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Overview of Research 

 Heterogeneous systems, accelerating bottlenecks 
 

 Memory (and storage) systems 

 Scalability, energy, latency, parallelism, performance 

 Compute in/near memory 

 

 Predictable performance, QoS 
 

 Efficient interconnects 
 

 Bioinformatics algorithms and architectures 
 

 Acceleration of important applications, software/hardware 
co-design 
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Three Key Problems in Future Systems 

 Memory system 

 Many important existing and future applications are 
increasingly data intensive  require bandwidth and capacity 

 Data storage and movement limits performance & efficiency 

 

 Efficiency (performance and energy)  scalability 

 Enables scalable systems  new applications 

 Enables better user experience  new usage models 

 

 Predictability and robustness 

 Resource sharing and unreliable hardware causes QoS issues 

 Predictable performance and QoS are first class constraints  
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Readings and Videos 

 

 

 

 



Mini Course: Multi-Core Architectures 

 Lecture 1.1: Multi-Core System Design 

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-
2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx 

 

 Lecture 1.2: Cache Design and Management 

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-
2013-lecture1-2-cache-management-afterlecture.pptx 

 

 Lecture 1.3: Interconnect Design and Management 

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-
10-2013-lecture1-3-interconnects-afterlecture.pptx 
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Mini Course: Memory Systems 

 Lecture 2.1: DRAM Basics and DRAM Scaling 

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-
13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx 

 

 Lecture 2.2: Emerging Technologies and Hybrid Memories 

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-
14-2013-lecture2-2-emerging-memory-afterlecture.pptx 

 

 Lecture 2.3: Memory QoS and Predictable Performance  

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-
17-2013-lecture2-3-memory-qos-afterlecture.pptx 
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Readings for Today 
 Required – Symmetric and Asymmetric Multi-Core Systems 

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric 
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro 2010.  

 Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010, 
IEEE Micro 2011. 

 Joao et al., “Bottleneck Identification and Scheduling for Multithreaded 
Applications,” ASPLOS 2012. 

 Joao et al., “Utility-Based Acceleration of Multithreaded Applications on 
Asymmetric CMPs,” ISCA 2013. 

 

 Recommended 

 Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967.  

 Olukotun et al., “The Case for a Single-Chip Multiprocessor,” ASPLOS 1996. 

 Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors,” HPCA 2003, IEEE Micro 2003. 

 Mutlu et al., “Techniques for Efficient Processing in Runahead Execution 
Engines,” ISCA 2005, IEEE Micro 2006. 
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Videos for Today 

 Multiprocessors 
 Basics:http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkX

midJOd59REog9jDnPDTG6IJ&index=31 

 Correctness and Coherence: http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32 

 Heterogeneous Multi-Core: 
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd5
9REog9jDnPDTG6IJ&index=34  

 

 Runahead Execution 
 http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd

59REog9jDnPDTG6IJ&index=28 
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http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34
http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28
http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28


Online Lectures and More Information 

 Online Computer Architecture Lectures 

 http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59R
Eog9jDnPDTG6IJ  

 

 Online Computer Architecture Courses 

 Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php 

 Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php  

 Advanced: http://www.ece.cmu.edu/~ece742/doku.php  

 

 Recent Research Papers 

 http://users.ece.cmu.edu/~omutlu/projects.htm 

 http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=e
n 
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Architecting and Exploiting 

Asymmetry in Multi-Core Architectures  

 

 

 

 



Warning 

 This is an asymmetric talk 

 But, we do not need to cover all of it… 

 

 Component 1: A case for asymmetry everywhere 

 

 Component 2: A deep dive into mechanisms to exploit 
asymmetry in processing cores 

 

 Component 3: Asymmetry in memory controllers 

 

 Asymmetry = heterogeneity 

 A way to enable specialization/customization 
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The Setting 

 Hardware resources are shared among many threads/apps 
in a many-core system 

 Cores, caches, interconnects, memory, disks, power, lifetime, 
… 

 

 Management of these resources is a very difficult task 

 When optimizing parallel/multiprogrammed workloads 

 Threads interact unpredictably/unfairly in shared resources 

 

 Power/energy consumption is arguably the most valuable 
shared resource 

 Main limiter to efficiency and performance 
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Shield the Programmer from Shared Resources 

 Writing even sequential software is hard enough 

 Optimizing code for a complex shared-resource parallel system 
will be a nightmare for most programmers 

 

 Programmer should not worry about                   
(hardware) resource management 

 What should be executed where with what resources 

 

 Future computer architectures should be designed to 

 Minimize programmer effort to optimize (parallel) programs 

 Maximize runtime system’s effectiveness in automatic     
shared resource management 
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Shared Resource Management: Goals 

 Future many-core systems should manage power and 
performance automatically across threads/applications 

 

 Minimize energy/power consumption 

 While satisfying performance/SLA requirements 

 Provide predictability and Quality of Service 

 Minimize programmer effort 

 In creating optimized parallel programs 

 

 Asymmetry and configurability in system resources essential 
to achieve these goals  
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Asymmetry Enables Customization 

 

 

 

 

 

 

 

 Symmetric: One size fits all 

 Energy and performance suboptimal for different phase behaviors 

 Asymmetric: Enables tradeoffs and customization 

 Processing requirements vary across applications and phases 

 Execute code on best-fit resources (minimal energy, adequate perf.) 
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Thought Experiment: Asymmetry Everywhere 

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components 

 Different power/performance/reliability characteristics 

 To fit different computation/access/communication patterns 
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Thought Experiment: Asymmetry Everywhere 
 

 Design the runtime system (HW & SW) to automatically choose 
the best-fit components for each phase 

 Satisfy performance/SLA with minimal energy 

 Dynamically stitch together the “best-fit” chip for each phase  
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Phase 1 

Phase 2 

Phase 3 



Thought Experiment: Asymmetry Everywhere 
 

 Morph software components to match asymmetric HW 
components  

 Multiple versions for different resource characteristics 
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Version 1 

Version 2 

Version 3 



Many Research and Design Questions 

 How to design asymmetric components? 

