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ABSTRACT 

Out-of-order execution and branch prediction are 
two mechanisms that can be used profitably in the design 
of Supercomputers to increase performance. Unfor- 
tunately this means there must be some kind of repair 
mechanism, since situations do occur that require the 
computing engine to repair to a known previous state. 
One way to handle this is by checkpoint repair. In this 
paper we derive several properties of checkpoint repair 
mechanisms. In addition, we provide algorithms for per- 
forming checkpoint repair that incur very little overhead 
in time and modest cost in hardware. We also note that 
our algorithms require no additional complexity or time 
for use with write back cache memory systems than they 
do with write through cache memory systems, contrary to 
statements made by previous researchers. 

1. In t roduc t ion .  

Our research in the implementation of high performance com- 
puting engines has resulted in the specification of a microarchitecture 
that exploits concurrency by several mechanisms, among them out- 
of-order execution and branch prediction [1,2,3,4]. Unfortunately, 
both mechanisms can result in situations where the computing engine 
must repair to known previous states. In the case of out-of-order 
execution, this is caused by instruction A faulting after instruction B 
has executed, where instruction B comes after instruction A in the 
dynamic instruction stream. In the case of branch prediction, this is 
caused by a branch prediction miss; that is, instruction A is fetched 
and executed as a result of a branch prediction, and it is subse- 
quently discovered that the branch prediction was incorrect. 

In order to repair the machine to a known previous state, it is 
necessary to save the machine state at appropriate points of execu- 
tion. We call this checkpointing. If a checkpoint is established at 
every instruction boundary in the dynamic instruction stream, then 
the machine can repair to any instruction boundary in response to an 
exception or incorrectly predicted conditional branch. Unfortunately, 
the cost of doing so is grossly prohibitive. There is a fundamental 
dilemma regarding checkpointing. On the one hand, since check-, 
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pointing is an overhead function, its cost in time and additional 
hardware should be kept as small as possible. This means no more 
checkpoints than absolutely necessary. On the other hand, repair to 
the last checkpoint involves discarding useful work. The further 
apart the checkpoints, the more useful work gets thrown out. 

In this paper, we derive properties of general checkpoint repair 
mechanisms in which the checkpoints are not necessarily established 
at every instruction boundary. We specify algorithms for performing 
checkpoint repair that can be implemented with modest cost in 
hardware and with minimal cost in overhead time. Finally, it is 
important to note that our algorithms are effective with memory sys- 
tems that contain write-back caches as well as those that contain 
write-through caches. The write-back activity in our algorithms can 
be performed without any waiting or extra buffering space, correcting 
the suggestion made in [5] that "either a cache line must be saved in 
the history buffer, or write-back must wait until the data has made 
its way into the cache." 

This paper is organized in six sections. Section 2 introduces 
some basic notions: the execution model, the characteristics and 
causes of E-repair and B-repair, and the notion of precise interrupts. 
Section 3 derives several properties of checkpoint E-repair and 
specifies algorithms for its implementation. Section 4 derives several 
properties of checkpoint B-repair and species algorithms for its imple- 
mentation. Section 5 describes three mechanisms for handling both 
E-repair and B-repair simultaneously. In section 6, we discuss future 
research directions and offer some concluding remarks. 

2. Basle Notions.  

2.1. The  Execut ion Model. 

It is first necessary to distinguish between the architectural 
instruction stream and its implementation. Our work is based on a 
sequential model of program execution in which an architectural pro- 
gram counter sequences through instructions one by one, finishing 
one before starting the next. The dynamic instruction stream of a 
program is the sequence of instructions executed according to the 
architecture specification. As illustrated in figure 1, instruction A is 
to the left of instruction B (in the dynamic instruction stream) if A is 
executed before B according to the sequential architecture model. 

On the other hand, the implementation of this architecture is 
based on an out-of-order [2,6,7,8] execution model with the following 
characteristics: 

(1) Instructions are issued [9] sequentially according to the archi- 
tectural specification. In the presence of branch instructions, 
the sequential issue continues from the point determined by the 
branch predictor. As a result, some of the instructions in the 
issuing instruction stream may be from the incorrectly 
predicted branch path. Thus the issuing instruction stream is 
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the dynamic instruction stream interspersed with some noise 
from the incorrectly predicted branch paths. 

(2) Instructions do not, in general, finish execution sequentially 
according to the architectural specification. As a result, 
instructions do not in general modify the architectural registers 
and main memory sequentially. 

(3) Execution times for instructions are not, in general, predictable 
at instruction issue time due to the use of cache memory and 
other optimization techniques. 

An instruction is active if it has been issued and has not yet 
finished execution. At each cycle, only the active instructions can 
potentially modify the architectural registers and the main memory. 

2,2, Repairs. 
We are concerned with two major causes of repairs, exception 

repairs (E-repairs) and branch prediction miss repairs (B-repairs). 
Examples of exceptions are the arithmetic overflow trap, the traps 
caused by software implemented architectural features, and the page 
fault. An F~-repair for our out-of-order engine must cleanly suspend 
the process to a point preceding the violating instruction, handle the 
exception, and resume execution from that point. 

