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A Note on This Lecture

 These slides are partly from 18-447 Spring 2013, Computer 
Architecture, Lecture 21: Static Instruction Scheduling

 Video of that lecture:

 http://www.youtube.com/watch?v=XdDUn2WtkRg
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Higher (uArch) Level Simulation 

 Goal: Get an idea of the impact of an optimization on 
performance (or another metric) -- quickly

 Idea: Simulate the cycle-level behavior of the processor 
without modeling the logic required to enable execution (i.e., 
no need for control and data path)

 Upside:

 Fast: Enables faster exploration of techniques and design space

 Flexible: Can change the modeled microarchitecture

 Downside:

 Inaccuracy: Cycle count may not be accurate 

 Cannot provide cycle time (not a goal either, however)

 Still need logic-level implementation of the final design
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Review: Systolic Architectures

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear and multi-dimensional 

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a 
piece of the instruction)
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Review: Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.
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Memory: heart

PEs: cells

Memory pulses 

data through 

cells



Pipeline Parallel Programming Model
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Review: Decoupled Access/Execute

 Motivation: Tomasulo’s algorithm too complex to 
implement 

 1980s before HPS, Pentium Pro

 Idea: Decouple operand 

access and execution via 

two separate instruction 

streams that communicate 

via ISA-visible queues. 

 Smith, “Decoupled Access/Execute 

Computer Architectures,” ISCA 1982, 

ACM TOCS 1984.
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Review: Decoupled Access/Execute

 Advantages:

+ Execute stream can run ahead of the access stream and vice 
versa

+ If A takes a cache miss, E can perform useful work

+ If A hits in cache, it supplies data to lagging E

+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one, 
though)
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Today

 Static Scheduling

 Enabler of Better Static Scheduling: Block Enlargement

 Predicated Execution

 Loop Unrolling

 Trace

 Superblock

 Hyperblock

 Block-structured ISA
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Static Instruction Scheduling 

(with a Slight Focus on VLIW)



Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant 
propagation, dead code elimination, redundancy elimination, …

Q3. How do we increase the instruction fetch rate? 

i.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of 
instructions that will be executed straight line (without branches 
getting in the way) eases all of the above
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Review: Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this)

-- Increases code size
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VLIW: Finding Independent Operations

 Within a basic block, there is limited instruction-level 
parallelism

 To find multiple instructions to be executed in parallel, the 
compiler needs to consider multiple basic blocks

 Problem: Moving an instruction above a branch is unsafe 
because instruction is not guaranteed to be executed

 Idea: Enlarge blocks at compile time by finding the 
frequently-executed paths

 Trace scheduling

 Superblock scheduling 

 Hyperblock scheduling
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Safety and Legality in Code Motion

 Two characteristics of speculative code motion:

 Safety: whether or not spurious exceptions may occur

 Legality: whether or not result will be always correct

 Four possible types of code motion:
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r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3



Code Movement Constraints

 Downward

 When moving an operation from a BB to one of its dest BB’s,

 all the other dest basic blocks should still be able to use the result 
of the operation

 the other source BB’s of the dest BB should not be disturbed

 Upward

 When moving an operation from a BB to its source BB’s

 register values required by the other dest BB’s must not be 
destroyed

 the movement must not cause new exceptions
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Trace Scheduling

 Trace: A frequently executed path in the control-flow graph 
(has multiple side entrances and multiple side exits)

 Idea: Find independent operations within a trace to pack 
into VLIW instructions. 

 Traces determined via profiling

 Compiler adds fix-up code for correctness (if a side entrance 
or side exit of a trace is exercised at runtime, corresponding 
fix-up code is executed)

16



Trace Scheduling (II)

 There may be conditional branches from the middle of the 
trace (side exits) and transitions from other traces into the 
middle of the trace (side entrances).

 These control-flow transitions are ignored during trace 
scheduling.

 After scheduling, fix-up/bookkeeping code is inserted to 
ensure the correct execution of off-trace code.

 Fisher, “Trace scheduling: A technique for global microcode 
compaction,” IEEE TC 1981. 
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Trace Scheduling Idea
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Trace Scheduling (III)
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Instr 2

Instr 3

Instr 4

Instr 5
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Instr 5

What bookeeping is required when Instr 1

is moved below the side entrance in the trace?