 Fixed, partitionable, reconfigurable components? 

 What types of asymmetry? Access patterns, technologies? 

 

 What monitoring to perform cooperatively in HW/SW? 

 Automatically discover phase/task requirements 

 

 How to design feedback/control loop between components and 
runtime system software? 

 

 How to design the runtime to automatically manage resources? 

 Track task behavior, pick “best-fit” components for the entire workload 
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Talk Outline 

 Problem and Motivation 

 How Do We Get There: Examples 

 Accelerated Critical Sections (ACS) 

 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 Thread Cluster Memory Scheduling (if time permits) 

 Ongoing/Future Work 

 Conclusions 
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Exploiting Asymmetry: Simple Examples 
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 Execute critical/serial sections on high-power, high-performance 
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12] 

 Programmer can write less optimized, but more likely correct programs  

Serial Parallel 



Exploiting Asymmetry: Simple Examples 
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 Execute streaming “memory phases” on streaming-optimized 
cores and memory hierarchies 

 More efficient and higher performance than general purpose hierarchy 

Streaming R
a
n
d
o
m
 
a
c
c
e
s
s 



Exploiting Asymmetry: Simple Examples 
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 Partition memory controller and on-chip network bandwidth 
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks 

2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011] 

 Higher performance and energy-efficiency than symmetric/free-for-all 

Latency sensitive 

B
a
n
d
w
i
d
t
h
 
s
e
n
s
i



Exploiting Asymmetry: Simple Examples 
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 Have multiple different memory scheduling policies apply them 
to different sets of threads based on thread behavior [Kim+ MICRO 

2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012] 

 Higher performance and fairness than a homogeneous policy 

Memory intensive Compute intensive 



Exploiting Asymmetry: Simple Examples 
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 Build main memory with different technologies with different 
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE 

CAL’12] 

 Map pages/applications to the best-fit memory resource 

 Higher performance and energy-efficiency than single-level memory 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

DRAM Phase Change Memory 



Talk Outline 

 Problem and Motivation 

 How Do We Get There: Examples 

 Accelerated Critical Sections (ACS) 

 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 Thread Cluster Memory Scheduling (if time permits) 

 Ongoing/Future Work 

 Conclusions 
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Serialized Code Sections in Parallel Applications 

 Multithreaded applications: 

 Programs split into threads 

 

 Threads execute concurrently on multiple cores 

 

 Many parallel programs cannot be parallelized completely 

 

 Serialized code sections: 

 Reduce performance 

 Limit scalability 

 Waste energy 
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Causes of Serialized Code Sections 

 Sequential portions (Amdahl’s “serial part”) 

 Critical sections 

 Barriers 

 Limiter stages in pipelined programs 
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Bottlenecks in Multithreaded Applications 

Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

 Amdahl’s serial portions 
 Only one thread exists  on the critical path 

 

 Critical sections 
 Ensure mutual exclusion  likely to be on the critical path if contended 

 

 Barriers 
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path 
 

 Pipeline stages 

 Different stages of a loop iteration may execute on different threads,  
slowest stage makes other stages wait  on the critical path 
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Critical Sections 

 Threads are not allowed to update shared data concurrently 

 For correctness (mutual exclusion principle) 

 

 Accesses to shared data are encapsulated inside  
critical sections 

 

 Only one thread can execute a critical section at  
a given time 
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Example from MySQL 
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Open database tables 

Perform the operations 
…. 

Critical 

Section 

Parallel 

Access Open Tables Cache 



Contention for Critical Sections 
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Contention for Critical Sections 
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0 

Critical 

Section 

Parallel 

Idle 

12 iterations, 33% instructions inside the critical section 

P = 1 

P = 3 

P = 2 

P = 4 

1 2 3 4 5 6 7 8 9 10 11 12 

Accelerating critical sections  
increases performance and scalability 

Critical  

Section 

Accelerated 

by 2x 
 



Impact of Critical Sections on Scalability 

 Contention for critical sections leads to serial execution 
(serialization) of threads in the parallel program portion 

 Contention for critical sections increases with the number of 
threads and limits scalability 
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A Case for Asymmetry 

 Execution time of sequential kernels, critical sections, and 
limiter stages must be short 
 

 It is difficult for the programmer to shorten these 
serialized sections 

 Insufficient domain-specific knowledge 

 Variation in hardware platforms  

 Limited resources 
 

 Goal: A mechanism to shorten serial bottlenecks without 
requiring programmer effort 
 

 Idea: Accelerate serialized code sections by shipping them 
to powerful cores in an asymmetric multi-core (ACMP) 
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ACMP 

 

 

 

 

 

 

 
 

