Rethinking Memory System Design for Data-Intensive Computing

Onur Mutlu onur@cmu.edu October 11-16, 2013

Three Key Problems in Systems

The memory system

Data storage and movement limit performance & efficiency

■ Efficiency (performance and energy) → scalability
 ■ Efficiency limits performance & scalability

Predictability and robustness

Predictable performance and QoS become first class constraints as systems scale in size and technology

The Main Memory/Storage System

- Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor
- Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits

Memory System: A *Shared Resource* View

State of the Main Memory System

- Recent technology, architecture, and application trends
 - lead to new requirements
 - exacerbate old requirements
- DRAM and memory controllers, as we know them today, are (will be) unlikely to satisfy all requirements
- Some emerging non-volatile memory technologies (e.g., PCM) enable new opportunities: memory+storage merging
- We need to rethink the main memory system
 to fix DRAM issues and enable emerging technologies
 to satisfy all requirements

- Major Trends Affecting Main Memory
- The Memory Scaling Problem and Solution Directions
 - New Memory Architectures
 - Enabling Emerging Technologies: Hybrid Memory Systems
- How Can We Do Better?
- Summary

Major Trends Affecting Main Memory (I)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Major Trends Affecting Main Memory (II)

- Need for main memory capacity, bandwidth, QoS increasing
 - Multi-core: increasing number of cores/agents
 - Data-intensive applications: increasing demand/hunger for data
 - Consolidation: cloud computing, GPUs, mobile, heterogeneity

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Example: The Memory Capacity Gap

Core count doubling ~ every 2 years DRAM DIMM capacity doubling ~ every 3 years

Source: Lim et al., ISCA 2009.

Memory capacity per core expected to drop by 30% every two years
Trends worse for *memory bandwidth per core*!

Major Trends Affecting Main Memory (III)

Need for main memory capacity, bandwidth, QoS increasing

- Main memory energy/power is a key system design concern
 - ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, IEEE Computer 2003]
 - DRAM consumes power even when not used (periodic refresh)
- DRAM technology scaling is ending

Major Trends Affecting Main Memory (IV)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

- ITRS projects DRAM will not scale easily below X nm
- Scaling has provided many benefits:
 - higher capacity (density), lower cost, lower energy

- Major Trends Affecting Main Memory
- The Memory Scaling Problem and Solution Directions
 - New Memory Architectures
 - Enabling Emerging Technologies: Hybrid Memory Systems
- How Can We Do Better?
- Summary

The DRAM Scaling Problem

- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

DRAM capacity, cost, and energy/power hard to scale

Solutions to the DRAM Scaling Problem

- Two potential solutions
 - Tolerate DRAM (by taking a fresh look at it)
 - Enable emerging memory technologies to eliminate/minimize DRAM
- Do both
 - Hybrid memory systems

Solution 1: Tolerate DRAM

- Overcome DRAM shortcomings with
 - System-DRAM co-design
 - Novel DRAM architectures, interface, functions
 - Better waste management (efficient utilization)
- Key issues to tackle
 - Reduce energy
 - Enable reliability at low cost
 - Improve bandwidth and latency
 - Reduce waste
- Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.
- Kim, Seshadri, Lee+, "A Case for Exploiting Subarray-Level Parallelism in DRAM," ISCA 2012.
- Lee+, "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.
- Liu+, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices," ISCA 2013.
- Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," MICRO 2013.
- Pekhimenko+, "Linearly Compressed Pages: A Main Memory Compression Framework," MICRO 2013.

Solution 2: Emerging Memory Technologies

- Some emerging resistive memory technologies seem more scalable than DRAM (and they are non-volatile)
- Example: Phase Change Memory
 - Expected to scale to 9nm (2022 [ITRS])
 - Expected to be denser than DRAM: can store multiple bits/cell
- But, emerging technologies have shortcomings as well
 Can they be enabled to replace/augment/surpass DRAM?
- Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009, CACM 2010, Top Picks 2010.
- Meza, Chang, Yoon, Mutlu, Ranganathan, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters 2012.
- Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012.
- Kultursay+, "Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative," ISPASS 2013.

Hybrid Memory Systems

Hardware/software manage data allocation and movement to achieve the best of multiple technologies

Meza+, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012. Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award.

An Orthogonal Issue: Memory Interference

Cores' interfere with each other when accessing shared main memory

An Orthogonal Issue: Memory Interference

- Problem: Memory interference between cores is uncontrolled
 - \rightarrow unfairness, starvation, low performance
 - → uncontrollable, unpredictable, vulnerable system
- Solution: QoS-Aware Memory Systems
 - Hardware designed to provide a configurable fairness substrate
 - Application-aware memory scheduling, partitioning, throttling
 - Software designed to configure the resources to satisfy different QoS goals
- QoS-aware memory controllers and interconnects can provide predictable performance and higher efficiency

Designing QoS-Aware Memory Systems: Approaches

- Smart resources: Design each shared resource to have a configurable interference control/reduction mechanism
 - QoS-aware memory controllers [Mutlu+ MICRO'07] [Moscibroda+, Usenix Security'07] [Mutlu+ ISCA'08, Top Picks'09] [Kim+ HPCA'10] [Kim+ MICRO'10, Top Picks'11] [Ebrahimi+ ISCA'11, MICRO'11] [Ausavarungnirun+, ISCA'12][Subramanian+, HPCA'13]
 - QoS-aware interconnects [Das+ MICRO'09, ISCA'10, Top Picks '11] [Grot+ MICRO'09, ISCA'11, Top Picks '12]
 - QoS-aware caches
- Dumb resources: Keep each resource free-for-all, but reduce/control interference by injection control or data mapping
 - Source throttling to control access to memory system [Ebrahimi+ ASPLOS'10, ISCA'11, TOCS'12] [Ebrahimi+ MICRO'09] [Nychis+ HotNets'10] [Nychis+ SIGCOMM'12]
 - QoS-aware data mapping to memory controllers [Muralidhara+ MICRO'11]
 - QoS-aware thread scheduling to cores [Das+ HPCA'13]

Some Current Directions

- New memory/storage + compute architectures
 - Rethinking DRAM
 - Processing close to data; accelerating bulk operations
 - Ensuring memory/storage reliability and robustness
- Enabling emerging NVM technologies
 - Hybrid memory systems with automatic data management
 - Coordinated management of memory and storage with NVM

System-level memory/storage QoS

- QoS-aware controller and system design
- Coordinated memory + storage QoS

- Major Trends Affecting Main Memory
- The Memory Scaling Problem and Solution Directions
 - New Memory Architectures
 - Enabling Emerging Technologies: Hybrid Memory Systems
- How Can We Do Better?
- Summary

Tolerating DRAM: Example Techniques

- Retention-Aware DRAM Refresh: Reducing Refresh Impact
- Tiered-Latency DRAM: Reducing DRAM Latency
- RowClone: Accelerating Page Copy and Initialization
- Subarray-Level Parallelism: Reducing Bank Conflict Impact
- Linearly Compressed Pages: Efficient Memory Compression

Today's Memory: Bulk Data Copy

Future: RowClone (In-Memory Copy)

DRAM operation (load one byte)

Memory Bus

RowClone: in-DRAM Row Copy (and Initialization)

Memory Bus

RowClone: Latency and Energy Savings

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," MICRO 2013.

