
Architecting and Exploiting

Asymmetry in Multi-Core Architectures

Onur Mutlu

onur@cmu.edu

July 23, 2013

BSC/UPC

mailto:onur@cmu.edu

Overview of Research

 Heterogeneous systems, accelerating bottlenecks

 Memory (and storage) systems

 Scalability, energy, latency, parallelism, performance

 Compute in/near memory

 Predictable performance, QoS

 Efficient interconnects

 Bioinformatics algorithms and architectures

 Acceleration of important applications, software/hardware
co-design

2

Three Key Problems in Future Systems

 Memory system

 Many important existing and future applications are
increasingly data intensive  require bandwidth and capacity

 Data storage and movement limits performance & efficiency

 Efficiency (performance and energy)  scalability

 Enables scalable systems  new applications

 Enables better user experience  new usage models

 Predictability and robustness

 Resource sharing and unreliable hardware causes QoS issues

 Predictable performance and QoS are first class constraints

3

Readings and Videos

Mini Course: Multi-Core Architectures

 Lecture 1.1: Multi-Core System Design

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-
2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx

 Lecture 1.2: Cache Design and Management

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-
2013-lecture1-2-cache-management-afterlecture.pptx

 Lecture 1.3: Interconnect Design and Management

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-
10-2013-lecture1-3-interconnects-afterlecture.pptx

5

http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-7-2013-lecture1-2-cache-management-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-6-2013-lecture1-1-multicore-and-asymmetry-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-10-2013-lecture1-3-interconnects-afterlecture.pptx

Mini Course: Memory Systems

 Lecture 2.1: DRAM Basics and DRAM Scaling

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-
13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx

 Lecture 2.2: Emerging Technologies and Hybrid Memories

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-
14-2013-lecture2-2-emerging-memory-afterlecture.pptx

 Lecture 2.3: Memory QoS and Predictable Performance

 http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-
17-2013-lecture2-3-memory-qos-afterlecture.pptx

6

http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-13-2013-lecture2-1-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-14-2013-lecture2-2-emerging-memory-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-Bogazici-June-17-2013-lecture2-3-memory-qos-afterlecture.pptx

Readings for Today
 Required – Symmetric and Asymmetric Multi-Core Systems

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro 2010.

 Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010,
IEEE Micro 2011.

 Joao et al., “Bottleneck Identification and Scheduling for Multithreaded
Applications,” ASPLOS 2012.

 Joao et al., “Utility-Based Acceleration of Multithreaded Applications on
Asymmetric CMPs,” ISCA 2013.

 Recommended

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Olukotun et al., “The Case for a Single-Chip Multiprocessor,” ASPLOS 1996.

 Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors,” HPCA 2003, IEEE Micro 2003.

 Mutlu et al., “Techniques for Efficient Processing in Runahead Execution
Engines,” ISCA 2005, IEEE Micro 2006.

7

Videos for Today

 Multiprocessors
 Basics:http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkX

midJOd59REog9jDnPDTG6IJ&index=31

 Correctness and Coherence: http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32

 Heterogeneous Multi-Core:
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd5
9REog9jDnPDTG6IJ&index=34

 Runahead Execution
 http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd

59REog9jDnPDTG6IJ&index=28

8

http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34
http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28
http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28

Online Lectures and More Information

 Online Computer Architecture Lectures

 http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59R
Eog9jDnPDTG6IJ

 Online Computer Architecture Courses

 Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php

 Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php

 Advanced: http://www.ece.cmu.edu/~ece742/doku.php

 Recent Research Papers

 http://users.ece.cmu.edu/~omutlu/projects.htm

 http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=e
n

9

http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.ece.cmu.edu/~ece447/s13/doku.php
http://www.ece.cmu.edu/~ece740/f11/doku.php
http://www.ece.cmu.edu/~ece742/doku.php
http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

Architecting and Exploiting

Asymmetry in Multi-Core Architectures

Warning

 This is an asymmetric talk

 But, we do not need to cover all of it…

 Component 1: A case for asymmetry everywhere

 Component 2: A deep dive into mechanisms to exploit
asymmetry in processing cores

 Component 3: Asymmetry in memory controllers

 Asymmetry = heterogeneity

 A way to enable specialization/customization

11

The Setting

 Hardware resources are shared among many threads/apps
in a many-core system

 Cores, caches, interconnects, memory, disks, power, lifetime,
…

 Management of these resources is a very difficult task

 When optimizing parallel/multiprogrammed workloads

 Threads interact unpredictably/unfairly in shared resources

 Power/energy consumption is arguably the most valuable
shared resource

 Main limiter to efficiency and performance

12

Shield the Programmer from Shared Resources

 Writing even sequential software is hard enough

 Optimizing code for a complex shared-resource parallel system
will be a nightmare for most programmers

 Programmer should not worry about
(hardware) resource management

 What should be executed where with what resources

 Future computer architectures should be designed to

 Minimize programmer effort to optimize (parallel) programs

 Maximize runtime system’s effectiveness in automatic
shared resource management

13

Shared Resource Management: Goals

 Future many-core systems should manage power and
performance automatically across threads/applications

 Minimize energy/power consumption

 While satisfying performance/SLA requirements

 Provide predictability and Quality of Service

 Minimize programmer effort

 In creating optimized parallel programs

 Asymmetry and configurability in system resources essential
to achieve these goals

14

Asymmetry Enables Customization

 Symmetric: One size fits all

 Energy and performance suboptimal for different phase behaviors

 Asymmetric: Enables tradeoffs and customization

 Processing requirements vary across applications and phases

 Execute code on best-fit resources (minimal energy, adequate perf.)