 Provide one large core and many small cores 

 Execute parallel part on small cores for high throughput 

 Accelerate serialized sections using the large core 

 Baseline: Amdahl’s serial part accelerated [Morad+ CAL 2006, 

Suleman+, UT-TR 2007] 
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Conventional ACMP 
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EnterCS() 

PriorityQ.insert(…) 

LeaveCS() 

On-chip 

Interconnect 

1. P2 encounters a Critical Section 

2. Sends a request for the lock 

3. Acquires the lock 

4. Executes Critical Section 

5. Releases the lock 

Core executing 

critical section 

P1 
P2 P3 P4 



Accelerated Critical Sections (ACS) 

 

 

 

 

 

 

 
 

 Accelerate Amdahl’s serial part and critical sections using 
the large core 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE 
Micro Top Picks 2010.  
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Accelerated Critical Sections (ACS) 
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EnterCS() 

PriorityQ.insert(…) 

LeaveCS() 

Onchip-

Interconnect 

Critical Section 

Request Buffer 

(CSRB) 

1. P2 encounters a critical section (CSCALL) 

2. P2 sends CSCALL Request to CSRB 

3. P1 executes Critical Section 

4. P1 sends CSDONE signal 

Core executing 

critical section 

P4 P3 P2 
P1 



ACS Architecture Overview 

 ISA extensions 
 CSCALL  LOCK_ADDR, TARGET_PC 
 CSRET   LOCK_ADDR 

 

 Compiler/Library inserts CSCALL/CSRET 
 

 On a CSCALL, the small core: 
 Sends a CSCALL request to the large core 

 Arguments: Lock address, Target PC, Stack Pointer, Core ID 

 Stalls and waits for CSDONE 

 
 Large Core 

 Critical Section Request Buffer (CSRB) 
 Executes the critical section and sends CSDONE to the requesting 

core 
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Accelerated Critical Sections (ACS) 
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A = compute() 

 

LOCK X 

      result = CS(A) 

UNLOCK X 

 

print result 

Small Core Small Core Large Core 

A = compute() 

CSDONE Response 

CSCALL Request 

Send X, TPC, 
STACK_PTR, CORE_ID 

PUSH A 

CSCALL X, Target PC 
… 

… 

… 
Acquire X 

POP A 

result  = CS(A) 

PUSH result 

Release X 

CSRET X 

TPC:  

POP result 

print result 

… 

… 

… 

… 

… 

… 

… 

Waiting in 
Critical Section 
Request Buffer 

(CSRB) 



False Serialization 

 ACS can serialize independent critical sections 
 

 Selective Acceleration of Critical Sections (SEL) 

 Saturating counters to track false serialization 
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ACS Performance Tradeoffs 

 Pluses 

+ Faster critical section execution 

+ Shared locks stay in one place: better lock locality 

+ Shared data stays in large core’s (large) caches: better shared 
data locality, less ping-ponging 

 

 Minuses 

- Large core dedicated for critical sections: reduced parallel 
throughput 

- CSCALL and CSDONE control transfer overhead 

- Thread-private data needs to be transferred to large core: worse 
private data locality 
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ACS Performance Tradeoffs 

 Fewer parallel threads vs. accelerated critical sections 
 Accelerating critical sections offsets loss in throughput 

 As the number of cores (threads) on chip increase: 

 Fractional loss in parallel performance decreases 

 Increased contention for critical sections  
makes acceleration more beneficial 

 

 Overhead of CSCALL/CSDONE vs. better lock locality 
 ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

 

 More cache misses for private data vs. fewer misses 
for shared data 
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Cache Misses for Private Data 
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Private Data: 

NewSubProblems 

Shared Data:   

The priority heap 

 
PriorityHeap.insert(NewSubProblems) 

 

Puzzle Benchmark 



ACS Performance Tradeoffs 

 Fewer parallel threads vs. accelerated critical sections 
 Accelerating critical sections offsets loss in throughput 

 As the number of cores (threads) on chip increase: 

 Fractional loss in parallel performance decreases 

 Increased contention for critical sections  
makes acceleration more beneficial 

 

 Overhead of CSCALL/CSDONE vs. better lock locality 
 ACS avoids “ping-ponging” of locks among caches by keeping them at 

the large core 

 

 More cache misses for private data vs. fewer misses 
for shared data 
 Cache misses reduce if shared data > private data 
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ACS Comparison Points 

 Conventional 
locking 
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Accelerated Critical Sections: Methodology 

 Workloads: 12 critical section intensive applications 

 Data mining kernels, sorting, database, web, networking 
 

 Multi-core x86 simulator 

 1 large and 28 small cores  

 Aggressive stream prefetcher employed at each core 
 

 Details: 

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 2GHz, in-order, 2-wide, 5-stage 

 Private 32 KB L1, private 256KB L2, 8MB shared L3 

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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ACS Performance 
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Equal-Area Comparisons 
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ACS Summary 

 Critical sections reduce performance and limit scalability 

 

 Accelerate critical sections by executing them on a powerful 
core 

 

 ACS reduces average execution time by: 

 34% compared to an equal-area SCMP 

 23% compared to an equal-area ACMP 

 

 ACS improves scalability of 7 of the 12 workloads 

 

