
Computer Architecture:

Out-of-Order Execution II

Prof. Onur Mutlu

Carnegie Mellon University



A Note on This Lecture

 These slides are partly from 18-447 Spring 2013, Computer 
Architecture, Lecture 15

 Video of that lecture:

 http://www.youtube.com/watch?v=f-XL4BNRoBA until 50:00

2

http://www.youtube.com/watch?v=f-XL4BNRoBA


Last Lecture

 Out-of-order execution

 Tomasulo’s algorithm

 Example

 OoO as restricted dataflow execution

3



Today

 Wrap up out-of-order execution

 Memory dependence handling

 Alternative designs

4



Out-of-Order Execution

(Dynamic Instruction Scheduling)



Review: Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)

6

F D

E

W

E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R

E

O

R

D

E

R

S

C

H

E

D

U

L

E

TAG and VALUE Broadcast Bus

in order out of order in order



Review: Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag”with each data value 

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag”when the value is produced

 Instructions compare their “source tags” to the broadcast tag 
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction

7



Review: Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of 
produced value) between instructions

 Wakeup and select enables out-of-order dispatch

8



Review: Registers versus Memory, Revisited

 So far, we considered register based value communication 
between instructions

 What about memory?

 What are the fundamental differences between registers 
and memory?

 Register dependences known statically – memory 
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a 
shared memory multiprocessor)

9



Review: Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order 
machine 

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known 
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine

10



Review: Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an 
older store’s address is known

 Known as the memory disambiguation problem or the unknown 
address problem

 Approaches

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store

11



Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store 
addresses are available. 

 How does the OOO engine detect dependence of a load instruction on a 
previous store?

 Option 1: Wait until all previous stores committed (no need to 
check) 

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store

12



Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

+ No need for recovery 

-- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an 
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,”ISCA 1998.

13



Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,”ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of 
the potential performance 

14



Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …
15



More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch 
prediction?

16



Recommended Readings

 Kessler, “The Alpha 21264 Microprocessor,”IEEE Micro, 
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM 
Journal of Research and Development, January 2002.

17



The following slides 

are for your benefit



Other Approaches to Concurrency 

(or Instruction Level Parallelism)



Approaches to (Instruction-Level) Concurrency

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing

 VLIW

 Systolic Arrays

 Decoupled Access Execute

20



Data Flow:

Exploiting Irregular Parallelism



Remember: State of RAT and RS in Cycle 7

22



Remember: Dataflow Graph

23



Review: More on Data Flow

 In a data flow machine, a program consists of data flow 
nodes

 A data flow node fires (fetched and executed) when all it 
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation

24



Data Flow Nodes

25



Dataflow Nodes (II)

 A small set of dataflow operators can be used to 
define a general programming language 

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

Ý



Dataflow Graphs

{x = a + b;   
y = b * 7

in
(x-y) * (x+y)}

a b

+ *7

- +

*

y
x

1 2

3 4

5

 Values in dataflow graphs are 
represented as tokens

 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination   operators

token < ip , p , v >

instruction ptr port data

no separate control flow



Example Data Flow Program

28

OUT



Control Flow vs. Data Flow

29



Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential I-stream 

 No program counter

 Operations execute asynchronously

 Execution triggered by the presence of data

30



A Dataflow Processor

31



MIT Tagged Token Data Flow Architecture

 Wait−Match Unit: 
try to match 
incoming token and 
context id and a 
waiting token with 
same instruction 
address 

 Success: Both 
tokens forwarded

 Fail: Incoming 
token −−> 
Waiting Token 
Mem, bubble (no-
op forwarded)

32



TTDA Data Flow Example

33



TTDA Data Flow Example

34



TTDA Data Flow Example

35



Manchester Data Flow Machine

 Matching Store: Pairs 
together tokens 
destined for the same 
instruction

 Large data set 

overflow in overflow 
unit

 Paired tokens fetch the 
appropriate instruction 
from the node store

36



Data Flow Advantages/Disadvantages

 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 No precise state

 Interrupt/exception handling is difficult 

 Debugging very difficult 

 Bookkeeping overhead (tag matching)

 Too much parallelism? (Parallelism control needed)

 Overflow of tag matching tables

 Implementing dynamic data structures difficult

37



Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow 
architecture having minimal functionality,” ISCA 1986.

38



Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985.

 Microarchitecture-level dataflow:

 Hwu and Patt, “HPSm, a high performance restricted 
data flow architecture having minimal functionality,”
ISCA 1986.

39


