Computer Architecture:
Static Instruction Scheduling

Prof. Onur Mutlu
Carnegie Mellon University

A Note on This Lecture

A These slides are partly from 18-447 Spring 2013, Computer
Architecture, Lecture 21: Static Instruction Scheduling

A Video of that lecture:
¢ http://Iwww.youtube.com/watch?v=XdDUn2WtkRq

http://www.youtube.com/watch?v=XdDUn2WtkRg

Higher (uArch) Level Simulation

Goal: Get an idea of the impact of an optimization on
performance (or another metric) -- quickly

ldea: Simulate the cycle-level behavior of the processor
without modeling the logic required to enable execution (i.e.,
no need for control and data path)

Upside:
¢ Fast: Enables faster exploration of technigues and design space
¢ Flexible: Can change the modeled microarchitecture

Downside:

¢ Inaccuracy: Cycle count may not be accurate

¢ Cannot provide cycle time (not a goal either, however)
¢ Still need logic-level implementation of the final design

Review: Systolic Architectures

Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs

A achieve high throughput w/o increasing memory

bandwidth requirements

INSTEAD OF:

WE HAVE:

100 ns

100 ns

MEMORY 5 MILLION
OPERATIONS
PER SECOND
AT MOST

PE

MEMORY 30 MOPS
POSSIBLE
PE | PE | PE | PE | PE

PE

THE SYSTOLIC ARRAY

leferences from plpellnlng: Figure 1. Basic principle of a systolic system.
¢ Array structure can be non-linear and multi-dimensional
¢ PE connections can be multidirectional (and different speed)

¢ PEs can have local memory and execute kernels (rather than a

piece of the instruction)

Review: Systolic Architectures

H. T. Kung, iwWhy Systolic Architectures?0 IEEE Computer 1982.

INSTEAD OF:

l MEMORY Id—
100 ns

WE HAVE: [

| memory |4
100 ns
-’lPE PE | PE |PE|PE|PE=
THE SYSTOLIC ARRAY

9 MILLION
OPERATIONS
PER SECOND
AT MOST

30 MOPS
POSSIBLE

Figure 1. Basic principle of a systolic system.

Memory: heart
PEs: cells

Memory pulses
data through
cells

Pipeline Parallel Programming Model

fori=1to N
[ﬂmd“nm-h] PO an cofat]e1|ct 52 c2 (a3 HJE] s
[.. #f code in stage B |
[il code in stage I:] l::: tlI 1; tl:I tl. t; t; '7 1.. 1-3 tlm t'" tlu time
) {a) L (el J
A
1} o | @OEGE -
} P1 BO|B1|B2|B3 |B4|BS -
Bi
jkﬂ P2 cofet]czcafes]es -
— — time
L' S R T T P T T T T T

{b) (d)

Figure 1. (a) The code of a loop, (b) Each iteration is split into 3 pipeline stages: A, B, and C. lteration | comprises Ai, Bi, Ci.
(c) Sequential execution of 4 iterations. (d) Parallel execution of 6 iterations using pipeline parallelism on a three-core machine.
Each stage executes on one core.

Review: Decoupled Access/Execute

Motivation: Tomasulo s algorithm too complex to
Implement

¢ 1980s bhefore HPS, Pentium Pro

Memory

E-instructions

ldea: Decouple operand
access and execution via

A-instructions

AEQ
two separate instruction e -.[

' Execut
streams that communicate PRRE.CE le. I: | Processor
via ISA-visible queues. Access | EAQ

Processor AEBQ

A ——1y N
Smith, Decoupled Access/Execute register e IE=— | register
Computer Architectures, ISCA 1982, file EABQ file

ACM TOCS 1984.

Review: Decoupled Access/Execute

Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A takes a cache miss, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers
+ Limited out -of-order execution without wakeup/select complexity

Disadvantages:

-- Compiler support to partition the program and manage queues
-- Determines the amount of decoupling
-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

Today

Static Scheduling

Enabler of Better Static Scheduling: Block Enlargement
Predicated Execution

Loop Unrolling

Trace

Superblock

Hyperblock

Block-structured ISA

O O O O O 0

Static Instruction Scheduling
(with a Slight Focus on VLIW)

Key Questions

Q1. How do we find independent instructions to fetch/execute?