15

C4 C4

C5 C5

C4 C4

C5 C5

C2

C3

C1

Asymmetric

C C

C C

C C

C C

C C

C C

C C

C C

Symmetric

Thought Experiment: Asymmetry Everywhere

 Design each hardware resource with asymmetric, (re-
)configurable, partitionable components

 Different power/performance/reliability characteristics

 To fit different computation/access/communication patterns

16

Thought Experiment: Asymmetry Everywhere

 Design the runtime system (HW & SW) to automatically choose
the best-fit components for each phase

 Satisfy performance/SLA with minimal energy

 Dynamically stitch together the “best-fit” chip for each phase

17

Phase 1

Phase 2

Phase 3

Thought Experiment: Asymmetry Everywhere

 Morph software components to match asymmetric HW
components

 Multiple versions for different resource characteristics

18

Version 1

Version 2

Version 3

Many Research and Design Questions

 How to design asymmetric components?

 Fixed, partitionable, reconfigurable components?

 What types of asymmetry? Access patterns, technologies?

 What monitoring to perform cooperatively in HW/SW?

 Automatically discover phase/task requirements

 How to design feedback/control loop between components and
runtime system software?

 How to design the runtime to automatically manage resources?

 Track task behavior, pick “best-fit” components for the entire workload

19

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

20

Exploiting Asymmetry: Simple Examples

21

 Execute critical/serial sections on high-power, high-performance
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12]

 Programmer can write less optimized, but more likely correct programs

Serial Parallel

Exploiting Asymmetry: Simple Examples

22

 Execute streaming “memory phases” on streaming-optimized
cores and memory hierarchies

 More efficient and higher performance than general purpose hierarchy

Streaming R
a
n
d
o
m

a
c
c
e
s
s

Exploiting Asymmetry: Simple Examples

23

 Partition memory controller and on-chip network bandwidth
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top Picks

2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 2011]

 Higher performance and energy-efficiency than symmetric/free-for-all

Latency sensitive

B
a
n
d
w
i
d
t
h

s
e
n
s
i

Exploiting Asymmetry: Simple Examples

24

 Have multiple different memory scheduling policies apply them
to different sets of threads based on thread behavior [Kim+ MICRO

2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012]

 Higher performance and fairness than a homogeneous policy

Memory intensive Compute intensive

Exploiting Asymmetry: Simple Examples

25

 Build main memory with different technologies with different
characteristics (energy, latency, wear, bandwidth) [Meza+ IEEE

CAL’12]

 Map pages/applications to the best-fit memory resource

 Higher performance and energy-efficiency than single-level memory

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

DRAM Phase Change Memory

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

26

Serialized Code Sections in Parallel Applications

 Multithreaded applications:

 Programs split into threads

 Threads execute concurrently on multiple cores

 Many parallel programs cannot be parallelized completely

 Serialized code sections:

 Reduce performance

 Limit scalability

 Waste energy

27

Causes of Serialized Code Sections

 Sequential portions (Amdahl’s “serial part”)

 Critical sections

 Barriers

 Limiter stages in pipelined programs

28

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists  on the critical path

 Critical sections
 Ensure mutual exclusion  likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing  the latest thread arriving

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait  on the critical path

29

Critical Sections

 Threads are not allowed to update shared data concurrently

 For correctness (mutual exclusion principle)

 Accesses to shared data are encapsulated inside
critical sections

 Only one thread can execute a critical section at
a given time

30

Example from MySQL

31

Open database tables

Perform the operations
….

Critical

Section

Parallel

Access Open Tables Cache

Contention for Critical Sections

32

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

33% in critical section

Contention for Critical Sections

33

0

Critical

Section

Parallel

Idle

12 iterations, 33% instructions inside the critical section

P = 1

P = 3

P = 2

P = 4

1 2 3 4 5 6 7 8 9 10 11 12

Accelerating critical sections
increases performance and scalability

Critical

Section

Accelerated

by 2x

Impact of Critical Sections on Scalability

 Contention for critical sections leads to serial execution
(serialization) of threads in the parallel program portion

 Contention for critical sections increases with the number of
threads and limits scalability

34

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p
e
e
d
u
p

Today

Asymmetric

MySQL (oltp-1)

A Case for Asymmetry

 Execution time of sequential kernels, critical sections, and
limiter stages must be short

 It is difficult for the programmer to shorten these
serialized sections

 Insufficient domain-specific knowledge

 Variation in hardware platforms

 Limited resources

 Goal: A mechanism to shorten serial bottlenecks without
requiring programmer effort

 Idea: Accelerate serialized code sections by shipping them
to powerful cores in an asymmetric multi-core (ACMP)

35

ACMP

 Provide one large core and many small cores

 Execute parallel part on small cores for high throughput

 Accelerate serialized sections using the large core

 Baseline: Amdahl’s serial part accelerated [Morad+ CAL 2006,

Suleman+, UT-TR 2007]

 36

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Conventional ACMP

37

EnterCS()

PriorityQ.insert(…)

LeaveCS()

On-chip

Interconnect

1. P2 encounters a Critical Section

2. Sends a request for the lock

3. Acquires the lock

4. Executes Critical Section

5. Releases the lock

Core executing

critical section

P1
P2 P3 P4

Accelerated Critical Sections (ACS)

 Accelerate Amdahl’s serial part and critical sections using
the large core

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE
Micro Top Picks 2010.