 Generalizing the idea: Accelerate all bottlenecks (“critical 
paths”) by executing them on a powerful core 
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BIS Summary 
 Problem: Performance and scalability of multithreaded applications  

are limited by serializing bottlenecks 

 different types: critical sections, barriers, slow pipeline stages 

 importance (criticality) of a bottleneck can change over time 
 

 Our Goal: Dynamically identify the most important bottlenecks and  
accelerate them 

 How to identify the most critical bottlenecks 

 How to efficiently accelerate them 
 

 Solution: Bottleneck Identification and Scheduling (BIS) 

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and 
implement waiting for bottlenecks with a special instruction (BottleneckWait) 

 Hardware: identify bottlenecks that cause the most thread waiting and 
accelerate those bottlenecks on large cores of an asymmetric multi-core system 
 

 Improves multithreaded application performance and scalability, 
outperforms previous work, and performance improves with more cores 
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Bottlenecks in Multithreaded Applications 

Definition: any code segment for which threads contend (i.e. wait) 
 

Examples: 
 

 Amdahl’s serial portions 
 Only one thread exists  on the critical path 

 

 Critical sections 
 Ensure mutual exclusion  likely to be on the critical path if contended 

 

 Barriers 
 Ensure all threads reach a point before continuing  the latest thread arriving 

is on the critical path 
 

 Pipeline stages 

 Different stages of a loop iteration may execute on different threads,  
slowest stage makes other stages wait  on the critical path 

54 



Observation: Limiting Bottlenecks Change Over Time 

A=full linked list; B=empty linked list 

repeat 

 Lock A 

  Traverse list A 

  Remove X from A 

 Unlock A 

 Compute on X 

 Lock B 

  Traverse list B 

  Insert X into B 

 Unlock B 

until A is empty 
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Lock A is limiter 
Lock B is limiter 

32 threads 



Limiting Bottlenecks Do Change on Real Applications 

56 

MySQL running Sysbench queries, 16 threads 



Previous Work on Bottleneck Acceleration 

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]  

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07] 

 Accelerate only the Amdahl’s bottleneck 
 

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09] 

 Accelerate only critical sections 

 Does not take into account importance of critical sections 
 

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11] 

 Accelerate only stages with lowest throughput 

 Slow to adapt to phase changes (software based library) 

 

No previous work can accelerate all three types of bottlenecks or  
quickly adapts to fine-grain changes in the importance of bottlenecks 

 

Our goal: general mechanism to identify performance-limiting bottlenecks of 
any type and accelerate them on an ACMP 
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Bottleneck Identification and Scheduling (BIS) 

 Key insight: 

 Thread waiting reduces parallelism and  
is likely to reduce performance 

 Code causing the most thread waiting                             
 likely critical path 
 

 

 

 Key idea: 

 Dynamically identify bottlenecks that cause  
the most thread waiting 

 Accelerate them (using powerful cores in an ACMP) 



1. Annotate 
bottleneck code 

2. Implement waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



   while cannot acquire lock 

    Wait loop for watch_addr 

   acquire lock 

   … 

   release lock 

 

Critical Sections: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   … 

targetPC:  while cannot acquire lock 

    Wait loop for watch_addr 

   acquire lock 

   … 

   release lock 

   BottleneckReturn bid 
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 BottleneckWait bid, watch_addr 

   … 

 

 

 

 

 

   … 
Used to keep track of 

waiting cycles 

Used to enable 
acceleration 
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Barriers: Code Modifications 

   … 

   BottleneckCall bid, targetPC 

   enter barrier 

   while not all threads in barrier 

    BottleneckWait bid, watch_addr 

   exit barrier 

   … 

targetPC:  code running for the barrier 

   … 

   BottleneckReturn bid 
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Pipeline Stages: Code Modifications 

   BottleneckCall bid, targetPC 

   … 

targetPC: while not done 

    while empty queue 

     BottleneckWait prev_bid 

    dequeue work 

    do the work … 

    while full queue 

     BottleneckWait next_bid 

    enqueue next work 

   BottleneckReturn bid 

 



1. Annotate 
bottleneck code 

2. Implements waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



BIS: Hardware Overview 

 Performance-limiting bottleneck identification and 
acceleration are independent tasks 

 Acceleration can be accomplished in multiple ways 

 Increasing core frequency/voltage 

 Prioritization in shared resources [Ebrahimi+, MICRO’11] 

 Migration to faster cores in an Asymmetric CMP 
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1. Annotate 
bottleneck code 

2. Implements waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Determining Thread Waiting Cycles for Each Bottleneck 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

BottleneckWait x4500 

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2 

BottleneckWait x4500 

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5 



1. Annotate 
bottleneck code 

2. Implements waiting 
     for bottlenecks 

1. Measure thread  

waiting cycles (TWC) 

for each bottleneck 

2. Accelerate bottleneck(s) 

with the highest TWC 

Binary containing  

 BIS instructions 

Compiler/Library/Programmer Hardware 
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Bottleneck Identification and Scheduling (BIS) 



Bottleneck Acceleration 
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Small Core 1 Large Core 0 

Small Core 2 

Bottleneck 

Table (BT) 

… 

Scheduling Buffer (SB) 

bid=x4700, pc, sp, core1 

Acceleration 

Index Table (AIT) 

BottleneckCall x4600 

Execute locally 

BottleneckCall x4700 

bid=x4700 , large core 0 

Execute remotely 

AIT 

bid=x4600, twc=100 

bid=x4700, twc=10000 

BottleneckReturn x4700 

bid=x4700 , large core 0 

bid=x4700, pc, sp, core1 

  twc < Threshold 

  twc > Threshold 

Execute locally Execute remotely 



BIS Mechanisms 

 Basic mechanisms for BIS: 

