 
in the number of m&speculations. It is implied that most of the 
dynamic dependences are spread across several instructions 
(which may include many unrelated stores). This observation pro- 
vides a hint to why selective data dependence speculation (ie,, not 
speculating the loads with dependences within the current win- 
dow) may cause performance degradation when compared to blind 
speculation; when a dependence is spread across several, unrelated 
stores, it is often the case that it takes more time to wait until all 
the unrelated stores are resolved than to incur a mis-spcculntion 
and re-execute the load and the instructions that follow it, 

In table 4, we show the number of static dependences that arc 
responsible for 99.9% of all dynamic mis-speculations. Note thnt 
as the window size increases more static dependcnces arc exposed, 
These newly exposed dependences may be far more frequent than 
the dependences observed when the window is smaller, This 
explains, for example, why in compress fewer dependenccs nrc 
responsible for the vast majority of mis-speculations when the 
window increases from 8 to 16 or 8 to 32. Finally, in table 5 WC 

show the miss-rate of DDCs of 32, 128, and 512 entrlcs. As it can 
be seen, even when all the dynamic dependences (that arc visible 
from within the given instruction window) are mis-spcculatcd, 
only a few static dependences cause most of the mis-speculations, 
Furthermore, DDCs of moderate size capture most of these depen- 
dences. 

For the Multiscalar model we use two configurations, one with 
four stages and one with eight stages. The number of mis-specula- 
tions observed for these configurations are shown in table 6, As it 



128 1 4.31M 1 10.87M 

5.02 M 35.59 M 26.66 M 

Table 3. Unrealistic 000 model: Number of dynamic memory 
dependences observed as a function of window size (WS). 

128 18 848 4446 589 266 

256 25 1500 6083 1 122 333 

512 24 2021 8001 851 367 

Table 4. Unrealistic 000 model: number of static dependences 
responsible for 99.9% of all mis-speculations observed 
(“WY start& for “window size”). 

Table 5. Unrealistic 000 model: Miss-Rate (percentage) of DDC 
as a junction of window size and DDC size. WS stands for 
“window size”‘, and CS stana!s for ‘DDC size”. 

SfOgeS COlllp?SS .%p?SSO SC SC XltSP 

4 1.04M 2.38 M 285 K 257 M 218M 

8 1.99M 286 M 464K 4.81 M 2.76 M 

Table 6. Multiscalar model: number of mis-speculations observed 

can be observed, m&speculations are more frequent when the 
window size is larger (8 stages as opposed to 4 stages). In table 7, 
we report the miss-rates of DDCs of various sizes for the 8-stage 

Table 7. &stage Multiscalar: DDC miss-rates (percentage) as a 
function of the DDC size (“CL?’ stands for DDC size). 

configuration only (i.e., for this experiment we use the configura- 
tion with the higher number of r&-speculations). As it can be 
seen, even a DDC of 64 entries exhibits a miss rate of less than 
10% for all benchmarks. Furthermore, a DDC with 1024 entries 
captures virtually all static dependences for all benchmarks except 
gee. For the Multiscalar model, we do not show measurements on 
the number of static dependences that cause most of the mis-spec- 
ulations. That these dependences are few is implied by the results 
of the next section. 

5.4 Comparison of dependence speculation policies 

In this section we: (i) demonstrate that selective speculation 
may lead to inferior performance when compared to blind specula- 
tion and (ii) obtain an upper bound on the performance improve- 
ment that is possible through the use of the data dependence 
prediction and synchronization approach we described in 
section 3. 

To do so, we compare the following four data dependence spec- 
ulation policies: (i) NEVER, (ii) ALWAYS, (ii) WAIT, and (vi) 
PSYNC (for perfect synchronization). Under NEVER, no data 
dependence speculation is performed. Under ALWAYS, depen- 
dence speculation is used blindly (this is the policy used in the 
modem ILP processors that implement dependence speculation). 
Under policy WAIT, data dependence speculation is used selec- 
tively, that is loads with true dependences are not synchronized; 
instead they are forced to wait until the addresses of all previous 
stores are known to be different. Finally, under PSYNC, loads with 
no dependences execute as early as possible, whereas loads with 
true dependences synchronize with the corresponding stores. POE 
icy PSYNC provides an upper limit on the performance improve- 
ment that is possible through the use of the mechanisms we 
presented in section 3. For PSYNC and WAIT we make use of per- 
fect dependence prediction. 