RowClone: Overall Performance

50 Workloads

Application	bootup	compile	mcached		mysql	shell
Energy Reduction	40%	32%	15%		17%	67%
Number of Cores				2	4	8
Number of Workloads				138	50	40
Weighted Speedup Improvement				15%	20%	27%
Energy per Instruction Reduction				19%	17%	17%

Goal: Ultra-Efficient Processing

Slide credit: Prof. Kayvon Fatahalian, CMU

Enabling Ultra-Efficient (Visual) Search

- What is the right partitioning of computation capability?
- What is the right low-cost memory substrate?
- What memory technologies are the best enablers?
- Picture credit: Prof. Kayvon Fatahalian, CMU HOW do we rethink/ease (visual) search

Tolerating DRAM: Example Techniques

Retention-Aware DRAM Refresh: Reducing Refresh Impact

Tiered-Latency DRAM: Reducing DRAM Latency

- RowClone: Accelerating Page Copy and Initialization
- Subarray-Level Parallelism: Reducing Bank Conflict Impact
- Linearly Compressed Pages: Efficient Memory Compression

DRAM Latency-Capacity Trend

Capacity – Latency (tRC)

DRAM latency continues to be a critical bottleneck

What Causes the Long Latency? **DRAM** Chip subarray Subarray 0 1/0 channel **1** DRAM Latency - (Subarray Latency + II/O Latency Dominant

Why is the Subarray So Slow?

- Long bitline
 - Amortizes sense amplifier cost \rightarrow Small area
 - Large bitline capacitance → High latency & power

Trade-Off: Area (Die Size) vs. Latency

Approximating the Best of Both Worlds

Approximating the Best of Both Worlds

Tiered-Latency DRAM

 Divide a bitline into two segments with an isolation transistor

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier

Lee+, "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.

⁴⁰

Commodity DRAM vs. TL-DRAM

• DRAM Latency (tRC) • DRAM Power

DRAM Area Overhead

~3%: mainly due to the isolation transistors

Trade-Off: Area (Die-Area) vs. Latency

Leveraging Tiered-Latency DRAM

- TL-DRAM is a *substrate* that can be leveraged by the hardware and/or software
- Many potential uses

 Use near segment as hardware-managed *inclusive* cache to far segment

2. Use near segment as hardware-managed *exclusive* cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM

Performance & Power Consumption

Using near segment as a cache improves performance and reduces power consumption

- Major Trends Affecting Main Memory
- The Memory Scaling Problem and Solution Directions
 - New Memory Architectures
 - Enabling Emerging Technologies: Hybrid Memory Systems
- How Can We Do Better?
- Summary

46

Solution 2: Emerging Memory Technologies

- Some emerging resistive memory technologies seem more scalable than DRAM (and they are non-volatile)
- Example: Phase Change Memory
 - Data stored by changing phase of material
 - Data read by detecting material's resistance
 - Expected to scale to 9nm (2022 [ITRS])
 - Prototyped at 20nm (Raoux+, IBM JRD 2008)
 - Expected to be denser than DRAM: can store multiple bits/cell
- But, emerging technologies have (many) shortcomings
 Can they be enabled to replace/augment/surpass DRAM?

Phase Change Memory: Pros and Cons

- Pros over DRAM
 - Better technology scaling (capacity and cost)
 - Non volatility
 - Low idle power (no refresh)
- Cons
 - Higher latencies: ~4-15x DRAM (especially write)
 - □ Higher active energy: ~2-50x DRAM (especially write)
 - Lower endurance (a cell dies after ~10⁸ writes)
- Challenges in enabling PCM as DRAM replacement/helper:
 - Mitigate PCM shortcomings
 - Find the right way to place PCM in the system

PCM-based Main Memory (I)

How should PCM-based (main) memory be organized?

Hybrid PCM+DRAM [Qureshi+ ISCA'09, Dhiman+ DAC'09]:

How to partition/migrate data between PCM and DRAM

PCM-based Main Memory (II)

How should PCM-based (main) memory be organized?

Pure PCM main memory [Lee et al., ISCA'09, Top Picks'10]:

 How to redesign entire hierarchy (and cores) to overcome PCM shortcomings

An Initial Study: Replace DRAM with PCM

- Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009.
 - Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
 - Derived "average" PCM parameters for F=90nm

Density

 \triangleright 9 - 12 F^2 using BJT

▷ 1.5× DRAM

Endurance

▷ 1E+08 writes

Latency

50ns Rd, 150ns Wr

ightarrow 4×, 12× DRAM

Energy

⊳ 40µA Rd, 150µA Wr

 \triangleright 2×, 43× DRAM

Results: Naïve Replacement of DRAM with PCM

- Replace DRAM with PCM in a 4-core, 4MB L2 system
- PCM organized the same as DRAM: row buffers, banks, peripherals
- 1.6x delay, 2.2x energy, 500-hour average lifetime

Lee, Ipek, Mutlu, Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative," ISCA 2009.

Architecting PCM to Mitigate Shortcomings

- Idea 1: Use multiple narrow row buffers in each PCM chip
 → Reduces array reads/writes → better endurance, latency, energy
- Idea 2: Write into array at cache block or word granularity
 - \rightarrow Reduces unnecessary wear

Results: Architected PCM as Main Memory

- 1.2x delay, 1.0x energy, 5.6-year average lifetime
- Scaling improves energy, endurance, density

- Caveat 1: Worst-case lifetime is much shorter (no guarantees)
- Caveat 2: Intensive applications see large performance and energy hits
- Caveat 3: Optimistic PCM parameters?

Hybrid Memory Systems

Hardware/software manage data allocation and movement to achieve the best of multiple technologies

Meza+, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012. Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award.