 Determining Thread Waiting Cycles   

 Accelerating Bottlenecks   

 

 Mechanisms to improve performance and generality of BIS: 

 Dealing with false serialization 

 Preemptive acceleration 

 Support for multiple large cores 
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False Serialization and Starvation 

 Observation: Bottlenecks are picked from Scheduling Buffer 
in Thread Waiting Cycles order 

 

 Problem: An independent bottleneck that is ready to execute  
has to wait for another bottleneck that has higher thread 
waiting cycles  False serialization 

 

 Starvation: Extreme false serialization 

 

 Solution: Large core detects when a bottleneck is ready to 
execute in the Scheduling Buffer but it cannot  sends the 
bottleneck back to the small core 
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Preemptive Acceleration 

 Observation: A bottleneck executing on a small core can 
become the bottleneck with the highest thread waiting cycles 

 
 

 Problem: This bottleneck should really be accelerated (i.e., 
executed on the large core) 

 
 

 Solution: The Bottleneck Table detects the situation and  
sends a preemption signal to the small core. Small core: 

 saves register state on stack, ships the bottleneck to the large core 
 

 

 

 Main acceleration mechanism for barriers and pipeline stages 
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Support for Multiple Large Cores 

 Objective: to accelerate independent bottlenecks 

 

 Each large core has its own Scheduling Buffer  
(shared by all of its SMT threads) 

 

 Bottleneck Table assigns each bottleneck to  
a fixed large core context to 

 preserve cache locality 

 avoid busy waiting 

 

 Preemptive acceleration extended to send multiple 
instances of a bottleneck to different large core contexts 
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Hardware Cost 

 Main structures: 
 

 Bottleneck Table (BT): global 32-entry associative cache, 
minimum-Thread-Waiting-Cycle replacement 

 

 Scheduling Buffers (SB): one table per large core,  
as many entries as small cores 
 

 Acceleration Index Tables (AIT): one 32-entry table 
per small core 
 

 

 

 

 Off the critical path 

 

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB 
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BIS Performance Trade-offs 

 Faster bottleneck execution vs. fewer parallel threads 
 Acceleration offsets loss of parallel throughput with large core counts 
 

 

 

 Better shared data locality vs. worse private data locality 
 Shared data stays on large core (good) 

 Private data migrates to large core (bad, but latency hidden with Data 
Marshaling [Suleman+, ISCA’10]) 
 

 

 

 Benefit of acceleration vs. migration latency 
 Migration latency usually hidden by waiting (good) 

 Unless bottleneck not contended (bad, but likely not on critical path) 
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Methodology 

 Workloads: 8 critical section intensive, 2 barrier intensive 
and 2 pipeline-parallel applications 

 Data mining kernels, scientific, database, web, networking, specjbb 
 

 Cycle-level multi-core x86 simulator 

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT 

 1 large core is area-equivalent to 4 small cores 
 

 Details: 

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 4GHz, in-order, 2-wide, 5-stage 

 Private 32KB L1, private 256KB L2, shared 8MB L3 

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency 
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BIS Comparison Points (Area-Equivalent) 

 SCMP (Symmetric CMP) 

 All small cores 

 Results in the paper 
 

 ACMP (Asymmetric CMP) 

 Accelerates only Amdahl’s serial portions 

 Our baseline 
 

 ACS (Accelerated Critical Sections) 

 Accelerates only critical sections and Amdahl’s serial portions 

 Applicable to multithreaded workloads  
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft) 
 

 FDP (Feedback-Directed Pipelining) 

 Accelerates only slowest pipeline stages 

 Applicable to pipeline-parallel workloads (rank, pagemine) 
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BIS Performance Improvement 

77 

Optimal number of threads, 28 small cores, 1 large core 

 BIS outperforms ACS/FDP by 15% and ACMP by 32% 

 BIS improves scalability on 4 of the benchmarks 

 

barriers, which ACS  

cannot accelerate 
limiting bottlenecks change over time 

ACS FDP 



Why Does BIS Work? 

78 

 Coverage: fraction of program critical path that is actually identified as bottlenecks 

 39% (ACS/FDP) to 59% (BIS) 

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks 

 72% (ACS/FDP) to 73.5% (BIS) 

 

Fraction of execution time spent on predicted-important bottlenecks 

Actually critical 



BIS Scaling Results 
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Performance increases with: 

 

1) More small cores 

 Contention due to bottlenecks 
increases 

 Loss of parallel throughput due 
to large core reduces 

 

 

2) More large cores 

 Can accelerate  
independent bottlenecks 

 Without reducing parallel 
throughput (enough cores) 

2.4% 
6.2% 

15% 19% 



BIS Summary 

 Serializing bottlenecks of different types limit performance of 
multithreaded applications: Importance changes over time 
 

 BIS is a hardware/software cooperative solution:  

 Dynamically identifies bottlenecks that cause the most thread waiting 
and accelerates them on large cores of an ACMP 

 Applicable to critical sections, barriers, pipeline stages 
 

 BIS improves application performance and scalability: 

