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Three Key Problems in Systems

 The memory system
 Data storage and movement limit performance & efficiency

 Efficiency (performance and energy)  scalability
 Efficiency limits performance & scalability 

 Predictability and robustness
 Predictable performance and QoS become first class 

constraints as systems scale in size and technology
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The Main Memory/Storage System

 Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

Processor
and caches

Main Memory Storage (SSD/HDD)
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Memory System: A Shared Resource View

Storage
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State of the Main Memory System
 Recent technology, architecture, and application trends

 lead to new requirements
 exacerbate old requirements

 DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

 Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

 We need to rethink the main memory system
 to fix DRAM issues and enable emerging technologies 
 to satisfy all requirements
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Major Trends Affecting Main Memory (I)
 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)
 Need for main memory capacity, bandwidth, QoS increasing 

 Multi-core: increasing number of cores/agents
 Data-intensive applications: increasing demand/hunger for data
 Consolidation: cloud computing, GPUs, mobile, heterogeneity

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
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Example: The Memory Capacity Gap

 Memory capacity per core expected to drop by 30% every two years
 Trends worse for memory bandwidth per core!

Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years
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Major Trends Affecting Main Memory (III)
 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern
 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer 2003]

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)
 Need for main memory capacity, bandwidth, QoS increasing 

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending 
 ITRS projects DRAM will not scale easily below X nm 
 Scaling has provided many benefits: 

 higher capacity (density), lower cost, lower energy
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The DRAM Scaling Problem
 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing
 Access transistor should be large enough for low leakage and high 

retention time
 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale
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Solutions to the DRAM Scaling Problem

 Two potential solutions
 Tolerate DRAM (by taking a fresh look at it)
 Enable emerging memory technologies to eliminate/minimize 

DRAM

 Do both
 Hybrid memory systems
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Solution 1: Tolerate DRAM
 Overcome DRAM shortcomings with

 System-DRAM co-design
 Novel DRAM architectures, interface, functions
 Better waste management (efficient utilization)

 Key issues to tackle
 Reduce energy
 Enable reliability at low cost
 Improve bandwidth and latency
 Reduce waste

 Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
 Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
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Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)
 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])
 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well
 Can they be enabled to replace/augment/surpass DRAM?

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM Alternative,”
ISCA 2009, CACM 2010, Top Picks 2010.

 Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” IEEE 
Comp. Arch. Letters 2012.

 Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 
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Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



An Orthogonal Issue: Memory Interference

Main 
Memory

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory
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 Problem: Memory interference between cores is uncontrolled
 unfairness, starvation, low performance
 uncontrollable, unpredictable, vulnerable system

 Solution: QoS-Aware Memory Systems
 Hardware designed to provide a configurable fairness substrate 

 Application-aware memory scheduling, partitioning, throttling

 Software designed to configure the resources to satisfy different 
QoS goals

 QoS-aware memory controllers and interconnects can 
provide predictable performance and higher efficiency

An Orthogonal Issue: Memory Interference



Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism
 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping
 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]
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Some Current Directions

 New memory/storage + compute architectures
 Rethinking DRAM
 Processing close to data; accelerating bulk operations
 Ensuring memory/storage reliability and robustness

 Enabling emerging NVM technologies 
 Hybrid memory systems with automatic data management
 Coordinated management of memory and storage with NVM

 System-level memory/storage QoS
 QoS-aware controller and system design
 Coordinated memory + storage QoS
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Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Linearly Compressed Pages: Efficient Memory Compression
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Today’s Memory: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement
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Future: RowClone (In-Memory Copy)

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement
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DRAM operation (load one byte)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row

Transfer 
row

Step 2: Read  
Transfer byte 
onto bus



RowClone: in-DRAM Row Copy 
(and Initialization)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row



RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.
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RowClone: Overall Performance
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Goal: Ultra-Efficient Processing 
Close to Data

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Slide credit: Prof. Kayvon Fatahalian, CMU



Enabling Ultra-Efficient (Visual) 
Search

▪ What is the right partitioning of computation 
capability?

▪ What is the right low-cost memory substrate?
▪ What memory technologies are the best 

enablers?
▪ How do we rethink/ease (visual) search 

Cache

Process
or
Core

Interconnect

Memory

Databa
se (of 
images)  

Query vector

Results

Picture credit: Prof. Kayvon Fatahalian, CMU



Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Linearly Compressed Pages: Efficient Memory Compression
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DRAM Latency-Capacity Trend
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DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip
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Why is the Subarray So Slow?
Subarray
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Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency
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Short Bitline

Low Latency 

Approximating the Best of Both Worlds
Long Bitline
Small Area 
Long Bitline

Low Latency 
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Approximating the Best of Both Worlds

Low Latency 

Our Proposal
Small Area 

Long Bitline
Small Area 
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Tiered-Latency DRAM

Low Latency
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Tiered-Latency DRAM