One Option: DRAM as a Cache for PCM

- PCM is main memory; DRAM caches memory rows/blocks
 Benefits: Reduced latency on DRAM cache hit; write filtering
- Memory controller hardware manages the DRAM cache
 Benefit: Eliminates system software overhead
- Three issues:
 - What data should be placed in DRAM versus kept in PCM?
 - What is the granularity of data movement?
 - How to design a huge (DRAM) cache at low cost?
- Two solutions:

Locality-aware data placement [Yoon+, ICCD 2012]

□ Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

DRAM vs. PCM: An Observation

- Row buffers are the same in DRAM and PCM
- Row buffer hit latency same in DRAM and PCM
- Row buffer miss latency small in DRAM, large in PCM

- Accessing the row buffer in PCM is fast
- What incurs high latency is the PCM array access \rightarrow avoid this

Row-Locality-Aware Data Placement

- Idea: Cache in DRAM only those rows that
 - □ Frequently cause row buffer conflicts → because row-conflict latency is smaller in DRAM
 - □ Are reused many times → to reduce cache pollution and bandwidth waste
- Simplified rule of thumb:
 - Streaming accesses: Better to place in PCM
 - Other accesses (with some reuse): Better to place in DRAM

Yoon et al., "Row Buffer Locality-Aware Data Placement in Hybrid Memories," ICCD 2012 Best Paper Award.

Row-Locality-Aware Data Placement: Results

Hybrid vs. All-PCM/DRAM

■ 16GB PCM ■ RBLA-Dyn ■ 16GB DRAM

Aside: STT-RAM as Main Memory

- Magnetic Tunnel Junction (MTJ)
 - Reference layer: Fixed
 - Free layer: Parallel or anti-parallel
- Cell

- Access transistor, bit/sense lines
- Read and Write
 - Read: Apply a small voltage across bitline and senseline; read the current.
 - Write: Push large current through MTJ.
 Direction of current determines new orientation of the free layer.
- Kultursay et al., "Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative," ISPASS 2013.

Aside: STT-RAM: Pros and Cons

- Pros over DRAM
 - Better technology scaling
 - Non volatility
 - Low idle power (no refresh)
 - Cons
 - Higher write latency
 - Higher write energy
 - Reliability?
- Another level of freedom
 - Can trade off non-volatility for lower write latency/energy (by reducing the size of the MTJ)

Architected STT-RAM as Main Memory

- 4-core, 4GB main memory, multiprogrammed workloads
- ~6% performance loss, ~60% energy savings vs. DRAM

Kultursay+, "Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative," ISPASS 2013.

- Major Trends Affecting Main Memory
- The Memory Scaling Problem and Solution Directions
 - New Memory Architectures
 - Enabling Emerging Technologies: Hybrid Memory Systems
- How Can We Do Better?
- Summary

Principles (So Far)

Better cooperation between devices and the system

- Expose more information about devices to upper layers
- More flexible interfaces
- Better-than-worst-case design
 - Do not optimize for the worst case
 - Worst case should not determine the common case
- Heterogeneity in design
 - Enables a more efficient design (No one size fits all)

Other Opportunities with Emerging Technologies

Merging of memory and storage

- e.g., a single interface to manage all data
- New applications
 - e.g., ultra-fast checkpoint and restore
- More robust system design
 - e.g., reducing data loss
- Processing tightly-coupled with memory
 e.g., enabling efficient search and filtering

Coordinated Memory and Storage with NVM (I)

- The traditional two-level storage model is a bottleneck with NVM
 - Volatile data in memory \rightarrow a load/store interface
 - Persistent data in storage → a file system interface
 - Problem: Operating system (OS) and file system (FS) code to locate, translate, buffer data become performance and energy bottlenecks with fast NVM stores

Coordinated Memory and Storage with NVM (II)

- Goal: Unify memory and storage management in a single unit to eliminate wasted work to locate, transfer, and translate data
 - Improves both energy and performance
 - Simplifies programming model as well

67

The Persistent Memory Manager (PMM)

- Exposes a load/store interface to access persistent data
 - □ Applications can directly access persistent memory → no conversion, translation, location overhead for persistent data
- Manages data placement, location, persistence, security
 To get the best of multiple forms of storage
- Manages metadata storage and retrieval
 - This can lead to overheads that need to be managed
- Exposes hooks and interfaces for system software
 - To enable better data placement and management decisions
- Meza+, "A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory," WEED 2013.

The Persistent Memory Manager (PMM)

PMM uses access and hint information to allocate, locate, migrate and access data in the heterogeneous array of devices 69

Performance Benefits of a Single-Level Store

SAFARI Results for PostMark

Energy Benefits of a Single-Level Store

SAFARI Results for PostMark

- Major Trends Affecting Main Memory
- The Memory Scaling Problem and Solution Directions
 - New Memory Architectures
 - Enabling Emerging Technologies: Hybrid Memory Systems
- How Can We Do Better?
- Summary

Summary: Memory/Storage Scaling

- Memory/storage scaling problems are a critical bottleneck for system performance, efficiency, and usability
- New memory/storage + compute architectures
 - Rethinking DRAM; processing close to data; accelerating bulk operations
 - Ensuring memory/storage reliability and robustness
- Enabling emerging NVM technologies
 - Hybrid memory systems with automatic data management
 - Coordinated management of memory and storage with NVM
- System-level memory/storage QoS
 - QoS-aware controller and system design
 - Coordinated memory + storage QoS

Software/hardware/device cooperation essential SAFARI

More Material: Slides, Papers, Videos

- These slides are a very short version of the Scalable Memory Systems course at ACACES 2013
- Website for Course Slides, Papers, and Videos
 - http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
 - http://users.ece.cmu.edu/~omutlu/projects.htm
 - Includes extended lecture notes and readings
- Overview Reading
 - Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective" Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013. Slides (pptx) (pdf)

Feel free to email me with any questions & feedback

onur@cmu.edu

Rethinking Memory System Design for Data-Intensive Computing

Onur Mutlu onur@cmu.edu October 11-16, 2013

Backup Slides

Backup Slides Agenda

- DRAM Retention Time Characterization: Summary of Findings
- Building Large DRAM Caches for Hybrid Memories
- Memory QoS and Predictable Performance
- Subarray-Level Parallelism (SALP) in DRAM
- Coordinated Memory and Storage with NVM
- New DRAM Architectures

Retention Time Characterization of Modern DRAM Devices

Liu, Jaiyen, Kim, Wilkerson and Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms" ISCA 2013.