A branch prediction miss is an incorrectly predicted conditional 
branch which resultedJn unwanted instructions issued and perhaps 
executed out-of-order by the mieroarchiteeture. A B-repair must 
undo all the existing effects and discard all the pending effects on the 
architectural registers and main memory by the instructions fetched 
and issued from the incorrectly predicted branch path. and then con- 
tinue fetching and issuing instructions along the correct branch path. 

More instruction types can cause E-repairs than can cause B- 
repairs. Practically every instruction type can cause E-repairs. Only 
those instructions containing conditional branches can cause B- 
repairs. If there is, on the average, one conditional branch every b 
instructions, then the ratio of potential E-repairs to potential B- 
repairs is b to 1. The major implication is that saving machine state 
for every potential E-repair is not as feasible as saving machine state 
for every potential B-repair. 

However, E-repairs actually happen much less frequently than 
do B-repairs. A high performance computer normally executes at 
least five thousand instructions between E-repairs. B-repairs, how- 
ever, occur much more frequently. Assume that a microengine 
implementing branch prediction correctly predicts branches 85% of 
the time (85% hit ratio) and assume, on the average, one conditional 
branch every four instructions. Then a B-repair occurs on the average 
every 28 instructions. Thus the ratio of the actual occurrences of E- 
repairs to B-repairs is approximately 28 to 5000, from which we infer 
that B-repairs should be implemented much faster than E-repairs. 

precise trap or branch prediction miss repair point 

dynamic Instruction v~earn 

precise fault repair point 

Figure 1. Dynamic instruction stream and precise repair points. 

A repair is precise if it excludes the effects on registers and 
main memory by all instructions to the right of the precise repair 
point defined below, and allows the effects on registers and main 
memory by all instructions to the left of that precise repair point. 

The precise repair point for a trap [10] is the instruction boundary 
just to the right of the violating instruction (figure 1). The precise 
repair point for a fault [10] is the instruction boundary just to the 
left of the violating instruction. The precise repair point for an 
incorrectly predicted conditional branch is the instruction boundary 
just to the right of the instruction containing that branch if we are 
not using delayed branch semantics [11]. The precise repair point for 
a conditional branch using delayed branch semantics is the right 
instruction boundary of the I~ t  delay slot. 

2.3. Logical Spaces, Checkpoints ,  and Checkpoint  Repair. 
A logical space is a full set of architectural registers and main 

memory visible at the ISA architecture level of the machine (i.e., 
visible to the machine language programmer). A checkpoint is an 
instruction boundary for which a logical space has been identified. 
Checkpoint repair is the action of repairing the machine state to a 
checkpoint. 

Note that all active instructions to the left of a checkpoint in 
the issuing instruction stream have the results of their execution 
reflected in the logical space specified for that checkpoint. Further, 
no active instructions to the right of a checkpoint in the issuing 
instruction stream are allowed to modify that logical space. As far as 
that logical space is concerned, the execution ends at the correspond- 
ing checkpoint. 

Normal execution requires only one logical space from which 
the instructions fetch input data and to which the instructions store 
output data. We call this the current logical space. A checkpoint 
repair mechanism uses additional logical space(s). The contents of 
these additional logical spaces are maintained so that they can 
replace that of the current logical space when a repair occurs. 
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Figure 2. The exception repair ranges of a checkpoint. 

The trap repair range of a checkpoint is the set of instructions 
which, if any of them trap, will repair to that checkpoint. The fault 
repair range of a checkpoint is the set of instructions which, if any of 
them fault, will repair to that checkpoint. Figure 2 illustrates the 
trap repair and trap repair ranges for checkpoint A. Note that the 
trap (fault) repair range of different checkpoints do not overlap. The 
E-repair range of a checkpoint is the union of the checkpoint's trap 
repair range and fault repair range. Note that the E-repair range of 
adjacent checkpoints do overlap at the instructions immediately to 
the left of these checkpoints. 

To perform an F-repair, the machine state is first repaired to a 
checkpoint to the left of, if not overlapping, the precise repair point 
of the detected exception. If the checkpoint used does not overlap 
the precise repair point of the exception, the machine executes one 
instruction at a time until the precise repair point is reached and 
then it invokes the exception handling routine. This guarantees pre- 
cise interrupts [5,6[. For performance reasons, all the checkpoints for 
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B-repair are selected to overlap the precise repair points. Thus  B- 
repairs are inherently precise, making  it unnecessary to single step as 
is required with E-repairs. 

3. C h e c k p o i n t  E - r e p a i r  M e c h a n i s m .  

We develop, in this section, a checkpoint  scheme which handles 
E-repairs.  Several impor tan t  properties of this checkpoint  E-repair  
mechanism are derived. The properties are the correctness of the 
scheme, the minimal  number  of logical spaces required to avoid 
draining the act ive instructions before establ ishing checkpoints,  the 
maximal  number  of act ive instructions allowed, and the boundary 
beyond which all instructions have finished at  any part icular  point  in 
t ime. The theorems in this  paper  are s ta ted wi thout  proof due to 
space constraints.  These proofs are avai lable upon request. Imple- 
menta t ion  techniques to support  the E-repair  mechanism are also 
offered. 