Near Segment

Far Segment

Isolation Transistor

• Divide a bitline into two segments with an 
isolation transistor

Sense Amplifier

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM
• TL-DRAM is a substrate that can be leveraged by 

the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment
2. Use near segment as hardware-managed exclusive

cache to far segment
3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM 
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Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory
 Data stored by changing phase of material 
 Data read by detecting material’s resistance
 Expected to scale to 9nm (2022 [ITRS])
 Prototyped at 20nm (Raoux+, IBM JRD 2008)
 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings
 Can they be enabled to replace/augment/surpass DRAM?
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Phase Change Memory: Pros and Cons
 Pros over DRAM

 Better technology scaling (capacity and cost)
 Non volatility
 Low idle power (no refresh)

 Cons
 Higher latencies: ~4-15x DRAM (especially write)
 Higher active energy: ~2-50x DRAM (especially write)
 Lower endurance (a cell dies after ~108 writes)

 Challenges in enabling PCM as DRAM replacement/helper:
 Mitigate PCM shortcomings
 Find the right way to place PCM in the system

47



PCM-based Main Memory (I)
 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 
 How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (II)
 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 
 How to redesign entire hierarchy (and cores) to overcome 

PCM shortcomings
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An Initial Study: Replace DRAM with PCM
 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009.
 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
 Derived “average” PCM parameters for F=90nm
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Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system
 PCM organized the same as DRAM: row buffers, banks, peripherals
 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009.
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Architecting PCM to Mitigate Shortcomings
 Idea 1: Use multiple narrow row buffers in each PCM chip
 Reduces array reads/writes  better endurance, latency, energy

 Idea 2: Write into array at
cache block or word 
granularity
 Reduces unnecessary wear

DRAM PCM
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Results: Architected PCM as Main Memory 
 1.2x delay, 1.0x energy, 5.6-year average lifetime
 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)
 Caveat 2: Intensive applications see large performance and energy hits
 Caveat 3: Optimistic PCM parameters?
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Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



One Option: DRAM as a Cache for PCM
 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering
 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:
 What data should be placed in DRAM versus kept in PCM?
 What is the granularity of data movement?
 How to design a huge (DRAM) cache at low cost?

 Two solutions:
 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
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DRAM vs. PCM: An Observation
 Row buffers are the same in DRAM and PCM
 Row buffer hit latency same in DRAM and PCM
 Row buffer miss latency small in DRAM, large in PCM

 Accessing the row buffer in PCM is fast
 What incurs high latency is the PCM array access  avoid this

CPU
DRA
MCtrl

PCM 
Ctrl

Ban
k

Ban
k

Ban
k

Ban
k

Row buffer
DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss
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Row-Locality-Aware Data Placement
 Idea: Cache in DRAM only those rows that

 Frequently cause row buffer conflicts  because row-conflict latency 
is smaller in DRAM

 Are reused many times  to reduce cache pollution and bandwidth 
waste

 Simplified rule of thumb:
 Streaming accesses: Better to place in PCM 
 Other accesses (with some reuse): Better to place in DRAM

 Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid 
Memories,” ICCD 2012 Best Paper Award.
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Row-Locality-Aware Data Placement: Results
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Aside: STT-RAM as Main Memory
 Magnetic Tunnel Junction (MTJ)

 Reference layer: Fixed
 Free layer: Parallel or anti-parallel

 Cell
 Access transistor, bit/sense lines

 Read and Write
 Read: Apply a small voltage across 

bitline and senseline; read the current. 
 Write: Push large current through MTJ.  

Direction of current determines new 
orientation of the free layer.

 Kultursay et al., “Evaluating STT-RAM as an 
Energy-Efficient Main Memory Alternative,” ISPASS 
2013.

Reference Layer

Free Layer

Barrier

Reference Layer
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Barrier
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Aside: STT-RAM: Pros and Cons
 Pros over DRAM

 Better technology scaling
 Non volatility
 Low idle power (no refresh)

 Cons
 Higher write latency
 Higher write energy
 Reliability?

 Another level of freedom
 Can trade off non-volatility for lower write latency/energy (by 

reducing the size of the MTJ)
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Architected STT-RAM as Main Memory
 4-core, 4GB main memory, multiprogrammed workloads
 ~6% performance loss, ~60% energy savings vs. DRAM
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Principles (So Far)

 Better cooperation between devices and the system
 Expose more information about devices to upper layers
 More flexible interfaces

 Better-than-worst-case design
 Do not optimize for the worst case
 Worst case should not determine the common case

 Heterogeneity in design
 Enables a more efficient design (No one size fits all) 
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Other Opportunities with Emerging Technologies

 Merging of memory and storage
 e.g., a single interface to manage all data

 New applications
 e.g., ultra-fast checkpoint and restore

 More robust system design
 e.g., reducing data loss

 Processing tightly-coupled with memory
 e.g., enabling efficient search and filtering
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Coordinated Memory and Storage with NVM (I)
 The traditional two-level storage model is a bottleneck with NVM