Summary (I)

- DRAM requires periodic refresh to avoid data loss
 - Refresh wastes energy, reduces performance, limits DRAM density scaling
- Many past works observed that different DRAM cells can retain data for different times without being refreshed; proposed reducing refresh rate for strong DRAM cells
 - Problem: These techniques require an accurate profile of the retention time of all DRAM cells
- Our goal: To analyze the retention time behavior of DRAM cells in modern DRAM devices to aid the collection of accurate profile information
- Our experiments: We characterize 248 modern commodity DDR3 DRAM chips from 5 manufacturers using an FPGA based testing platform
- Two Key Issues:
 - 1. Data Pattern Dependence: A cell's retention time is heavily dependent on data values stored in itself and nearby cells, which cannot easily be controlled.
 - 2. Variable Retention Time: Retention time of some cells change unpredictably from high to low at large timescales.

Summary (II)

- Key findings on Data Pattern Dependence
 - □ There is no observed single data pattern that elicits the lowest retention times for a DRAM device → very hard to find this pattern
 - DPD varies between devices due to variation in DRAM array circuit design between manufacturers
 - DPD of retention time gets worse as DRAM scales to smaller feature sizes
- Key findings on Variable Retention Time
 - □ VRT is common in modern DRAM cells that are weak
 - □ The timescale at which VRT occurs is very large (e.g., a cell can stay in high retention time state for a day or longer) → finding minimum retention time can take very long
- Future work on retention time profiling must address these issues

Building Large Caches for Hybrid Memories

Meza, Chang, Yoon, Mutlu, and Ranganathan, "Enabling Efficient and Scalable Hybrid Memories Using Fine-Granularity DRAM Cache Management" IEEE Comp Arch Letters 2012.

One Option: DRAM as a Cache for PCM

- PCM is main memory; DRAM caches memory rows/blocks
 Benefits: Reduced latency on DRAM cache hit; write filtering
- Memory controller hardware manages the DRAM cache
 Benefit: Eliminates system software overhead
- Three issues:
 - What data should be placed in DRAM versus kept in PCM?
 - What is the granularity of data movement?
 - How to design a low-cost hardware-managed DRAM cache?
- Two ideas:
 - □ Locality-aware data placement [Yoon+, ICCD 2012]

Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

The Problem with Large DRAM Caches

- A large DRAM cache requires a large metadata (tag + block-based information) store
- How do we design an efficient DRAM cache?

Idea 1: Store Tags in Main Memory

- Store tags in the same row as data in DRAM
 - Data and metadata can be accessed together

- Benefit: No on-chip tag storage overhead
- Downsides:
 - Cache hit determined only after a DRAM access
 - Cache hit requires two DRAM accesses

Idea 2: Cache Tags in On-Chip SRAM

- Recall Idea 1: Store all metadata in DRAM
 - To reduce metadata storage overhead
- Idea 2: Cache in on-chip SRAM frequently-accessed metadata
 - Cache only a small amount to keep SRAM size small

Idea 3: Dynamic Data Transfer Granularity

- Some applications benefit from caching more data
 - They have good spatial locality
- Others do not
 - Large granularity wastes bandwidth and reduces cache utilization
- Idea 3: Simple dynamic caching granularity policy
 - Cost-benefit analysis to determine best DRAM cache block size

 Meza, Chang, Yoon, Mutlu, Ranganathan, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012.

TIMBER Performance

TIMBER Energy Efficiency

Hybrid Main Memory: Research Topics

- Many research topics from technology layer to algorithms layer
- Enabling NVM and hybrid memory
 - How to maximize performance?
 - How to maximize lifetime?
 - How to prevent denial of service?
- Exploiting emerging tecnologies
 - How to exploit non-volatility?
 - How to minimize energy consumption?
 - How to minimize cost?
 - How to exploit NVM on chip?

Security Challenges of Emerging Technologies

1. Limited endurance → Wearout attacks

2. Non-volatility → Data persists in memory after powerdown
 → Easy retrieval of privileged or private information

3. Multiple bits per cell → Information leakage (via side channel)

Memory QoS

Trend: Many Cores on Chip

- Simpler and lower power than a single large core
- Large scale parallelism on chip

Intel Core i7 8 cores

IBM Cell BE 8+1 cores

IBM POWER7 8 cores

AMD Barcelona 4 cores

Sun Niagara II 8 cores

Nvidia Fermi 448 "cores"

Intel SCC 48 cores, networked

100 cores, networked

Many Cores on Chip

- What we want:
 - N times the system performance with N times the cores
- What do we get today?

Unfair Slowdowns due to Interference

Moscibroda and Mutlu, "Memory performance attacks: Denial of memory service in multi-core systems," USENIX Security 2007.

Uncontrolled Interference: An Example

A Memory Performance Hog

STREAM

RANDOM

- Sequential memory access

- Random memory access
- Very high row buffer locality (96% hit rate) Very low row buffer locality (3% hit rate)
- Memory intensive

- Similarly memory intensive

Moscibroda and Mutlu, "Memory Performance Attacks," USENIX Security 2007.

What Does the Memory Hog Do?

Moscibroda and Mutlu, "Memory Performance Attacks," USENIX Security 2007.

Effect of the Memory Performance Hog

Results on Intel Pentium D running Windows XP (Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Moscibroda and Mutlu, "Memory Performance Attacks," USENIX Security 2007.

Greater Problem with More Cores

- Vulnerable to denial of service (DoS)
- Unable to enforce priorities or SLAs
- Low system performance

Uncontrollable, unpredictable system

Distributed DoS in Networked Multi-Core Systems

Cores connected via packet-switched routers on chip

~5000X slowdown

SAFARI

Grot, Hestness, Keckler, Mutlu, "Preemptive virtual clock: A Flexible, Efficient, and Cost-effective QOS Scheme for Networks-on-Chip," MICRO 2009.

Attackers Stock option pricing application (Cores 1-8) (Cores 9-64)

How Do We Solve The Problem?