3.1. Data Strueturen, Algorithm, and Propertlen. 
At each point  in time, there is a set of checkpoints  which are 

cri t ical  to successful E-repair.  

D e f l n t l o n  1. ActivcE(t ) is the set  of consecutive checkpoints  such 
tha t  at  least  one instruction each in the E-repair  ranges of the left- 
most  and r ightmost  checkpoints  are act ive at  t. Each of these check- 
points  is labeled aelive~,,(t) with i increasing from r ight  to left in the 
issuing instruction stream. 

With  given hardware resources, any repair  mechanism can sap- 
port  only a l imited number  of logical spaces and thus l imited number  
of checkpoints  in activCE(t) for any t ime t. 

D e f i n i t i o n  2. SchemCE(C ) is a repair scheme where a m a x i m u m  of e 
checkpoints  are allowed in activcE(t ) at any t ime t. This  means tha t  
we need to provide e +  1 logical spaces, one backupE space for each of 
the e activeE(t) checkpoints  and one current  space. 

We define the da ta  s t ructures  manipula ted  by our E-repair 
checkpoint  a lgori thm below. 

Backups is an array of e +  1 logical spaces provided to keep 
track of the machine execution states.  The indices run from 0 to e. 
Backups, o is actual ly the current space to simplify the formulation of 
our algori thms.  An invariance mainta ined by scheme E is tha t  
backups,, at  any t ime t, holds the execution s ta te  as if all the 
instruct ions to the left of activcE, ,(t) had been issued and none of the 
instruct ions to the r ight  of activcE,,(t) had been issued. There are 
three actions defined for backups. 

push The entire array behaves as a shift  register in which the 
content  of the ith element  receives its new content  from 
the (i-1)th e lement  for i from e to 1. 

write,.d~ The execution result  of an operation is given as input  
to update  backups,, , for i from indez to e- l .  The exe- 
cution result  is wri t ten to ei ther  a register or a memory 
location within those backup spaces. 

recall Backups.o (i.e., current) receives i ts  new content  from 
backupE,e. 

Example 1. Figure 3 shows activeEA(t) and activeg,e(t) under 
schemes(2) at  t when there are exact ly  two checkpoints  in activeg(t). 
There are three logical spaces shown in this  example.  The current, 
as described before, is the dominan t  space which all the act ive 
instruct ions fetch da ta  from and store da ta  to. The backupg,~ is the 
logical space allocated to activeg,l(t). Only those instructions to the 
left of aetivcE,l(t) have their  effects reflected in backupEa. Similar 
s t a t ement  can be made for activcE,2(t) and backups,2. 

Countg is an array of e counters keeping track of the number  
of active instruct ions in the E-repair  range of the active checkpoints.  
The indices run from 1 to e. An invariance mainta ined by 
schcmeg(e) is t ha t  counts,,, at  any t ime t, holds the number  of 

act ive instructions in the E-repair  range of actives,,(t ). There are 
five operat ions defined for this object. 

push The entire array behaves as a shif t  register in which the 
content  of the ith e lement  receives its new content  from 
the ( i -1) t  h element for i from e to 2. Counts, 1 is 
cleared to 0. 

dccr,nd~z A number  is given as input  and COUrllE,mdez is decre- 
mented by tha t  number.  

incr A number  is given as input  and counts, t is incremented 
by tha t  number. 

test The content  of counts, ¢ is examined to determine 
whether i t  is zero. 

clear All entries are cleared to be zero. 

EzccptE, , is an array of e boolean flags keeping t rack of 
whether  exceptions have been caused by the instruct ions in the E- 
repair range of the active checkpoints.  The indices run from 1 to e. 
An invarianee main ta ined  by schemes(e ) is t ha t  ezceptE.,, at  any 
t ime t, indicates  whether  a t  least  one exception has been caused by 
the instruct ions in the E-repair  range of activcE,,(t ). There are five 
actions defined on this  object.  

push The entire  array behaves as a shif t  register in which the 
content  of the ith e lement  receives its new content  from 
the ( i - l ) t  h e lement  for i from e to 2. EzceptE. 1 is 
cleared to false. 

SCtlnde z Excepts,lade x is set  to true. 

test The content  of ezccptE,, is examined to determine 
whether  i t  is true. 

clear All entries are cleared to be false. 

ldents is a ( l o g 2 ( e ) + l ) - b i t  counter  which holds the 
identification number  given to actives, 1. There are three actions 
defined for this  object. 

deer The content  of idcnt E is decremented by one. 

map The content  of ident g is subtracted from the check- 
point  identification carried by an operation to find the 
index into the backups, counts, and except g arrays. 

read The content  of ideas E is read by the operat ions in the 
issued instruct ions and is carried by them to identify 
the checkpoint  in whose E-repair  range they reside. 

active instructions 

dynamic instructionslb 

active E ~t) acti e E It) 

'  rll!LIJ,LIJ, L(L 
/  ,tllllllllllllllllllll  

l::{i:, i i:i,iiii!i!i!iiiil;iiii::~,:::~::~:i~:i~:i~:i~:ili,iiiiilili,:}ii~}~il 

F i g u r e  3. C h e c k p o i n t s  a n d  b a c k u p  spaces  u n d e r  schemes(2). 