 Volatile data in memory  a load/store interface
 Persistent data in storage  a file system interface
 Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address 
translation

Load/Store

Operating 
system

and file system

fopen, fread, fwrite, …
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Coordinated Memory and Storage with NVM (II)

 Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data
 Improves both energy and performance
 Simplifies programming model as well

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.
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The Persistent Memory Manager (PMM)
 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory  no conversion, 
translation, location overhead for persistent data 

 Manages data placement, location, persistence, security
 To get the best of multiple forms of storage

 Manages metadata storage and retrieval
 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software
 To enable better data placement and management decisions

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.
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The Persistent Memory Manager (PMM)

PMM uses access and hint information to allocate, locate, migrate 
and access data in the heterogeneous array of devices

Persistent objects
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Performance Benefits of a Single-Level Store

Results for PostMark

~5X

~24X
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Energy Benefits of a Single-Level Store

Results for PostMark

~5X

~16X
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Summary: Memory/Storage Scaling
 Memory/storage scaling problems are a critical bottleneck for 

system performance, efficiency, and usability

 New memory/storage + compute architectures
 Rethinking DRAM; processing close to data; accelerating bulk operations
 Ensuring memory/storage reliability and robustness

 Enabling emerging NVM technologies 
 Hybrid memory systems with automatic data management
 Coordinated management of memory and storage with NVM

 System-level memory/storage QoS
 QoS-aware controller and system design
 Coordinated memory + storage QoS

 Software/hardware/device cooperation essential
73



More Material: Slides, Papers, Videos

 These slides are a very short version of the             
Scalable Memory Systems course at ACACES 2013

 Website for Course Slides, Papers, and Videos
 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
 http://users.ece.cmu.edu/~omutlu/projects.htm
 Includes extended lecture notes and readings

 Overview Reading
 Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, 
August 2013. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/%7Eomutlu/acaces2013-memory.html
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http://users.ece.cmu.edu/%7Eomutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf


Thank you.

Feel free to email me with any questions & feedback

onur@cmu.edu
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Backup Slides
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Backup Slides Agenda

 DRAM Retention Time Characterization: Summary of Findings
 Building Large DRAM Caches for Hybrid Memories
 Memory QoS and Predictable Performance
 Subarray-Level Parallelism (SALP) in DRAM
 Coordinated Memory and Storage with NVM
 New DRAM Architectures
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Retention Time Characterization 
of Modern DRAM Devices

Liu, Jaiyen, Kim, Wilkerson and Mutlu,
"An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms”
ISCA 2013.
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Summary (I)
 DRAM requires periodic refresh to avoid data loss

 Refresh wastes energy, reduces performance, limits DRAM density scaling

 Many past works observed that different DRAM cells can retain data for 
different times without being refreshed; proposed reducing refresh rate 
for strong DRAM cells
 Problem: These techniques require an accurate profile of the retention time of 

all DRAM cells

 Our goal: To analyze the retention time behavior of DRAM cells in modern 
DRAM devices to aid the collection of accurate profile information

 Our experiments: We characterize 248 modern commodity DDR3 DRAM 
chips from 5 manufacturers using an FPGA based testing platform

 Two Key Issues: 
1. Data Pattern Dependence: A cell’s retention time is heavily dependent on data  
values stored in itself and nearby cells, which cannot easily be controlled. 
2. Variable Retention Time: Retention time of some cells change unpredictably 
from high to low at large timescales.



Summary (II)
 Key findings on Data Pattern Dependence

 There is no observed single data pattern that elicits the lowest 
retention times for a DRAM device  very hard to find this pattern 

 DPD varies between devices due to variation in DRAM array circuit 
design between manufacturers

 DPD of retention time gets worse as DRAM scales to smaller feature 
sizes

 Key findings on Variable Retention Time
 VRT is common in modern DRAM cells that are weak
 The timescale at which VRT occurs is very large (e.g., a cell can stay 

in high retention time state for a day or longer)  finding minimum 
retention time can take very long

 Future work on retention time profiling must address these 
issues
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Building Large Caches for 
Hybrid Memories

Meza, Chang, Yoon, Mutlu, and Ranganathan,
"Enabling Efficient and Scalable Hybrid 
Memories Using Fine-Granularity DRAM Cache 
Management”
IEEE Comp Arch Letters 2012.
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One Option: DRAM as a Cache for PCM
 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering
 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:
 What data should be placed in DRAM versus kept in PCM?
 What is the granularity of data movement?
 How to design a low-cost hardware-managed DRAM cache?

 Two ideas:
 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]
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The Problem with Large DRAM Caches
 A large DRAM cache requires a large metadata (tag + 

block-based information) store
 How do we design an efficient DRAM cache?

