
Computer Architecture:

Static Instruction Scheduling

Prof. Onur Mutlu

Carnegie Mellon University

A Note on This Lecture

 These slides are partly from 18-447 Spring 2013, Computer
Architecture, Lecture 21: Static Instruction Scheduling

 Video of that lecture:

 http://www.youtube.com/watch?v=XdDUn2WtkRg

2

http://www.youtube.com/watch?v=XdDUn2WtkRg

Higher (uArch) Level Simulation

 Goal: Get an idea of the impact of an optimization on
performance (or another metric) -- quickly

 Idea: Simulate the cycle-level behavior of the processor
without modeling the logic required to enable execution (i.e.,
no need for control and data path)

 Upside:

 Fast: Enables faster exploration of techniques and design space

 Flexible: Can change the modeled microarchitecture

 Downside:

 Inaccuracy: Cycle count may not be accurate

 Cannot provide cycle time (not a goal either, however)

 Still need logic-level implementation of the final design
3

Review: Systolic Architectures

 Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
 achieve high throughput w/o increasing memory

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear and multi-dimensional

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a
piece of the instruction)

4

Review: Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

5

Memory: heart

PEs: cells

Memory pulses

data through

cells

Pipeline Parallel Programming Model

6

Review: Decoupled Access/Execute

 Motivation: Tomasulo’s algorithm too complex to
implement

 1980s before HPS, Pentium Pro

 Idea: Decouple operand

access and execution via

two separate instruction

streams that communicate

via ISA-visible queues.

 Smith, “Decoupled Access/Execute

Computer Architectures,” ISCA 1982,

ACM TOCS 1984.

7

Review: Decoupled Access/Execute

 Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A takes a cache miss, E can perform useful work

+ If A hits in cache, it supplies data to lagging E

+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

8

Today

 Static Scheduling

 Enabler of Better Static Scheduling: Block Enlargement

 Predicated Execution

 Loop Unrolling

 Trace

 Superblock

 Hyperblock

 Block-structured ISA

9

Static Instruction Scheduling

(with a Slight Focus on VLIW)

Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code elimination, redundancy elimination, …

Q3. How do we increase the instruction fetch rate?

i.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of
instructions that will be executed straight line (without branches
getting in the way) eases all of the above

11

Review: Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
12

VLIW: Finding Independent Operations

 Within a basic block, there is limited instruction-level
parallelism

 To find multiple instructions to be executed in parallel, the
compiler needs to consider multiple basic blocks

 Problem: Moving an instruction above a branch is unsafe
because instruction is not guaranteed to be executed

 Idea: Enlarge blocks at compile time by finding the
frequently-executed paths

 Trace scheduling

 Superblock scheduling

 Hyperblock scheduling

13

Safety and Legality in Code Motion

 Two characteristics of speculative code motion:

 Safety: whether or not spurious exceptions may occur

 Legality: whether or not result will be always correct

 Four possible types of code motion:

14

r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3

Code Movement Constraints

 Downward

 When moving an operation from a BB to one of its dest BB’s,

 all the other dest basic blocks should still be able to use the result
of the operation

 the other source BB’s of the dest BB should not be disturbed

 Upward

 When moving an operation from a BB to its source BB’s

 register values required by the other dest BB’s must not be
destroyed

 the movement must not cause new exceptions

15

Trace Scheduling

 Trace: A frequently executed path in the control-flow graph
(has multiple side entrances and multiple side exits)

 Idea: Find independent operations within a trace to pack
into VLIW instructions.

 Traces determined via profiling

 Compiler adds fix-up code for correctness (if a side entrance
or side exit of a trace is exercised at runtime, corresponding
fix-up code is executed)

16

Trace Scheduling (II)

 There may be conditional branches from the middle of the
trace (side exits) and transitions from other traces into the
middle of the trace (side entrances).

 These control-flow transitions are ignored during trace
scheduling.

 After scheduling, fix-up/bookkeeping code is inserted to
ensure the correct execution of off-trace code.

 Fisher, “Trace scheduling: A technique for global microcode
compaction,” IEEE TC 1981.

17

Trace Scheduling Idea

18

Trace Scheduling (III)

19

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

What bookeeping is required when Instr 1

is moved below the side entrance in the trace?

Trace Scheduling (IV)

20

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 2

Instr 3

Instr 4

Instr 1

Instr 5

Instr 3

Instr 4

Trace Scheduling (V)

21

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

What bookeeping is required when Instr 5

moves above the side entrance in the trace?