Q2. How do we enable more compiler optimizations?

e.g., common subexpression elimination, constant
propagation, dead code el i1 min

Q3. How do we increase the instruction fetch rate?
l.e., have the ability to fetch more instructions per cycle

A: Enabling the compiler to optimize across a larger number of
Instructions that will be executed straight line (without branches

getting in the way) eases all of the above
11

Review: Loop Unrolling

| =1; _
while (1<100){ \I,fvh||1e(|ﬂ:100){
a[i] - b[i”] * (1+1)/m =b[i+1] + (i+1)/m
bli] = ﬂ["” -i/m b[i] = ai-1] - i/m
1=+
} ali+1] = b[i+2] + (i+2)/m
b[i+1] = - (I+1)/m
I=i+2
}

ldea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead
¢ Induction variable increment or loop condition test
+ Enlarges basic block (and analysis scope)
¢ Enables code optimization and scheduling opportunities
-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)
-- Increases code size

12

VLIW: Finding Independent Operations

Within a basic block, there is limited instruction -level
parallelism

To find multiple instructions to be executed in parallel, the
compiler needs to consider multiple basic blocks

Problem: Moving an instruction above a branch is unsafe
because instruction is not guaranteed to be executed

ldea: Enlarge blocks at compile time by finding the
frequently-executed paths

¢ Trace scheduling
¢ Superblock scheduling
¢ Hyperblock scheduling

13

Safety and Legality in Code Motion

Two characteristics of speculative code motion:
¢ Safety: whether or not spurious exceptions may occur
¢ Legality: whether or not result will be always correct

Four possible types of code motion:

(b) illegal

|

; »
|r1:... I rl =load A |r4:r1... I rl =load A

(c) unsafe (d) unsafe and illegal

14

Code Movement Constraints

Downward

¢ When moving an operation from a BB to one of its dest BB s,

all the other dest basic blocks should still be able to use the result
of the operation

the other source BB s of the dest BB should not be disturbed

Upward

¢ When moving an operation from a BB to its source BB s

register values required by the other dest BB s must not be
destroyed

the movement must not cause new exceptions

15

Trace Scheduling

Trace: A frequently executed path in the control -flow graph
(has multiple side entrances and multiple side exits)

ldea: Find independent operations within a trace to pack
Into VLIW instructions.

¢ Traces determined via profiling

¢ Compiler adds fix-up code for correctness (if a side entrance
or side exit of a trace is exercised at runtime, corresponding
fix-up code is executed)

16

Trace Scheduling (1)

There may be conditional branches from the middle of the
trace (side exits) and transitions from other traces into the
middle of the trace (side entrances).

These control-flow transitions are ignored during trace
scheduling.

After scheduling, fix-up/bookkeeping code is inserted to
ensure the correct execution of off -trace code.

Fisher, Trace scheduling: A technigue for global microcode
compaction, IEEE TC 1981.

17

Trace Scheduling Idea

(b)

(a)

N

TRACE SCHEDULING LooP-FREE CODE

18

Trace Scheduling (l1)

[} [}

[} [}

[} [}
Instr 1 Instr 2
Instr 2 Instr 3
Instr 3 Instr 4
Instr 4 Instr 1
Instr 5 Instr 5

[) [)

[) [)

[) [)

What bookeeping is required when Instr 1
IS moved below the side entrance In the trace?

Trace Scheduling (IV)

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

=)

/

Instr 2

Instr 3

Instr 3

Instr 4

Instr 4

Instr 1

Instr 5

20

Trace Scheduling (V)

[} [}

[} [}

[} [}
Instr 1 Instr 1
Instr 2 Instr 5
Instr 3 Instr 2
Instr 4 Instr 3
Instr 5 Instr 4

[) [)

[) [)

[) [)

What bookeeping is required when Instr 5
moves above the side entrance in the trace?