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD X

Access X

Metadata:
X  DRAM

X
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Idea 1: Store Tags in Main Memory
 Store tags in the same row as data in DRAM

 Data and metadata can be accessed together

 Benefit: No on-chip tag storage overhead
 Downsides: 

 Cache hit determined only after a DRAM access
 Cache hit requires two DRAM accesses

Cache block 2Cache block 0 Cache block 1
DRAM row

Tag
0

Tag
1

Tag
2
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Idea 2: Cache Tags in On-Chip SRAM
 Recall Idea 1: Store all metadata in DRAM 

 To reduce metadata storage overhead

 Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata
 Cache only a small amount to keep SRAM size small
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Idea 3: Dynamic Data Transfer Granularity
 Some applications benefit from caching more data

 They have good spatial locality
 Others do not

 Large granularity wastes bandwidth and reduces cache 
utilization

 Idea 3: Simple dynamic caching granularity policy
 Cost-benefit analysis to determine best DRAM cache block size

 Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
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Hybrid Main Memory: Research Topics
 Many research topics from technology 

layer to algorithms layer

 Enabling NVM and hybrid memory
 How to maximize performance?
 How to maximize lifetime?
 How to prevent denial of service?

 Exploiting emerging tecnologies
 How to exploit non-volatility?
 How to minimize energy consumption?
 How to minimize cost?
 How to exploit NVM on chip?

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User
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Security Challenges of Emerging Technologies

1. Limited endurance  Wearout attacks

2. Non-volatility  Data persists in memory after powerdown
 Easy retrieval of privileged or private information

3. Multiple bits per cell  Information leakage (via side channel)
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Memory QoS
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Trend: Many Cores on Chip
 Simpler and lower power than a single large core
 Large scale parallelism on chip

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores
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Many Cores on Chip

 What we want:
 N times the system performance with N times the cores

 What do we get today?
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Unfair Slowdowns due to Interference

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

95



Uncontrolled Interference: An Example

CORE 1 CORE 2

L2 
CACHE

L2 
CACHE

DRAM MEMORY CONTROLLER

DRAM 
Bank 0

DRAM 
Bank 1

DRAM 
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM 
Bank 3
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// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

A Memory Performance Hog

STREAM

- Sequential memory access 
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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Effect of the Memory Performance Hog

0
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STREAM RANDOM

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux) 
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.
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Greater Problem with More Cores

 Vulnerable to denial of service (DoS)
 Unable to enforce priorities or SLAs 
 Low system performance

Uncontrollable, unpredictable system
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Distributed DoS in Networked Multi-Core Systems
Attackers

(Cores 1-8)
Stock option pricing application

(Cores 9-64)

Cores connected via 
packet-switched
routers on chip

~5000X slowdown

Grot, Hestness, Keckler, Mutlu, 
“Preemptive virtual clock: A Flexible, 
Efficient, and Cost-effective QOS 
Scheme for Networks-on-Chip,“
MICRO 2009.
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How Do We Solve The Problem?

 Inter-thread interference is uncontrolled in all memory 
resources
 Memory controller
 Interconnect
 Caches

 We need to control it
 i.e., design an interference-aware (QoS-aware) memory system
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QoS-Aware Memory Systems: Challenges

 How do we reduce inter-thread interference?
 Improve system performance and core utilization
 Reduce request serialization and core starvation

 How do we control inter-thread interference?
 Provide mechanisms to enable system software to enforce 

QoS policies 
 While providing high system performance

 How do we make the memory system configurable/flexible? 
 Enable flexible mechanisms that can achieve many goals

 Provide fairness or throughput when needed
 Satisfy performance guarantees when needed
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Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism
 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping
 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores
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 Memory Channel Partitioning
 Idea: System software maps badly-interfering applications’ pages 

to different channels [Muralidhara+, MICRO’11]

 Separate data of low/high intensity and low/high row-locality applications
 Especially effective in reducing interference of threads with “medium” and 

“heavy” memory intensity 
 11% higher performance over existing systems (200 workloads)

A Mechanism to Reduce Memory Interference

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0

Bank 1

Bank 0

Conventional Page Mapping

Time Units

12345

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0

Bank 1

Bank 0

Time Units

12345

Channel 1
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Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism
 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping
 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]
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QoS-Aware Memory Scheduling

 How to schedule requests to provide
 High system performance
 High fairness to applications
 Configurability to system software 

 Memory controller needs to be aware of threads

Memory 
Controller

Core Core

Core Core
Memory

Resolves memory contention 
by scheduling requests
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QoS-Aware Memory Scheduling: Evolution
 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns
 Takeaway: Proportional thread progress improves performance, 

especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation

 Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness

 ATLAS memory scheduler [Kim+ HPCA’10]

 Idea: Prioritize threads that have attained the least service from the 
memory scheduler 

 Takeaway: Prioritizing “light” threads improves performance
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Take turns accessing memory