- Inter-thread interference is uncontrolled in all memory resources
 - Memory controller
 - Interconnect
 - Caches
- We need to control it
 - □ i.e., design an interference-aware (QoS-aware) memory system

QoS-Aware Memory Systems: Challenges

- How do we reduce inter-thread interference?
 - Improve system performance and core utilization
 - Reduce request serialization and core starvation
- How do we control inter-thread interference?
 - Provide mechanisms to enable system software to enforce QoS policies
 - While providing high system performance
- How do we make the memory system configurable/flexible?
 - Enable flexible mechanisms that can achieve many goals
 - Provide fairness or throughput when needed
 - Satisfy performance guarantees when needed

Designing QoS-Aware Memory Systems: Approaches

- Smart resources: Design each shared resource to have a configurable interference control/reduction mechanism
 - QoS-aware memory controllers [Mutlu+ MICRO'07] [Moscibroda+, Usenix Security'07] [Mutlu+ ISCA'08, Top Picks'09] [Kim+ HPCA'10] [Kim+ MICRO'10, Top Picks'11] [Ebrahimi+ ISCA'11, MICRO'11] [Ausavarungnirun+, ISCA'12]
 - QoS-aware interconnects [Das+ MICRO'09, ISCA'10, Top Picks '11] [Grot+ MICRO'09, ISCA'11, Top Picks '12]
 - QoS-aware caches
- Dumb resources: Keep each resource free-for-all, but reduce/control interference by injection control or data mapping
 - Source throttling to control access to memory system [Ebrahimi+ ASPLOS'10, ISCA'11, TOCS'12] [Ebrahimi+ MICRO'09] [Nychis+ HotNets'10]
 - QoS-aware data mapping to memory controllers [Muralidhara+ MICRO'11]
 - QoS-aware thread scheduling to cores

A Mechanism to Reduce Memory Interference

Memory Channel Partitioning

Idea: System software maps badly-interfering applications' pages to different channels [Muralidhara+, MICRO'11]

- Separate data of low/high intensity and low/high row-locality applications
- Especially effective in reducing interference of threads with "medium" and "heavy" memory intensity

11% higher performance over existing systems (200 workloads)

Designing QoS-Aware Memory Systems: Approaches

- Smart resources: Design each shared resource to have a configurable interference control/reduction mechanism
 - QoS-aware memory controllers [Mutlu+ MICRO'07] [Moscibroda+, Usenix Security'07] [Mutlu+ ISCA 08, TOP Picks 09] [KIIII+ HPCA 10] [Kim+ MICRO'10, Top Picks'11] [Ebrahimi+ ISCA'11, MICRO'11] [Ausavarungnirun+, ISCA'12][Subramanian+, HPCA'13]
 - QoS-aware interconnects [Das+ MICRO'09, ISCA'10, Top Picks '11] [Grot+ MICRO'09, ISCA'11, Top Picks '12]
 - QoS-aware caches
- Dumb resources: Keep each resource free-for-all, but reduce/control interference by injection control or data mapping
 - Source throttling to control access to memory system [Ebrahimi+ ASPLOS'10, ISCA'11, TOCS'12] [Ebrahimi+ MICRO'09] [Nychis+ HotNets'10] [Nychis+ SIGCOMM'12]
 - QoS-aware data mapping to memory controllers [Muralidhara+ MICRO'11]
 - QoS-aware thread scheduling to cores [Das+ HPCA'13]

QoS-Aware Memory Scheduling

- How to schedule requests to provide
 - High system performance
 - High fairness to applications
 - Configurability to system software
- Memory controller needs to be aware of threads

QoS-Aware Memory Scheduling: Evolution

- Stall-time fair memory scheduling [Mutlu+ MICRO'07]
 - Idea: Estimate and balance thread slowdowns
 - Takeaway: Proportional thread progress improves performance, especially when threads are "heavy" (memory intensive)
- Parallelism-aware batch scheduling [Mutlu+ ISCA'08, Top Picks'09]
 - Idea: Rank threads and service in rank order (to preserve bank parallelism); batch requests to prevent starvation
 - Takeaway: Preserving within-thread bank-parallelism improves performance; request batching improves fairness
- ATLAS memory scheduler [Kim+ HPCA'10]
 - Idea: Prioritize threads that have attained the least service from the memory scheduler
 - Takeaway: Prioritizing "light" threads improves performance

Throughput vs. Fairness

Single policy for all threads is insufficient

SAFARI

Achieving the Best of Both Worlds

SAFARI

Thread Cluster Memory Scheduling [Kim+ MICRO'10]

- 1. Group threads into two *clusters*
- 2. Prioritize non-intensive cluster
- 3. Different policies for each cluster

higher

TCM: Quantum-Based Operation

TCM: Throughput and Fairness

24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy, provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

When configuration parameter is varied...

TCM allows robust fairness-throughput tradeoff

SAFAR

More on TCM

 Yoongu Kim, Michael Papamichael, <u>Onur Mutlu</u>, and Mor Harchol-Balter, <u>"Thread Cluster Memory Scheduling: Exploiting Differences in</u> <u>Memory Access Behavior"</u> *Proceedings of the <u>43rd International Symposium on Microarchitecture</u>*

(MICRO), pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

Memory Control in CPU-GPU Systems

- Observation: Heterogeneous CPU-GPU systems require memory schedulers with large request buffers
- Problem: Existing monolithic application-aware memory scheduler designs are hard to scale to large request buffer sizes
- Solution: Staged Memory Scheduling (SMS)
 decomposes the memory controller into three simple stages:
 1) Details formation measure buffer levelity.
 - 1) Batch formation: maintains row buffer locality
 - 2) Batch scheduler: reduces interference between applications
 - 3) DRAM command scheduler: issues requests to DRAM
- Compared to state-of-the-art memory schedulers:
 - SMS is significantly simpler and more scalable
 - SMS provides higher performance and fairness

Key Idea: Decouple Tasks into Stages

- Idea: Decouple the functional tasks of the memory controller
 Partition tasks across several simpler HW structures (stages)
- 1) Maximize row buffer hits
 - Stage 1: Batch formation
 - Within each application, groups requests to the same row into batches
- 2) Manage contention between applications
 - Stage 2: Batch scheduler
 - Schedules batches from different applications
- 3) Satisfy DRAM timing constraints
 - Stage 3: DRAM command scheduler
 - Issues requests from the already-scheduled order to each bank

SMS: Staged Memory Scheduling

SMS: Staged Memory Scheduling

SMS: Staged Memory Scheduling

SMS Complexity

- Compared to a row hit first scheduler, SMS consumes*
 - 66% less area
 - 46% less static power

- Reduction comes from:
 - Monolithic scheduler \rightarrow stages of simpler schedulers
 - Each stage has a simpler scheduler (considers fewer properties at a time to make the scheduling decision)
 - Each stage has simpler buffers (FIFO instead of out-of-order)
 - Each stage has a portion of the total buffer size (buffering is distributed across stages)

SMS Performance

SMS Performance

At every GPU weight, SMS outperforms the best previous scheduling algorithm for that weight

CPU-GPU Performance Tradeoff

More on SMS

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and <u>Onur Mutlu</u>,
 "Staged Memory Scheduling: Achieving High Performance and Scalability in Heterogeneous Systems"
 Proceedings of the <u>39th International Symposium on Computer</u>
 <u>Architecture</u> (ISCA), Portland, OR, June 2012. <u>Slides (pptx)</u>