4-Stages 

n ALWAYS liii WAl? q PSYNC 

Figure 5. Comparison of three data dependence speculation 
policies. Speedups (%) are relative to policy NEVER. 
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In figure 5, we report (along the X-axis) the IPC of Multiscalar 
processor configurations that do not use data dependence specula- 
tion (policy NEVER) and the speedups obtained when policies 
ALWAYS, WAIT, or PSYNC are used instead. Since the dynamic 
window size is an important consideration we simulate Multiscalar 
configurations of four and eight stages. It can be observed that 
even blind data dependence speculation (policy ALWAYS) signifi- 
cantly improves performance in all cases. Furthermore, in contrast 
to when dependence speculation is not used, increasing the win- 
dow size results in sizeable performance benefits. 

Focusing on policy PSYNC, we can observe that it constantly 
improves performance over policy ALWAYS, sometimes signifi- 
cantly and furthermore, that the difference between PSYNC and 
ALWAYS becomes greater as the window size increases (8 stages 
compared to 4 stages). In addition, under policy PSYNC, increas- 
ing the window size typically results in higher performance. The 
results about policy PSYNC demonstrate that the technique we 
described in section 3 has the potential for performance improve- 
ments that are often significant (even when compared to blind 
speculation). Finally, selective data dependence speculation (pol- 
icy WAIT) generally outperforms blind speculation (policy 
ALWAYS) and performs comparably to policy PSYNC in the 
Cstage configuration for three of the benchmarks (espresso, gee, 
and xlisp). However, for compress and SC, it performs worse than 
both PSYNC and ALWAYS (the cause of this phenomenon we 
explained in section 3, figure 1). As we move to larger windows (8 
stages) the difference between PSYNC and WAIT becomes more 
significant for all benchmarks except xlisp. 

5.5 Evaluation of the proposed mechanism 

In the previous section we demonstrated the performance poten- 
tial of our data dependence speculation technique. In this section 
we evaluate an implementation of this technique. The implementa- 
tion we simulate is based on the mechanism we detailed in 
section 4. In this implementation, the MDPT and MDST are com- 
bined into a single structure where each MDPT entry carries as 
many MDST entries as there are stages. This implementation 
allows us to support multiple dependences per static store or static 
load as we explained in section 4. However, with this organization, 
only a single synchronization entry is allowed per static depen- 
dence and per stage. The simulated structure is a centralized, fully 
associative resource that provides as many ports as need for a par- 
ticular Multiscalar processor conliguration. For prediction pur- 
poses, each entry contains a 3-bit up-down saturating counter 
which takes on values 0 through 7. The predictor uses a threshold 
value of 3 for prediction; values less than the threshold predict no 
dependence, and values greater than or equal predict dependence 
and consequent synchronization. We also maintain LRU informa- 
tion for purposes of replacement. An entry within the table may be 
allocated speculatively without cleanup if bogus, but updates to the 
prediction mechanism within an entry only occur non-specula- 
tively when a stage commits. To distinguish between instances of 
the same static dependence we use a variation of the instance dis- 
tance scheme which we discussed in section 3. In this scheme we 
approximate the instance numbers via the use of stage identifiers 
which are statically assigned to each stage. A load that is forced to 
synchronize on multiple dependences is allowed to execute only 
after all of them are satisfied. All simulation runs are performed 
for the Multiscalar processor configurations described earlier, and 
unless otherwise noted, the MDPT/MDST structure we simulate 
has 64 entries. 

The results presented in this section are in support of a new con- 
cept. Consequently, our primary goal is to demonstrate the utility 
of the proposed mechanism. Though a thorough evaluation of the 
design space is highly desirable, it is not possible to include in this 

paper since the design space is vast, and the simulation method 
that is necessary (instruction driven, timing simulation) is 
extremely time consuming. 

Even though we do not attempt an exhaustive evaluation of the 
design space, we do simulate two different dependence predictors 
which we refer to as (i) SYNC and (ii) ESYNC (the “E” is for 
enhanced). SYNC is our baseline predictor that uses an up/down 
saturating counter (as described in the beginning of this section), 
ESYNC, in addition to the up/down counter, also records for each 
dependence the PC of the task that issued the corresponding store 
instruction. Synchronization is enforced on a load thnt matches n 
MDPT entry only if the task PC of the stage at distance DIST (as 

recorded in the MDST entry) matches the task PC recorded in the 
predictor. This enhancement targets loads that have multiple static 
dependences which occur via different execution paths. In this 
case, the load does not have to wait for all the dependenccs, only 
for the dependence that lies on the proper execution path, HOW- 

ever, since the task PC represents only minimal control path infor- 
mation, this predictor may fall short of its goal under some 
circumstances. 