Trace Scheduling (IV)
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Trace Scheduling (V)
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Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

What bookeeping is required when Instr 5

moves above the side entrance in the trace?



Trace Scheduling (VI)
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Trace Scheduling Fixup Code Issues

 Sometimes need to copy instructions more than once to 
ensure correctness on all paths (see C below)
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Trace Scheduling Overview

 Trace Selection

 select seed block (the highest frequency basic block)

 extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)

backward (predecessor of the first block of the trace)

 don’t cross loop back edge

 bound max_trace_length heuristically

 Trace Scheduling

 build data precedence graph for a whole trace

 perform list scheduling and allocate registers

 add compensation code to maintain semantic correctness

 Speculative Code Motion (upward)

 move an instruction above a branch if safe
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Data Precedence Graph
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List Scheduling

 Assign priority to each instruction

 Initialize ready list that holds all ready instructions

 Ready = data ready and can be scheduled

 Choose one ready instruction I from ready list with the 
highest priority

 Possibly using tie-breaking heuristics 

 Insert I into schedule 

 Making sure resource constraints are satisfied

 Add those instructions whose precedence constraints are 
now satisfied into the ready list 
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Instruction Prioritization Heuristics

 Number of descendants in precedence graph

 Maximum latency from root node of precedence graph

 Length of operation latency

 Ranking of paths based on importance

 Combination of above
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VLIW List Scheduling

 Assign Priorities

 Compute Data Ready List - all operations whose predecessors have 
been scheduled.

 Select from DRL in priority order while checking resource constraints

 Add newly ready operations to DRL and repeat for next instruction
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Trace Scheduling Example (I)
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beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6
fsub  f2, f3, f7

st.d  f2, 0(r8)

add  r8, r8, 4

990

990

800

800

10

10

200

200

fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out



Trace Scheduling Example (II)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall

0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code



Trace Scheduling Example (III)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code



Trace Scheduling Example (IV)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions



Trace Scheduling Example (V)
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fdiv  f1,  f2,  f3

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5

ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6



Trace Scheduling Tradeoffs

 Advantages

+ Enables the finding of more independent instructions  fewer 

NOPs in a VLIW instruction

 Disadvantages

-- Profile dependent 

-- What if dynamic path deviates from trace  lots of NOPs in the 

VLIW instructions

-- Code bloat and additional fix-up code executed

-- Due to side entrances and side exits

-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches

-- Unbiased branches  smaller traces  less opportunity for 

finding independent instructions
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Superblock Scheduling

 Trace: multiple entry, multiple exit block

 Superblock: single-entry, multiple exit block

 A trace with side entrances are eliminated

 Infrequent paths do not interfere with the frequent path

+ More optimization/scheduling opportunity than traces

+ Eliminates “difficult” bookkeeping due to side entrances

35
Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991.



Can You Do This with a Trace?
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opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original Code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code After Superblock Formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code After Common 

Subexpression Elimination

opC’: mul r3,r2,3



Superblock Scheduling Shortcomings

-- Still profile-dependent

-- No single frequently executed path if there is an unbiased 
branch

-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed

-- Due to side exits
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Hyperblock Scheduling

 Idea: Use predication support to eliminate unbiased 
branches and increase the size of superblocks

 Hyperblock: A single-entry, multiple-exit block with internal 
control flow eliminated using predication (if-conversion)

 Advantages

+ Reduces the effect of unbiased branches on scheduling block 

size

 Disadvantages

-- Requires predicated execution support

-- All disadvantages of predicated execution 
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Hyperblock Formation (I)
 Hyperblock formation

1. Block selection

2. Tail duplication

3. If-conversion

 Block selection

 Select subset of BBs for inclusion in HB

 Difficult problem

 Weighted cost/benefit function

 Height overhead

 Resource overhead

 Dependency overhead

 Branch elimination benefit

 Weighted by frequency

 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the 
Hyperblock,” MICRO 1992.
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Hyperblock Formation (II)
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BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation



Hyperblock Formation (III)
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BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1

10

If-convert (predicate) intra-hyperblock branches



Can We Do Better?