Stronger Memory Service Guarantees

- Uncontrolled memory interference slows down applications unpredictably
- Goal: Estimate and control slowdowns
- MISE: An accurate slowdown estimation model
 - Request Service Rate is a good proxy for performance
 - Slowdown = Request Service Rate Alone / Request Service Rate Shared
 - Request Service Rate _{Alone} estimated by giving an application highest priority in accessing memory
 - Average slowdown estimation error of MISE: 8.2% (3000 data pts)
- Memory controller leverages MISE to control slowdowns
 - To provide soft slowdown guarantees
 - To minimize maximum slowdown

More on MISE

 Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu,

"MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems"

Proceedings of the <u>19th International Symposium on High-Performance</u> <u>Computer Architecture</u> (HPCA), Shenzhen, China, February 2013. <u>Slides</u> (pptx)

Memory QoS in a Parallel Application

- Threads in a multithreaded application are inter-dependent
- Some threads can be on the critical path of execution due to synchronization; some threads are not
- How do we schedule requests of inter-dependent threads to maximize multithreaded application performance?
- Idea: Estimate limiter threads likely to be on the critical path and prioritize their requests; shuffle priorities of non-limiter threads to reduce memory interference among them [Ebrahimi+, MICRO'11]
- Hardware/software cooperative limiter thread estimation:
 - Thread executing the most contended critical section
 - Thread that is falling behind the most in a *parallel for* loop

More on PAMS

 Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, <u>Onur Mutlu</u>, and Yale N. Patt,
 <u>"Parallel Application Memory Scheduling"</u> *Proceedings of the <u>44th International Symposium on Microarchitecture</u> (MICRO), Porto Alegre, Brazil, December 2011. <u>Slides (pptx)</u>*

Summary: Memory QoS Approaches and Techniques

- Approaches: Smart vs. dumb resources
 - Smart resources: QoS-aware memory scheduling
 - Dumb resources: Source throttling; channel partitioning
 - Both approaches are effective in reducing interference
 - No single best approach for all workloads
- Techniques: Request scheduling, source throttling, memory partitioning
 - □ All approaches are effective in reducing interference
 - Can be applied at different levels: hardware vs. software
 - No single best technique for all workloads
- Combined approaches and techniques are the most powerful
 - Integrated Memory Channel Partitioning and Scheduling [MICRO'11]

SAFARI

SALP: Reducing DRAM Bank Conflict Impact

Kim, Seshadri, Lee, Liu, Mutlu <u>A Case for Exploiting Subarray-Level Parallelism</u> (SALP) in DRAM ISCA 2012.

SALP: Reducing DRAM Bank Conflicts

- Problem: Bank conflicts are costly for performance and energy
 serialized requests, wasted energy (thrashing of row buffer, busy wait)
- Goal: Reduce bank conflicts without adding more banks (low cost)
- Key idea: Exploit the internal subarray structure of a DRAM bank to parallelize bank conflicts to different subarrays
 - Slightly modify DRAM bank to reduce subarray-level hardware sharing

Figure 1. DRAM bank organization

SAFARI Kim, Seshadri+ "A Case for Exploiting Subarray-Level Parallelism in DRAM," ISCA 2012.

SALP: Key Ideas

- A DRAM bank consists of mostly-independent subarrays
 - Subarrays share some global structures to reduce cost

Key Idea of SALP: Minimally reduce sharing of global structures

Reduce the sharing of ...

Global decoder \rightarrow Enables pipelined access to subarrays Global row buffer \rightarrow Utilizes multiple local row buffers

SAFARI

SALP: Reduce Sharing of Global Decoder

Instead of a global latch, have *per-subarray latches*

SALP: Reduce Sharing of Global Row-Buffer

Selectively connect local row-buffers to global rowbuffer using a *Designated* single-bit latch

SAFARI

SALP: Proposed Bank Organization

SALP: Results

- Wide variety of systems with different #channels, banks, ranks, subarrays
- Server, streaming, random-access, SPEC workloads
- Dynamic DRAM energy reduction: 19%
 - DRAM row hit rate improvement: 13%
- System performance improvement: 17%
 - Within 3% of ideal (all independent banks)
- DRAM die area overhead: 0.15%
 - vs. 36% overhead of independent banks

■ SALP-1 ■ SALP-2 ■ MASA ■ "Ideal"

More on SALP

 Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and <u>Onur Mutlu</u>, <u>"A Case for Exploiting Subarray-Level Parallelism (SALP) in</u> <u>DRAM"</u>

Proceedings of the <u>39th International Symposium on Computer</u> <u>Architecture</u> (ISCA), Portland, OR, June 2012. <u>Slides (pptx)</u> Coordinated Memory and Storage with NVM

Meza, Luo, Khan, Zhao, Xie, and Mutlu, "A Case for Efficient Hardware-Software <u>Cooperative Management of Storage and</u> <u>Memory</u>" WEED 2013.

Overview

- Traditional systems have a two-level storage model
 - Access volatile data in memory with a load/store interface
 - Access **persistent** data in storage with a **file system** interface
 - Problem: Operating system (OS) and file system (FS) code and buffering for storage lead to energy and performance inefficiencies
- Opportunity: New non-volatile memory (NVM) technologies can help provide fast (similar to DRAM), persistent storage (similar to Flash)
 - Unfortunately, OS and FS code can easily become energy efficiency and performance bottlenecks if we keep the traditional storage model
- This work: makes a case for hardware/software cooperative management of storage and memory within a single-level
 - We describe the idea of a Persistent Memory Manager (PMM) for efficiently coordinating storage and memory, and quantify its benefit
 - And, examine questions and challenges to address to realize PMM

A Tale of Two Storage Levels

- Two-level storage arose in systems due to the widely different access latencies and methods of the commodity storage devices
 - Fast, low capacity, volatile DRAM \rightarrow working storage
 - Slow, high capacity, non-volatile hard disk drives \rightarrow persistent storage
- Data from slow storage media is buffered in fast DRAM
 - □ After that it can be manipulated by programs → programs cannot directly access persistent storage
 - It is the programmer's job to translate this data between the two formats of the two-level storage (files and data structures)
- Locating, transferring, and translating data and formats between the two levels of storage can waste significant energy and performance

Opportunity: New Non-Volatile Memories

- Emerging memory technologies provide the potential for unifying storage and memory (e.g., Phase-Change, STT-RAM, RRAM)
 - Byte-addressable (can be accessed like DRAM)
 - Low latency (comparable to DRAM)
 - Low power (idle power better than DRAM)
 - High capacity (closer to Flash)
 - Non-volatile (can enable persistent storage)
 - May have limited endurance (but, better than Flash)
- Can provide fast access to *both* volatile data and persistent storage
- Question: if such devices are used, is it efficient to keep a two-level storage model?

