
Computer Architecture:

Static Instruction Scheduling

Prof. Onur Mutlu

Carnegie Mellon University

A Note on This Lecture

Â These slides are partly from 18-447 Spring 2013, Computer
Architecture, Lecture 21: Static Instruction Scheduling

Â Video of that lecture:

Ç http://www.youtube.com/watch?v=XdDUn2WtkRg

2

http://www.youtube.com/watch?v=XdDUn2WtkRg

Higher (uArch) Level Simulation

Â Goal: Get an idea of the impact of an optimization on
performance (or another metric) -- quickly

Â Idea: Simulate the cycle-level behavior of the processor
without modeling the logic required to enable execution (i.e.,
no need for control and data path)

Â Upside:

Ç Fast: Enables faster exploration of techniques and design space

Ç Flexible: Can change the modeled microarchitecture

Â Downside:

Ç Inaccuracy: Cycle count may not be accurate

Ç Cannot provide cycle time (not a goal either, however)

Ç Still need logic-level implementation of the final design
3

Review: Systolic Architectures

Â Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
Ą achieve high throughput w/o increasing memory

bandwidth requirements

Â Differences from pipelining:

Ç Array structure can be non-linear and multi -dimensional

Ç PE connections can be multidirectional (and different speed)

Ç PEs can have local memory and execute kernels (rather than a
piece of the instruction)

4

Review: Systolic Architectures

Â H. T. Kung, ñWhy Systolic Architectures?,òIEEE Computer 1982.

5

Memory: heart

PEs: cells

Memory pulses

data through

cells

Pipeline Parallel Programming Model

6

Review: Decoupled Access/Execute

Â Motivation: Tomasulo s algorithm too complex to
implement

Ç 1980s before HPS, Pentium Pro

Â Idea: Decouple operand

access and execution via

two separate instruction

streams that communicate

via ISA-visible queues.

Â Smith, Decoupled Access/Execute

Computer Architectures, ISCA 1982,

ACM TOCS 1984.

7

Review: Decoupled Access/Execute

Â Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A takes a cache miss, E can perform useful work

+ If A hits in cache, it supplies data to lagging E

+ Queues reduce the number of required registers

+ Limited out -of-order execution without wakeup/select complexity

Â Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

8

Today

Â Static Scheduling

Â Enabler of Better Static Scheduling: Block Enlargement

Ç Predicated Execution

Ç Loop Unrolling

Ç Trace

Ç Superblock

Ç Hyperblock

Ç Block-structured ISA

9

Static Instruction Scheduling

(with a Slight Focus on VLIW)

Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy elimination, é

Q3. How do we increase the instruction fetch rate?

i.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of
instructions that will be executed straight line (without branches
getting in the way) eases all of the above

11

Review: Loop Unrolling

Â Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

Ç Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

Ç Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
12

VLIW: Finding Independent Operations

Â Within a basic block, there is limited instruction -level
parallelism

Â To find multiple instructions to be executed in parallel, the
compiler needs to consider multiple basic blocks

Â Problem: Moving an instruction above a branch is unsafe
because instruction is not guaranteed to be executed

Â Idea: Enlarge blocks at compile time by finding the
frequently-executed paths

Ç Trace scheduling

Ç Superblock scheduling

Ç Hyperblock scheduling

13

Safety and Legality in Code Motion

Â Two characteristics of speculative code motion:

Ç Safety: whether or not spurious exceptions may occur

Ç Legality: whether or not result will be always correct

Â Four possible types of code motion:

14

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3

Code Movement Constraints

Â Downward

Ç When moving an operation from a BB to one of its dest BB s,

Â all the other dest basic blocks should still be able to use the result
of the operation

Â the other source BB s of the dest BB should not be disturbed

Â Upward

Ç When moving an operation from a BB to its source BB s

Â register values required by the other dest BB s must not be
destroyed

Â the movement must not cause new exceptions

15

Trace Scheduling

Â Trace: A frequently executed path in the control -flow graph
(has multiple side entrances and multiple side exits)

Â Idea: Find independent operations within a trace to pack
into VLIW instructions.

Ç Traces determined via profiling

Ç Compiler adds fix-up code for correctness (if a side entrance
or side exit of a trace is exercised at runtime, corresponding
fix-up code is executed)

16

Trace Scheduling (II)

Â There may be conditional branches from the middle of the
trace (side exits) and transitions from other traces into the
middle of the trace (side entrances).

