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A Note on This Lecture

 These slides are partly from 18-447 Spring 2013, Computer 
Architecture, Lecture 21: Static Instruction Scheduling

 Video of that lecture:

 http://www.youtube.com/watch?v=XdDUn2WtkRg
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Higher (uArch) Level Simulation 

 Goal: Get an idea of the impact of an optimization on 
performance (or another metric) -- quickly

 Idea: Simulate the cycle-level behavior of the processor 
without modeling the logic required to enable execution (i.e., 
no need for control and data path)

 Upside:

 Fast: Enables faster exploration of techniques and design space

 Flexible: Can change the modeled microarchitecture

 Downside:

 Inaccuracy: Cycle count may not be accurate 

 Cannot provide cycle time (not a goal either, however)

 Still need logic-level implementation of the final design
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Review: Systolic Architectures

 Basic principle: Replace a single PE with a regular array of 
PEs and carefully orchestrate flow of data between the PEs 
 achieve high throughput w/o increasing memory 

bandwidth requirements

 Differences from pipelining:

 Array structure can be non-linear and multi-dimensional 

 PE connections can be multidirectional (and different speed)

 PEs can have local memory and execute kernels (rather than a 
piece of the instruction)
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Review: Systolic Architectures

 H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.
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Memory: heart

PEs: cells

Memory pulses 

data through 

cells



Pipeline Parallel Programming Model

6



Review: Decoupled Access/Execute

 Motivation: Tomasulo’s algorithm too complex to 
implement 

 1980s before HPS, Pentium Pro

 Idea: Decouple operand 

access and execution via 

two separate instruction 

streams that communicate 

via ISA-visible queues. 

 Smith, “Decoupled Access/Execute 

Computer Architectures,” ISCA 1982, 

ACM TOCS 1984.
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Review: Decoupled Access/Execute

 Advantages:

+ Execute stream can run ahead of the access stream and vice 
versa

+ If A takes a cache miss, E can perform useful work

+ If A hits in cache, it supplies data to lagging E

+ Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

 Disadvantages:

-- Compiler support to partition the program and manage queues

-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one, 
though)
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Today

 Static Scheduling

 Enabler of Better Static Scheduling: Block Enlargement

 Predicated Execution

 Loop Unrolling

 Trace

 Superblock

 Hyperblock

 Block-structured ISA
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Static Instruction Scheduling 

(with a Slight Focus on VLIW)



Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant 
propagation, dead code elimination, redundancy elimination, …

Q3. How do we increase the instruction fetch rate? 

i.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of 
instructions that will be executed straight line (without branches 
getting in the way) eases all of the above
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Review: Loop Unrolling

 Idea: Replicate loop body multiple times within an iteration

+ Reduces loop maintenance overhead

 Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)

 Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this)

-- Increases code size
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VLIW: Finding Independent Operations

 Within a basic block, there is limited instruction-level 
parallelism

 To find multiple instructions to be executed in parallel, the 
compiler needs to consider multiple basic blocks

 Problem: Moving an instruction above a branch is unsafe 
because instruction is not guaranteed to be executed

 Idea: Enlarge blocks at compile time by finding the 
frequently-executed paths

 Trace scheduling

 Superblock scheduling 

 Hyperblock scheduling
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Safety and Legality in Code Motion

 Two characteristics of speculative code motion:

 Safety: whether or not spurious exceptions may occur

 Legality: whether or not result will be always correct

 Four possible types of code motion:
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r1 = load A

r1 = ...

r1 = ... r1 = load A

r4 = r1 ... r1 = r2 & r3

r4 = r1 ...

(a) safe and legal (b) illegal

(c) unsafe (d) unsafe and illegal

r1 = r2 & r3



Code Movement Constraints

 Downward

 When moving an operation from a BB to one of its dest BB’s,

 all the other dest basic blocks should still be able to use the result 
of the operation

 the other source BB’s of the dest BB should not be disturbed

 Upward

 When moving an operation from a BB to its source BB’s

 register values required by the other dest BB’s must not be 
destroyed

 the movement must not cause new exceptions
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Trace Scheduling

 Trace: A frequently executed path in the control-flow graph 
(has multiple side entrances and multiple side exits)

 Idea: Find independent operations within a trace to pack 
into VLIW instructions. 

 Traces determined via profiling

 Compiler adds fix-up code for correctness (if a side entrance 
or side exit of a trace is exercised at runtime, corresponding 
fix-up code is executed)
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Trace Scheduling (II)

 There may be conditional branches from the middle of the 
trace (side exits) and transitions from other traces into the 
middle of the trace (side entrances).