38

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Critical Section

Request Buffer

(CSRB)

Accelerated Critical Sections (ACS)

39

EnterCS()

PriorityQ.insert(…)

LeaveCS()

Onchip-

Interconnect

Critical Section

Request Buffer

(CSRB)

1. P2 encounters a critical section (CSCALL)

2. P2 sends CSCALL Request to CSRB

3. P1 executes Critical Section

4. P1 sends CSDONE signal

Core executing

critical section

P4 P3 P2
P1

ACS Architecture Overview

 ISA extensions
 CSCALL LOCK_ADDR, TARGET_PC
 CSRET LOCK_ADDR

 Compiler/Library inserts CSCALL/CSRET

 On a CSCALL, the small core:
 Sends a CSCALL request to the large core

 Arguments: Lock address, Target PC, Stack Pointer, Core ID

 Stalls and waits for CSDONE

 Large Core

 Critical Section Request Buffer (CSRB)
 Executes the critical section and sends CSDONE to the requesting

core

40

Accelerated Critical Sections (ACS)

41

A = compute()

LOCK X

 result = CS(A)

UNLOCK X

print result

Small Core Small Core Large Core

A = compute()

CSDONE Response

CSCALL Request

Send X, TPC,
STACK_PTR, CORE_ID

PUSH A

CSCALL X, Target PC
…

…

…
Acquire X

POP A

result = CS(A)

PUSH result

Release X

CSRET X

TPC:

POP result

print result

…

…

…

…

…

…

…

Waiting in
Critical Section
Request Buffer

(CSRB)

False Serialization

 ACS can serialize independent critical sections

 Selective Acceleration of Critical Sections (SEL)

 Saturating counters to track false serialization

42

CSCALL (A)

CSCALL (A)

CSCALL (B)

Critical Section

Request Buffer

(CSRB)

4

4

A

B

3 2

5

To large core

From small cores

ACS Performance Tradeoffs

 Pluses

+ Faster critical section execution

+ Shared locks stay in one place: better lock locality

+ Shared data stays in large core’s (large) caches: better shared
data locality, less ping-ponging

 Minuses

- Large core dedicated for critical sections: reduced parallel
throughput

- CSCALL and CSDONE control transfer overhead

- Thread-private data needs to be transferred to large core: worse
private data locality

43

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:

 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data

44

Cache Misses for Private Data

45

Private Data:

NewSubProblems

Shared Data:

The priority heap

PriorityHeap.insert(NewSubProblems)

Puzzle Benchmark

ACS Performance Tradeoffs

 Fewer parallel threads vs. accelerated critical sections
 Accelerating critical sections offsets loss in throughput

 As the number of cores (threads) on chip increase:

 Fractional loss in parallel performance decreases

 Increased contention for critical sections
makes acceleration more beneficial

 Overhead of CSCALL/CSDONE vs. better lock locality
 ACS avoids “ping-ponging” of locks among caches by keeping them at

the large core

 More cache misses for private data vs. fewer misses
for shared data
 Cache misses reduce if shared data > private data

46

We will get back to this

ACS Comparison Points

 Conventional
locking

47

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACMP

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Large
core

ACS

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

SCMP

 Conventional
locking

 Large core executes
Amdahl’s serial part

 Large core executes
Amdahl’s serial part
and critical sections

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

48

ACS Performance

49

0

20

40

60

80

100

120

140

160

pagem
in

e

puzz
le

qsort

sq
lit

e

ts
p

ip
lo

oku
p

oltp
-1

oltp
-2

sp
ec

jb
b

w
eb

cac
he

hm
ea

n

S
p

e
e
d

u
p

 o
v
e
r

S
C

M
P

Accelerating Sequential Kernels

Accelerating Critical Sections

Equal-area comparison

Number of threads = Best threads

Chip Area = 32 small cores
SCMP = 32 small cores

ACMP = 1 large and 28 small cores

 269 180 185

Coarse-grain locks Fine-grain locks

Equal-Area Comparisons

50

0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32

0

0.5

1

1.5

2

2.5

3

0 8 16 24 32

0

1

2

3

4

5

0 8 16 24 32

0

1

2

3

4

5

6

7

0 8 16 24 32

0

0.5

1

1.5

2

2.5

3

3.5

0 8 16 24 32

0

2

4

6

8

10

12

14

0 8 16 24 32

0

1

2

3

4

5

6

0 8 16 24 32
0

2

4

6

8

10

0 8 16 24 32
0

2

4

6

8

0 8 16 24 32
0

2

4

6

8

10

12

0 8 16 24 32
0

0.5

1

1.5

2

2.5

3

0 8 16 24 32
0

2

4

6

8

10

12

0 8 16 24 32

S
p

e
e

d
u

p
 o

v
e

r
a

 s
m

a
ll

 c
o

re

Chip Area (small cores)

(a) ep (b) is (c) pagemine (d) puzzle (e) qsort (f) tsp

(i) oltp-1 (i) oltp-2 (h) iplookup (k) specjbb (l) webcache (g) sqlite

Number of threads = No. of cores

------ SCMP
------ ACMP
------ ACS

ACS Summary

 Critical sections reduce performance and limit scalability

 Accelerate critical sections by executing them on a powerful
core

 ACS reduces average execution time by:

 34% compared to an equal-area SCMP

 23% compared to an equal-area ACMP

 ACS improves scalability of 7 of the 12 workloads

 Generalizing the idea: Accelerate all bottlenecks (“critical
paths”) by executing them on a powerful core