In the rest of this section, we first present and discuss results on 
the SPECint92 programs. We report the accuracy of the dcpcn- 
dence prediction mechanism, the m&speculation rate, and the per- 
formance improvement obtained. The speedups reported are 
relative to blind speculation (policy ALWAYS of section 5.4), 
which is the policy currently implemented in several modern pro- 

cessors. We later present and discuss results on the SPEC95 pro- 

grams. For the latter programs, we report only performance 
numbers (due to space limitations). 

In table 8, we report the breakdown of the dynamic dependcncc 
predictions for the SPECint92 programs. Since a load on which a 
dependence prediction is made may not necessarily have a depcn- 
dence, a single number cannot be used to describe the accuracy of 
dependence prediction (in contrast to what is possible in control 
prediction). Instead, a dependence prediction has to be classified 
into one of four possible categories depending on whether a dcpcn- 
dence is predicted and on whether a dependence actually exists. In 
the results shown, we count the dependence predictions done on 
loads that were either committed or have been issued from tasks 
that were squashed as a result of a dependence mis-speculation 
(we do not count predictions on loads that were squashed for other 
reasons). Predictions are recorded only once per dynamic load and 
at the time the load is ready to access the memory hierarchy. Fur- 
thermore, for those loads on which a dependence is predicted, the 
prediction is recorded after we have checked the synchronization 
entries for the first time. That is, in the case when a dependcncc is 
predicted, we count a “no dependence” outcome if a pm-existing, 
matching, synchronization entry allows the load to continue CXCCU- 

tion without delay, otherwise we count a “dependence” outcome. 
A dependence prediction is correct when the predicted and the 
actual outcomes are the same (rows ‘NAr” and “Y/y”), otherwise 
the prediction is incorrect (rows ‘N/y” and “Y/N”), An incorrect 
dependence prediction may result in mis-speculation (“N/Y”), or it 
may u~ece.ssary delay the load (“Ym”). We will refer to the latter 
predictions as false dependence predictions. 

In table 9, we report how the mis-speculation frequency 
(defined as the numberof m&peculations over c&d-loads) 
imoroves when the nronosed mechanism is in place for 4 and 8 
stage configurations~ In nearly all cases, the -proposed predic- 
tion/synchronization mechanism reduces the number of mis-spcc- 
ulations by an order of magnitude. Furthermore, mis-speculations 
are typically reduced to less than 1% of useful loads, However, 
note that a decrease in the number of m&speculations does not 
necessarily translate directly into a proportionate increase in pcr- 
formance (after all, if we did not use speculation, the mis-spcculn- 



Figure 7. Pe~ormance of our data dependence speculation mechanism for the SPEC95programs. We simulate an S-stage Multiscalar 
processor and we report speedups relative to blind speculation (policy AL.WAYS)for the ESYNC predictor andforperfect depen- 
dence speculation (policy PSYNC). Along the X-axis we report the IPC obtained when the ESYNCpredictor is in use. 

r P/A compress esprtTs0 SC SC Xl&p 

NIN 81.62 98.62 95.56 91.19 95.99 

0 NN 0.18 0.02 1.38 0.26 0.08 

YN 13.81 1.33 2.61 2.28 3.92 

N/N 73.60 95.52 93.60 95.00 94.99 

NN 0.15 0.20 1.65 0.62 0.08 

YIN 4.95 0.18 1.61 0.26 0.14 t 
H YN 21.31 4.09 3.15 4.11 4.19 

2 
A NIN 19.51 9.554 94.85 95.35 95.12 

2 NN 0.07 0.05 1.48 0.66 0.00 

0.00 0.07 0.09 0.04 0.01 

YN 20.37 4.34 3.58 3.95 4.81 
L 

Table 8. Dependence prediction breakdown (%). ‘N” and “Y” 
standfor “No dependence” and “Dependence” respec- 
tively, whereas “P/A ” stands for “PredictetiActual”. 