 15% speedup over ACS/FDP 

 Can accelerate multiple independent critical bottlenecks 

 Performance benefits increase with more cores 
 

 Provides comprehensive fine-grained bottleneck acceleration 
for future ACMPs with little or no programmer effort 
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 Problem and Motivation 
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 Bottleneck Identification and Scheduling (BIS) 

 Staged Execution and Data Marshaling 

 Thread Cluster Memory Scheduling (if time permits) 

 Ongoing/Future Work 

 Conclusions 
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Staged Execution Model (I) 

 Goal: speed up a program by dividing it up into pieces 

 Idea 

 Split program code into segments 

 Run each segment on the core best-suited to run it 

 Each core assigned a work-queue, storing segments to be run 
 

 Benefits 

 Accelerates segments/critical-paths using specialized/heterogeneous cores 

 Exploits inter-segment parallelism 

 Improves locality of within-segment data 
 

 Examples 

 Accelerated critical sections, Bottleneck identification and scheduling 

 Producer-consumer pipeline parallelism 

 Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch) 

 Special-purpose cores and functional units 
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Staged Execution Model (II) 

LOAD X 
STORE Y 
STORE Y 

 
LOAD Y 

…. 
STORE Z 

 
LOAD Z 

…. 
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Staged Execution Model (III) 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Segment S0 

Segment S1 

Segment S2 

Split code into segments 
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Staged Execution Model (IV) 

Core 0 Core 1 Core 2 

Work-queues 

Instances 

 of S0 

Instances 

 of S1 

Instances 

 of S2 
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LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Core 0 Core 1 Core 2 

S0 

S1 

S2 

Staged Execution Model: Segment Spawning 



Staged Execution Model: Two Examples 

 Accelerated Critical Sections [Suleman et al., ASPLOS 2009] 

 Idea: Ship critical sections to a large core in an asymmetric CMP 

 Segment 0: Non-critical section 

 Segment 1: Critical section 

 Benefit: Faster execution of critical section, reduced serialization, 
improved lock and shared data locality 

 

 Producer-Consumer Pipeline Parallelism 

 Idea: Split a loop iteration into multiple “pipeline stages” where 
one stage consumes data produced by the next stage  each 

stage runs on a different core 

 Segment N: Stage N 

 Benefit: Stage-level parallelism, better locality  faster execution 
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Problem: Locality of Inter-segment Data 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Transfer Y 

Transfer Z 

S0 

S1 

S2 

Core 0 Core 1 Core 2 

Cache Miss 

Cache Miss 



Problem: Locality of Inter-segment Data 

 Accelerated Critical Sections [Suleman et al., ASPLOS 2010] 

 Idea: Ship critical sections to a large core in an ACMP 

 Problem: Critical section incurs a cache miss when it touches data 
produced in the non-critical section (i.e., thread private data) 
 

 Producer-Consumer Pipeline Parallelism 

 Idea: Split a loop iteration into multiple “pipeline stages”  each 
stage runs on a different core 

 Problem: A stage incurs a cache miss when it touches data 
produced by the previous stage 
 

 Performance of Staged Execution limited by inter-segment 
cache misses 
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What if We Eliminated All Inter-segment Misses? 
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Terminology 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
…. 

STORE Z 

LOAD Z 
…. 

Transfer Y 

Transfer Z 

S0 

S1 

S2 

Inter-segment data: Cache 

block written by one segment 

and consumed by the next 

segment 

Generator instruction: 

The last instruction to write to an       

inter-segment cache block in a segment 

Core 0 Core 1 Core 2 



Key Observation and Idea 

 Observation: Set of generator instructions is stable over 
execution time and across input sets 

 

 Idea:  

 Identify the generator instructions  

 Record cache blocks produced by generator instructions 

 Proactively send such cache blocks to the next segment’s 
core before initiating the next segment 

 

 

 Suleman et al., “Data Marshaling for Multi-Core 
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011. 
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Data Marshaling 

1. Identify generator 

instructions 

2. Insert marshal 

instructions 

1. Record generator-                    

     produced addresses 

2.  Marshal recorded  

     blocks to next core Binary containing  

generator prefixes & 

marshal Instructions 

Compiler/Profiler Hardware 
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Data Marshaling 

1. Identify generator 

instructions 

2. Insert marshal 

instructions 

1. Record generator-                    

     produced addresses 

2.  Marshal recorded  

     blocks to next core Binary containing  

generator prefixes & 

marshal Instructions 

Hardware 
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Compiler/Profiler 
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Profiling Algorithm 

LOAD X 
STORE Y 
STORE Y 

LOAD Y 
             …. 

STORE Z 

LOAD Z 
            …. 

Mark as Generator 

Instruction 

Inter-segment data 
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Marshal Instructions 

     LOAD X 
     STORE Y 
G: STORE Y 
     MARSHAL C1 

    LOAD Y 
         …. 
G:STORE Z 
    MARSHAL C2 

0x5: LOAD Z 
            …. 