 51

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

52

BIS Summary
 Problem: Performance and scalability of multithreaded applications

are limited by serializing bottlenecks

 different types: critical sections, barriers, slow pipeline stages

 importance (criticality) of a bottleneck can change over time

 Our Goal: Dynamically identify the most important bottlenecks and
accelerate them

 How to identify the most critical bottlenecks

 How to efficiently accelerate them

 Solution: Bottleneck Identification and Scheduling (BIS)

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and
implement waiting for bottlenecks with a special instruction (BottleneckWait)

 Hardware: identify bottlenecks that cause the most thread waiting and
accelerate those bottlenecks on large cores of an asymmetric multi-core system

 Improves multithreaded application performance and scalability,
outperforms previous work, and performance improves with more cores

 53

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists  on the critical path

 Critical sections
 Ensure mutual exclusion  likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing  the latest thread arriving

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait  on the critical path

54

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

 Lock A

 Traverse list A

 Remove X from A

 Unlock A

 Compute on X

 Lock B

 Traverse list B

 Insert X into B

 Unlock B

until A is empty

55

Lock A is limiter
Lock B is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

56

MySQL running Sysbench queries, 16 threads

Previous Work on Bottleneck Acceleration

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07]

 Accelerate only the Amdahl’s bottleneck

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09]

 Accelerate only critical sections

 Does not take into account importance of critical sections

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11]

 Accelerate only stages with lowest throughput

 Slow to adapt to phase changes (software based library)

No previous work can accelerate all three types of bottlenecks or
quickly adapts to fine-grain changes in the importance of bottlenecks

Our goal: general mechanism to identify performance-limiting bottlenecks of
any type and accelerate them on an ACMP

57

58

Bottleneck Identification and Scheduling (BIS)

 Key insight:

 Thread waiting reduces parallelism and
is likely to reduce performance

 Code causing the most thread waiting
 likely critical path

 Key idea:

 Dynamically identify bottlenecks that cause
the most thread waiting

 Accelerate them (using powerful cores in an ACMP)

1. Annotate
bottleneck code

2. Implement waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

59

Bottleneck Identification and Scheduling (BIS)

 while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

Critical Sections: Code Modifications

 …

 BottleneckCall bid, targetPC

 …

targetPC: while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

 BottleneckReturn bid

60

 BottleneckWait bid, watch_addr

 …

 …
Used to keep track of

waiting cycles

Used to enable
acceleration

61

Barriers: Code Modifications

 …

 BottleneckCall bid, targetPC

 enter barrier

 while not all threads in barrier

 BottleneckWait bid, watch_addr

 exit barrier

 …

targetPC: code running for the barrier

 …

 BottleneckReturn bid

62

Pipeline Stages: Code Modifications

 BottleneckCall bid, targetPC

 …

targetPC: while not done

 while empty queue

 BottleneckWait prev_bid

 dequeue work

 do the work …

 while full queue

 BottleneckWait next_bid

 enqueue next work

 BottleneckReturn bid

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

63

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

 Performance-limiting bottleneck identification and
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways

 Increasing core frequency/voltage

 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP

64

Large core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core
Small

 core

Small

 core

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

65

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

66

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 10 bid=x4500, waiters=1, twc = 11 bid=x4500, waiters=0, twc = 11 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=1, twc = 5

1. Annotate
bottleneck code

2. Implements waiting
 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

67

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

68

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

Acceleration

Index Table (AIT)

BottleneckCall x4600

Execute locally

BottleneckCall x4700

bid=x4700 , large core 0

Execute remotely

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

BottleneckReturn x4700

bid=x4700 , large core 0

bid=x4700, pc, sp, core1

 twc < Threshold

 twc > Threshold

Execute locally Execute remotely

BIS Mechanisms

 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles 

 Accelerating Bottlenecks 

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization

 Preemptive acceleration

 Support for multiple large cores

69

False Serialization and Starvation

 Observation: Bottlenecks are picked from Scheduling Buffer
in Thread Waiting Cycles order

 Problem: An independent bottleneck that is ready to execute
has to wait for another bottleneck that has higher thread
waiting cycles  False serialization

 Starvation: Extreme false serialization

 Solution: Large core detects when a bottleneck is ready to
execute in the Scheduling Buffer but it cannot  sends the
bottleneck back to the small core

70

Preemptive Acceleration

 Observation: A bottleneck executing on a small core can
become the bottleneck with the highest thread waiting cycles

 Problem: This bottleneck should really be accelerated (i.e.,
executed on the large core)

 Solution: The Bottleneck Table detects the situation and
sends a preemption signal to the small core. Small core:

 saves register state on stack, ships the bottleneck to the large core

 Main acceleration mechanism for barriers and pipeline stages

71

Support for Multiple Large Cores

 Objective: to accelerate independent bottlenecks

 Each large core has its own Scheduling Buffer
(shared by all of its SMT threads)

 Bottleneck Table assigns each bottleneck to
a fixed large core context to

 preserve cache locality

 avoid busy waiting

 Preemptive acceleration extended to send multiple
instances of a bottleneck to different large core contexts

72

Hardware Cost

 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core,
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB

73

BIS Performance Trade-offs

 Faster bottleneck execution vs. fewer parallel threads
 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality
 Shared data stays on large core (good)

 Private data migrates to large core (bad, but latency hidden with Data
Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency
 Migration latency usually hidden by waiting (good)

 Unless bottleneck not contended (bad, but likely not on critical path)

74

Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications

 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT

 1 large core is area-equivalent to 4 small cores

 Details:

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

75

BIS Comparison Points (Area-Equivalent)

 SCMP (Symmetric CMP)

 All small cores

 Results in the paper

 ACMP (Asymmetric CMP)

 Accelerates only Amdahl’s serial portions

 Our baseline

 ACS (Accelerated Critical Sections)

 Accelerates only critical sections and Amdahl’s serial portions

 Applicable to multithreaded workloads
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)

 Accelerates only slowest pipeline stages

 Applicable to pipeline-parallel workloads (rank, pagemine)

76

BIS Performance Improvement

77

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%

 BIS improves scalability on 4 of the benchmarks

barriers, which ACS

cannot accelerate
limiting bottlenecks change over time

ACS FDP

Why Does BIS Work?

