
Rethinking Memory System Design for
Data-Intensive Computing

Onur Mutlu
onur@cmu.edu

October 11-16, 2013

mailto:onur@cmu.edu

Three Key Problems in Systems

 The memory system
 Data storage and movement limit performance & efficiency

 Efficiency (performance and energy) scalability
 Efficiency limits performance & scalability

 Predictability and robustness
 Predictable performance and QoS become first class

constraints as systems scale in size and technology

2

The Main Memory/Storage System

 Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

 Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

Processor
and caches

Main Memory Storage (SSD/HDD)

3

Memory System: A Shared Resource View

Storage

4

State of the Main Memory System
 Recent technology, architecture, and application trends

 lead to new requirements
 exacerbate old requirements

 DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

 Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

 We need to rethink the main memory system
 to fix DRAM issues and enable emerging technologies
 to satisfy all requirements

5

Agenda

 Major Trends Affecting Main Memory
 The Memory Scaling Problem and Solution Directions

 New Memory Architectures
 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?
 Summary

6

Major Trends Affecting Main Memory (I)
 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

7

Major Trends Affecting Main Memory (II)
 Need for main memory capacity, bandwidth, QoS increasing

 Multi-core: increasing number of cores/agents
 Data-intensive applications: increasing demand/hunger for data
 Consolidation: cloud computing, GPUs, mobile, heterogeneity

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

8

Example: The Memory Capacity Gap

 Memory capacity per core expected to drop by 30% every two years
 Trends worse for memory bandwidth per core!

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

9

Major Trends Affecting Main Memory (III)
 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern
 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer 2003]

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending

10

Major Trends Affecting Main Memory (IV)
 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending
 ITRS projects DRAM will not scale easily below X nm
 Scaling has provided many benefits:

 higher capacity (density), lower cost, lower energy

11

Agenda

 Major Trends Affecting Main Memory
 The Memory Scaling Problem and Solution Directions

 New Memory Architectures
 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?
 Summary

12

The DRAM Scaling Problem
 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing
 Access transistor should be large enough for low leakage and high

retention time
 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

13

Solutions to the DRAM Scaling Problem

 Two potential solutions
 Tolerate DRAM (by taking a fresh look at it)
 Enable emerging memory technologies to eliminate/minimize

DRAM

 Do both
 Hybrid memory systems

14

Solution 1: Tolerate DRAM
 Overcome DRAM shortcomings with

 System-DRAM co-design
 Novel DRAM architectures, interface, functions
 Better waste management (efficient utilization)

 Key issues to tackle
 Reduce energy
 Enable reliability at low cost
 Improve bandwidth and latency
 Reduce waste

 Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
 Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
 Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.

15

Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)
 Example: Phase Change Memory

 Expected to scale to 9nm (2022 [ITRS])
 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have shortcomings as well
 Can they be enabled to replace/augment/surpass DRAM?

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM Alternative,”
ISCA 2009, CACM 2010, Top Picks 2010.

 Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” IEEE
Comp. Arch. Letters 2012.

 Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
 Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

16

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

An Orthogonal Issue: Memory Interference

Main
Memory

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory

18

 Problem: Memory interference between cores is uncontrolled
 unfairness, starvation, low performance
 uncontrollable, unpredictable, vulnerable system

 Solution: QoS-Aware Memory Systems
 Hardware designed to provide a configurable fairness substrate

 Application-aware memory scheduling, partitioning, throttling

 Software designed to configure the resources to satisfy different
QoS goals

 QoS-aware memory controllers and interconnects can
provide predictable performance and higher efficiency

An Orthogonal Issue: Memory Interference

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping
 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]

20

Some Current Directions

 New memory/storage + compute architectures
 Rethinking DRAM
 Processing close to data; accelerating bulk operations
 Ensuring memory/storage reliability and robustness

 Enabling emerging NVM technologies
 Hybrid memory systems with automatic data management
 Coordinated management of memory and storage with NVM

 System-level memory/storage QoS
 QoS-aware controller and system design
 Coordinated memory + storage QoS

21

Agenda

 Major Trends Affecting Main Memory
 The Memory Scaling Problem and Solution Directions

 New Memory Architectures
 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?
 Summary

22

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Linearly Compressed Pages: Efficient Memory Compression

23

Today’s Memory: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

24

Future: RowClone (In-Memory Copy)

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

25

DRAM operation (load one byte)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row

Transfer
row

Step 2: Read
Transfer byte
onto bus

RowClone: in-DRAM Row Copy
(and Initialization)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
or

m
al

ize
d

Sa
vi

ng
s

Baseline Intra-Subarray
Inter-Bank Inter-Subarray

11.6x 74x

Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

28

RowClone: Overall Performance

29

Goal: Ultra-Efficient Processing
Close to Data

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Slide credit: Prof. Kayvon Fatahalian, CMU

Enabling Ultra-Efficient (Visual)
Search

▪ What is the right partitioning of computation
capability?

▪ What is the right low-cost memory substrate?
▪ What memory technologies are the best

enablers?
▪ How do we rethink/ease (visual) search

Cache

Process
or
Core

Interconnect

Memory

Databa
se (of
images)

Query vector

Results

Picture credit: Prof. Kayvon Fatahalian, CMU

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

 Linearly Compressed Pages: Efficient Memory Compression

32

33

DRAM Latency-Capacity Trend

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

2000 2003 2006 2008 2011

La
te

nc
y

(n
s)

Ca
pa

ci
ty

 (G
b)

Year

Capacity Latency (tRC)

16X

-20%

DRAM latency continues to be a critical bottleneck

34

DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel

I/O

subarray

DRAM Latency = Subarray Latency + I/O Latency

Dominant
Su

ba
rr

ay
I/

O

35

Why is the Subarray So Slow?
Subarray

ro
w

 d
ec

od
er

sense amplifier

ca
pa

ci
to

r

access
transistor

wordline

bi
tli

ne

Cell

large sense amplifier

bi
tli

ne
: 5

12
 ce

lls

cell

• Long bitline
– Amortizes sense amplifier cost Small area
– Large bitline capacitance High latency & power

se
ns

e
am

pl
ifi

er

ro
w

 d
ec

od
er

36

Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency

37

Trade-Off: Area (Die Size) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
or

m
al

ize
d

DR
AM

 A
re

a

Latency (ns)

64

32

128
256 512 cells/bitline

Commodity
DRAM

Long Bitline

Ch
ea

pe
r

Faster

Fancy DRAM
Short Bitline

38

Short Bitline

Low Latency

Approximating the Best of Both Worlds
Long Bitline
Small Area
Long Bitline

Low Latency

Short BitlineOur Proposal
Small Area

Short Bitline Fast
Need

Isolation
Add Isolation

Transistors

High Latency

Large Area

39

Approximating the Best of Both Worlds

Low Latency

Our Proposal
Small Area

Long Bitline
Small Area
Long Bitline

High Latency

Short Bitline

Low Latency

Short Bitline
Large Area

Tiered-Latency DRAM

Low Latency

Small area
using long

bitline

40

Tiered-Latency DRAM

Near Segment

Far Segment

Isolation Transistor

• Divide a bitline into two segments with an
isolation transistor

Sense Amplifier

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

41

0%

50%

100%

150%

0%

50%

100%

150%

Commodity DRAM vs. TL-DRAM
La

te
nc

y

Po
w

er

–56%

+23%

–51%

+49%
• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
Commodity

DRAM
Near Far Commodity

DRAM
Near Far

TL-DRAM

(52.5ns)