A l g o r i t h m  1. Checkpoint  E-repair  mechanism schemes(e). 
Ini t ial  condition: A clear action is performed to both count s and 
except E. A cheek action as defined below is performed before the 
execution starts ,  
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Actions for  checkpoint E-repair mechanism: 

lssueE This action is performed when a new instruction is 
issued. Assume that the issued instruction contains k 
operations then incr(k) is performed to countg. The 
content of ident E is carried as a checkpoint 
identification by all the operations contained in the 
issued instruction. 

Deliver E This action is performed when operations finish execu- 
tion and their execution results are delivered to the 
repair mechanism. For each operation delivering result, 
the content of ident E is subtracted from the checkpoint 
identification carried by that operation to get an index 
i into the arrays. The index is used to (1) write the 
content of backupE,~, for k from i to e-l, i.e., to per- 
form a write, action on backupE, (2) decrement 
countE,,+~, i.e. perform a decr,+l action on count E, and 
(3) if an exception was caused by the operation, 
ezceptE,,+t is set true, i.e., perform a set,+l action on 
except E. 

Check E Cheek~ is performed immediately after the machine 
issues the instruction defining the right end of the E- 
repair range of a checkpoint. If CountE, ¢ is not 0 at 
the moment, then the instruction issue must stall due 
to insufficient backup spaces. Otherwise push actions 
are performed on backupE, count~, and ezcept E. Ident 
is decremented by one. 

RepairE This is the action performed if ezceptE,¢ is true. A 
recall action is performed on backupE and a clear 
action is performed on both countE and exceptE. A 
check action is performed at the end of repair. After 
the repair, the machine starts performing check action 
after issuing every instruction until either an exception 
is detected (the exception handler is invoked in this 
case) or all the instructions in the E-repair range of the 
checkpoint used for repair have finished execution (the 
machine returns to the normal checkpoint activities and 
resume in full speed). 

T h e o r e m  1. The E-repair mechanisms with the issue E, deliverE~ 
checkE, and repair E actions defined above can always precisely han- 
dle exceptions caused by any active instructions. 

[ ~  active instructions 
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I I I I 
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Figure 4. Example execution snapshots under schemeE(2). 

Example 2. Figure 4. illustrates possible execution snapshots under 
schemeE(2). At tl, the active instructions belong to the E-repair 
range of checkpoint A and checkpoint B. Therefore, activeE,2(Q ) is 

checkpoint A and aetiveE.l(tl } is checkpoint B. After all the instruc- 
tions in the E-repair range of checkpoint A finish execution, A is 
retired from active E, a checkE action is performed to add checkpoint 
C to activeE, and the instruction issue unit continues to issue new 
instructions. The execution advances to cycle t 2 when all active 
instructions belong to the repair range of checkpoint B and check- 
point C. Therefore, aetiveE,2{t2} is checkpoint B and activeEA(t2) is 
checkpoint C. 

It is very important that the active instructions do not have to 
all finish before the machine can perform cheCkE. Theorem 2 
identifies the absolute minimal number of logical spaces required to 
meet the constraint. 

Theorem 2. A minimum of two backup logical spaces is required 
for any checkpoint E-repair mechanism to avoid draining all the 
active instructions before performing cheek E. Thus the machine 
design has to provide at least three logical spaces, one current and 
two backup E spaces. 

Theorem 3. At any time t, the maximal number of active instruc- 
tions is the sum of the number of instructions in the fault repair 
ranges of all checkpoints in activeE(t ). 

Theorem 4. Every instruction to the left of activeE,¢(t ) has finished 
execution by t. 

The maximal number of checkpoints allowed in active E and the 
number of instructions between the adjacent checkpoints are the two 
most important design parameters of schemes specializing in E- 
repairs. The stalls can be reduced by increasing the value of either 
of the two parameters at different prices. By increasing the maximal 
number of checkpoints allowed in activeE, one can reduce the 
number and duration of stalls by providing more logical spaces. By 
increasing the distance between adjacent checkpoints, one can reduce 
the number and duration of stalls by discarding more useful work 
when performing E-repair. Since E-repair is a rare event, it is a good 
tradeoff to reduce the number and duration of stalls at the cost of 
discarding more useful work (up to a reasonable point} when per- 
forming E-repair. In the extreme cases, two backup spaces (the 
minimum required not to drain the pipeline before performing 
checkE) are used and the distance between the neighboring check- 
points are set to be so large lin the order of several tens of instruc- 
tions} that stalls happen extremely rarely. 