 These control-flow transitions are ignored during trace 
scheduling.

 After scheduling, fix-up/bookkeeping code is inserted to 
ensure the correct execution of off-trace code.

 Fisher, “Trace scheduling: A technique for global microcode 
compaction,” IEEE TC 1981. 
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Trace Scheduling Idea
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Trace Scheduling (III)
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What bookeeping is required when Instr 1

is moved below the side entrance in the trace?



Trace Scheduling (IV)
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Trace Scheduling (V)
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Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

Instr 1

Instr 5

Instr 2

Instr 3

Instr 4

What bookeeping is required when Instr 5

moves above the side entrance in the trace?



Trace Scheduling (VI)
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Trace Scheduling Fixup Code Issues

 Sometimes need to copy instructions more than once to 
ensure correctness on all paths (see C below)
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Trace Scheduling Overview

 Trace Selection

 select seed block (the highest frequency basic block)

 extend trace (along the highest frequency edges)

forward (successor of the last block of the trace)

backward (predecessor of the first block of the trace)

 don’t cross loop back edge

 bound max_trace_length heuristically

 Trace Scheduling

 build data precedence graph for a whole trace

 perform list scheduling and allocate registers

 add compensation code to maintain semantic correctness

 Speculative Code Motion (upward)

 move an instruction above a branch if safe
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Data Precedence Graph
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List Scheduling

 Assign priority to each instruction

 Initialize ready list that holds all ready instructions

 Ready = data ready and can be scheduled

 Choose one ready instruction I from ready list with the 
highest priority

 Possibly using tie-breaking heuristics 

 Insert I into schedule 

 Making sure resource constraints are satisfied

 Add those instructions whose precedence constraints are 
now satisfied into the ready list 
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Instruction Prioritization Heuristics

 Number of descendants in precedence graph

 Maximum latency from root node of precedence graph

 Length of operation latency

 Ranking of paths based on importance

 Combination of above
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VLIW List Scheduling

 Assign Priorities

 Compute Data Ready List - all operations whose predecessors have 
been scheduled.

 Select from DRL in priority order while checking resource constraints

 Add newly ready operations to DRL and repeat for next instruction
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Trace Scheduling Example (I)
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beq  r1, $0

fdiv  f1, f2, f3
fadd  f4, f1, f5

ld  r2,  0(r3)

add r2, r2, 4

ld  r2,  4(r3)

add  r3, r3, 4

beq  r2, $0

fsub  f2, f2, f6
fsub  f2, f3, f7

st.d  f2, 0(r8)

add  r8, r8, 4

990

990

800

800

10

10

200

200

fdiv  f1,  f2,  f3
fadd   f4,  f1,  f5
beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B1

B2 B3

B4

B5 B6

B7

r2 and f2

f2 not

9 stalls

1 stall

1 stall

B3

B6

not live 

live out

out



Trace Scheduling Example (II)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

0 stall

0 stall

B3

B6

1 stall

fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3

B6

fadd f4, f1, f5

Split

fadd f4, f1, f5

comp. code



Trace Scheduling Example (III)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3 B6

fadd   f4,  f1,  f5

Split

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

fadd   f4,  f1,  f5

comp. code



Trace Scheduling Example (IV)
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fdiv  f1,  f2,  f3

fadd   f4,  f1,  f5

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B3
fadd   f4,  f1,  f5

fadd   f4,  f1,  f5

Split

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

B6

add  r3, r3, 4
add  r8, r8, 4

Join comp. code

Copied  

comp. code

split
instructions



Trace Scheduling Example (V)
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fdiv  f1,  f2,  f3

beq  r1,  $0

ld  r2, 0(r3)

add  r2, r2, 4
beq  r2, $0

fsub  f2,  f2,  f6

st.d  f2, 0(r8)

fadd  f4, f1, f5

add  r3, r3, 4
add  r8, r8, 4

fadd  f4, f1, f5

ld  r2,  4(r3)

fadd  f4, f1, f5

fsub  f2, f3, f7

add  r2, r2, 4
beq  r2, $0

fsub  f2, f2, f6
st.d  f2, 0(r8)

add  r3, r3, 4
add  r8, r8, 4

add  r3, r3, 4
add  r8, r8, 4

B3

B6



Trace Scheduling Tradeoffs

 Advantages

+ Enables the finding of more independent instructions  fewer 

NOPs in a VLIW instruction

 Disadvantages

-- Profile dependent 

-- What if dynamic path deviates from trace  lots of NOPs in the 

VLIW instructions

-- Code bloat and additional fix-up code executed

-- Due to side entrances and side exits

-- Infrequent paths interfere with the frequent path

-- Effectiveness depends on the bias of branches

-- Unbiased branches  smaller traces  less opportunity for 

finding independent instructions
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Superblock Scheduling