42

Trade-Off: Area (Die-Area) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
or

m
al

ize
d

DR
AM

 A
re

a

Latency (ns)

64

32

128
256 512 cells/bitlineCh

ea
pe

r

Faster

Near Segment Far Segment

43

Leveraging Tiered-Latency DRAM
• TL-DRAM is a substrate that can be leveraged by

the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment
2. Use near segment as hardware-managed exclusive

cache to far segment
3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM

44

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

Performance & Power Consumption
11.5%

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Core-Count (Channel)
N

or
m

al
ize

d
Po

w
er

Core-Count (Channel)

10.7%12.4%
–23% –24% –26%

Using near segment as a cache improves
performance and reduces power consumption

Agenda

 Major Trends Affecting Main Memory
 The Memory Scaling Problem and Solution Directions

 New Memory Architectures
 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?
 Summary

45

Solution 2: Emerging Memory Technologies
 Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

 Example: Phase Change Memory
 Data stored by changing phase of material
 Data read by detecting material’s resistance
 Expected to scale to 9nm (2022 [ITRS])
 Prototyped at 20nm (Raoux+, IBM JRD 2008)
 Expected to be denser than DRAM: can store multiple bits/cell

 But, emerging technologies have (many) shortcomings
 Can they be enabled to replace/augment/surpass DRAM?

46

Phase Change Memory: Pros and Cons
 Pros over DRAM

 Better technology scaling (capacity and cost)
 Non volatility
 Low idle power (no refresh)

 Cons
 Higher latencies: ~4-15x DRAM (especially write)
 Higher active energy: ~2-50x DRAM (especially write)
 Lower endurance (a cell dies after ~108 writes)

 Challenges in enabling PCM as DRAM replacement/helper:
 Mitigate PCM shortcomings
 Find the right way to place PCM in the system

47

PCM-based Main Memory (I)
 How should PCM-based (main) memory be organized?

 Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
 How to partition/migrate data between PCM and DRAM

48

PCM-based Main Memory (II)
 How should PCM-based (main) memory be organized?

 Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:
 How to redesign entire hierarchy (and cores) to overcome

PCM shortcomings

49

An Initial Study: Replace DRAM with PCM
 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
 Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
 Derived “average” PCM parameters for F=90nm

50

Results: Naïve Replacement of DRAM with PCM

 Replace DRAM with PCM in a 4-core, 4MB L2 system
 PCM organized the same as DRAM: row buffers, banks, peripherals
 1.6x delay, 2.2x energy, 500-hour average lifetime

 Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

51

Architecting PCM to Mitigate Shortcomings
 Idea 1: Use multiple narrow row buffers in each PCM chip
 Reduces array reads/writes better endurance, latency, energy

 Idea 2: Write into array at
cache block or word
granularity
 Reduces unnecessary wear

DRAM PCM

52

Results: Architected PCM as Main Memory
 1.2x delay, 1.0x energy, 5.6-year average lifetime
 Scaling improves energy, endurance, density

 Caveat 1: Worst-case lifetime is much shorter (no guarantees)
 Caveat 2: Intensive applications see large performance and energy hits
 Caveat 3: Optimistic PCM parameters?

53

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM
 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering
 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:
 What data should be placed in DRAM versus kept in PCM?
 What is the granularity of data movement?
 How to design a huge (DRAM) cache at low cost?

 Two solutions:
 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

55

DRAM vs. PCM: An Observation
 Row buffers are the same in DRAM and PCM
 Row buffer hit latency same in DRAM and PCM
 Row buffer miss latency small in DRAM, large in PCM

 Accessing the row buffer in PCM is fast
 What incurs high latency is the PCM array access avoid this

CPU
DRA
MCtrl

PCM
Ctrl

Ban
k

Ban
k

Ban
k

Ban
k

Row buffer
DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss

56

Row-Locality-Aware Data Placement
 Idea: Cache in DRAM only those rows that

 Frequently cause row buffer conflicts because row-conflict latency
is smaller in DRAM

 Are reused many times to reduce cache pollution and bandwidth
waste

 Simplified rule of thumb:
 Streaming accesses: Better to place in PCM
 Other accesses (with some reuse): Better to place in DRAM

 Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid
Memories,” ICCD 2012 Best Paper Award.

57

Row-Locality-Aware Data Placement: Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Server Cloud Avg

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

10% 14%17%

Memory energy-efficiency and fairness also
improve correspondingly

58

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM

31% better performance than all PCM,
within 29% of all DRAM performance

31%

29%

59

Aside: STT-RAM as Main Memory
 Magnetic Tunnel Junction (MTJ)

 Reference layer: Fixed
 Free layer: Parallel or anti-parallel

 Cell
 Access transistor, bit/sense lines

 Read and Write
 Read: Apply a small voltage across

bitline and senseline; read the current.
 Write: Push large current through MTJ.

Direction of current determines new
orientation of the free layer.

 Kultursay et al., “Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative,” ISPASS
2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

Aside: STT-RAM: Pros and Cons
 Pros over DRAM

 Better technology scaling
 Non volatility
 Low idle power (no refresh)

 Cons
 Higher write latency
 Higher write energy
 Reliability?

 Another level of freedom
 Can trade off non-volatility for lower write latency/energy (by

reducing the size of the MTJ)

61

Architected STT-RAM as Main Memory
 4-core, 4GB main memory, multiprogrammed workloads
 ~6% performance loss, ~60% energy savings vs. DRAM

88%
90%
92%
94%
96%
98%

P
er

fo
rm

an
ce

vs

. D
R

A
M

STT-RAM (base) STT-RAM (opt)

0%

20%

40%

60%

80%

100%

En
er

gy

vs
. D

R
A

M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

62

Agenda

 Major Trends Affecting Main Memory
 The Memory Scaling Problem and Solution Directions

 New Memory Architectures
 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?
 Summary

63

Principles (So Far)

 Better cooperation between devices and the system
 Expose more information about devices to upper layers
 More flexible interfaces

 Better-than-worst-case design
 Do not optimize for the worst case
 Worst case should not determine the common case

 Heterogeneity in design
 Enables a more efficient design (No one size fits all)

64

Other Opportunities with Emerging Technologies

 Merging of memory and storage
 e.g., a single interface to manage all data

 New applications
 e.g., ultra-fast checkpoint and restore

 More robust system design
 e.g., reducing data loss

 Processing tightly-coupled with memory
 e.g., enabling efficient search and filtering

65

Coordinated Memory and Storage with NVM (I)
 The traditional two-level storage model is a bottleneck with NVM