Trace Scheduling (VI)

Instr 1

Instr 2

Instr 3

Instr 4

Instr 5

=)

Instr 1

Instr 5

Instr 2

/

Instr 5

e

Instr 3

Instr 4

22

Trace Scheduling Fixup Code Issues

Sometimes need to copy instructions more than once to
ensure correctness on all paths (see C below)

:rg: DL. A BACOHY
Bl x 5
Original ' % Scheduled
trace ¢ trace ; < .
Ibl Y |A| CO O O
| T EaY *
ﬁ; éu_ E6«OD0<d Bo=d X
B« X
Correctness é

boo

23

Trace Scheduling Overview

Trace Selection
¢ select seed block (the highest frequency basic block)

¢ extend trace (along the highest frequency edges)
forward (successor of the last block of the trace)
backward (predecessor of the first block of the trace)

¢ don t cross loop back edge
¢ bound max_trace_length heuristically

Trace Scheduling

¢ build data precedence graph for a whole trace

¢ perform list scheduling and allocate registers

¢ add compensation code to maintain semantic correctness

Speculative Code Motion (upward)
c move an instruction above a branch if safe

24

Data Precedence Graph

25

List Scheduling

Assign priority to each instruction
Initialize ready list that holds all ready instructions
¢ Ready = data ready and can be scheduled

Choose one ready instruction / from ready list with the
highest priority

¢ Possibly using tie-breaking heuristics

Insert / into schedule

¢ Making sure resource constraints are satisfied

Add those instructions whose precedence constraints are
now satisfied into the ready list

26

Instruction Prioritization Heuristics

Number of descendants in precedence graph
Maximum latency from root node of precedence graph
Length of operation latency

Ranking of paths based on importance

Combination of above

27

VLIW List Scheduling

Assign Priorities

Compute Data Ready List- all operations whose predecessors have

been scheduled.

Select from DRL in priority order while checking resource constraints
Add newly ready operations to DRL and repeat for next instruction

4-wide VLIW Data Ready List
1 {1}
6 |3 |4 |5 |{2,34,5,6}
9 (2 |7 |8 [{2,7,8,9}
12 {10 |11 {10,11,12}
13 {13}

28

Trace Scheduling Example (1)

| fdiv 1, 12, 13 ||
| fadd 4, f1, 5|

beq rl, $0 |

[fsub 2, 2, f6§§

..addr2 r2 4 :
beq r2 $0 |

| st.d f2, O(r8) :

add r3,r3, 4
add r8,r8, 4

1 stall

Id r2, 0(r3)

add r2,r2, 4
beq r2, $0

/

fsub f2, f2, f6

st.d 2, O(r8)

add r3,r3, 4
add r8,r8, 4

r2 and f2
not live
out

B3

f2 not
live out

Trace Scheduling Example (II)

O stal

| | |

| | I

1 fdiv f1, f2, f3 1 fdiv f1, f2, f3 1

| [beq r1, $0 | beq r1, $0 |

| | |

i i i

| 1 r2.003) d r2,03) | fedd#& L1

vy, fsub 2, 12, f6 | fsub f2, 2, f6 , _

add r2,r2, 4 add r2,r2,4 1 Split
O stal beq r2, $0 beq r2, $0 : comp. code

1
|

\fadd 4. f1 15

st.d f2, O(r8) st.d f2, O(r8)

add r3,r3,4
add r8,r8, 4

add r3,r3, 4
add r8,r8, 4

30

Trace Scheduling Example (Il

el e e e s |

|
|
fdiv f1, f2, f3 1
beq r1, $0 :
:
|

d 2003 | fadd f4, fl, f5

fsub 2, 12, 6 ,
add r2,r2,4
beq r2, $0

Split
comp. code

fadd f4, fi, f5

add r3,r3, 4
add r8,r8, 4

fadd f4, f1, f5

1
|
|
|
1
1
|
st.d f2, O(r8) :
1
|
|
1
1
|

31

Trace Scheduling Example (1V)

|
|

fdiv f1, f2, f3 1

beq r1, $0 :

— B3

'™ fadd f4, f1, 15

Id r2, 0(r3 :

fsub 12, 12, 16 | gyt

gdd 2,12, 4 | comp. code add r2,r2, 4

eq r2, $0 ' $0

| beqg r2, $0
|

_ fadd f4, fi, 5 fsub f2, f2, f6

st.d 2, 0(r8) st.d f2, 0(r8)

|
|
' add r3,r3,4
: add r8, r8, 4
add r3,r3,4 ! .
' l Copied
add r8,r8, 4 : B6 split

fadd f4, f1, f5 1

instructions

32

Trace Scheduling Example (V)

33