Throughput vs. Fairness
Fairness biased approach

thread C

thread B

thread A

less memory 
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread Bthread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient
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Achieving the Best of Both Worlds

thread

thread

higher
priority

thread

thread

thread 

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive 
being prioritized over each other 

• Shuffle thread ranking

Memory-intensive threads have 
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread
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Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive 
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive 

Memory-intensive 

Prioritized

higher
priority

higher
priority

Throughput

Fairness
Kim+, “Thread Cluster Memory Scheduling,” MICRO 2010. 111



TCM: Quantum-Based Operation

Time

Previous quantum 
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of 

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

Kim+, “Thread Cluster Memory Scheduling,” MICRO 2010. 112



TCM: Throughput and Fairness
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TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput
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TCM: Fairness-Throughput Tradeoff
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More on TCM

 Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in 
Memory Access Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture
(MICRO), pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)
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Memory Control in CPU-GPU Systems
 Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS) 
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:
 SMS is significantly simpler and more scalable
 SMS provides higher performance and fairness

Ausavarungnirun+, “Staged Memory Scheduling,” ISCA 2012. 116



Key Idea: Decouple Tasks into Stages
 Idea: Decouple the functional tasks of the memory controller

 Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits
 Stage 1: Batch formation 
 Within each application, groups requests to the same row into 

batches
2) Manage contention between applications

 Stage 2: Batch scheduler 
 Schedules batches from different applications

3) Satisfy DRAM timing constraints
 Stage 3: DRAM command scheduler
 Issues requests from the already-scheduled order to each bank
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SMS: Staged Memory Scheduling
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Stage 1

Stage 2

SMS: Staged Memory Scheduling
Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req ReqBatch Scheduler

Batch 
Formation

Stage 3

DRAM 
Command 
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4
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Current Batch
Scheduling 

Policy
SJF

Current Batch
Scheduling 

Policy
RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

SMS: Staged Memory Scheduling
Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch 
Formation

Stage 3: 
DRAM 
Command 
Scheduler

GPU

Stage 2:

Ausavarungnirun+, “Staged Memory Scheduling,” ISCA 2012. 120



SMS Complexity
 Compared to a row hit first scheduler, SMS consumes*

 66% less area
 46% less static power

 Reduction comes from:
 Monolithic scheduler  stages of simpler schedulers
 Each stage has a simpler scheduler (considers fewer 

properties at a time to make the scheduling decision)
 Each stage has simpler buffers (FIFO instead of out-of-order)
 Each stage has a portion of the total buffer size (buffering is 

distributed across stages)

* Based on a Verilog model using 180nm library 121



SMS Performance
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 At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight

SMS Performance

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best

SMSSMS

Best Previous 
Scheduler

123



CPU-GPU Performance Tradeoff
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More on SMS

 Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel 
Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance and 
Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)
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Stronger Memory Service Guarantees 
[HPCA’13] Uncontrolled memory interference slows down  

applications unpredictably
 Goal: Estimate and control slowdowns

 MISE: An accurate slowdown estimation model 
 Request Service Rate is a good proxy for performance

 Slowdown = Request Service Rate Alone / Request Service Rate Shared

 Request Service Rate Alone estimated by giving an application highest 
priority in accessing memory

 Average slowdown estimation error of MISE: 8.2% (3000 data pts)

 Memory controller leverages MISE to control slowdowns
 To provide soft slowdown guarantees
 To minimize maximum slowdown

Subramanian+, “MISE,” HPCA 2013. 126



More on MISE

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and 
Onur Mutlu,
"MISE: Providing Performance Predictability and Improving 
Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. Slides 
(pptx)
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Memory QoS in a Parallel Application

 Threads in a multithreaded application are inter-dependent
 Some threads can be on the critical path of execution due 

to synchronization; some threads are not
 How do we schedule requests of inter-dependent threads 

to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:
 Thread executing the most contended critical section
 Thread that is falling behind the most in a parallel for loop

Ebrahimi+, “Parallel Application Memory Scheduling,” MICRO 2011. 128



More on PAMS

 Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, 
Onur Mutlu, and Yale N. Patt, 
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)
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Summary: Memory QoS Approaches and Techniques

 Approaches: Smart vs. dumb resources
 Smart resources: QoS-aware memory scheduling
 Dumb resources: Source throttling; channel partitioning
 Both approaches are effective in reducing interference
 No single best approach for all workloads

 Techniques: Request scheduling, source throttling, memory 
partitioning
 All approaches are effective in reducing interference
 Can be applied at different levels: hardware vs. software
 No single best technique for all workloads

 Combined approaches and techniques are the most powerful
 Integrated Memory Channel Partitioning and Scheduling [MICRO’11]
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SALP: Reducing DRAM Bank 
Conflict Impact

Kim, Seshadri, Lee, Liu, Mutlu
A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM
ISCA 2012.
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SALP: Reducing DRAM Bank Conflicts
 Problem: Bank conflicts are costly for performance and energy

 serialized requests, wasted energy (thrashing of row buffer, busy wait)
 Goal: Reduce bank conflicts without adding more banks (low cost)
 Key idea: Exploit the internal subarray structure of a DRAM bank to 

parallelize bank conflicts to different subarrays
 Slightly modify DRAM bank to reduce subarray-level hardware sharing