Â These control-flow transitions are ignored during trace
scheduling.

Â After scheduling, fix-up/bookkeeping code is inserted to
ensure the correct execution of off -trace code.

Â Fisher, Trace scheduling: A technique for global microcode
compaction, IEEE TC 1981.

17

Trace Scheduling Idea

18

Trace Scheduling (III)

19

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

What bookeeping is required when Instr 1

is moved below the side entrance in the trace?

Trace Scheduling (IV)

20

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

Instr 3

Instr 4

Trace Scheduling (V)

21

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

What bookeeping is required when Instr 5

moves above the side entrance in the trace?

Trace Scheduling (VI)

22

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

Instr 5

Trace Scheduling Fixup Code Issues

Â Sometimes need to copy instructions more than once to
ensure correctness on all paths (see C below)

23

A

B

C

D

E

X

Y

D

B

E

A

C

AôBôCô Y

XBôôDôôEôô

Original
trace

Scheduled
trace

XB

C

D Y

Correctness

Côôô

Trace Scheduling Overview

Â Trace Selection

Ç select seed block (the highest frequency basic block)

Ç extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)

backward (predecessor of the first block of the trace)

Ç don t cross loop back edge

Ç bound max_trace_length heuristically

Â Trace Scheduling

Ç build data precedence graph for a whole trace

Ç perform list scheduling and allocate registers

Ç add compensation code to maintain semantic correctness

Â Speculative Code Motion (upward)

Ç move an instruction above a branch if safe

24

Data Precedence Graph

25

i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12

i13

i14

i15

i16

2 2
2

2 2
2

2 2

4 4

222

2

List Scheduling

Â Assign priority to each instruction

Â Initialize ready list that holds all ready instructions

Ç Ready = data ready and can be scheduled

Â Choose one ready instruction I from ready list with the
highest priority

Ç Possibly using tie-breaking heuristics

Â Insert I into schedule

Ç Making sure resource constraints are satisfied

Â Add those instructions whose precedence constraints are
now satisfied into the ready list

26

Instruction Prioritization Heuristics

Â Number of descendants in precedence graph

Â Maximum latency from root node of precedence graph

Â Length of operation latency

Â Ranking of paths based on importance

Â Combination of above

27

VLIW List Scheduling

Â Assign Priorities

Â Compute Data Ready List - all operations whose predecessors have
been scheduled.

Â Select from DRL in priority order while checking resource constraints

Â Add newly ready operations to DRL and repeat for next instruction

28

1

5

4

3

2

2

5

3

7

2

3

3

8

2

12

2

9

3

13

1

10

1

11

1

6

4

4-wide VLIW Data Ready List

1 {1}

6 3 4 5 {2,3,4,5,6}

9 2 7 8 {2,7,8,9}

12 10 11 {10,11,12}

13 {13}

Trace Scheduling Example (I)

29

beq r1, $0

fdiv f1, f2, f3
fadd f4, f1, f5

ld r2, 0(r3)

add r2, r2, 4

ld r2, 4(r3)

add r3, r3, 4

beq r2, $0

fsub f2, f2, f6
fsub f2, f3, f7

st.d f2, 0(r8)

add r8, r8, 4

990

990

800

800

10

10

200

200

fdiv f1, f2, f3
fadd f4, f1, f5
beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live

live out

out

Trace Scheduling Example (II)

30

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

0 stall

0 stall

B3

B6

1 stall

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code

Trace Scheduling Example (III)

31

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3 B6

fadd f4, f1, f5

Split

add r3, r3, 4
add r8, r8, 4

Join comp. code

fadd f4, f1, f5

comp. code

Trace Scheduling Example (IV)

32

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3
fadd f4, f1, f5

fadd f4, f1, f5

Split

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B6

add r3, r3, 4
add r8, r8, 4

Join comp. code

Copied

comp. code

split
instructions

Trace Scheduling Example (V)

33

fdiv f1, f2, f3

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

fadd f4, f1, f5

add r3, r3, 4
add r8, r8, 4

fadd f4, f1, f5
ld r2, 4(r3)

fadd f4, f1, f5

fsub f2, f3, f7

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

add r3, r3, 4
add r8, r8, 4

B3

B6