 Trace: multiple entry, multiple exit block

 Superblock: single-entry, multiple exit block

 A trace with side entrances are eliminated

 Infrequent paths do not interfere with the frequent path

+ More optimization/scheduling opportunity than traces

+ Eliminates “difficult” bookkeeping due to side entrances

35
Hwu+, “The Superblock: An Effective Technique for VLIW and superscalar compilation,” J of SC 1991.



Can You Do This with a Trace?
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opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

1

Original Code

opA: mul r1,r2,3

opC: mul r3,r2,3

opB: add r2,r2,199

1

Code After Superblock Formation

opC’: mul r3,r2,3

opA: mul r1,r2,3

opC: mov r3,r1

opB: add r2,r2,199

1

Code After Common 

Subexpression Elimination

opC’: mul r3,r2,3



Superblock Scheduling Shortcomings

-- Still profile-dependent

-- No single frequently executed path if there is an unbiased 
branch

-- Reduces the size of superblocks

-- Code bloat and additional fix-up code executed

-- Due to side exits
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Hyperblock Scheduling

 Idea: Use predication support to eliminate unbiased 
branches and increase the size of superblocks

 Hyperblock: A single-entry, multiple-exit block with internal 
control flow eliminated using predication (if-conversion)

 Advantages

+ Reduces the effect of unbiased branches on scheduling block 

size

 Disadvantages

-- Requires predicated execution support

-- All disadvantages of predicated execution 
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Hyperblock Formation (I)
 Hyperblock formation

1. Block selection

2. Tail duplication

3. If-conversion

 Block selection

 Select subset of BBs for inclusion in HB

 Difficult problem

 Weighted cost/benefit function

 Height overhead

 Resource overhead

 Dependency overhead

 Branch elimination benefit

 Weighted by frequency

 Mahlke et al., “Effective Compiler Support for Predicated Execution Using the 
Hyperblock,” MICRO 1992.
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Hyperblock Formation (II)
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BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

90

10

80 20

10

BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

Tail duplication same as with Superblock formation



Hyperblock Formation (III)
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BB2

BB4

BB6

BB5

BB1

BB3

80 20

10

90

10

81
9

80 20

10

BB6’

9
1

BB1

p1,p2 = CMPP

BB2 if p1

BB3 if p2

BB4

BB6 BB5

10

BB6’

81 9

1

10

If-convert (predicate) intra-hyperblock branches



Can We Do Better?

 Hyperblock still

 Profile dependent

 Requires fix-up code

 And, requires predication support

 Single-entry, single-exit enlarged blocks

 Block-structured ISA

 Optimizes multiple paths (can use predication to enlarge blocks)

 No need for fix-up code (duplication instead of fixup)
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Block Structured ISA

 Blocks (> instructions) are atomic (all-or-none) operations

 Either all of the block is committed or none of it

 Compiler enlarges blocks by combining basic blocks with 
their control flow successors

 Branches within the enlarged block converted to “fault”
operations  if the fault operation evaluates to true, the block 

is discarded and the target of fault is fetched  

43Melvin and Patt, “Enhancing Instruction Scheduling with a Block-Structured ISA,” IJPP 1995.



Block Structured ISA (II)

 Advantages:

+ Larger atomic blocks  larger units can be fetched from I-cache

+ Aggressive compiler optimizations (e.g. reordering) can be enabled 
within atomic blocks (no side entries or exits)

+ Can explicitly represent dependencies among operations within an 
enlarged block

 Disadvantages:

-- “Fault operations” can lead to work to be wasted (atomicity)

-- Code bloat (multiple copies of the same basic block exists in the binary 
and possibly in I-cache)

-- Need to predict which enlarged block comes next

 Optimizations

 Within an enlarged block, the compiler can perform optimizations that 
cannot normally/easily be performed across basic blocks
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Block Structured ISA (III)

 Hao et al., “Increasing the instruction fetch rate via block-
structured instruction set architectures,” MICRO 1996.
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Superblock vs. BS-ISA

 Superblock

 Single-entry, multiple exit code block 

 Not atomic

 Compiler inserts fix-up code on superblock side exit

 BS-ISA blocks

 Single-entry, single exit

 Atomic

 Need to roll back to the beginning of the block on fault
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Superblock vs. BS-ISA

 Superblock 

+ No ISA support needed

-- Optimizes for only 1 frequently executed path

-- Not good if dynamic path deviates from profiled path  missed     

opportunity to optimize another path

 Block Structured ISA

+ Enables optimization of multiple paths and their dynamic selection. 