78

 Coverage: fraction of program critical path that is actually identified as bottlenecks

 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

BIS Scaling Results

79

Performance increases with:

1) More small cores

 Contention due to bottlenecks
increases

 Loss of parallel throughput due
to large core reduces

2) More large cores

 Can accelerate
independent bottlenecks

 Without reducing parallel
throughput (enough cores)

2.4%
6.2%

15% 19%

BIS Summary

 Serializing bottlenecks of different types limit performance of
multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution:

 Dynamically identifies bottlenecks that cause the most thread waiting
and accelerates them on large cores of an ACMP

 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:

 15% speedup over ACS/FDP

 Can accelerate multiple independent critical bottlenecks

 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration
for future ACMPs with little or no programmer effort

80

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

81

Staged Execution Model (I)

 Goal: speed up a program by dividing it up into pieces

 Idea

 Split program code into segments

 Run each segment on the core best-suited to run it

 Each core assigned a work-queue, storing segments to be run

 Benefits

 Accelerates segments/critical-paths using specialized/heterogeneous cores

 Exploits inter-segment parallelism

 Improves locality of within-segment data

 Examples

 Accelerated critical sections, Bottleneck identification and scheduling

 Producer-consumer pipeline parallelism

 Task parallelism (Cilk, Intel TBB, Apple Grand Central Dispatch)

 Special-purpose cores and functional units

82

83

Staged Execution Model (II)

LOAD X
STORE Y
STORE Y

LOAD Y

….
STORE Z

LOAD Z

….

84

Staged Execution Model (III)

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Segment S0

Segment S1

Segment S2

Split code into segments

85

Staged Execution Model (IV)

Core 0 Core 1 Core 2

Work-queues

Instances

 of S0

Instances

 of S1

Instances

 of S2

86

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Core 0 Core 1 Core 2

S0

S1

S2

Staged Execution Model: Segment Spawning

Staged Execution Model: Two Examples

 Accelerated Critical Sections [Suleman et al., ASPLOS 2009]

 Idea: Ship critical sections to a large core in an asymmetric CMP

 Segment 0: Non-critical section

 Segment 1: Critical section

 Benefit: Faster execution of critical section, reduced serialization,
improved lock and shared data locality

 Producer-Consumer Pipeline Parallelism

 Idea: Split a loop iteration into multiple “pipeline stages” where
one stage consumes data produced by the next stage  each

stage runs on a different core

 Segment N: Stage N

 Benefit: Stage-level parallelism, better locality  faster execution

87

88

Problem: Locality of Inter-segment Data

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Core 0 Core 1 Core 2

Cache Miss

Cache Miss

Problem: Locality of Inter-segment Data

 Accelerated Critical Sections [Suleman et al., ASPLOS 2010]

 Idea: Ship critical sections to a large core in an ACMP

 Problem: Critical section incurs a cache miss when it touches data
produced in the non-critical section (i.e., thread private data)

 Producer-Consumer Pipeline Parallelism

 Idea: Split a loop iteration into multiple “pipeline stages”  each
stage runs on a different core

 Problem: A stage incurs a cache miss when it touches data
produced by the previous stage

 Performance of Staged Execution limited by inter-segment
cache misses

89

90

What if We Eliminated All Inter-segment Misses?

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

91

92

Terminology

LOAD X
STORE Y
STORE Y

LOAD Y
….

STORE Z

LOAD Z
….

Transfer Y

Transfer Z

S0

S1

S2

Inter-segment data: Cache

block written by one segment

and consumed by the next

segment

Generator instruction:

The last instruction to write to an

inter-segment cache block in a segment

Core 0 Core 1 Core 2

Key Observation and Idea

 Observation: Set of generator instructions is stable over
execution time and across input sets

 Idea:

 Identify the generator instructions

 Record cache blocks produced by generator instructions

 Proactively send such cache blocks to the next segment’s
core before initiating the next segment

 Suleman et al., “Data Marshaling for Multi-Core
Architectures,” ISCA 2010, IEEE Micro Top Picks 2011.

93

Data Marshaling

1. Identify generator

instructions

2. Insert marshal

instructions

1. Record generator-

 produced addresses

2. Marshal recorded

 blocks to next core Binary containing

generator prefixes &

marshal Instructions

Compiler/Profiler Hardware

94

Data Marshaling

1. Identify generator

instructions

2. Insert marshal

instructions

1. Record generator-

 produced addresses

2. Marshal recorded

 blocks to next core Binary containing

generator prefixes &

marshal Instructions

Hardware

95

Compiler/Profiler

96

Profiling Algorithm

LOAD X
STORE Y
STORE Y

LOAD Y
 ….

STORE Z

LOAD Z
 ….

Mark as Generator

Instruction

Inter-segment data

97

Marshal Instructions

 LOAD X
 STORE Y
G: STORE Y
 MARSHAL C1

 LOAD Y
 ….
G:STORE Z
 MARSHAL C2

0x5: LOAD Z
 ….