Eliminating Traditional Storage Bottlenecks

Where is Energy Spent in Each Model?

Our Proposal: Coordinated HW/SW Memory and Storage Management

- Goal: Unify memory and storage to eliminate wasted work to locate, transfer, and translate data
 - Improve both energy and performance
 - Simplify programming model as well

Our Proposal: Coordinated HW/SW Memory and Storage Management

- Goal: Unify memory and storage to eliminate wasted work to locate, transfer, and translate data
 - Improve both energy and performance
 - Simplify programming model as well

Our Proposal: Coordinated HW/SW Memory and Storage Management

- Goal: Unify memory and storage to eliminate wasted work to locate, transfer, and translate data
 - Improve both energy and performance
 - Simplify programming model as well

The Persistent Memory Manager (PMM)

- Exposes a load/store interface to access persistent data
 - □ Applications can directly access persistent memory → no conversion, translation, location overhead for persistent data
- Manages data placement, location, persistence, security
 To get the best of multiple forms of storage
- Manages metadata storage and retrieval
 This can lead to overheads that need to be managed
- Exposes hooks and interfaces for system software
 To enable better data placement and management decisions

The Persistent Memory Manager

- Persistent Memory Manager
 - Exposes a load/store interface to access persistent data
 - Manages data placement, location, persistence, security
 - Manages metadata storage and retrieval
 - Exposes hooks and interfaces for system software
- Example program manipulating a persistent object:

Putting Everything Together

PMM uses access and hint information to allocate, locate, migrate and access data in the heterogeneous array of devices

Opportunities and Benefits

- We've identified at least five opportunities and benefits of a unified storage/memory system that gets rid of the two-level model:
 - 1. Eliminating system calls for file operations
 - 2. Eliminating file system operations
 - 3. Efficient data mapping/location among heterogeneous devices
 - 4. Providing security and reliability in persistent memories
 - 5. Hardware/software cooperative data management

Evaluation Methodology

- Hybrid real system / simulation-based approach
 - System calls are executed on host machine (functional correctness) and timed to accurately model their latency in the simulator
 - Rest of execution is simulated in Multi2Sim (enables hardware-level exploration)
- Power evaluated using McPAT and memory power models
- 16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz
- Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency
- Persistent memory
 - □ HDD (measured): 4ms seek latency, 6Gbps bus rate
 - NVM: (modeled after PCM) 4KB page size, 160-/480-cycle (read/write) latency

Evaluated Systems

- HDD Baseline (HB)
 - Traditional system with volatile DRAM memory and persistent HDD storage
 - Overheads of operating system and file system code and buffering
- HDD without OS/FS (HW)
 - Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads
 - System calls take 0 cycles (but HDD access takes normal latency)
- NVM Baseline (NB)
 - Same as HDD Baseline, but HDD is replaced with NVM
 - Still has OS/FS overheads of the two-level storage model
- Persistent Memory (PM)
 - Uses only NVM (no DRAM) to ensure full-system persistence
 - All data accessed using loads and stores
 - Does not waste energy on system calls
 - Data is manipulated directly on the NVM device

Evaluated Workloads

- Unix utilities that manipulate files
 - cp: copy a large file from one location to another
 - □ cp –r: copy files in a directory tree from one location to another
 - grep: search for a string in a large file
 - □ grep –r: search for a string recursively in a directory tree
- PostMark: an I/O-intensive benchmark from NetApp
 - Emulates typical access patterns for email, news, web commerce
- MySQL Server: a popular database management system
 - OLTP-style queries generated by Sysbench
 - MySQL (simple): single, random read to an entry
 - MySQL (complex): reads/writes 1 to 100 entries per transaction

Performance Results

The workloads that see the greatest improvement from using a Persistent Memory are those that spend a large portion of their time executing system call code due to the two-level storage model

Energy Results: NVM to PMM

Between systems with and without OS/FS code, energy improvements come from: 1. reduced code footprint, 2. reduced data movement

Large energy reductions with a PMM over the NVM based system

Scalability Analysis: Effect of PMM Latency

Future research should target keeping PMM latencies in check

New Questions and Challenges

- We identify and discuss several open research questions
- Q1. How to tailor applications for systems with persistent memory?
- > Q2. How can hardware and software cooperate to support a scalable, persistent single-level address space?
- Q3. How to provide efficient backward compatibility (for twolevel stores) on persistent memory systems?
- Q4. How to mitigate potential hardware performance and energy overheads?

Single-Level Stores: Summary and Conclusions

- Traditional two-level storage model is inefficient in terms of performance and energy
 - Due to OS/FS code and buffering needed to manage two models
 - Especially so in future devices with NVM technologies, as we show
- New non-volatile memory based persistent memory designs that use a single-level storage model to unify memory and storage can alleviate this problem
- We quantified the performance and energy benefits of such a single-level persistent memory/storage design
 - Showed significant benefits from reduced code footprint, data movement, and system software overhead on a variety of workloads
- Such a design requires more research to answer the questions we have posed and enable efficient persistent memory managers

 \rightarrow can lead to a fundamentally more efficient storage system

New DRAM Architectures

Tolerating DRAM: Example Techniques

- Retention-Aware DRAM Refresh: Reducing Refresh Impact
- Tiered-Latency DRAM: Reducing DRAM Latency
- RowClone: Accelerating Page Copy and Initialization
- Subarray-Level Parallelism: Reducing Bank Conflict Impact

DRAM Refresh

- DRAM capacitor charge leaks over time
- The memory controller needs to refresh each row periodically to restore charge
 - Activate each row every N ms
 - Typical N = 64 ms
- Downsides of refresh
 - -- Energy consumption: Each refresh consumes energy
 - -- Performance degradation: DRAM rank/bank unavailable while refreshed
 - -- **OoS/predictability impact**: (Long) pause times during refresh
 - -- Refresh rate limits DRAM capacity scaling

Refresh Overhead: Performance

Refresh Overhead: Energy

Retention Time Profile of DRAM

>256ms

128-256ms

64-128ms

RAIDR: Eliminating Unnecessary Refreshes

- Observation: Most DRAM rows can be refreshed much less often without losing data [Kim+, EDL'09][Liu+ ISCA'13] 10^{-10}
- Key idea: Refresh rows containing weak cells more frequently, other rows less frequently
 - 1. Profiling: Profile retention time of all rows
 - 2. Binning: Store rows into bins by retention time in memory controller *Efficient storage with Bloom Filters* (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at different rates 160

- 140 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
 - 74.6% refresh reduction @ 1.25KB storage
 - ~16%/20% DRAM dynamic/idle power reduction
 - ~9% performance improvement
 - Benefits increase with DRAM capacity

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

Auto

20

0

4 Gb

RAIDR

8 Gb

16 Gb Device capacity 50%

32 Gb 64 Gb

167

Going Forward

- How to find out and expose weak memory cells/rows
 - Early analysis of modern DRAM chips:
 - Liu+, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms", ISCA 2013.
- Low-cost system-level tolerance of DRAM errors
- Tolerating cell-to-cell interference at the system level
 - For both DRAM and Flash. Early analysis of Flash chips:
 - Cai+, "Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation," ICCD 2013.