3.2. Implementation of  Logical Spaces for E-repair Mechan- 
Isms. 

There are two types of techniques for implementing multiple 
logical spaces in an out-of-order execution environment. One, called 
copy technique, provides a full-sized physical storage for each logical 
space. The other, called difference technique, provides only one full- 
sized physical space; each logical space is implemented by keeping 
the difference of the content of the logical space from that of the 
full-sized physical space. These two implementation techniques have 
different space and time properties which makes them favorable for 
implementing either registers or cache/main memory [12] in the logi- 
cal space, but not both. 

3.2.1. Logical Register Implementation with the  Copy Tech- 
nique. 

This technique maintains fast access time and avoids extra 
bandwidth requirement by physically implementing a copy of 
storages for each logical space, which makes it more applicable to 
registers than to main memory. Each bit of the registers is imple- 
mented by ¢+ 1 physical cells, one for each logical space. 

Each bit of a register entry consists of e+ 1 cells, one for 
current and one for each of the e backupE elements. 

A lgor i thm 2. Actions on the cells of each register bit: 

access At instruction issue time, the source registers are 
fetched and the destination registers are marked 
reserved, both on the current cells. 
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write,~de, 

push 

recall 

An execution result is written to the backup,, for i from 
index to e-l, cells of the bits in the destination register. 
Note that current cell is backupg,o for this purpose. 
Also note that according to Theorem 4, there can be no 
active instruction to the left of activeE,, and therefore 
no instruction can deliver its result to backupg,¢. 
All the c backup E cells form a hardware stack with 
backupE,1 being the top entry. The content of the 
current cell is pushed onto the stack. 

The content of the current cell is replaced by that of 
the backupg.e cell. A check E action is immediately per- 
formed after repair. 

. ~  . . . . . . . . . . . .  . =  

= 

~ a  

Jr 

Figure 5. Register bit implementation under schemeE(2). 

Example 3, In figure 5, where an implementation of a register bit 
in schemeE(2) is illustrated, these cells are called current, backupE,1 , 
and backupg,2, corresponding to the logical spaces by the same name. 
Everything in figure 5 except for the current cell and its correspond- 
ing word/bit lines is overhead due to the checkpoint repair mechan- 
ism. There is a pair of word/bit lines to deliver results, produced by 
instructions to the left of active1, to the backupE,l cell. There is no 
need for such lines for the backupE,2 cell because all instructions to 
the left of activeE,2(t) have finished execution by t (Theorem 4). 

There are two signal lines, in figure 5, which are common to all logi- 
cal bits in the register file, push enable and recall enable. The push 
enable controls the shifting of the hardware stack and the recall 
enable controls the copy from the backupE,2 cell to the current cell. 

The advantage of the copy technique is that it does not 
increase the access bandwidth requirement of the register file imple- 
mented because the push and the recall do not actually move data 
out of and back into the register file. The disadvantage is that it 
expands the space requirement by nearly a factor of c+ 1 when sup- 
porting scherneme~ged{C). This makes it attractive for implementing 

• register files where access bandwidth requirement is already high and 
the size is small to begin with. 

3.2.2. Logical C a c h e / M a i n  Memor y  Implementa t ion  wi th  
Backward Difference Technique. 

A full-sized physical storage whose content reflects the current 
(out-of-order) execution state is provided. Lists of modifications are 
maintained so that when these are done to the content of the physi- 
cal storage, the result is the content of one of the implemented logi- 
cal spaces, Each such list is called a difference, indicating that the 
list records the difference of the execution state from one instruction 
boundary to another. There are two directions a difference can 
operate, forwards and backwards. We introduce backward difference 
in this section because it is more suitable for E-repair mechanisms. 
Forward difference, being more suitable for B-repair mechanisms, will 
be described in section 4. 

Basic Assumpt ion ,  There is a limit to the number of 
memory writes in the E-repair range of every checkpoint. This res- 
triction is required for efficient design of difference buffers to be 
described below, in machines exploiting Tomasulo types of depen- 
dency handling algorithm, the limited tag bits to be assigned to each 
instruction has already set an upper limit of number of instructions, 
and thus the number of memory writes, that can be simultaneously 
active. We further restrict the number of memory writes inside the 
E-repair range of each checkpoint for the purpose of efficient back- 
ward difference design. 

Definition 3. There is a maximal number of memory writes, W, 
inside the E-repair range of each checkpoint. The product c*W 
gives the maximal number of writes that can be active in the 
machine at any time provided that schemeE(c ) is used. 

The positions of these modifications in the backward difference 
preserve their order of modifying the memory, not necessarily the 
order they appear in the instruction stream due to the out-order exe- 
cution. 

check, retire, repair signals =l  

read/write request from data path ~i shift/release control 

Figure 6. Cache design with backward difference. 

Figure 6 illustrates the cache design when a backward 
difference is employed. The backward difference is accumulated dur- 
ing normal execution and is used when repair• When performing a 
memory write to cache, the original content of the cache word writ- 
ten is pushed on the backward difference. During repair, the back- 
ward difference is applied by popping its entries to recover the origi- 
nal cache word contents. This corresponds to undoing all the 
memory modifications associated with the valid entries of the back- 
ward difference list. A special ease of the backward difference 
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technique was presented as History Buffer Method in [5] which was 
designed to work in an in-order execution environment. 