When to send (Marshal)

Where to send (C1)

DM Support/Cost

 Profiler/Compiler: Generators, marshal instructions

 ISA: Generator prefix, marshal instructions

 Library/Hardware: Bind next segment ID to a physical core

 Hardware

 Marshal Buffer

 Stores physical addresses of cache blocks to be marshaled

 16 entries enough for almost all workloads  96 bytes per core

 Ability to execute generator prefixes and marshal instructions

 Ability to push data to another cache

98

DM: Advantages, Disadvantages

 Advantages

 Timely data transfer: Push data to core before needed

 Can marshal any arbitrary sequence of lines: Identifies
generators, not patterns

 Low hardware cost: Profiler marks generators, no need for
hardware to find them

 Disadvantages

 Requires profiler and ISA support

 Not always accurate (generator set is conservative): Pollution
at remote core, wasted bandwidth on interconnect

 Not a large problem as number of inter-segment blocks is small

99

100

Accelerated Critical Sections with DM

Small Core 0

Marshal

Buffer

Large Core

 LOAD X
 STORE Y
G: STORE Y
 CSCALL

 LOAD Y
 ….
G:STORE Z
 CSRET

Cache Hit!

L2
Cache

L2
Cache Data Y

Addr Y

Critical

Section

Accelerated Critical Sections: Methodology

 Workloads: 12 critical section intensive applications

 Data mining kernels, sorting, database, web, networking

 Different training and simulation input sets

 Multi-core x86 simulator

 1 large and 28 small cores

 Aggressive stream prefetcher employed at each core

 Details:

 Large core: 2GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 2GHz, in-order, 2-wide, 5-stage

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

101

102

DM on Accelerated Critical Sections: Results

0

20

40

60

80

100

120

140

is

pag
em

in
e

puzz
le

qso
rt

ts
p

m
az

e

nque
en

sq
lit

e

ip
lo

oku
p

m
ys

ql-1

m
ys

ql-2

w
eb

ca
ch

e

hm
ea

n

S
p

e
e

d
u

p
 o

v
e

r
A

C
S

DM

Ideal

 168 170

8.7%

103

Pipeline Parallelism

Core 0

Marshal

Buffer

Core 1

 LOAD X
 STORE Y
G: STORE Y
 MARSHAL C1

 LOAD Y
 ….
G:STORE Z
 MARSHAL C2

0x5: LOAD Z
 ….

Cache Hit!

L2
Cache

L2
Cache Data Y

Addr Y

S0

S1

S2

Pipeline Parallelism: Methodology

 Workloads: 9 applications with pipeline parallelism

 Financial, compression, multimedia, encoding/decoding

 Different training and simulation input sets

 Multi-core x86 simulator

 32-core CMP: 2GHz, in-order, 2-wide, 5-stage

 Aggressive stream prefetcher employed at each core

 Private 32 KB L1, private 256KB L2, 8MB shared L3

 On-chip interconnect: Bi-directional ring, 5-cycle hop latency

104

105

DM on Pipeline Parallelism: Results

0

20

40

60

80

100

120

140

160

bla
ck

co
m

pre
ss

dedupD

dedupE

fe
rr

et

im
ag

e

m
tw

is
t

ra
nk

si
gn

hm
ea

n
 S

p
e
e
d

u
p

 o
v
e
r

B
a
s
e
li

n
e

 DM
 Ideal

16%

DM Coverage, Accuracy, Timeliness

 High coverage of inter-segment misses in a timely manner

 Medium accuracy does not impact performance

 Only 5.0 and 6.8 cache blocks marshaled for average segment

106

0

10

20

30

40

50

60

70

80

90

100

ACS Pipeline

P
e

rc
e

n
ta

g
e

Coverage

Accuracy

Timeliness

Scaling Results

 DM performance improvement increases with

 More cores

 Higher interconnect latency

 Larger private L2 caches

 Why? Inter-segment data misses become a larger bottleneck

 More cores  More communication

 Higher latency  Longer stalls due to communication

 Larger L2 cache  Communication misses remain

107

108

Other Applications of Data Marshaling

 Can be applied to other Staged Execution models

 Task parallelism models

 Cilk, Intel TBB, Apple Grand Central Dispatch

 Special-purpose remote functional units

 Computation spreading [Chakraborty et al., ASPLOS’06]

 Thread motion/migration [e.g., Rangan et al., ISCA’09]

 Can be an enabler for more aggressive SE models

 Lowers the cost of data migration

 an important overhead in remote execution of code segments

 Remote execution of finer-grained tasks can become more
feasible  finer-grained parallelization in multi-cores

Data Marshaling Summary

 Inter-segment data transfers between cores limit the benefit
of promising Staged Execution (SE) models

 Data Marshaling is a hardware/software cooperative solution:
detect inter-segment data generator instructions and push
their data to next segment’s core

 Significantly reduces cache misses for inter-segment data

 Low cost, high-coverage, timely for arbitrary address sequences

 Achieves most of the potential of eliminating such misses

 Applicable to several existing Staged Execution models

 Accelerated Critical Sections: 9% performance benefit

 Pipeline Parallelism: 16% performance benefit

 Can enable new models very fine-grained remote execution

109

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

110

Motivation

• Memory is a shared resource

• Threads’ requests contend for memory

– Degradation in single thread performance

– Can even lead to starvation

• How to schedule memory requests to increase
both system throughput and fairness?