Trace Scheduling (VI)

22

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

Instr 5

Trace Scheduling Fixup Code Issues

 Sometimes need to copy instructions more than once to
ensure correctness on all paths (see C below)

23

A

B

C

D

E

X

Y

D

B

E

A

C

A’ B’ C’ Y

XB’’D’’E’’

Original
trace

Scheduled
trace

XB

C

D Y

Correctness

C’’’

Trace Scheduling Overview

 Trace Selection

 select seed block (the highest frequency basic block)

 extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)

backward (predecessor of the first block of the trace)

 don’t cross loop back edge

 bound max_trace_length heuristically

 Trace Scheduling

 build data precedence graph for a whole trace

 perform list scheduling and allocate registers

 add compensation code to maintain semantic correctness

 Speculative Code Motion (upward)

 move an instruction above a branch if safe

24

Data Precedence Graph

25

i1 i2

i3

i4

i5 i6 i7

i8

i9

i10 i11 i12

i13

i14

i15

i16

2 2
2

2 2
2

2 2

4 4

222

2

List Scheduling

 Assign priority to each instruction

 Initialize ready list that holds all ready instructions

 Ready = data ready and can be scheduled

 Choose one ready instruction I from ready list with the
highest priority

 Possibly using tie-breaking heuristics

 Insert I into schedule

 Making sure resource constraints are satisfied

 Add those instructions whose precedence constraints are
now satisfied into the ready list

26

Instruction Prioritization Heuristics

 Number of descendants in precedence graph

 Maximum latency from root node of precedence graph

 Length of operation latency

 Ranking of paths based on importance

 Combination of above

27

VLIW List Scheduling

 Assign Priorities

 Compute Data Ready List - all operations whose predecessors have
been scheduled.

 Select from DRL in priority order while checking resource constraints

 Add newly ready operations to DRL and repeat for next instruction

28

1

5

4

3

2

2

5

3

7

2

3

3

8

2

12

2

9

3

13

1

10

1

11

1

6

4

4-wide VLIW Data Ready List

1 {1}

6 3 4 5 {2,3,4,5,6}

9 2 7 8 {2,7,8,9}

12 10 11 {10,11,12}

13 {13}

Trace Scheduling Example (I)

29

beq r1, $0

fdiv f1, f2, f3
fadd f4, f1, f5

ld r2, 0(r3)

add r2, r2, 4

ld r2, 4(r3)

add r3, r3, 4

beq r2, $0

fsub f2, f2, f6
fsub f2, f3, f7

st.d f2, 0(r8)

add r8, r8, 4

990

990

800

800

10

10

200

200

fdiv f1, f2, f3
fadd f4, f1, f5
beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live

live out

out

Trace Scheduling Example (II)

30

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

0 stall

0 stall

B3

B6

1 stall

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code

Trace Scheduling Example (III)

31

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3 B6

fadd f4, f1, f5

Split

add r3, r3, 4
add r8, r8, 4

Join comp. code

fadd f4, f1, f5

comp. code

Trace Scheduling Example (IV)

32

fdiv f1, f2, f3

fadd f4, f1, f5

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B3
fadd f4, f1, f5

fadd f4, f1, f5

Split

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

B6

add r3, r3, 4
add r8, r8, 4

Join comp. code

Copied

comp. code

split
instructions

Trace Scheduling Example (V)

33

fdiv f1, f2, f3

beq r1, $0

ld r2, 0(r3)

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6

st.d f2, 0(r8)

fadd f4, f1, f5

add r3, r3, 4
add r8, r8, 4

fadd f4, f1, f5

ld r2, 4(r3)

fadd f4, f1, f5

fsub f2, f3, f7

add r2, r2, 4
beq r2, $0

fsub f2, f2, f6
st.d f2, 0(r8)

add r3, r3, 4
add r8, r8, 4

add r3, r3, 4
add r8, r8, 4

B3

B6

Trace Scheduling Tradeoffs

 Advantages

+ Enables the finding of more independent instructions  fewer

NOPs in a VLIW instruction

 Disadvantages

-- Profile dependent

-- What if dynamic path deviates from trace  lots of NOPs in the

VLIW instructions

-- Code bloat and additional fix-up code executed

-- Due to side entrances and side exits

-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches

-- Unbiased branches  smaller traces  less opportunity for

finding independent instructions

34

Superblock Scheduling

 Trace: multiple entry, multiple exit block

 Superblock: single-entry, multiple exit block

 A trace with side entrances are eliminated

 Infrequent paths do not interfere with the frequent path

+ More optimization/scheduling opportunity than traces

+ Eliminates “difficult” bookkeeping due to side entrances

35
Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991.

Can You Do This with a Trace?

36

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original Code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code After Superblock Formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code After Common

Subexpression Elimination

opC’: mul r3,r2,3

Superblock Scheduling Shortcomings

-- Still profile-dependent

-- No single frequently executed path if there is an unbiased
branch

-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed

-- Due to side exits

37

Hyperblock Scheduling

 Idea: Use predication support to eliminate unbiased
branches and increase the size of superblocks

 Hyperblock: A single-entry, multiple-exit block with internal
control flow eliminated using predication (if-conversion)

 Advantages

+ Reduces the effect of unbiased branches on scheduling block

size

 Disadvantages

-- Requires predicated execution support

-- All disadvantages of predicated execution

38

Hyperblock Formation (I)
 Hyperblock formation

1. Block selection

2. Tail duplication

3. If-conversion

 Block selection

 Select subset of BBs for inclusion in HB

 Difficult problem

 Weighted cost/benefit function

 Height overhead

 Resource overhead

 Dependency overhead

 Branch elimination benefit

 Weighted by frequency

 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the
Hyperblock,” MICRO 1992.