Kim, Seshadri+ “A Case for Exploiting Subarray-Level 
Parallelism in DRAM,” ISCA 2012.
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SALP: Key Ideas

 A DRAM bank consists of mostly-independent subarrays
 Subarrays share some global structures to reduce cost

Key Idea of SALP: Minimally reduce sharing of global structures

Reduce the sharing of …
Global decoder  Enables pipelined access to subarrays
Global row buffer  Utilizes multiple local row buffers
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SALP: Reduce Sharing of Global Decoder
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SALP: Reduce Sharing of Global Row-Buffer
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SALP: Baseline Bank Organization
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SALP: Proposed Bank Organization
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SALP: Results
 Wide variety of systems with different #channels, banks, 

ranks, subarrays
 Server, streaming, random-access, SPEC workloads

 Dynamic DRAM energy reduction: 19%
 DRAM row hit rate improvement: 13% 

 System performance improvement: 17%
 Within 3% of ideal (all independent banks)

 DRAM die area overhead: 0.15%
 vs. 36% overhead of independent banks
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More on SALP

 Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in 
DRAM"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)
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Coordinated Memory and 
Storage with NVM

Meza, Luo, Khan, Zhao, Xie, and Mutlu,
"A Case for Efficient Hardware-Software 
Cooperative Management of Storage and 
Memory”
WEED 2013.
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Overview
 Traditional systems have a two-level storage model

 Access volatile data in memory with a load/store interface
 Access persistent data in storage with a file system interface
 Problem: Operating system (OS) and file system (FS) code and buffering 

for storage lead to energy and performance inefficiencies

 Opportunity: New non-volatile memory (NVM) technologies can help 
provide fast (similar to DRAM), persistent storage (similar to Flash)
 Unfortunately, OS and FS code can easily become energy efficiency and 

performance bottlenecks if we keep the traditional storage model

 This work: makes a case for hardware/software cooperative 
management of storage and memory within a single-level
 We describe the idea of a Persistent Memory Manager (PMM) for 

efficiently coordinating storage and memory, and quantify its benefit
 And, examine questions and challenges to address to realize PMM
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A Tale of Two Storage Levels
 Two-level storage arose in systems due to the widely different 

access latencies and methods of the commodity storage devices
 Fast, low capacity, volatile DRAM  working storage
 Slow, high capacity, non-volatile hard disk drives  persistent storage

 Data from slow storage media is buffered in fast DRAM
 After that it can be manipulated by programs  programs cannot 

directly access persistent storage
 It is the programmer’s job to translate this data between the two 

formats of the two-level storage (files and data structures)

 Locating, transferring, and translating data and formats between 
the two levels of storage can waste significant energy and 
performance
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Opportunity: New Non-Volatile Memories
 Emerging memory technologies provide the potential for unifying 

storage and memory (e.g., Phase-Change, STT-RAM, RRAM)
 Byte-addressable (can be accessed like DRAM)
 Low latency (comparable to DRAM)
 Low power (idle power better than DRAM)
 High capacity (closer to Flash)
 Non-volatile (can enable persistent storage)
 May have limited endurance (but, better than Flash)

 Can provide fast access to both volatile data and persistent 
storage

 Question: if such devices are used, is it efficient to keep a      
two-level storage model?
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Eliminating Traditional Storage Bottlenecks

Today 
(DRAM + 
HDD) and 
two-level 
storage 
model Replace HDD 

with NVM 
(PCM-like), 

keep two-level 
storage model 

Replace HDD 
and DRAM 
with NVM 

(PCM-like), 
eliminate all 

OS+FS 
overhead
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Where is Energy Spent in Each Model?

HDD access
wastes energy

FS/OS overhead 
becomes important

Additional DRAM energy 
due to buffering overhead 

of two-level model

No FS/OS overhead
No additional buffering 

overhead in DRAM

Results for PostMark 145



Our Proposal: Coordinated HW/SW      
Memory and Storage Management
 Goal: Unify memory and storage to eliminate wasted work to 

locate, transfer, and translate data
 Improve both energy and performance
 Simplify programming model as well
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Our Proposal: Coordinated HW/SW    
Memory and Storage Management
 Goal: Unify memory and storage to eliminate wasted work to 

locate, transfer, and translate data
 Improve both energy and performance
 Simplify programming model as well

Before: Traditional Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address 
translation

Load/Store

Operating 
system

and file system

fopen, fread, fwrite, …
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Our Proposal: Coordinated HW/SW     
Memory and Storage Management
 Goal: Unify memory and storage to eliminate wasted work to 

locate, transfer, and translate data
 Improve both energy and performance
 Simplify programming model as well