 Volatile data in memory a load/store interface
 Persistent data in storage a file system interface
 Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

66

Coordinated Memory and Storage with NVM (II)

 Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
 Improves both energy and performance
 Simplifies programming model as well

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

67

The Persistent Memory Manager (PMM)
 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory no conversion,
translation, location overhead for persistent data

 Manages data placement, location, persistence, security
 To get the best of multiple forms of storage

 Manages metadata storage and retrieval
 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software
 To enable better data placement and management decisions

 Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

68

The Persistent Memory Manager (PMM)

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Persistent objects

69

Performance Benefits of a Single-Level Store

Results for PostMark

~5X

~24X

70

Energy Benefits of a Single-Level Store

Results for PostMark

~5X

~16X

71

Agenda

 Major Trends Affecting Main Memory
 The Memory Scaling Problem and Solution Directions

 New Memory Architectures
 Enabling Emerging Technologies: Hybrid Memory Systems

 How Can We Do Better?
 Summary

72

Summary: Memory/Storage Scaling
 Memory/storage scaling problems are a critical bottleneck for

system performance, efficiency, and usability

 New memory/storage + compute architectures
 Rethinking DRAM; processing close to data; accelerating bulk operations
 Ensuring memory/storage reliability and robustness

 Enabling emerging NVM technologies
 Hybrid memory systems with automatic data management
 Coordinated management of memory and storage with NVM

 System-level memory/storage QoS
 QoS-aware controller and system design
 Coordinated memory + storage QoS

 Software/hardware/device cooperation essential
73

More Material: Slides, Papers, Videos

 These slides are a very short version of the
Scalable Memory Systems course at ACACES 2013

 Website for Course Slides, Papers, and Videos
 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
 http://users.ece.cmu.edu/~omutlu/projects.htm
 Includes extended lecture notes and readings

 Overview Reading
 Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA,
August 2013. Slides (pptx) (pdf)

74

http://users.ece.cmu.edu/%7Eomutlu/acaces2013-memory.html
http://users.ece.cmu.edu/%7Eomutlu/projects.htm
http://users.ece.cmu.edu/%7Eomutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf

Thank you.

Feel free to email me with any questions & feedback

onur@cmu.edu

75

mailto:onur@cmu.edu

Rethinking Memory System Design for
Data-Intensive Computing

Onur Mutlu
onur@cmu.edu

October 11-16, 2013

mailto:onur@cmu.edu

Backup Slides

77

Backup Slides Agenda

 DRAM Retention Time Characterization: Summary of Findings
 Building Large DRAM Caches for Hybrid Memories
 Memory QoS and Predictable Performance
 Subarray-Level Parallelism (SALP) in DRAM
 Coordinated Memory and Storage with NVM
 New DRAM Architectures

78

Retention Time Characterization
of Modern DRAM Devices

Liu, Jaiyen, Kim, Wilkerson and Mutlu,
"An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms”
ISCA 2013.

79

http://users.ece.cmu.edu/%7Eomutlu/pub/dram-retention-time-characterization_isca13.pdf

Summary (I)
 DRAM requires periodic refresh to avoid data loss

 Refresh wastes energy, reduces performance, limits DRAM density scaling

 Many past works observed that different DRAM cells can retain data for
different times without being refreshed; proposed reducing refresh rate
for strong DRAM cells
 Problem: These techniques require an accurate profile of the retention time of

all DRAM cells

 Our goal: To analyze the retention time behavior of DRAM cells in modern
DRAM devices to aid the collection of accurate profile information

 Our experiments: We characterize 248 modern commodity DDR3 DRAM
chips from 5 manufacturers using an FPGA based testing platform

 Two Key Issues:
1. Data Pattern Dependence: A cell’s retention time is heavily dependent on data
values stored in itself and nearby cells, which cannot easily be controlled.
2. Variable Retention Time: Retention time of some cells change unpredictably
from high to low at large timescales.

Summary (II)
 Key findings on Data Pattern Dependence

 There is no observed single data pattern that elicits the lowest
retention times for a DRAM device very hard to find this pattern

 DPD varies between devices due to variation in DRAM array circuit
design between manufacturers

 DPD of retention time gets worse as DRAM scales to smaller feature
sizes

 Key findings on Variable Retention Time
 VRT is common in modern DRAM cells that are weak
 The timescale at which VRT occurs is very large (e.g., a cell can stay

in high retention time state for a day or longer) finding minimum
retention time can take very long

 Future work on retention time profiling must address these
issues

81

Building Large Caches for
Hybrid Memories

Meza, Chang, Yoon, Mutlu, and Ranganathan,
"Enabling Efficient and Scalable Hybrid
Memories Using Fine-Granularity DRAM Cache
Management”
IEEE Comp Arch Letters 2012.

82

http://users.ece.cmu.edu/%7Eomutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf

One Option: DRAM as a Cache for PCM
 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering
 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:
 What data should be placed in DRAM versus kept in PCM?
 What is the granularity of data movement?
 How to design a low-cost hardware-managed DRAM cache?

 Two ideas:
 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

83

The Problem with Large DRAM Caches
 A large DRAM cache requires a large metadata (tag +

block-based information) store
 How do we design an efficient DRAM cache?

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD X

Access X

Metadata:
X DRAM

X

84

Idea 1: Store Tags in Main Memory
 Store tags in the same row as data in DRAM

 Data and metadata can be accessed together

 Benefit: No on-chip tag storage overhead
 Downsides:

 Cache hit determined only after a DRAM access
 Cache hit requires two DRAM accesses

Cache block 2Cache block 0 Cache block 1
DRAM row

Tag
0

Tag
1

Tag
2

85

Idea 2: Cache Tags in On-Chip SRAM
 Recall Idea 1: Store all metadata in DRAM

 To reduce metadata storage overhead

 Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
 Cache only a small amount to keep SRAM size small

86

Idea 3: Dynamic Data Transfer Granularity
 Some applications benefit from caching more data

 They have good spatial locality
 Others do not

 Large granularity wastes bandwidth and reduces cache
utilization

 Idea 3: Simple dynamic caching granularity policy
 Cost-benefit analysis to determine best DRAM cache block size

 Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER TIMBER-Dyn

N
or

m
al

ize
d

W
ei

gh
te

d
Sp

ee
du

p
TIMBER Performance

-6%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

88

0

0.2

0.4

0.6

0.8

1

1.2

SRAM Region TIM TIMBER TIMBER-Dyn

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

 p
er

 W
at

t
(fo

r M
em

or
y

Sy
st

em
)

TIMBER Energy Efficiency
18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

89

Hybrid Main Memory: Research Topics
 Many research topics from technology

layer to algorithms layer

 Enabling NVM and hybrid memory
 How to maximize performance?
 How to maximize lifetime?
 How to prevent denial of service?

 Exploiting emerging tecnologies
 How to exploit non-volatility?
 How to minimize energy consumption?
 How to minimize cost?
 How to exploit NVM on chip?