39

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

Hyperblock Formation (II)

40

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation

Hyperblock Formation (III)

41

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1

10

If-convert (predicate) intra-hyperblock branches

Can We Do Better?

 Hyperblock still

 Profile dependent

 Requires fix-up code

 And, requires predication support

 Single-entry, single-exit enlarged blocks

 Block-structured ISA

 Optimizes multiple paths (can use predication to enlarge blocks)

 No need for fix-up code (duplication instead of fixup)

42

Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block

is discarded and the target of fault is fetched

43Melvin and Patt, “Enhancing Instruction Scheduling with a Block-Structured ISA,” IJPP 1995.

Block Structured ISA (II)

 Advantages:

+ Larger atomic blocks  larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled
within atomic blocks (no side entries or exits)

+ Can explicitly represent dependencies among operations within an
enlarged block

 Disadvantages:

-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary
and possibly in I-cache)

-- Need to predict which enlarged block comes next

 Optimizations

 Within an enlarged block, the compiler can perform optimizations that
cannot normally/easily be performed across basic blocks

44

Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.

45

Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 BS-ISA blocks

 Single-entry, single exit

 Atomic

 Need to roll back to the beginning of the block on fault

46

Superblock vs. BS-ISA

 Superblock

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection.

+ Dynamic prediction to choose the next enlarged block. Can
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
47

Summary: Larger Code Blocks

Summary and Questions

 Trace, superblock, hyperblock, block-structured ISA

 How many entries, how many exits does each of them have?

 What are the corresponding benefits and downsides?

 What are the common benefits?

 Enable and enlarge the scope of code optimizations

 Reduce fetch breaks; increase fetch rate

 What are the common downsides?

 Code bloat (code size increase)

 Wasted work if control flow deviates from enlarged block’s path

49

IA-64: A Complicated VLIW

Recommended reading:

Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 2000.

EPIC – Intel IA-64 Architecture

 Gets rid of lock-step execution of instructions within a VLIW
instruction

 Idea: More ISA support for static scheduling and parallelization

 Specify dependencies within and between VLIW instructions
(explicitly parallel)

+ No lock-step execution

+ Static reordering of stores and loads + dynamic checking

-- Hardware needs to perform dependency checking (albeit aided by
software)

-- Other disadvantages of VLIW still exist

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct
2000.

51

IA-64 Instructions

 IA-64 “Bundle” (~EPIC Instruction)

 Total of 128 bits

 Contains three IA-64 instructions

 Template bits in each bundle specify dependencies within a
bundle

\

 IA-64 Instruction

 Fixed-length 41 bits long

 Contains three 7-bit register specifiers

 Contains a 6-bit field for specifying one of the 64 one-bit
predicate registers

52

IA-64 Instruction Bundles and Groups

 Groups of instructions can be
executed safely in parallel

 Marked by “stop bits”

 Bundles are for packaging

 Groups can span multiple bundles

 Alleviates recompilation need
somewhat

53

Template Bits

 Specify two things

 Stop information: Boundary of independent instructions

 Functional unit information: Where should each instruction be routed

54

Non-Faulting Loads and Exception Propagation

 ld.s fetches speculatively from memory

i.e. any exception due to ld.s is suppressed

 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a
branch is taken (to execute some compensation code)

55

inst 1

inst 2

….

ld r1=[a]

use=r1

unsafe

code

motion

….

ld.s r1=[a]

inst 1

inst 2

….

br

chk.s r1

use=r1

…. ld r1=[a]

br

Non-Faulting Loads and Exception Propagation in IA-64

 Load data can be speculatively consumed prior to check

 “speculation” status is propagated with speculated data

 Any instruction that uses a speculative result also becomes speculative
itself (i.e. suppressed exceptions)

 chk.s checks the entire dataflow sequence for exceptions

56

inst 1

inst 2

….

br

ld r1=[a]

use=r1

unsafe

code

motion

….

ld.s r1=[a]

inst 1

inst 2

use=r1

….

br

chk.s use…. ld r1=[a]

use=r1

br

Aggressive ST-LD Reordering in IA-64

 ld.a starts the monitoring of any store to the same address as the
advanced load

 If no aliasing has occurred since ld.a, ld.c is a NOP

 If aliasing has occurred, ld.c re-loads from memory

57

inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

….

st [?]

….

ld.c r1=[x]

use=r1

st[?]

Aggressive ST-LD Reordering in IA-64

58

inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

use=r1

….

st [?]

….

chk.a X

….

st[?]

ld r1=[a]

use=r1