Table 9. Mis-speculations per committed load 

tion rate would be zero). The main cause is twofold. First, the 
synchronized instructions may only represent a shift of cycles 
from time lost due to r&-speculations, to stall time in the overall 
picture of execution. That is, even though a load is not mis-specu- 
lated, there may be little other work to do while the load is waiting 
to synchronize. Second, false dependence predictions may impose 
unnecessary delays. 

In figure 6, we show how the performance varies when our 
mechanism is in place, as compared to the base case Multiscalar 
processor that speculates all loads as early as possible (policy 
ALWAYS of figure 5). For almost all cases, the proposed mecha- 

m-SYNC q E&Y& Cl PSYNC 

Figure 6. Pe$ormance of our data dependence speculation 
mechanism on the SPECint92 programs. Speedups [?40) are 
relative to policy ALWAYS. 

nism with the ESYNC predictor, not only improves performance, 
but also performs close to what is ideally possible @SYNC col- 
umns). The SYNC predictor also improves performance for most 
of the programs. However the SYNC predictor never outperforms 
the ESYNC predictor. The SYNC predictor also offers virtually no 
performance improvement (over blind speculation) for compress 
and SC in the Cstage configuration. Furthermore, performance deg- 
radation is observed for compress on the g-stage configuration. 
False dependence predictions (“YN” marked rows in table 8) are 
responsible for this poor behavior. The counter based SYNC pre- 
dictor fails to capture the data dependence patterns exhibited by 
this program. The ESYNC predictor, however, is able to success- 
fully capture these patterns, since the dependences occur only via 
specific execution paths. There are two causes for the marked 
improvement demonstrated for espresso: (i) the average, dynamic 
task size is about 100 instructions, and (ii) most of the mis-specu- 
latlons are the result of simple recurrences that occur most of the 
time (note however that the memory locations involved are often 
accessed via pointers). Consequently, for this program, the cost of 
r&-speculations is relatively high, whereas, even a simple 
up/down counter based predictor can capture the dynamic behavior 
of the most important dependences. 

In figure 7, we report the performance results for the SPEC95 
programs on an &stage Multiscalar processor. Along the X-axis 
we report the IPC obtained when our data dependence specula- 
tion/synchronization is used. The ESYNC bars represent the 
speedup obtained relatively to blind speculation (policy ALWAYS 
of section 5.4), whereas the PSYNC marked bars represent the 
speedup possible when ideal speculation and synchronization is 
used (policy PSYNC of section5.4). Overall, our dependence 
speculation/synchronization mechanism improves performance, 
often significantly, for almost all the programs studied. Further- 



more, our mechanism quite often performs close to what is ideally 
possible for the given configuration. 

For the SPECint95 programs, the potential performance 
improvement is appreciable, ranging from 5% to almost 40%. For 
l24.m88ksim, 129.compress, and 13O.li, our mechanism performs 
comparably to the idea1 mechanism. Though the mechanism does 
not perform as well for 132.ijpeg, 134.per1, and 147.vortex, it does 
capture a significant amount of the gain that is possible. Neverthe- 
less, both 099.go and 126.gcc fall short of this potential as com- 
pared to the ideal dependence speculation. The dependence 
patterns of these programs are quite irregular and exhibit relatively 
poor temporal locality as compared to the other programs. In par- 
ticular, the performance of 099.go is limited by poor control pre- 
diction (even with the fairly sophisticated control prediction 
scheme used) and instruction supply. 

For the SPECfp95 programs, most of the dependences we cap- 
ture are loop recurrences. However, for 145.fpppp and 103.su2cor 
our mechanism is unable to synchronize some of the dependences. 
For these two programs, the size of the working set of dynamic 
dependences exceeds the capacity of our dependence prediction 
structures. Closer examination reveals that the instruction window 
established by 145.fpppp can grow to be as large as a few thousand 
instructions. (Most of the time is spent in a loop whose iterations 
execute each around 1000 instructions. with the greedy task parti- 
tioning policy currently used by the Multiscalar compiler, each 
iteration executes as a single task.) Tasks of similar size are also 
experienced in part of 103.su2cor. With the given instruction win- 
dow size, it is no surprise that the working set of dependences is 
quite large. Increasing the size of the dependence prediction struc- 
tures or breaking up each iteration to several tasks are two possible 
solutions. For lOl.tomcatv and llO.applu, our mechanism per- 
forms very close to what is ideally possible. Our mechanism is 
also able to synchronize dependences that would otherwise cause 
performance degradation for 141,apsi and 146.wave5, but to a 
lesser extent. It should be noted that we simulated the first 2.8 bil- 
lion instructions for lOl.tomcatv and 146.wave5. Performance 
improves when these programs are simulated to completion. For 
example, at 10 billion instructions, the IPC for lOl.tomcatv with 
the ESYNC mechanism is 5.68, whereas the IPC for 146.wave5 at 
completion (6.4 billion instructions) is 3.79. For lOZswim, 
104.hydro2d, 107.mgrid, and 125.turb3d, there is little to be 
gained from dependence speculation and synchronization for the 
given configuration. For those programs, some other part of the 
processor (for example the functional units or the memory system) 
is saturated. 