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

90

Security Challenges of Emerging Technologies

1. Limited endurance Wearout attacks

2. Non-volatility Data persists in memory after powerdown
 Easy retrieval of privileged or private information

3. Multiple bits per cell Information leakage (via side channel)

91

Memory QoS

92

Trend: Many Cores on Chip
 Simpler and lower power than a single large core
 Large scale parallelism on chip

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

93

Many Cores on Chip

 What we want:
 N times the system performance with N times the cores

 What do we get today?

94

Unfair Slowdowns due to Interference

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

95

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

96

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

97

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111

T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

98

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

99

Greater Problem with More Cores

 Vulnerable to denial of service (DoS)
 Unable to enforce priorities or SLAs
 Low system performance

Uncontrollable, unpredictable system

100

Distributed DoS in Networked Multi-Core Systems
Attackers

(Cores 1-8)
Stock option pricing application

(Cores 9-64)

Cores connected via
packet-switched
routers on chip

~5000X slowdown

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

101

How Do We Solve The Problem?

 Inter-thread interference is uncontrolled in all memory
resources
 Memory controller
 Interconnect
 Caches

 We need to control it
 i.e., design an interference-aware (QoS-aware) memory system

102

QoS-Aware Memory Systems: Challenges

 How do we reduce inter-thread interference?
 Improve system performance and core utilization
 Reduce request serialization and core starvation

 How do we control inter-thread interference?
 Provide mechanisms to enable system software to enforce

QoS policies
 While providing high system performance

 How do we make the memory system configurable/flexible?
 Enable flexible mechanisms that can achieve many goals

 Provide fairness or throughput when needed
 Satisfy performance guarantees when needed

103

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping
 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores

104

 Memory Channel Partitioning
 Idea: System software maps badly-interfering applications’ pages

to different channels [Muralidhara+, MICRO’11]

 Separate data of low/high intensity and low/high row-locality applications
 Especially effective in reducing interference of threads with “medium” and

“heavy” memory intensity
 11% higher performance over existing systems (200 workloads)

A Mechanism to Reduce Memory Interference

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0

Bank 1

Bank 0

Conventional Page Mapping

Time Units

12345

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0

Bank 1

Bank 0

Time Units

12345

Channel 1

105

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping
 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]

106

QoS-Aware Memory Scheduling

 How to schedule requests to provide
 High system performance
 High fairness to applications
 Configurability to system software

 Memory controller needs to be aware of threads

Memory
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

107

QoS-Aware Memory Scheduling: Evolution
 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns
 Takeaway: Proportional thread progress improves performance,

especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

 Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

 ATLAS memory scheduler [Kim+ HPCA’10]

 Idea: Prioritize threads that have attained the least service from the
memory scheduler

 Takeaway: Prioritizing “light” threads improves performance
108

Take turns accessing memory

Throughput vs. Fairness
Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation unfairness

thread C thread Bthread A

Does not starve

not prioritized
reduced throughput

Single policy for all threads is insufficient

109

Achieving the Best of Both Worlds

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

110

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness
Kim+, “Thread Cluster Memory Scheduling,” MICRO 2010. 111

TCM: Quantum-Based Operation

Time

Previous quantum
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

Kim+, “Thread Cluster Memory Scheduling,” MICRO 2010. 112

TCM: Throughput and Fairness

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

Better system throughput

Be
tt

er
fa

irn
es

s
24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

113

TCM: Fairness-Throughput Tradeoff

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
um

 S
lo

w
do

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

Be
tt

er
fa

irn
es

s FRFCFS

114

More on TCM

 Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture
(MICRO), pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

115

http://users.ece.cmu.edu/%7Eomutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/%7Eomutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/kim_micro10_talk.pdf

Memory Control in CPU-GPU Systems
 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:
 SMS is significantly simpler and more scalable
 SMS provides higher performance and fairness

Ausavarungnirun+, “Staged Memory Scheduling,” ISCA 2012. 116

Key Idea: Decouple Tasks into Stages
 Idea: Decouple the functional tasks of the memory controller

 Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits
 Stage 1: Batch formation
 Within each application, groups requests to the same row into

batches
2) Manage contention between applications

 Stage 2: Batch scheduler
 Schedules batches from different applications

3) Satisfy DRAM timing constraints
 Stage 3: DRAM command scheduler
 Issues requests from the already-scheduled order to each bank

117

SMS: Staged Memory Scheduling

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req
Req

Req

Req
Req

Req Req
Req Req Req

ReqReqReq
Req Req

Req Req

Req Req Req

Req
Req Req

Req

Req

Req
Req

Req Req
Req Req Req

ReqReqReqReq Req Req
Req

Req

Req Req
Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
on

ol
ith

ic
 S

ch
ed

ul
erBatch

Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

118

Stage 1

Stage 2

SMS: Staged Memory Scheduling
Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req ReqBatch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

119

Current Batch
Scheduling

Policy
SJF

Current Batch
Scheduling

Policy
RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

SMS: Staged Memory Scheduling
Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Ausavarungnirun+, “Staged Memory Scheduling,” ISCA 2012. 120

SMS Complexity
 Compared to a row hit first scheduler, SMS consumes*

 66% less area
 46% less static power

 Reduction comes from:
 Monolithic scheduler stages of simpler schedulers
 Each stage has a simpler scheduler (considers fewer

properties at a time to make the scheduling decision)
 Each stage has simpler buffers (FIFO instead of out-of-order)
 Each stage has a portion of the total buffer size (buffering is

distributed across stages)

* Based on a Verilog model using 180nm library 121

SMS Performance

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

122

 At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

SMS Performance

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best

SMSSMS

Best Previous
Scheduler

123

CPU-GPU Performance Tradeoff

0
10
20
30
40
50
60
70
80
90

1 0.5 0.1 0.05 0

Fr
am

e
R

at
e

SJF Probability

GPU Frame Rate

0

1

2

3

4

5

6

1 0.5 0.1 0.05 0

W
ei

gh
te

d
Sp

ee
du

p

SJF Probability

CPU Performance

124

More on SMS

 Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel
Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance and
Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

125

http://users.ece.cmu.edu/%7Eomutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/%7Eomutlu/pub/rachata_isca12_talk.pptx

Stronger Memory Service Guarantees
[HPCA’13] Uncontrolled memory interference slows down

applications unpredictably
 Goal: Estimate and control slowdowns

 MISE: An accurate slowdown estimation model
 Request Service Rate is a good proxy for performance

 Slowdown = Request Service Rate Alone / Request Service Rate Shared

 Request Service Rate Alone estimated by giving an application highest
priority in accessing memory

 Average slowdown estimation error of MISE: 8.2% (3000 data pts)

 Memory controller leverages MISE to control slowdowns
 To provide soft slowdown guarantees
 To minimize maximum slowdown

Subramanian+, “MISE,” HPCA 2013. 126

More on MISE

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and
Onur Mutlu,
"MISE: Providing Performance Predictability and Improving
Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013. Slides
(pptx)