After: Coordinated HW/SW Management

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback
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The Persistent Memory Manager (PMM)
 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory  no conversion, 
translation, location overhead for persistent data 

 Manages data placement, location, persistence, security
 To get the best of multiple forms of storage

 Manages metadata storage and retrieval
 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software
 To enable better data placement and management decisions
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The Persistent Memory Manager
 Persistent Memory Manager

 Exposes a load/store interface to access persistent data
 Manages data placement, location, persistence, security
 Manages metadata storage and retrieval
 Exposes hooks and interfaces for system software

 Example program manipulating a persistent object:

Create persistent object and its handle
Allocate a persistent array and assign

Load/store interface
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Putting Everything Together

PMM uses access and hint information to allocate, locate, migrate 
and access data in the heterogeneous array of devices 151



Opportunities and Benefits

 We’ve identified at least five opportunities and benefits of a unified 
storage/memory system that gets rid of the two-level model:

1. Eliminating system calls for file operations

2. Eliminating file system operations

3. Efficient data mapping/location among heterogeneous devices

4. Providing security and reliability in persistent memories

5. Hardware/software cooperative data management
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Evaluation Methodology
 Hybrid real system / simulation-based approach

 System calls are executed on host machine (functional correctness) 
and timed to accurately model their latency in the simulator

 Rest of execution is simulated in Multi2Sim (enables hardware-level 
exploration)

 Power evaluated using McPAT and memory power models

 16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz

 Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency

 Persistent memory

 HDD (measured): 4ms seek latency, 6Gbps bus rate

 NVM: (modeled after PCM) 4KB page size, 160-/480-cycle 
(read/write) latency
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Evaluated Systems
 HDD Baseline (HB)

 Traditional system with volatile DRAM memory and persistent HDD storage
 Overheads of operating system and file system code and buffering

 HDD without OS/FS (HW)
 Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads
 System calls take 0 cycles (but HDD access takes normal latency)

 NVM Baseline (NB)
 Same as HDD Baseline, but HDD is replaced with NVM
 Still has OS/FS overheads of the two-level storage model

 Persistent Memory (PM)
 Uses only NVM (no DRAM) to ensure full-system persistence
 All data accessed using loads and stores
 Does not waste energy on system calls
 Data is manipulated directly on the NVM device
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Evaluated Workloads
 Unix utilities that manipulate files

 cp: copy a large file from one location to another
 cp –r: copy files in a directory tree from one location to another
 grep: search for a string in a large file
 grep –r: search for a string recursively in a directory tree

 PostMark: an I/O-intensive benchmark from NetApp
 Emulates typical access patterns for email, news, web commerce

 MySQL Server: a popular database management system
 OLTP-style queries generated by Sysbench
 MySQL (simple): single, random read to an entry
 MySQL (complex): reads/writes 1 to 100 entries per transaction
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Performance Results

The workloads that see the greatest improvement from using a Persistent Memory 
are those that spend a large portion of their time executing system call code due to 

the two-level storage model
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Energy Results: NVM to PMM

Between systems with and without OS/FS code, energy improvements come from: 
1. reduced code footprint, 2. reduced data movement

Large energy reductions with a PMM over the NVM based system
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Scalability Analysis: Effect of PMM Latency

Even if each PMM access takes a non-overlapped 50 cycles (conservative), 
PMM still provides an overall improvement compared to the NVM baseline

Future research should target keeping PMM latencies in check
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New Questions and Challenges
 We identify and discuss several open research questions

 Q1. How to tailor applications for systems with persistent 
memory?

 Q2. How can hardware and software cooperate to support a 
scalable, persistent single-level address space?

 Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems?

 Q4. How to mitigate potential hardware performance and energy 
overheads?
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Single-Level Stores: Summary and Conclusions
 Traditional two-level storage model is inefficient in terms of 

performance and energy
 Due to OS/FS code and buffering needed to manage two models
 Especially so in future devices with NVM technologies, as we show

 New non-volatile memory based persistent memory designs that 
use a single-level storage model to unify memory and storage can 
alleviate this problem

 We quantified the performance and energy benefits of such a 
single-level persistent memory/storage design
 Showed significant benefits from reduced code footprint, data 

movement, and system software overhead on a variety of workloads

 Such a design requires more research to answer the questions we 
have posed and enable efficient persistent memory managers
 can lead to a fundamentally more efficient storage system
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New DRAM Architectures
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Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact
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DRAM Refresh
 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row 
periodically to restore charge
 Activate each row every N ms
 Typical N = 64 ms

 Downsides of refresh
-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while 

refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling 

163



Refresh Overhead: Performance

8%

46%
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Refresh Overhead: Energy

15%

47%
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Retention Time Profile of DRAM
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RAIDR: Eliminating Unnecessary Refreshes
 Observation: Most DRAM rows can be refreshed much less often 

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

 Key idea: Refresh rows containing weak cells 
more frequently, other rows less frequently
1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at 
different rates

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
 74.6% refresh reduction @ 1.25KB storage
 ~16%/20% DRAM dynamic/idle power reduction
 ~9% performance improvement 
 Benefits increase with DRAM capacity

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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Going Forward

 How to find out and expose weak memory cells/rows
 Early analysis of modern DRAM chips: 

 Liu+, “An Experimental Study of Data Retention Behavior in 
Modern DRAM Devices: Implications for Retention Time Profiling 
Mechanisms”, ISCA 2013.