When to send (Marshal) 

Where to send (C1) 



DM Support/Cost 

 Profiler/Compiler: Generators, marshal instructions 

 ISA: Generator prefix, marshal instructions 

 Library/Hardware: Bind next segment ID to a physical core 

 

 Hardware 

 Marshal Buffer 

 Stores physical addresses of cache blocks to be marshaled 

 16 entries enough for almost all workloads  96 bytes per core 

 Ability to execute generator prefixes and marshal instructions 

 Ability to push data to another cache 
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DM: Advantages, Disadvantages 

 Advantages 

 Timely data transfer: Push data to core before needed 

 Can marshal any arbitrary sequence of lines: Identifies 
generators, not patterns 

 Low hardware cost: Profiler marks generators, no need for 
hardware to find them 

 

 Disadvantages 

 Requires profiler and ISA support 

 Not always accurate (generator set is conservative): Pollution 
at remote core, wasted bandwidth on interconnect 

 Not a large problem as number of inter-segment blocks is small  
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Accelerated Critical Sections with DM 

Small Core 0 

Marshal 

Buffer 

Large Core 

     LOAD X 
     STORE Y 
G: STORE Y 
     CSCALL 

    LOAD Y 
         …. 
G:STORE Z 
    CSRET 

Cache Hit! 

L2  
Cache 

L2  
Cache Data Y 

Addr Y 

Critical 

Section 



Accelerated Critical Sections: Methodology 

 Workloads: 12 critical section intensive applications 

 Data mining kernels, sorting, database, web, networking 

 Different training and simulation input sets 
 

 Multi-core x86 simulator 

 1 large and 28 small cores  

 Aggressive stream prefetcher employed at each core 
 

 Details: 

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 2GHz, in-order, 2-wide, 5-stage 

 Private 32 KB L1, private 256KB L2, 8MB shared L3 

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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DM on Accelerated Critical Sections: Results 
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Pipeline Parallelism 

Core 0 

Marshal 

Buffer 

Core 1 

     LOAD X 
     STORE Y 
G: STORE Y 
     MARSHAL C1 

    LOAD Y 
         …. 
G:STORE Z 
    MARSHAL C2 

0x5: LOAD Z 
            …. 

Cache Hit! 

L2  
Cache 

L2  
Cache Data Y 

Addr Y 

S0 

S1 

S2 



Pipeline Parallelism: Methodology 

 Workloads: 9 applications with pipeline parallelism  

 Financial, compression, multimedia, encoding/decoding 

 Different training and simulation input sets 
 

 

 Multi-core x86 simulator 

 32-core CMP: 2GHz, in-order, 2-wide, 5-stage 

 Aggressive stream prefetcher employed at each core 

 Private 32 KB L1, private 256KB L2, 8MB shared L3 

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency 
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DM on Pipeline Parallelism: Results 
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DM Coverage, Accuracy, Timeliness 

 High coverage of inter-segment misses in a timely manner 

 Medium accuracy does not impact performance 

 Only 5.0 and 6.8 cache blocks marshaled for average segment 
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Scaling Results 

 DM performance improvement increases with 

 More cores 

 Higher interconnect latency 

 Larger private L2 caches 

 

 Why? Inter-segment data misses become a larger bottleneck 

 More cores  More communication 

 Higher latency  Longer stalls due to communication 

 Larger L2 cache  Communication misses remain  
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Other Applications of Data Marshaling 

 Can be applied to other Staged Execution models 

 Task parallelism models 

 Cilk, Intel TBB, Apple Grand Central Dispatch 

 Special-purpose remote functional units 

 Computation spreading [Chakraborty et al., ASPLOS’06] 

 Thread motion/migration [e.g., Rangan et al., ISCA’09] 

 

 Can be an enabler for more aggressive SE models 

 Lowers the cost of data migration 

 an important overhead in remote execution of code segments 

 Remote execution of finer-grained tasks can become more 
feasible  finer-grained parallelization in multi-cores 



Data Marshaling Summary 

 Inter-segment data transfers between cores limit the benefit 
of promising Staged Execution (SE) models 
 

 Data Marshaling is a hardware/software cooperative solution: 
detect inter-segment data generator instructions and push 
their data to next segment’s core 

 Significantly reduces cache misses for inter-segment data 

 Low cost, high-coverage, timely for arbitrary address sequences 

 Achieves most of the potential of eliminating such misses 
 

 Applicable to several existing Staged Execution models 

 Accelerated Critical Sections: 9% performance benefit 

 Pipeline Parallelism: 16% performance benefit 

 Can enable new models very fine-grained remote execution 
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Motivation 

• Memory is a shared resource 

 

 
 

• Threads’ requests contend for memory 

– Degradation in single thread performance 

– Can even lead to starvation 
 

• How to schedule memory requests to increase 
both system throughput and fairness? 
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Previous Scheduling Algorithms are Biased 
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System throughput  
bias 

Fairness  
bias 

No previous memory scheduling algorithm provides 
both the best fairness and system throughput 
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Take turns accessing memory 

Why do Previous Algorithms Fail? 
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Fairness biased approach 

thread C 

thread B 

thread A 

less memory  
intensive 

higher 
priority 

Prioritize less memory-intensive threads 

Throughput biased approach 

Good for throughput 

starvation  unfairness 

thread C thread B thread A 

Does not starve 

not prioritized   
reduced throughput 

Single policy for all threads is insufficient 



Insight: Achieving Best of Both Worlds 
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priority 

thread 

thread 

thread  

thread 

thread 

thread 

Prioritize memory-non-intensive threads 

For Throughput 

Unfairness caused by memory-intensive 
being prioritized over each other  

• Shuffle threads 
 

Memory-intensive threads have  
different vulnerability to interference 

• Shuffle asymmetrically 

For Fairness 

thread 

thread 

thread 

thread 



Overview: Thread Cluster Memory Scheduling 

1. Group threads into two clusters 
2. Prioritize non-intensive cluster 
3. Different policies for each cluster 
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thread 

Threads in the system 

thread 

thread 

thread 

thread 

thread 
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Prioritize threads according to MPKI 
 

 

 

 

 
 

 

• Increases system throughput 

– Least intensive thread has the greatest potential 
for making progress in the processor 

 

Non-Intensive Cluster 
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thread 

thread 
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thread 
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Periodically shuffle the priority of threads 
 

 

 

 

 

 

 

• Is treating all threads equally good enough? 