127

http://users.ece.cmu.edu/%7Eomutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/%7Elizhang/HPCA19/
http://users.ece.cmu.edu/%7Eomutlu/pub/subramanian_hpca13_talk.pptx

Memory QoS in a Parallel Application

 Threads in a multithreaded application are inter-dependent
 Some threads can be on the critical path of execution due

to synchronization; some threads are not
 How do we schedule requests of inter-dependent threads

to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:
 Thread executing the most contended critical section
 Thread that is falling behind the most in a parallel for loop

Ebrahimi+, “Parallel Application Memory Scheduling,” MICRO 2011. 128

More on PAMS

 Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee,
Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

129

http://users.ece.cmu.edu/%7Eomutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/%7Eomutlu/pub/ebrahimi_micro11_talk.pptx

Summary: Memory QoS Approaches and Techniques

 Approaches: Smart vs. dumb resources
 Smart resources: QoS-aware memory scheduling
 Dumb resources: Source throttling; channel partitioning
 Both approaches are effective in reducing interference
 No single best approach for all workloads

 Techniques: Request scheduling, source throttling, memory
partitioning
 All approaches are effective in reducing interference
 Can be applied at different levels: hardware vs. software
 No single best technique for all workloads

 Combined approaches and techniques are the most powerful
 Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

130

SALP: Reducing DRAM Bank
Conflict Impact

Kim, Seshadri, Lee, Liu, Mutlu
A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM
ISCA 2012.

131

http://users.ece.cmu.edu/%7Eomutlu/pub/salp-dram_isca12.pdf

SALP: Reducing DRAM Bank Conflicts
 Problem: Bank conflicts are costly for performance and energy

 serialized requests, wasted energy (thrashing of row buffer, busy wait)
 Goal: Reduce bank conflicts without adding more banks (low cost)
 Key idea: Exploit the internal subarray structure of a DRAM bank to

parallelize bank conflicts to different subarrays
 Slightly modify DRAM bank to reduce subarray-level hardware sharing

Kim, Seshadri+ “A Case for Exploiting Subarray-Level
Parallelism in DRAM,” ISCA 2012.

-1
9%

+
13

%

132

SALP: Key Ideas

 A DRAM bank consists of mostly-independent subarrays
 Subarrays share some global structures to reduce cost

Key Idea of SALP: Minimally reduce sharing of global structures

Reduce the sharing of …
Global decoder Enables pipelined access to subarrays
Global row buffer Utilizes multiple local row buffers

133

SALP: Reduce Sharing of Global Decoder

Local
row-buffer

Local
row-buffer
Global
row-buffer

··
·

Gl
ob

al
 D

ec
od

er

La
tc

h
La

tc
h

La
tc

h
Instead of a global latch, have per-subarray latches

134

SALP: Reduce Sharing of Global Row-Buffer
W

ir
e

Global bitlines

Global
row-buffer

Local
row-buffer

Local
row-buffer

Sw itch

Sw itch

READREAD

DD

DD

Selectively connect local row-buffers to global row-
buffer using a Designated single-bit latch

135

SALP: Baseline Bank Organization

Local
row-buffer

Local
row-buffer

Global
row-buffer

Gl
ob

al
 D

ec
od

er
Global
bitlines

La
tc

h

136

SALP: Proposed Bank Organization

Local
row-buffer

Local
row-buffer

Global
row-buffer

Gl
ob

al
 D

ec
od

er La
tc

h
La

tc
h

D

D

Global
bitlines

Overhead of SALP in DRAM chip: 0.15%
1. Global latch per-subarray local latches
2. Designated bit latches and wire to selectively
enable a subarray 137

SALP: Results
 Wide variety of systems with different #channels, banks,

ranks, subarrays
 Server, streaming, random-access, SPEC workloads

 Dynamic DRAM energy reduction: 19%
 DRAM row hit rate improvement: 13%

 System performance improvement: 17%
 Within 3% of ideal (all independent banks)

 DRAM die area overhead: 0.15%
 vs. 36% overhead of independent banks

138

More on SALP

 Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

139

http://users.ece.cmu.edu/%7Eomutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/%7Eomutlu/pub/kim_isca12_talk.pptx

Coordinated Memory and
Storage with NVM

Meza, Luo, Khan, Zhao, Xie, and Mutlu,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and
Memory”
WEED 2013.

140

http://users.ece.cmu.edu/%7Eomutlu/pub/persistent-memory-management_weed13.pdf

Overview
 Traditional systems have a two-level storage model

 Access volatile data in memory with a load/store interface
 Access persistent data in storage with a file system interface
 Problem: Operating system (OS) and file system (FS) code and buffering

for storage lead to energy and performance inefficiencies

 Opportunity: New non-volatile memory (NVM) technologies can help
provide fast (similar to DRAM), persistent storage (similar to Flash)
 Unfortunately, OS and FS code can easily become energy efficiency and

performance bottlenecks if we keep the traditional storage model

 This work: makes a case for hardware/software cooperative
management of storage and memory within a single-level
 We describe the idea of a Persistent Memory Manager (PMM) for

efficiently coordinating storage and memory, and quantify its benefit
 And, examine questions and challenges to address to realize PMM

141

A Tale of Two Storage Levels
 Two-level storage arose in systems due to the widely different

access latencies and methods of the commodity storage devices
 Fast, low capacity, volatile DRAM working storage
 Slow, high capacity, non-volatile hard disk drives persistent storage

 Data from slow storage media is buffered in fast DRAM
 After that it can be manipulated by programs programs cannot

directly access persistent storage
 It is the programmer’s job to translate this data between the two

formats of the two-level storage (files and data structures)

 Locating, transferring, and translating data and formats between
the two levels of storage can waste significant energy and
performance

142

Opportunity: New Non-Volatile Memories
 Emerging memory technologies provide the potential for unifying

storage and memory (e.g., Phase-Change, STT-RAM, RRAM)
 Byte-addressable (can be accessed like DRAM)
 Low latency (comparable to DRAM)
 Low power (idle power better than DRAM)
 High capacity (closer to Flash)
 Non-volatile (can enable persistent storage)
 May have limited endurance (but, better than Flash)

 Can provide fast access to both volatile data and persistent
storage

 Question: if such devices are used, is it efficient to keep a
two-level storage model?

143

Eliminating Traditional Storage Bottlenecks

Today
(DRAM +
HDD) and
two-level
storage
model Replace HDD

with NVM
(PCM-like),

keep two-level
storage model

Replace HDD
and DRAM
with NVM

(PCM-like),
eliminate all

OS+FS
overhead

Results for PostMark 144

Where is Energy Spent in Each Model?