Due to space constraints, we describe the logical space imple- 
mentation for write back caches but not write through caches. The 
backward difference is implemented with a bidirectional shift register 
each entry of which consists of a physical longword address, a byte 
mask, a Iongword data, and a checkpoint identification. 

Algor i thm 3(a). Simple repair algorithm for write back cache with 
backward difference. 

read Performed as if there were no repair mechanism. 

write Cache miss, if any, is handled first. The original con- 
tent of the addressed longword in the cache line 
together with the physical address, the mask, and the 
tag, is pushed onto the backward difference. If there is 
an overflow in the backward difference, the overflowed 
entry is simply discarded. 

replace When a cache line is replaced, the original content is 
written back if dirty. 

recall Assume the identification of the checkpoint the execu- 
tion the execution is backed up to is k. The backward 
difference buffer is popped until either the backward 
difference is empty or an entry with checkpoint 
identification less than or equal to k - e + l  is found. 
Only those entries with checkpoint identification 
greater than or equal to k are used to recover the cache 
memory and the main memory content. For each entry 
used, one of the following two cases can happen. 

ease 1 The line being repaired is not in the cache. This means 
that the modified line has been written back to the 
main memory. We use the saved data to recover the 
addressed longword in main memory. 

case 2 The line being repaired is in the cache. The modified 
portion of the cache line is recovered with the back- 
ward difference entry with dirty bit set. After this 
operation, the main memory content may or may not 
be incorrect. Thus the algorithm is conservative in 
that the next replacement of the cache line will be 
guaranteed to cause a write back which makes the 
main memory correct regardless whether it was correct 
or not. There will be an inefficiency if the memory 
content was indeed correct and the write back will not 
be necessary. This inefficiency will be eliminated in the 
more sophisticated algorithm we are going to show 
next. 

Algor i thm 3(b). More sophisticated algorithm for write back cache 
with backward difference. The purged dirty bit of the cache block is 
also saved in the backward difference entries. Associated with each 
cache line is a hazard bit which is cleared when a repair sequence is 
initiated. The major improvement achieved by this algorithm over 
the simple one is that whenever there is no incorrect memory con- 
tent, the dirty bit will not be set and thus a future write back can be 
potentially saved. 

case 1 The Iongword being recovered is not in the cache. We 
process this case in the same way as in the simple algo- 
rithm. We use the saved data to recover the addressed 
longword in the main memory. 

case 2 The line being repaired is in the cache. We use the 
saved dirty bit and the hazard bit to avoid setting the 
dirty bit. Whenever the hazard bit is one, the memory 
content is incorrect. The next state functions of dirty 
bit and hazard bit in terms of the saved dirty bit in the 
backward difference entry are presented in table 1. 

T h e o r e m  5. Algorithms 3(a) and 3(b) performs repair to a check- 
point correctly in that (1) the content of cache memory reflects the 

execution result up to the checkpoint the execution is backuped up 
to, (2) if the main memory is inconsistent with the cache memory, 
the dirty bits of the appropriate cache lines are set true. 

T h e o r e m  6. Algorithm 3(b) sets the dirty bit of the a cache line 
during repair sequences if and only if the memory version is incon- 
sistent with the cache line after the repair. 

T h e o r e m  7. A backward difference buffer of (2e-1)W entries is 
necessary and sufficient to handle all possible repairs without causing 
any extra stalls. 

The major saving of the more sophisticated algorithm is that if 
there was no write back activity for a cache line during and the con- 
tent of that cache line was consistent with the main memory version 
before the sequence of memory writes to be undone, the dirty bit will 
be cleared after repair. The performance gain of the more sophisti- 
cated algorithm can not be derived by analytical methods and must 
be measure with simulation. However, it is clear that it is the 
optimal algorithm in terms of avoiding unnecessarily setting dirty 
bits and thus avoiding unnecessary write back activity after repair. 

H•S,D O0 

0 1 

01 11 10 

1 1 

1 1 1 1 1 

next state function of dirty 

H•S,D O0 

0 1 

01 11 

1 1 1 1 1 

10 

1 

next state function of hazard 

H hazard bit of the cache line being recovered 

D dirty bit of the cache line being recovered 

S saved dirty bit in the backward difference entry being applied 

Table 1. Next state function of hazard bit and dirty hit 

4. Checkpoin t  B-repair  M e c h a n i s m .  

The checkpoint B-repair mechanism is the same as the check- 
point E-repair mechanism except for the following two major 
differences. First, we reduce the performance penalty for B-repairs 
by selecting the checkpoints just to the right of the instructions con- 
taining the conditional branches. When a B-repair occurs, the 
machine back the execution up to the checkpoint just to the right of 
the incorrectly predicted conditional branch and continue fetching 
and issuing instruction from the correct branch path. This avoids 
discarding any useful work when performing B-repairs. 