6 Implications and Conclusions 

We make the following contributions in this paper: 

l We demonstrate that, as the dynamic window sizes get larger, 
the net performance loss due to data dependence mis-specula- 
tions becomes significant. 

l We identify three possible directions ,tiat can be followed to 
minimize this performance loss: (1) minimizing the work lost 
on mis-speculation, (2) minimizing the time required to redo 
this work, and (3) improving the accuracy of speculation. 

l We observe that the static data dependences that are responsi- 
ble for the majority of mis-speculations are few and dynami- 
cally exhibit temporal locality. The latter observation applies 
even when all dependences visible from within the dynamic 
instruction window are considered. 

l We propose the concept of dynamic dependence prediction and 
synchronization and use it to reduce the net performance loss 
due to data dependence mis-speculation. We also identify the 

key issues involved in designing such data dependence spccu- 
lation structures. 

l We describe a microarchitectural technique that can be used to 
implement dynamic data dependence prediction and synchro- 
nization. Further, we demonstrate that for a specific 000 pro- 
cessor this technique can provide significant performance 
improvements. We finally identify most of and address some of 
the key design issues. 

Our experimental results confirm the efficacy of the technique 
we propose. However, since this work introduces a new concept, 
we were not able to do a thorough evaluation of the design space 
and to explore many alternatives and other possible applications of 
the proposed technique. We believe that this fact does not diminish 
the importance of our results and observations. In our opinion, this 
work represents only a first step towards improving the accuracy of 
data dependence speculation and towards using dynamic dcpen- 
dence speculation and synchronization. Several directions for 
future research exist in improving the mechanisms we presented, 
in using the proposed technique in other processing models, nnd in 
using data dependence speculation in ways different than those WC 

have discussed. 

Though we have worked with memory dependences, the pro- 
posed techniques are general and applicable to a range of other 
uses of data speculation. Such uses include register depcndenccs 
(this is mostly relevant to multiple program counter exccudon 
models such as MuItiscalar) and value prediction (for example ifl a 
data speculation approach that uses value prediction only when 
dependences are likely to exist). We also believe that exposing the 
dependence prediction (MDPT) and/or the synchronization 
(MDST) structures to the compiler (perhaps via ISA extensions) 
opens new possibilities for statically orchestrated dependence 
speculation. (For example the synchronization variables can be 
allocated by the compiler to enforce synchronization of unamblgu- 
ous dependences, whereas the prediction can be probed by the pro- 
gram during run-time to make on-the-fly decisions on when and 
which dependences to speculate.) 

Even though in this work we considered fairly simple depcn- 
dence predictors, any of the plethora of predictors used for branch 
prediction may be used, with appropriate modificadons, IO 

improve the accuracy of dependence prediction. Further improve- 
ment of our mechanisms may be possible by considering altcrna- 
tive dependence tagging schemes and synchronization primitives, 
Furthermore, it would be interesting to consider integrating the 
dependence prediction and synchronization structures with other 
components of the processor (for example, we may implement the 
synchronization functionality in the data cache or in a similar 
structure so that both the data and the necessary synchronization 
are provided from the same structure). 

The techniques we proposed are applicable to processing mod- 
els other than Multiscalar. However, further study is necessary, 
since differences in the instruction window size and in the grnnu- 
larity of checkpointing may influence the relative pcrformanco of 
various dependence speculation and synchronization schemes, WC 
maintain that as ILP processors continue to become more aggrcs- 
sive, the use of data speculation will become even more wldc- 
spread, and techniques (especially dynamic ones) to improve the 
accuracy of data dependence speculation, such as those proposed 
in this paper, will become important. 
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