HDD access
wastes energy

FS/OS overhead
becomes important

Additional DRAM energy
due to buffering overhead

of two-level model

No FS/OS overhead
No additional buffering

overhead in DRAM

Results for PostMark 145

Our Proposal: Coordinated HW/SW
Memory and Storage Management
 Goal: Unify memory and storage to eliminate wasted work to

locate, transfer, and translate data
 Improve both energy and performance
 Simplify programming model as well

146

Our Proposal: Coordinated HW/SW
Memory and Storage Management
 Goal: Unify memory and storage to eliminate wasted work to

locate, transfer, and translate data
 Improve both energy and performance
 Simplify programming model as well

Before: Traditional Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

147

Our Proposal: Coordinated HW/SW
Memory and Storage Management
 Goal: Unify memory and storage to eliminate wasted work to

locate, transfer, and translate data
 Improve both energy and performance
 Simplify programming model as well

After: Coordinated HW/SW Management

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

148

The Persistent Memory Manager (PMM)
 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory no conversion,
translation, location overhead for persistent data

 Manages data placement, location, persistence, security
 To get the best of multiple forms of storage

 Manages metadata storage and retrieval
 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software
 To enable better data placement and management decisions

149

The Persistent Memory Manager
 Persistent Memory Manager

 Exposes a load/store interface to access persistent data
 Manages data placement, location, persistence, security
 Manages metadata storage and retrieval
 Exposes hooks and interfaces for system software

 Example program manipulating a persistent object:

Create persistent object and its handle
Allocate a persistent array and assign

Load/store interface

150

Putting Everything Together

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices 151

Opportunities and Benefits

 We’ve identified at least five opportunities and benefits of a unified
storage/memory system that gets rid of the two-level model:

1. Eliminating system calls for file operations

2. Eliminating file system operations

3. Efficient data mapping/location among heterogeneous devices

4. Providing security and reliability in persistent memories

5. Hardware/software cooperative data management

152

Evaluation Methodology
 Hybrid real system / simulation-based approach

 System calls are executed on host machine (functional correctness)
and timed to accurately model their latency in the simulator

 Rest of execution is simulated in Multi2Sim (enables hardware-level
exploration)

 Power evaluated using McPAT and memory power models

 16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz

 Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency

 Persistent memory

 HDD (measured): 4ms seek latency, 6Gbps bus rate

 NVM: (modeled after PCM) 4KB page size, 160-/480-cycle
(read/write) latency

153

Evaluated Systems
 HDD Baseline (HB)

 Traditional system with volatile DRAM memory and persistent HDD storage
 Overheads of operating system and file system code and buffering

 HDD without OS/FS (HW)
 Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads
 System calls take 0 cycles (but HDD access takes normal latency)

 NVM Baseline (NB)
 Same as HDD Baseline, but HDD is replaced with NVM
 Still has OS/FS overheads of the two-level storage model

 Persistent Memory (PM)
 Uses only NVM (no DRAM) to ensure full-system persistence
 All data accessed using loads and stores
 Does not waste energy on system calls
 Data is manipulated directly on the NVM device

154

Evaluated Workloads
 Unix utilities that manipulate files

 cp: copy a large file from one location to another
 cp –r: copy files in a directory tree from one location to another
 grep: search for a string in a large file
 grep –r: search for a string recursively in a directory tree

 PostMark: an I/O-intensive benchmark from NetApp
 Emulates typical access patterns for email, news, web commerce

 MySQL Server: a popular database management system
 OLTP-style queries generated by Sysbench
 MySQL (simple): single, random read to an entry
 MySQL (complex): reads/writes 1 to 100 entries per transaction

155

Performance Results

The workloads that see the greatest improvement from using a Persistent Memory
are those that spend a large portion of their time executing system call code due to

the two-level storage model

156

Energy Results: NVM to PMM

Between systems with and without OS/FS code, energy improvements come from:
1. reduced code footprint, 2. reduced data movement

Large energy reductions with a PMM over the NVM based system
157

Scalability Analysis: Effect of PMM Latency

Even if each PMM access takes a non-overlapped 50 cycles (conservative),
PMM still provides an overall improvement compared to the NVM baseline

Future research should target keeping PMM latencies in check
158

New Questions and Challenges
 We identify and discuss several open research questions

 Q1. How to tailor applications for systems with persistent
memory?

 Q2. How can hardware and software cooperate to support a
scalable, persistent single-level address space?

 Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems?

 Q4. How to mitigate potential hardware performance and energy
overheads?

159

Single-Level Stores: Summary and Conclusions
 Traditional two-level storage model is inefficient in terms of

performance and energy
 Due to OS/FS code and buffering needed to manage two models
 Especially so in future devices with NVM technologies, as we show

 New non-volatile memory based persistent memory designs that
use a single-level storage model to unify memory and storage can
alleviate this problem

 We quantified the performance and energy benefits of such a
single-level persistent memory/storage design
 Showed significant benefits from reduced code footprint, data

movement, and system software overhead on a variety of workloads

 Such a design requires more research to answer the questions we
have posed and enable efficient persistent memory managers
 can lead to a fundamentally more efficient storage system

160

New DRAM Architectures

161

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

162

DRAM Refresh
 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge
 Activate each row every N ms
 Typical N = 64 ms

 Downsides of refresh
-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while

refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

163

Refresh Overhead: Performance

8%

46%

164

Refresh Overhead: Energy

15%

47%

165

Retention Time Profile of DRAM

166

RAIDR: Eliminating Unnecessary Refreshes
 Observation: Most DRAM rows can be refreshed much less often

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

 Key idea: Refresh rows containing weak cells
more frequently, other rows less frequently
1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at
different rates

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
 74.6% refresh reduction @ 1.25KB storage
 ~16%/20% DRAM dynamic/idle power reduction
 ~9% performance improvement
 Benefits increase with DRAM capacity

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
167

Going Forward

 How to find out and expose weak memory cells/rows
 Early analysis of modern DRAM chips:

 Liu+, “An Experimental Study of Data Retention Behavior in
Modern DRAM Devices: Implications for Retention Time Profiling
Mechanisms”, ISCA 2013.

 Low-cost system-level tolerance of DRAM errors

 Tolerating cell-to-cell interference at the system level
 For both DRAM and Flash. Early analysis of Flash chips:

 Cai+, “Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation,” ICCD 2013.

168

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

169

170

DRAM Latency-Capacity Trend

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

2000 2003 2006 2008 2011

La
te

nc
y

(n
s)

Ca
pa

ci
ty

 (G
b)

Year

Capacity Latency (tRC)

16X

-20%

DRAM latency continues to be a critical bottleneck

171

DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel

I/O

subarray

DRAM Latency = Subarray Latency + I/O Latency

Dominant
Su

ba
rr

ay
I/

O

172

Why is the Subarray So Slow?
Subarray

ro
w

 d
ec

od
er

sense amplifier

ca
pa

ci
to

r

access
transistor

wordline

bi
tli

ne

Cell

large sense amplifier

bi
tli

ne
: 5

12
 ce

lls

cell

• Long bitline
– Amortizes sense amplifier cost Small area
– Large bitline capacitance High latency & power

se
ns

e
am

pl
ifi

er

ro
w

 d
ec

od
er

173

Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency

174

Trade-Off: Area (Die Size) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
or

m
al

ize
d

DR
AM

 A
re

a

Latency (ns)