Second, instead of using count to keep track of the number of 
operations active in the checkpoint repair ranges at any point in 
time, there is a pend bit indicating whether the corresponding branch 
prediction has been verified. We omit the detailed description of 
checkpoint B-repair due to space constraints. 
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Example 4. Figure 7. illustrates possible execution snapshots under 
schemeB(2). At tx, the the two conditional branches waiting for 
verification are just to the left of checkpoint A and checkpoint B. 
Therefore, aetiveB,2(tl) is checkpoint A and activeB,~(t~ ) is check- 
point B. The execution advances to cycle 12 when the prediction 
corresponding to A has been verified and the awaiting conditional 

I ~  active instructions 

issuing 
CP A CP B .L cp c cp D 

I I I I 
active 2 (11) active 1(11) 

issuing 
CP A CPB CPC .LcPE 

i i I i 
active 2 (12) active 1 (12) 

A forward difference is applied by performing its modifications in the 
order of their appearance in the dynamic instruction stream, from 
left to right. This corresponds to the sequential execution of these 
modifications. Figure 8 shows the cache design when a forward 
difference is employed. A special case for the forward difference tech- 
nique was presented as Reorder Buffer Method in 15] which was 
designed for an execution environment where the execution time of 
all instructions are predictable at instruction issue time. The algo- 
rithm handling forward difference is described in [151 and is not 
presented here due to space constraints. 

control from data-path =- [ release, shift, and roll back control I 

read address from data path go 

Figure 7. Example execution snapshots under schemes(2). 

branches are just to the left of checkpoint B and checkpoint C. 
Therefore, activeB,e(t2) is checkpoint B and activeBa(t~) is check- 
point C. 

Note that there are active instructions from the E-repair ranges 
of all the three activeE(t2) checkpoints in figure 7. This is legal 
because schemes(2) does not handle E-repairs. In the ease of E- 
repair schemes, however, a active~,c(t ) can not be purged until there 
is no active instruction in its E-repair range. Thus we have a more 
relaxed reuse rule for B-repair backup spaces than for E-repair 
backup spaces. 

T h e o r e m  8. If the out-of-order execution machine performs any 
branch prediction and proceed instruction issuing along the predicted 
path, there must be at least one backupB space provided. 

There is no upper limit on the number of active instructions 
under sehemeB(c). This is due to the more relaxed retire rule for the 
activeB checkpoint than that for the activeE checkpoints. There is 
no freedom in selecting the checkpoints because they have to be at 
the right boundary of instructions containing conditional branches 
The only design parameter to be determined is the maximal number 
of checkpoints allowed in activeB. 

4.1. Implementation of Logical Spaces for B-repair Mechan- 
Isms. 

4.1.1. Logical Register  Implementa t ion  wi th  the  Copy Tech- 
nique. 

The data structure and tile algorithm for the register file imple- 
mentation is the same for B-repair mechanisms as those for E-repair 
mechanisms. 

4.1.2. Forward Differences. 

A forward difference of main memory (register) content between 
instruction boundary A and instruction boundary B (A is to the left 
of B) is defined as the list of all the modifications to the main 
memory (register} space contained in the instructions between A and 
B. The positions of these modifications in the forward difference 
preserve their order of appearance in the dynamic instruction stream. 

Figure 8. Cache design with forward difference. 

5. Schemes for Handling Both E- repa l r s  and B-repairs. 

We describe, in this section, schemes that handle both E-repairs 
and B-repairs. Schemes that can handle only E-repairs or B-repairs 
have been defined in the last section when actions on checkpoints 
and logical spaces were given. We now concentrate on how to 

incorporate E-repair and B-repair schemes into a integrated scheme 
which handles both types of repairs. 

5.1. Directly Combined Schemes. 

In these schemes, we actually provide two independent sub- 
mechanisms, one for E-repair and one for B-repair. 

Definition 4. Schemed, rect(eE,cB) is a repair scheme characterized 
as follows. 

(1) Two independent submechanisms are used, one for E- 
repair and one for B-repair. 

(2) A maximum of c E checkpoints are allowed in 
activeE(t ) at any time t. 

(3) A maximum of c B checkpoints are allowed in 
aetiveB(t) at any time t. 

We need to provide c E + e B + I  logical spaces to support 
scheme#,,ect(eE,cB): one current, one for each of the eE checkpoints, 
and one for each of the e B checkpoints. 

The properties of sehemed,,ect(cE,eB) are easily derived from 
those for schemeE(CE) and sehemen(eB). The first property is that 
schemea,,ect(eE,eB} with the issueE, deliverg, checkE, repairg 
(defined in section 3.1), and issueB, verifvB, check n, repair n can pre- 
cisely handle all potential E-repairs and B-repairs. 
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The second property is that at least three backup spaces (two 
backupE spaces and one backups ) must be provided to avoid draining 
the active window before the machine can perform check E and to 
continue issuing and executing instructions along the predicted path. 
This property follows directly from Theorem 2 and Theorem 8. 

The third property is the stall condition. Scheme~.ect(cE,es) 
has to stall if at least one of the following two conditions occurs. 