• BUT: Equal turns ≠ Same slowdown 

Intensive Cluster 
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Results: Fairness vs. Throughput 
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5% 

39% 

8% 

5% 

TCM provides best fairness and system throughput 

Averaged over 96 workloads 



Results: Fairness-Throughput Tradeoff 
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TCM Summary 
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• No previous memory scheduling algorithm provides 
both high system throughput and fairness 

– Problem: They use a single policy for all threads 
 

• TCM is a heterogeneous scheduling policy 

1. Prioritize non-intensive cluster  throughput 

2. Shuffle priorities in intensive cluster  fairness 

3. Shuffling should favor nice threads  fairness 

 

• Heterogeneity in memory scheduling provides the  
best system throughput and fairness 

 



More Details on TCM 

• Kim et al., “Thread Cluster Memory Scheduling: 
Exploiting Differences in Memory Access Behavior,” 
MICRO 2010, Top Picks 2011. 
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Memory Control in CPU-GPU Systems 

 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 
 

 Problem: Existing monolithic application-aware memory 

scheduler designs are hard to scale to large request buffer sizes 
 

 Solution: Staged Memory Scheduling (SMS)  

decomposes the memory controller into three simple stages: 

1) Batch formation: maintains row buffer locality 

2) Batch scheduler: reduces interference between applications 

3) DRAM command scheduler: issues requests to DRAM 
 

 Compared to state-of-the-art memory schedulers: 

 SMS is significantly simpler and more scalable 

 SMS provides higher performance and fairness 

 122 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 
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Asymmetric Memory QoS in a Parallel Application 

 Threads in a multithreaded application are inter-dependent 

 Some threads can be on the critical path of execution due 
to synchronization; some threads are not 

 How do we schedule requests of inter-dependent threads 
to maximize multithreaded application performance? 

 

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

 

 Hardware/software cooperative limiter thread estimation: 

 Thread executing the most contended critical section 

 Thread that is falling behind the most in a parallel for loop 

 

 123 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 
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Related Ongoing/Future Work 

 Dynamically asymmetric cores 

 Memory system design for asymmetric cores 
 

 Asymmetric memory systems 

 Phase Change Memory (or Technology X) + DRAM 

 Hierarchies optimized for different access patterns 
 

 Asymmetric on-chip interconnects 

 Interconnects optimized for different application requirements 
 

 Asymmetric resource management algorithms 

 E.g., network congestion control 
 

 Interaction of multiprogrammed multithreaded workloads 
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Summary 
 Applications and phases have varying performance requirements 

 Designs evaluated on multiple metrics/constraints: energy, 
performance, reliability, fairness, …  

 

 One-size-fits-all design cannot satisfy all requirements and metrics: 
cannot get the best of all worlds 
 

 Asymmetry in design enables tradeoffs: can get the best of all 
worlds 

 Asymmetry in core microarch.  Accelerated Critical Sections, BIS, DM             
 Good parallel performance + Good serialized performance 

 Asymmetry in memory scheduling  Thread Cluster Memory Scheduling 
 Good throughput + good fairness 

 

 Simple asymmetric designs can be effective and low-cost 
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Vector Machine Organization (CRAY-1) 

 CRAY-1 

 Russell, “The CRAY-1 
computer system,” 
CACM 1978. 

 

 Scalar and vector modes 

 8 64-element vector 
registers 

 64 bits per element 

 16 memory banks 

 8 64-bit scalar registers 

 8 24-bit address registers 
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Identifying and Accelerating 

Resource Contention Bottlenecks 



Thread Serialization 

 Three fundamental causes 

 

 1. Synchronization 

  

 2. Load imbalance 

 

 3. Resource contention 
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Memory Contention as a Bottleneck 

 Problem: 

 Contended memory regions cause serialization of threads 

 Threads accessing such regions can form the critical path 

 Data-intensive workloads (MapReduce, GraphLab, Graph500) 
can be sped up by 1.5 to 4X by ideally removing contention 

 

 Idea:  

 Identify contended regions dynamically  

 Prioritize caching the data from threads which are slowed 
down the most by such regions in faster DRAM/eDRAM 

 

 Benefits: 

 Reduces contention, serialization, critical path 
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Evaluation 

 Workloads: MapReduce, GraphLab, Graph500 

 

 Cycle-level x86 platform simulator 

 CPU: 8 out-of-order cores, 32KB private L1, 512KB shared L2 

 Hybrid Memory: DDR3 1066 MT/s, 32MB DRAM, 8GB PCM 

 

 Mechanisms 

 Baseline: DRAM as a conventional cache to PCM 

 CacheMiss: Prioritize caching data from threads with highest 
cache miss latency 

 Region:  Cache data from most contended memory regions 

 ACTS: Prioritize caching data from threads most slowed down 
due to memory region contention 
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Caching Results 
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