+ Dynamic prediction to choose the next enlarged block. Can 
dynamically adapt to changes in frequently executed paths at run-
time

+ Atomicity can enable more aggressive code optimization

-- Code bloat becomes severe as more blocks are combined

-- Requires “next enlarged block” prediction, ISA+HW support

-- More wasted work on “fault” due to atomicity requirement
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Summary: Larger Code Blocks



Summary and Questions

 Trace, superblock, hyperblock, block-structured ISA

 How many entries, how many exits does each of them have?

 What are the corresponding benefits and downsides?

 What are the common benefits?

 Enable and enlarge the scope of code optimizations

 Reduce fetch breaks; increase fetch rate

 What are the common downsides?

 Code bloat (code size increase)

 Wasted work if control flow deviates from enlarged block’s path
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IA-64: A Complicated VLIW

Recommended reading:

Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 2000.



EPIC – Intel IA-64 Architecture

 Gets rid of lock-step execution of instructions within a VLIW 
instruction

 Idea: More ISA support for static scheduling and parallelization

 Specify dependencies within and between VLIW instructions 
(explicitly parallel)

+ No lock-step execution

+ Static reordering of stores and loads + dynamic checking

-- Hardware needs to perform dependency checking (albeit aided by 
software)

-- Other disadvantages of VLIW still exist

 Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro, Sep/Oct 
2000.
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IA-64 Instructions

 IA-64 “Bundle” (~EPIC Instruction)

 Total of 128 bits

 Contains three IA-64 instructions

 Template bits in each bundle specify dependencies within a 
bundle

\

 IA-64 Instruction

 Fixed-length 41 bits long

 Contains three 7-bit register specifiers

 Contains a 6-bit field for specifying one of the 64 one-bit 
predicate registers
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IA-64 Instruction Bundles and Groups

 Groups of instructions can be 
executed safely in parallel

 Marked by “stop bits”

 Bundles are for packaging

 Groups can span multiple bundles

 Alleviates recompilation need 
somewhat 
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Template Bits 

 Specify two things

 Stop information: Boundary of independent instructions

 Functional unit information: Where should each instruction be routed
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Non-Faulting Loads and Exception Propagation

 ld.s fetches speculatively from memory

i.e. any exception due to ld.s is suppressed

 If ld.s r1 did not cause an exception then chk.s r1 is a NOP, else a 
branch is taken (to execute some compensation code)
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inst 1

inst 2

….

ld r1=[a]

use=r1

unsafe

code 

motion

….

ld.s r1=[a]

inst 1

inst 2

….

br

chk.s r1

use=r1

…. ld r1=[a]

br



Non-Faulting Loads and Exception Propagation in IA-64

 Load data can be speculatively consumed prior to check

 “speculation” status is propagated with speculated data

 Any instruction that uses a speculative result also becomes speculative 
itself (i.e. suppressed exceptions)

 chk.s checks the entire dataflow sequence for exceptions
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inst 1

inst 2

….

br

ld r1=[a]

use=r1

unsafe

code 

motion

….

ld.s r1=[a]

inst 1 

inst 2

use=r1

….

br

chk.s use…. ld r1=[a]

use=r1

br



Aggressive ST-LD Reordering in IA-64

 ld.a starts the monitoring of any store to the same address as the 
advanced load

 If no aliasing has occurred since ld.a, ld.c is a NOP

 If aliasing has occurred, ld.c re-loads from memory
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inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

….

st [?]

….

ld.c r1=[x]

use=r1

st[?]



Aggressive ST-LD Reordering in IA-64
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inst 1

inst 2

….

st [?]

….

ld r1=[x]

use=r1

potential

aliasing

ld.a r1=[x]

inst 1

inst 2

use=r1

….

st [?]

….

chk.a X

….

st[?]

ld r1=[a]

use=r1