 111

Core Core

Core Core
Memory

1

3

5

7

9

11

13

15

17

8 8.2 8.4 8.6 8.8 9

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

FRFCFS

STFM

PAR-BS

ATLAS

Previous Scheduling Algorithms are Biased

112

System throughput
bias

Fairness
bias

No previous memory scheduling algorithm provides
both the best fairness and system throughput

Better system throughput

B
et

te
r

fa
ir

n
es

s

Take turns accessing memory

Why do Previous Algorithms Fail?

113

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread B thread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient

Insight: Achieving Best of Both Worlds

114

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle threads

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Overview: Thread Cluster Memory Scheduling

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

115

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Prioritize threads according to MPKI

• Increases system throughput

– Least intensive thread has the greatest potential
for making progress in the processor

Non-Intensive Cluster

116

thread

thread

thread

thread

higher
priority lowest MPKI

highest MPKI

Periodically shuffle the priority of threads

• Is treating all threads equally good enough?

• BUT: Equal turns ≠ Same slowdown

Intensive Cluster

117

thread

thread

thread

Increases fairness

Most prioritized higher
priority

thread

thread

thread

Results: Fairness vs. Throughput

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

118

Better system throughput

B
et

te
r

fa
ir

n
es

s

5%

39%

8%

5%

TCM provides best fairness and system throughput

Averaged over 96 workloads

Results: Fairness-Throughput Tradeoff

119

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
es

s FRFCFS

TCM Summary

120

• No previous memory scheduling algorithm provides
both high system throughput and fairness

– Problem: They use a single policy for all threads

• TCM is a heterogeneous scheduling policy

1. Prioritize non-intensive cluster  throughput

2. Shuffle priorities in intensive cluster  fairness

3. Shuffling should favor nice threads  fairness

• Heterogeneity in memory scheduling provides the
best system throughput and fairness

More Details on TCM

• Kim et al., “Thread Cluster Memory Scheduling:
Exploiting Differences in Memory Access Behavior,”
MICRO 2010, Top Picks 2011.

121

Memory Control in CPU-GPU Systems

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

 122 Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.

//localhost/Users/omutlu/Documents/presentations/CMU/Samsung Memory June 21 2012/Previous Presentations/rachata_isca12_talk.pptx

Asymmetric Memory QoS in a Parallel Application

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

 123 Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.

//localhost/Users/omutlu/Documents/presentations/CMU/Samsung Memory June 21 2012/Previous Presentations/ebrahimi_micro2011_talk.pptx

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

124

Related Ongoing/Future Work

 Dynamically asymmetric cores

 Memory system design for asymmetric cores

 Asymmetric memory systems

 Phase Change Memory (or Technology X) + DRAM

 Hierarchies optimized for different access patterns

 Asymmetric on-chip interconnects

 Interconnects optimized for different application requirements

 Asymmetric resource management algorithms

 E.g., network congestion control

 Interaction of multiprogrammed multithreaded workloads

125

Talk Outline

 Problem and Motivation

 How Do We Get There: Examples

 Accelerated Critical Sections (ACS)

 Bottleneck Identification and Scheduling (BIS)

 Staged Execution and Data Marshaling

 Thread Cluster Memory Scheduling (if time permits)

 Ongoing/Future Work

 Conclusions

126

Summary
 Applications and phases have varying performance requirements

 Designs evaluated on multiple metrics/constraints: energy,
performance, reliability, fairness, …

 One-size-fits-all design cannot satisfy all requirements and metrics:
cannot get the best of all worlds

 Asymmetry in design enables tradeoffs: can get the best of all
worlds

 Asymmetry in core microarch.  Accelerated Critical Sections, BIS, DM
 Good parallel performance + Good serialized performance

 Asymmetry in memory scheduling  Thread Cluster Memory Scheduling
 Good throughput + good fairness

 Simple asymmetric designs can be effective and low-cost

127

Thank You

Onur Mutlu

onur@cmu.edu

http://www.ece.cmu.edu/~omutlu

Email me with any questions and feedback!

mailto:onur@cmu.edu
http://www.ece.cmu.edu/~omutlu

Architecting and Exploiting

Asymmetry in Multi-Core Architectures

Onur Mutlu

onur@cmu.edu

July 23, 2013

BSC/UPC

mailto:onur@cmu.edu

Vector Machine Organization (CRAY-1)

 CRAY-1

 Russell, “The CRAY-1
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers

130

Identifying and Accelerating

Resource Contention Bottlenecks

Thread Serialization

 Three fundamental causes

 1. Synchronization

 2. Load imbalance

 3. Resource contention

132

Memory Contention as a Bottleneck

 Problem:

 Contended memory regions cause serialization of threads

 Threads accessing such regions can form the critical path

 Data-intensive workloads (MapReduce, GraphLab, Graph500)
can be sped up by 1.5 to 4X by ideally removing contention

 Idea:

 Identify contended regions dynamically

 Prioritize caching the data from threads which are slowed
down the most by such regions in faster DRAM/eDRAM

 Benefits:

 Reduces contention, serialization, critical path

133

Evaluation

 Workloads: MapReduce, GraphLab, Graph500

 Cycle-level x86 platform simulator

 CPU: 8 out-of-order cores, 32KB private L1, 512KB shared L2

 Hybrid Memory: DDR3 1066 MT/s, 32MB DRAM, 8GB PCM

 Mechanisms

 Baseline: DRAM as a conventional cache to PCM

 CacheMiss: Prioritize caching data from threads with highest
cache miss latency

 Region: Cache data from most contended memory regions

 ACTS: Prioritize caching data from threads most slowed down
due to memory region contention