64

32

128
256 512 cells/bitline

Commodity
DRAM

Long Bitline

Ch
ea

pe
r

Faster

Fancy DRAM
Short Bitline

175

Short Bitline

Low Latency

Approximating the Best of Both Worlds
Long Bitline
Small Area
Long Bitline

Low Latency

Short BitlineOur Proposal
Small Area

Short Bitline Fast
Need

Isolation
Add Isolation

Transistors

High Latency

Large Area

176

Approximating the Best of Both Worlds

Low Latency

Our Proposal
Small Area

Long Bitline
Small Area
Long Bitline

High Latency

Short Bitline

Low Latency

Short Bitline
Large Area

Tiered-Latency DRAM

Low Latency

Small area
using long

bitline

177

Tiered-Latency DRAM

Near Segment

Far Segment

Isolation Transistor

• Divide a bitline into two segments with an
isolation transistor

Sense Amplifier

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

178

0%

50%

100%

150%

0%

50%

100%

150%

Commodity DRAM vs. TL-DRAM
La

te
nc

y

Po
w

er

–56%

+23%

–51%

+49%
• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
Commodity

DRAM
Near Far Commodity

DRAM
Near Far

TL-DRAM

(52.5ns)

179

Trade-Off: Area (Die-Area) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
or

m
al

ize
d

DR
AM

 A
re

a

Latency (ns)

64

32

128
256 512 cells/bitlineCh

ea
pe

r

Faster

Near Segment Far Segment

180

Leveraging Tiered-Latency DRAM
• TL-DRAM is a substrate that can be leveraged by

the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment
2. Use near segment as hardware-managed exclusive

cache to far segment
3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM

181

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

Performance & Power Consumption
11.5%

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Core-Count (Channel)
N

or
m

al
ize

d
Po

w
er

Core-Count (Channel)

10.7%12.4%
–23% –24% –26%

Using near segment as a cache improves
performance and reduces power consumption

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: Accelerating Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

182

Today’s Memory: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

183

Future: RowClone (In-Memory Copy)

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

184

DRAM operation (load one byte)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row

Transfer
row

Step 2: Read
Transfer byte
onto bus

RowClone: in-DRAM Row Copy
(and Initialization)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
or

m
al

ize
d

Sa
vi

ng
s

Baseline Intra-Subarray
Inter-Bank Inter-Subarray

11.6x 74x

Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

187

RowClone: Overall Performance

188

Goal: Ultra-efficient
heterogeneous architectures

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Slide credit: Prof. Kayvon Fatahalian, CMU

Enabling Ultra-efficient (Visual)
Search

▪ What is the right partitioning of computation
capability?

▪ What is the right low-cost memory substrate?
▪ What memory technologies are the best

enablers?
▪ How do we rethink/ease (visual) search

Cache

Process
or
Core

Memory Bus

Main
Memory

Databa
se (of
images)

Query vector

Results

Picture credit: Prof. Kayvon Fatahalian, CMU

Tolerating DRAM: Example Techniques

 Retention-Aware DRAM Refresh: Reducing Refresh Impact

 Tiered-Latency DRAM: Reducing DRAM Latency

 RowClone: In-Memory Page Copy and Initialization

 Subarray-Level Parallelism: Reducing Bank Conflict Impact

191

SALP: Reducing DRAM Bank Conflicts
 Problem: Bank conflicts are costly for performance and energy

 serialized requests, wasted energy (thrashing of row buffer, busy wait)
 Goal: Reduce bank conflicts without adding more banks (low cost)
 Key idea: Exploit the internal subarray structure of a DRAM bank to

parallelize bank conflicts to different subarrays
 Slightly modify DRAM bank to reduce subarray-level hardware sharing

 Results on Server, Stream/Random, SPEC
 19% reduction in dynamic DRAM energy
 13% improvement in row hit rate
 17% performance improvement
 0.15% DRAM area overhead

Kim, Seshadri+ “A Case for Exploiting Subarray-Level
Parallelism in DRAM,” ISCA 2012. 0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

D

yn
am

ic
 E

ne
rg

y

Baseline MASA

-1
9%

0%

20%

40%

60%

80%

100%

R
ow

-B
uf

fe
r

H
it

-…

Baseline MASA

+
13

%

192

A Bit About Me
and My Research

193

Brief Self Introduction
 Onur Mutlu

 Carnegie Mellon University ECE/CS
 PhD from UT-Austin 2006, worked at Microsoft Research, Intel, AMD
 http://www.ece.cmu.edu/~omutlu
 onur@cmu.edu (Best way to reach me)
 http://users.ece.cmu.edu/~omutlu/projects.htm

 Research, Teaching, Consulting Interests
 Computer architecture and systems, hardware/software interaction
 Memory and storage systems, emerging technologies
 Many-core systems, heterogeneous systems
 Interconnects
 Hardware/software interaction and co-design (PL, OS, Architecture)
 Predictable and QoS-aware systems
 Hardware fault tolerance and security
 Algorithms and architectures for genome analysis
 …

Interested in developing efficient, high-performance,
and scalable systems; solving difficult architectural
problems at low cost & complexity

194

http://www.ece.cmu.edu/%7Eomutlu
mailto:onur@cmu.edu
http://users.ece.cmu.edu/%7Eomutlu/projects.htm

My Group: SAFARI
 http://www.ece.cmu.edu/~safari/
 http://www.ece.cmu.edu/~safari/pubs.html

195

http://www.ece.cmu.edu/%7Esafari/
http://www.ece.cmu.edu/%7Esafari/pubs.html

Overview of My Recent Research
 Memory and storage systems: DRAM, Flash, NVM, emerging

 Scalability, energy, latency, parallelism, fault tolerance
 Compute in/near memory; emerging technologies