 Low-cost system-level tolerance of DRAM errors

 Tolerating cell-to-cell interference at the system level 
 For both DRAM and Flash. Early analysis of Flash chips:

 Cai+, “Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation,” ICCD 2013.
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Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact
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DRAM Latency-Capacity Trend
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DRAM Latency = Subarray Latency + I/O Latency
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Why is the Subarray So Slow?
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Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency



174

Trade-Off: Area (Die Size) vs. Latency
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Short Bitline

Low Latency 

Approximating the Best of Both Worlds
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Approximating the Best of Both Worlds
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Tiered-Latency DRAM

Near Segment

Far Segment

Isolation Transistor

• Divide a bitline into two segments with an 
isolation transistor

Sense Amplifier

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM
• TL-DRAM is a substrate that can be leveraged by 

the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment
2. Use near segment as hardware-managed exclusive

cache to far segment
3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM 



181

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

Performance & Power Consumption  
11.5%

N
or

m
al

ize
d 

Pe
rf

or
m

an
ce

Core-Count (Channel)
N

or
m

al
ize

d 
Po

w
er

Core-Count (Channel)

10.7%12.4%
–23% –24% –26%

Using near segment as a cache improves 
performance and reduces power consumption



Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact
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Today’s Memory: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement
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Future: RowClone (In-Memory Copy)

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement
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DRAM operation (load one byte)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row

Transfer 
row

Step 2: Read  
Transfer byte 
onto bus



RowClone: in-DRAM Row Copy 
(and Initialization)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row



RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
or

m
al

ize
d 

Sa
vi

ng
s

Baseline Intra-Subarray
Inter-Bank Inter-Subarray

11.6x 74x
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RowClone: Overall Performance
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Goal: Ultra-efficient 
heterogeneous architectures 
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Enabling Ultra-efficient (Visual) 
Search

▪ What is the right partitioning of computation 
capability?

▪ What is the right low-cost memory substrate?
▪ What memory technologies are the best 

enablers?
▪ How do we rethink/ease (visual) search 
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images)  
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Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: In-Memory Page Copy and Initialization 

 Subarray-Level Parallelism: Reducing Bank Conflict Impact
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SALP: Reducing DRAM Bank Conflicts
 Problem: Bank conflicts are costly for performance and energy

 serialized requests, wasted energy (thrashing of row buffer, busy wait)
 Goal: Reduce bank conflicts without adding more banks (low cost)
 Key idea: Exploit the internal subarray structure of a DRAM bank to 

parallelize bank conflicts to different subarrays
 Slightly modify DRAM bank to reduce subarray-level hardware sharing

 Results on Server, Stream/Random, SPEC 
 19% reduction in dynamic DRAM energy
 13% improvement in row hit rate
 17% performance improvement 
 0.15% DRAM area overhead

Kim, Seshadri+ “A Case for Exploiting Subarray-Level 
Parallelism in DRAM,” ISCA 2012. 0.0
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A Bit About Me 
and My Research
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Brief Self Introduction
 Onur Mutlu

 Carnegie Mellon University ECE/CS
 PhD from UT-Austin 2006, worked at Microsoft Research, Intel, AMD
 http://www.ece.cmu.edu/~omutlu
 onur@cmu.edu (Best way to reach me)
 http://users.ece.cmu.edu/~omutlu/projects.htm

 Research, Teaching, Consulting Interests
 Computer architecture and systems, hardware/software interaction
 Memory and storage systems, emerging technologies
 Many-core systems, heterogeneous systems
 Interconnects
 Hardware/software interaction and co-design (PL, OS, Architecture)
 Predictable and QoS-aware systems
 Hardware fault tolerance and security
 Algorithms and architectures for genome analysis
 …

Interested in developing efficient, high-performance, 
and scalable systems; solving difficult architectural 
problems at low cost & complexity
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My Group: SAFARI
 http://www.ece.cmu.edu/~safari/
 http://www.ece.cmu.edu/~safari/pubs.html
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Overview of My Recent Research
 Memory and storage systems: DRAM, Flash, NVM, emerging

 Scalability, energy, latency, parallelism, fault tolerance
 Compute in/near memory; emerging technologies

 Predictable performance, QoS

 Heterogeneous systems, accelerating bottlenecks

 Efficient system design: interconnects, cores, caches, … 

 Bioinformatics algorithms and architectures

 Acceleration of important applications, software/hardware 
co-design
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