134

Caching Results

135

Partial List of

Referenced/Related Papers

136

Heterogeneous Cores
 M. Aater Suleman, Onur Mutlu, Moinuddin K. Qureshi, and Yale N. Patt,

"Accelerating Critical Section Execution with Asymmetric Multi-Core
Architectures"
Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 253-264, Washington, DC, March
2009. Slides (ppt)

 M. Aater Suleman, Onur Mutlu, Jose A. Joao, Khubaib, and Yale N. Patt,
"Data Marshaling for Multi-core Architectures"
Proceedings of the 37th International Symposium on Computer Architecture (ISCA), pages
441-450, Saint-Malo, France, June 2010. Slides (ppt)

 Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Bottleneck Identification and Scheduling in Multithreaded Applications"
Proceedings of the 17th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), London, UK, March 2012. Slides (ppt) (pdf)

 Jose A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt,
"Utility-Based Acceleration of Multithreaded Applications on Asymmetric CMPs"
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-
Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

137

http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://users.ece.cmu.edu/~omutlu/pub/acs_asplos09.pdf
http://www.cs.virginia.edu/asplos09/
http://www.cs.virginia.edu/asplos09/
http://users.ece.cmu.edu/~omutlu/pub/suleman_asplos09_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/dm_isca10.pdf
http://isca2010.inria.fr/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca10_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/bottleneck-identification-and-scheduling_asplos12.pdf
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
http://research.microsoft.com/en-us/um/cambridge/events/asplos_2012/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_asplos12_talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/utility-based-acceleration-acmp_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/joao_isca13_talk.pdf

QoS-Aware Memory Systems (I)
 Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance and Scalability in
Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

 Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and
Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO), Porto
Alegre, Brazil, December 2011

 Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access
Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture (MICRO), pages 65-
76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

 Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance Fairness
Substrate for Multi-Core Memory Systems"
ACM Transactions on Computer Systems (TOCS), April 2012.

138

http://www.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://www.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://www.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://www.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://www.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
http://www.ece.cmu.edu/~omutlu/pub/fairness-via-throttling_acm_tocs12.pdf
http://www.ece.cmu.edu/~omutlu/pub/fairness-via-throttling_acm_tocs12.pdf
http://www.ece.cmu.edu/~omutlu/pub/fairness-via-throttling_acm_tocs12.pdf
http://www.ece.cmu.edu/~omutlu/pub/fairness-via-throttling_acm_tocs12.pdf
http://www.ece.cmu.edu/~omutlu/pub/fairness-via-throttling_acm_tocs12.pdf
http://www.ece.cmu.edu/~omutlu/pub/fairness-via-throttling_acm_tocs12.pdf
http://tocs.acm.org/

QoS-Aware Memory Systems (II)

 Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enabling High-Performance and Fair
Memory Controllers"
IEEE Micro, Special Issue: Micro's Top Picks from 2008 Computer Architecture Conferences
(MICRO TOP PICKS), Vol. 29, No. 1, pages 22-32, January/February 2009.

 Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"
Proceedings of the 40th International Symposium on Microarchitecture (MICRO), pages
146-158, Chicago, IL, December 2007. Slides (ppt)

 Thomas Moscibroda and Onur Mutlu,
"Memory Performance Attacks: Denial of Memory Service in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX SECURITY), pages 257-
274, Boston, MA, August 2007. Slides (ppt)

139

http://www.ece.cmu.edu/~omutlu/pub/parbs_ieee_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/parbs_ieee_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/parbs_ieee_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/parbs_ieee_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/parbs_ieee_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/parbs_ieee_micro09.pdf
http://www.computer.org/micro/
http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://www.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt
http://www.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

QoS-Aware Memory Systems (III)

 Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, Onur Mutlu, and Yale
N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO), Porto
Alegre, Brazil, December 2011. Slides (pptx)

 Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for Scalability and
Service Guarantees"
Proceedings of the 38th International Symposium on Computer Architecture (ISCA), San
Jose, CA, June 2011. Slides (pptx)

 Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,
"Application-Aware Prioritization Mechanisms for On-Chip Networks"
Proceedings of the 42nd International Symposium on Microarchitecture (MICRO), pages
280-291, New York, NY, December 2009. Slides (pptx)

140

http://www.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://www.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx
http://www.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://www.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://www.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://www.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://www.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://www.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://www.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://www.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
http://www.ece.cmu.edu/~omutlu/pub/grot_isca11_talk.pptx
http://www.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://www.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://www.microarch.org/micro42/
http://www.ece.cmu.edu/~omutlu/pub/das_micro09_talk.pptx

Heterogeneous Memory
 Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and Parthasarathy Ranganathan,

"Enabling Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM
Cache Management"
IEEE Computer Architecture Letters (CAL), May 2012.

 HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, and Onur Mutlu,
"Row Buffer Locality-Aware Data Placement in Hybrid Memories"
SAFARI Technical Report, TR-SAFARI-2011-005, Carnegie Mellon University, September
2011.

 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM Alternative"
Proceedings of the 36th International Symposium on Computer Architecture (ISCA), pages
2-13, Austin, TX, June 2009. Slides (pdf)

 Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, and
Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer Architecture Conferences
(MICRO TOP PICKS), Vol. 30, No. 1, pages 60-70, January/February 2010.

141

http://www.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/
http://www.ece.cmu.edu/~safari/tr/tr-2011-005.pdf
http://www.ece.cmu.edu/~safari/tr/tr-2011-005.pdf
http://www.ece.cmu.edu/~safari/tr/tr-2011-005.pdf
http://www.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://www.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf
http://www.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