(1) When a cheek E has to be performed, countE,cE is not 0. 

(2) When a check B has to be performed, pendB,~B is not 

false. 

The fourth property is that when the instruction issuing stalls 
in schemed,~tct(c m,eB), the maximal number of active instructions is 
the sum of the number of instructions in the fault repair ranges of all 
instructions in aetiveE(t ). Since there is no such upper limit imposed 
by the B-repair submechanism, this property follows directly 
Theorem 3. 

The direct combination of E-repairs and B-repairs has the 
advantage of being clean. All the properties follow directly from the 
properties of its subschemes. It, however, has some inefficiency in 
the logical space usage due to the lack of interaction of the two sub- 
mechanisms. 

5.2. Tightly Merged Schemes. 

In these schemes, the two submechanisms are more closely cou- 
pled together to handle both E-repairs and B-repairs. The scheme is 
the same as that for E-repairs except for two differences. First, the 
rule for selecting E-repair checkpoints is that the right side boun- 
daries of the instructions containing conditional branches serves as 
F~-repair checkpoints (as well as B-repair checkpoints). Second, 
misst,g~ ~ is added to record whether the branch predictions associated 
with the checkpoints are correct or not. If both ezcept,~ht.c and 
mis,%#t,c are true, the branch prediction miss is processed and the 
exception is ignored. It is clear that since the exception is caused by 
some instruction along the wrong branch path. the exception should 
not occur due to the architecture specification. Since the algorithm 
for F~repair can be easily converted to the algorithm for the tightly 
merged scheme, we do not elaborate any more on the resulting algo- 
rithm. 

Theorem 9. A minimum of two backup logical spaces is required 
for any checkpoint merged mechanism to avoid draining the active 
window when establishing checkpoints and to continue 
issuing/executing instructions along the predicted path of a condi- 
tional branch. 

5.3. Loosely Merged Schemes. 

Definition 5. Schemetoose( c E ,cB) is a repair scheme with c E 
backup spaces provided for E-repair purposes and e B backup spaces 
provided for B-repair purposes and uses the algorithm presented 
below to pick one out of several B-repair checkpoints as E-repair 
checkpoints. 

Algorithm 4. Actions defined for a loosely merged E-repair and B- 
repair mechanism. We concentrate on the check and repair actions 
which are the major difference between this algorithm and the others. 

Check This action is performed immediately after an instruc- 
tion containing an conditional branch is issued. If 
pendcB is true, instruction issue has to stall due to 

insufficient B-repair backup spaces. Otherwise, we 
examine the sum the number of issued instructions in 
the E-repair range of activeloose,Cn+l(t } and the number 
of issued instructions in the F~repair range of 
activeloos~.enIt }. Consider the following two eases. 

case 1 The sum is less than a predetermined number. This 
means that we have not collected enough instructions 
to establish the next E-repair checkpoint. The sum is 
stored in an accumulating register. Current is pushed 
onto the B-repair hardware stack. 

case 2 The sum is greater than or equal to a predetermined 
number. This means that we have collected enough 
instructions to establish the next E-repair checkpoint. 
If counttoos,,eE+e B is not 0, instruction issue must stall 

due to insufficient E-repair backup spaces. Otherwise, 
the following events happen. BackupE,cB is pushed 

onto the E-repair hardware stack. Current is pushed 
onto the B-repair hardware stack. The accumulating 
register is loaded with the number of issued instructions 
in the E-repair range of activeloose,cB+l. 

This occurs if ezcepQ~+¢B is true. The content of 

backuploose,eE+es is gated to current. 

This occurs if misse 8 is true. The content of 

backuptoose.~ B is gated to current. 

Intuitively, the loosely coupled scheme use only a fraction of 
the B-repair checkpoints for E-repair checkpoints. Since we expect 
that the B-repair backup spaces can be reused more easily than the 
E-repair backup spaces, the loosely coupled schemes are expected to 
reduce the stalls due to insufficient E-repair backup spaces while 
maintaining high speed repair for B-repairs. 

E-repair 

B-repair 

6. F u t u r e  Research  and  Conc lud ing  R e m a r k s .  

The central theme of our research is the implementation of 
high performance computing engines. Two techniques we have found 
to be effective, out-of-order execution and branch prediction, have 
forced us to be able to repair our machine to a known previous state. 
In this paper we have derived several important properties of general 
checkpoint repair, specified schemes for checkpointing, and defined 
implementations which we suggest are cost-effective. Simulation and 
hardware design are being conducted to evaluate the time and 
hardware overhead incurred. Our preliminary design of a high per- 
formance single chip engine HPSm [2,14] includes logic to implement 
Algorithms 2, 3 and 4. Algorithm 2 checkpoints the registers, algo- 
rithm 3 checkpoint the memory for E-repair, and algorithm 4 con- 
trois the overall checkpoint repair process. 

We are also extending our work to repair mechanisms for three 
types of processing systems: tightly coupled multiprocessors with 
shared memory, loosely coupled multiprocessors which use message 
passing, and uniproeessors with vector, string, and commercial 
instructions. 
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