
Computer Architecture:

Out-of-Order Execution II

Prof. Onur Mutlu

Carnegie Mellon University

A Note on This Lecture

 These slides are partly from 18-447 Spring 2013, Computer
Architecture, Lecture 15

 Video of that lecture:

 http://www.youtube.com/watch?v=f-XL4BNRoBA until 50:00

2

http://www.youtube.com/watch?v=f-XL4BNRoBA

Last Lecture

 Out-of-order execution

 Tomasulo’s algorithm

 Example

 OoO as restricted dataflow execution

3

Today

 Wrap up out-of-order execution

 Memory dependence handling

 Alternative designs

4

Out-of-Order Execution

(Dynamic Instruction Scheduling)

Review: Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window
or active window)

6

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order

Review: Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag” with each data value

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag” when the value is produced

 Instructions compare their “source tags” to the broadcast tag
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

7

Review: Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

8

Review: Registers versus Memory, Revisited

 So far, we considered register based value communication
between instructions

 What about memory?

 What are the fundamental differences between registers
and memory?

 Register dependences known statically – memory
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a
shared memory multiprocessor)

9

Review: Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order
machine

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there
may be younger/older loads/stores with undetermined
addresses in the machine

10

Review: Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an
older store’s address is known

 Known as the memory disambiguation problem or the unknown
address problem

 Approaches

 Conservative: Stall the load until all previous stores have
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the
load is dependent on the/any unknown address store

11

Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store
addresses are available.

 How does the OOO engine detect dependence of a load instruction on a
previous store?

 Option 1: Wait until all previous stores committed (no need to
check)

 Option 2: Keep a list of pending stores in a store buffer and check
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

12

Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

+ No need for recovery

-- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,” ISCA 1998.

13

Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store
Sets,” ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of
the potential performance

14

Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or
should there be a centralized physical register file where all
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …
15

More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch
prediction?

16

Recommended Readings

 Kessler, “The Alpha 21264 Microprocessor,” IEEE Micro,
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM
Journal of Research and Development, January 2002.

17

The following slides

are for your benefit

Other Approaches to Concurrency

(or Instruction Level Parallelism)

Approaches to (Instruction-Level) Concurrency

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing

 VLIW

 Systolic Arrays

 Decoupled Access Execute

20

Data Flow:

Exploiting Irregular Parallelism

Remember: State of RAT and RS in Cycle 7

22

Remember: Dataflow Graph

23

Review: More on Data Flow

 In a data flow machine, a program consists of data flow
nodes

 A data flow node fires (fetched and executed) when all it
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

24

Data Flow Nodes

25

Dataflow Nodes (II)

 A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

Dataflow Graphs

{x = a + b;
y = b * 7

in
(x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

 Values in dataflow graphs are
represented as tokens

 An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >

instruction ptr port data

no separate control flow

Example Data Flow Program

28

OUT

Control Flow vs. Data Flow

29

Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential I-stream

 No program counter

 Operations execute asynchronously

 Execution triggered by the presence of data

30

A Dataflow Processor

31

MIT Tagged Token Data Flow Architecture

 Wait−Match Unit:
try to match
incoming token and
context id and a
waiting token with
same instruction
address

 Success: Both
tokens forwarded

 Fail: Incoming
token −−>
Waiting Token
Mem, bubble (no-
op forwarded)

32

TTDA Data Flow Example

33

TTDA Data Flow Example

34

TTDA Data Flow Example

35

Manchester Data Flow Machine

 Matching Store: Pairs
together tokens
destined for the same
instruction

 Large data set

overflow in overflow
unit

 Paired tokens fetch the
appropriate instruction
from the node store

36

Data Flow Advantages/Disadvantages

 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 No precise state

 Interrupt/exception handling is difficult

 Debugging very difficult

 Bookkeeping overhead (tag matching)

 Too much parallelism? (Parallelism control needed)

 Overflow of tag matching tables

 Implementing dynamic data structures difficult

37

Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been very
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow
architecture having minimal functionality,” ISCA 1986.

38

Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow
computer,” CACM 1985.

 Microarchitecture-level dataflow:

 Hwu and Patt, “HPSm, a high performance restricted
data flow architecture having minimal functionality,”
ISCA 1986.

39