 Hyperblock still

 Profile dependent

 Requires fix-up code

 And, requires predication support

 Single-entry, single-exit enlarged blocks

 Block-structured ISA

 Optimizes multiple paths (can use predication to enlarge blocks)

 No need for fix-up code (duplication instead of fixup)
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Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with 
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block 

is discarded and the target of fault is fetched  

43Melvin and Patt, “Enhancing Instruction Scheduling with a Block-Structured ISA,” IJPP 1995.



Block Structured ISA (II)

 Advantages:

+ Larger atomic blocks  larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled 
within atomic blocks (no side entries or exits)

+ Can explicitly represent dependencies among operations within an 
enlarged block

 Disadvantages:

-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary 
and possibly in I-cache)

-- Need to predict which enlarged block comes next

 Optimizations

 Within an enlarged block, the compiler can perform optimizations that 
cannot normally/easily be performed across basic blocks
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Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.
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Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block 

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 BS-ISA blocks

 Single-entry, single exit

 Atomic

 Need to roll back to the beginning of the block on fault
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Superblock vs. BS-ISA

 Superblock 

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed     

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection. 

+ Dynamic prediction to choose the next enlarged block. Can 
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
47



Summary: Larger Code Blocks



Summary and Questions

 Trace, superblock, hyperblock, block-structured ISA

 How many entries, how many exits does each of them have?

 What are the corresponding benefits and downsides?

 What are the common benefits?

 Enable and enlarge the scope of code optimizations

 Reduce fetch breaks; increase fetch rate

 What are the common downsides?

 Code bloat (code size increase)

 Wasted work if control flow deviates from enlarged block’s path
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IA-64: A Complicated VLIW

Recommended reading:

Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 2000.



EPIC – Intel IA-64 Architecture

 Gets rid of lock-step execution of instructions within a VLIW 
instruction

 Idea: More ISA support for static scheduling and parallelization

 Specify dependencies within and between VLIW instructions 
(explicitly parallel)

+ No lock-step execution

+ Static reordering of stores and loads + dynamic checking

-- Hardware needs to perform dependency checking (albeit aided by 
software)

-- Other disadvantages of VLIW still exist

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 
2000.
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IA-64 Instructions

 IA-64 “Bundle” (~EPIC Instruction)

 Total of 128 bits

 Contains three IA-64 instructions

 Template bits in each bundle specify dependencies within a 
bundle

\

 IA-64 Instruction

 Fixed-length 41 bits long

 Contains three 7-bit register specifiers

 Contains a 6-bit field for specifying one of the 64 one-bit 
predicate registers
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IA-64 Instruction Bundles and Groups

 Groups of instructions can be 
executed safely in parallel

 Marked by “stop bits”

 Bundles are for packaging

 Groups can span multiple bundles

 Alleviates recompilation need 
somewhat 

53



Template Bits 

 Specify two things

 Stop information: Boundary of independent instructions

 Functional unit information: Where should each instruction be routed
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Non-Faulting Loads and Exception Propagation

 ld.s fetches speculatively from memory

i.e. any exception due to ld.s is suppressed

 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a 
branch is taken (to execute some compensation code)
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inst 1

inst 2

….

ld r1=[a]

use=r1

unsafe

code 

motion

….

ld.s r1=[a]

inst 1

inst 2

….

br

chk.s r1

use=r1

…. ld r1=[a]

br



Non-Faulting Loads and Exception Propagation in IA-64

 Load data can be speculatively consumed prior to check

 “speculation” status is propagated with speculated data

 Any instruction that uses a speculative result also becomes speculative 
itself (i.e. suppressed exceptions)

 chk.s checks the entire dataflow sequence for exceptions

56

inst 1

inst 2

….

br

ld r1=[a]

use=r1

unsafe

code 

motion

….

ld.s r1=[a]

inst 1 

inst 2

use=r1

….

br

chk.s use…. ld r1=[a]

use=r1

br



Aggressive ST-LD Reordering in IA-64

 ld.a starts the monitoring of any store to the same address as the 
advanced load

 If no aliasing has occurred since ld.a, ld.c is a NOP

 If aliasing has occurred, ld.c re-loads from memory
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inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

….

st [?]

….

ld.c r1=[x]

use=r1

st[?]



Aggressive ST-LD Reordering in IA-64
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inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

use=r1

….

st [?]

….

chk.a X

….

st[?]

ld r1=[a]

use=r1