 Predictable performance, QoS

 Heterogeneous systems, accelerating bottlenecks

 Efficient system design: interconnects, cores, caches, …

 Bioinformatics algorithms and architectures

 Acceleration of important applications, software/hardware
co-design

196

End of Backup Slides

197

	Rethinking Memory System Design for Data-Intensive Computing�
	Three Key Problems in Systems
	The Main Memory/Storage System
	Memory System: A Shared Resource View
	State of the Main Memory System
	Agenda
	Major Trends Affecting Main Memory (I)
	Major Trends Affecting Main Memory (II)
	Example: The Memory Capacity Gap
	Major Trends Affecting Main Memory (III)
	Major Trends Affecting Main Memory (IV)
	Agenda
	The DRAM Scaling Problem
	Solutions to the DRAM Scaling Problem
	Solution 1: Tolerate DRAM
	Solution 2: Emerging Memory Technologies
	Hybrid Memory Systems
	An Orthogonal Issue: Memory Interference
	An Orthogonal Issue: Memory Interference
	Designing QoS-Aware Memory Systems: Approaches
	Some Current Directions
	Agenda
	Tolerating DRAM: Example Techniques
	Today’s Memory: Bulk Data Copy
	Future: RowClone (In-Memory Copy)
	DRAM operation (load one byte)
	RowClone: in-DRAM Row Copy (and Initialization)
	RowClone: Latency and Energy Savings
	RowClone: Overall Performance
	Goal: Ultra-Efficient Processing Close to Data
	Enabling Ultra-Efficient (Visual) Search
	Tolerating DRAM: Example Techniques
	Slide Number 33
	 What Causes the Long Latency?
	 Why is the Subarray So Slow?
	 Trade-Off: Area (Die Size) vs. Latency
	 Trade-Off: Area (Die Size) vs. Latency
	 Approximating the Best of Both Worlds
	 Approximating the Best of Both Worlds
	 Tiered-Latency DRAM
	 Commodity DRAM vs. TL-DRAM
	 Trade-Off: Area (Die-Area) vs. Latency
	 Leveraging Tiered-Latency DRAM
	 Performance & Power Consumption
	Agenda
	Solution 2: Emerging Memory Technologies
	Phase Change Memory: Pros and Cons
	PCM-based Main Memory (I)
	PCM-based Main Memory (II)
	An Initial Study: Replace DRAM with PCM
	Results: Naïve Replacement of DRAM with PCM
	Architecting PCM to Mitigate Shortcomings
	Results: Architected PCM as Main Memory
	Hybrid Memory Systems
	One Option: DRAM as a Cache for PCM
	DRAM vs. PCM: An Observation
	Row-Locality-Aware Data Placement
	Row-Locality-Aware Data Placement: Results
	Hybrid vs. All-PCM/DRAM
	Aside: STT-RAM as Main Memory
	Aside: STT-RAM: Pros and Cons
	Architected STT-RAM as Main Memory
	Agenda
	Principles (So Far)
	Other Opportunities with Emerging Technologies
	Coordinated Memory and Storage with NVM (I)
	Coordinated Memory and Storage with NVM (II)
	The Persistent Memory Manager (PMM)
	The Persistent Memory Manager (PMM)
	Performance Benefits of a Single-Level Store
	Energy Benefits of a Single-Level Store
	Agenda
	Summary: Memory/Storage Scaling
	More Material: Slides, Papers, Videos
	Thank you.
	Rethinking Memory System Design for Data-Intensive Computing�
	Backup Slides
	Backup Slides Agenda
	Retention Time Characterization of Modern DRAM Devices
	Summary (I)
	Summary (II)
	Building Large Caches for Hybrid Memories
	One Option: DRAM as a Cache for PCM
	The Problem with Large DRAM Caches
	Idea 1: Store Tags in Main Memory
	Idea 2: Cache Tags in On-Chip SRAM
	Idea 3: Dynamic Data Transfer Granularity
	Slide Number 88
	Slide Number 89
	Hybrid Main Memory: Research Topics
	Security Challenges of Emerging Technologies
	Memory QoS
	Trend: Many Cores on Chip
	Many Cores on Chip
	Unfair Slowdowns due to Interference
	Uncontrolled Interference: An Example
	A Memory Performance Hog
	What Does the Memory Hog Do?
	Effect of the Memory Performance Hog
	Greater Problem with More Cores
	Distributed DoS in Networked Multi-Core Systems
	How Do We Solve The Problem?
	QoS-Aware Memory Systems: Challenges
	Designing QoS-Aware Memory Systems: Approaches
	A Mechanism to Reduce Memory Interference
	Designing QoS-Aware Memory Systems: Approaches
	QoS-Aware Memory Scheduling
	QoS-Aware Memory Scheduling: Evolution
	Throughput vs. Fairness
	Achieving the Best of Both Worlds
	Thread Cluster Memory Scheduling [Kim+ MICRO’10]
	TCM: Quantum-Based Operation
	TCM: Throughput and Fairness
	TCM: Fairness-Throughput Tradeoff
	More on TCM
	Memory Control in CPU-GPU Systems
	Key Idea: Decouple Tasks into Stages
	SMS: Staged Memory Scheduling
	SMS: Staged Memory Scheduling
	SMS: Staged Memory Scheduling
	SMS Complexity
	SMS Performance
	SMS Performance
	CPU-GPU Performance Tradeoff
	More on SMS
	Stronger Memory Service Guarantees [HPCA’13]
	More on MISE
	Memory QoS in a Parallel Application
	More on PAMS
	Summary: Memory QoS Approaches and Techniques
	SALP: Reducing DRAM Bank Conflict Impact
	SALP: Reducing DRAM Bank Conflicts
	SALP: Key Ideas
	SALP: Reduce Sharing of Global Decoder
	SALP: Reduce Sharing of Global Row-Buffer
	SALP: Baseline Bank Organization
	SALP: Proposed Bank Organization
	SALP: Results
	More on SALP
	Coordinated Memory and Storage with NVM
	Overview
	A Tale of Two Storage Levels
	Opportunity: New Non-Volatile Memories
	Eliminating Traditional Storage Bottlenecks
	Where is Energy Spent in Each Model?
	Our Proposal: Coordinated HW/SW Memory and Storage Management
	Our Proposal: Coordinated HW/SW Memory and Storage Management
	Our Proposal: Coordinated HW/SW Memory and Storage Management
	The Persistent Memory Manager (PMM)
	The Persistent Memory Manager
	Putting Everything Together
	Opportunities and Benefits
	Evaluation Methodology
	Evaluated Systems
	Evaluated Workloads
	Performance Results
	Energy Results: NVM to PMM
	Scalability Analysis: Effect of PMM Latency
	New Questions and Challenges
	Single-Level Stores: Summary and Conclusions
	New DRAM Architectures
	Tolerating DRAM: Example Techniques
	DRAM Refresh
	Refresh Overhead: Performance
	Refresh Overhead: Energy
	Retention Time Profile of DRAM
	RAIDR: Eliminating Unnecessary Refreshes
	Going Forward
	Tolerating DRAM: Example Techniques
	Slide Number 170
	 What Causes the Long Latency?
	 Why is the Subarray So Slow?
	 Trade-Off: Area (Die Size) vs. Latency
	 Trade-Off: Area (Die Size) vs. Latency
	 Approximating the Best of Both Worlds
	 Approximating the Best of Both Worlds
	 Tiered-Latency DRAM
	 Commodity DRAM vs. TL-DRAM
	 Trade-Off: Area (Die-Area) vs. Latency
	 Leveraging Tiered-Latency DRAM
	 Performance & Power Consumption
	Tolerating DRAM: Example Techniques
	Today’s Memory: Bulk Data Copy
	Future: RowClone (In-Memory Copy)
	DRAM operation (load one byte)
	RowClone: in-DRAM Row Copy (and Initialization)
	RowClone: Latency and Energy Savings
	RowClone: Overall Performance
	Goal: Ultra-efficient heterogeneous architectures
	Enabling Ultra-efficient (Visual) Search
	Tolerating DRAM: Example Techniques
	SALP: Reducing DRAM Bank Conflicts
	A Bit About Me �and My Research
	Brief Self Introduction
	My Group: SAFARI
	Overview of My Recent Research
	End of Backup Slides