Tolerating DRAM: Example Techniques

Retention-Aware DRAM Refresh: Reducing Refresh Impact

Tiered-Latency DRAM: Reducing DRAM Latency

- RowClone: Accelerating Page Copy and Initialization
- Subarray-Level Parallelism: Reducing Bank Conflict Impact

DRAM Latency-Capacity Trend

Capacity -Latency (tRC)

DRAM latency continues to be a critical bottleneck

What Causes the Long Latency? **DRAM** Chip subarray Subarray 0 1/0 channel **1** DRAM Latency - (Subarray Latency + II/O Latency Dominant

Why is the Subarray So Slow?

- Long bitline
 - Amortizes sense amplifier cost \rightarrow Small area
 - Large bitline capacitance → High latency & power

Trade-Off: Area (Die Size) vs. Latency

Approximating the Best of Both Worlds

Approximating the Best of Both Worlds

Tiered-Latency DRAM

 Divide a bitline into two segments with an isolation transistor

Far Segment

Isolation Transistor

Near Segment

Sense Amplifier

Lee+, "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.

¹⁷⁷

Commodity DRAM vs. TL-DRAM

• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead

~3%: mainly due to the isolation transistors

Trade-Off: Area (Die-Area) vs. Latency

Leveraging Tiered-Latency DRAM

- TL-DRAM is a *substrate* that can be leveraged by the hardware and/or software
- Many potential uses

 Use near segment as hardware-managed *inclusive* cache to far segment

2. Use near segment as hardware-managed *exclusive* cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM

Performance & Power Consumption

Using near segment as a cache improves performance and reduces power consumption

Tolerating DRAM: Example Techniques

- Retention-Aware DRAM Refresh: Reducing Refresh Impact
- Tiered-Latency DRAM: Reducing DRAM Latency
- RowClone: Accelerating Page Copy and Initialization
- Subarray-Level Parallelism: Reducing Bank Conflict Impact

Today's Memory: Bulk Data Copy

Future: RowClone (In-Memory Copy)

DRAM operation (load one byte)

Memory Bus

RowClone: in-DRAM Row Copy (and Initialization)

Memory Bus

RowClone: Latency and Energy Savings

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," MICRO 2013.

RowClone: Overall Performance

Figure 10: Performance improvement of RowClone-ZI. Value on top indicates percentage improvement compared to baseline.

Application	bootup	compile	mcached	mysql	shell
Energy Reduction	40%	32%	15%	17%	67%

Number of Cores	2	4	8
Number of Workloads	138	50	40
Weighted Speedup Improvement	15%	20%	27%
Energy per Instruction Reduction	19%	17%	¹⁸ 17%

Slide credit: Prof. Kayvon Fatahalian, CMU

Enabling Ultra-efficient (Visual) Search

- What is the right partitioning of computation capability?
- What is the right low-cost memory substrate?
- What memory technologies are the best enablers?

Picture credit: Prof. Kayvon Fatahalian, CMU HOW do we rethink/ease (visual) search

Tolerating DRAM: Example Techniques

- Retention-Aware DRAM Refresh: Reducing Refresh Impact
- Tiered-Latency DRAM: Reducing DRAM Latency
- RowClone: In-Memory Page Copy and Initialization

Subarray-Level Parallelism: Reducing Bank Conflict Impact

SALP: Reducing DRAM Bank Conflicts

- Problem: Bank conflicts are costly for performance and energy
 serialized requests, wasted energy (thrashing of row buffer, busy wait)
- Goal: Reduce bank conflicts without adding more banks (low cost)
- Key idea: Exploit the internal subarray structure of a DRAM bank to parallelize bank conflicts to different subarrays
 - Slightly modify DRAM bank to reduce subarray-level hardware sharing
- Results on Server, Stream/Random, SPEC
 - 19% reduction in dynamic DRAM energy
 - 13% improvement in row hit rate
 - 17% performance improvement
 - 0.15% DRAM area overhead

FARI Kim, Seshadri + "A Case for Exploiting Subarray-Level Parallelism in DRAM," ISCA 2012.

A Bit About Me and My Research

Brief Self Introduction

Onur Mutlu

- Carnegie Mellon University ECE/CS
- PhD from UT-Austin 2006, worked at Microsoft Research, Intel, AMD
- http://www.ece.cmu.edu/~omutlu
- onur@cmu.edu (Best way to reach me)
- http://users.ece.cmu.edu/~omutlu/projects.htm
- Research, Teaching, Consulting Interests
 - Computer architecture and systems, hardware/software interaction
 - Memory and storage systems, emerging technologies
 - Many-core systems, heterogeneous systems
 - Interconnects

Interested in developing efficient, high-performance, and scalable systems; solving difficult architectural problems at low cost & complexity

My Group: SAFARI

- <u>http://www.ece.cmu.edu/~safari/</u>
- http://www.ece.cmu.edu/~safari/pubs.html

Home | News | People | Projects | Publications | Talks | Technical Reports | Positions | Courses | Conferences

What is SAFARI?

SAFARI is the research group of <u>Professor Onur Mutlu</u> in the <u>Computer Architecture Lab (CALCM)</u> at <u>Carnegie Mellon University</u>. We investigate safe, fair, robust and intelligent computer architecture, finding novel ways to provide a substrate with all of these properties for next-generation multicore and manycore systems.

Overview of My Recent Research

- Memory and storage systems: DRAM, Flash, NVM, emerging
 - Scalability, energy, latency, parallelism, fault tolerance
 - Compute in/near memory; emerging technologies
- Predictable performance, QoS
- Heterogeneous systems, accelerating bottlenecks
- Efficient system design: interconnects, cores, caches, ...
- Bioinformatics algorithms and architectures
- Acceleration of important applications, software/hardware co-design

End of Backup Slides