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A Note on This Lecture

 These slides are partly from 18-447 Spring 2013, Computer 
Architecture, Lecture 15

 Video of that lecture:

 http://www.youtube.com/watch?v=f-XL4BNRoBA until 50:00
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http://www.youtube.com/watch?v=f-XL4BNRoBA


Last Lecture

 Out-of-order execution

 Tomasulo’s algorithm

 Example

 OoO as restricted dataflow execution
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Today

 Wrap up out-of-order execution

 Memory dependence handling

 Alternative designs
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Out-of-Order Execution

(Dynamic Instruction Scheduling)



Review: Out-of-Order Execution with Precise Exceptions

 Hump 1: Reservation stations (scheduling window)

 Hump 2: Reordering (reorder buffer, aka instruction window 
or active window)
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Review: Enabling OoO Execution, Revisited

1. Link the consumer of a value to the producer

 Register renaming: Associate a “tag”with each data value 

2. Buffer instructions until they are ready

 Insert instruction into reservation stations after renaming

3. Keep track of readiness of source values of an instruction

 Broadcast the “tag”when the value is produced

 Instructions compare their “source tags” to the broadcast tag 
 if match, source value becomes ready

4. When all source values of an instruction are ready, dispatch 
the instruction to functional unit (FU)

 Wakeup and select/schedule the instruction
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Review: Summary of OOO Execution Concepts

 Register renaming eliminates false dependencies, enables 
linking of producer to consumers

 Buffering enables the pipeline to move for independent ops

 Tag broadcast enables communication (of readiness of 
produced value) between instructions

 Wakeup and select enables out-of-order dispatch
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Review: Registers versus Memory, Revisited

 So far, we considered register based value communication 
between instructions

 What about memory?

 What are the fundamental differences between registers 
and memory?

 Register dependences known statically – memory 
dependences determined dynamically

 Register state is small – memory state is large

 Register state is not visible to other threads/processors –
memory state is shared between threads/processors (in a 
shared memory multiprocessor)
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Review: Memory Dependence Handling (I)

 Need to obey memory dependences in an out-of-order 
machine 

 and need to do so while providing high performance

 Observation and Problem: Memory address is not known 
until a load/store executes

 Corollary 1: Renaming memory addresses is difficult

 Corollary 2: Determining dependence or independence of 
loads/stores need to be handled after their execution

 Corollary 3: When a load/store has its address ready, there 
may be younger/older loads/stores with undetermined 
addresses in the machine
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Review: Memory Dependence Handling (II)

 When do you schedule a load instruction in an OOO engine?

 Problem: A younger load can have its address ready before an 
older store’s address is known

 Known as the memory disambiguation problem or the unknown 
address problem

 Approaches

 Conservative: Stall the load until all previous stores have 
computed their addresses (or even retired from the machine)

 Aggressive: Assume load is independent of unknown-address 
stores and schedule the load right away

 Intelligent: Predict (with a more sophisticated predictor) if the 
load is dependent on the/any unknown address store
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Handling of Store-Load Dependencies

 A load’s dependence status is not known until all previous store 
addresses are available. 

 How does the OOO engine detect dependence of a load instruction on a 
previous store?

 Option 1: Wait until all previous stores committed (no need to 
check) 

 Option 2: Keep a list of pending stores in a store buffer and check 
whether load address matches a previous store address

 How does the OOO engine treat the scheduling of a load instruction wrt 
previous stores?

 Option 1: Assume load dependent on all previous stores

 Option 2: Assume load independent of all previous stores

 Option 3: Predict the dependence of a load on an outstanding store
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Memory Disambiguation (I)

 Option 1: Assume load dependent on all previous stores

+ No need for recovery 

-- Too conservative: delays independent loads unnecessarily

 Option 2: Assume load independent of all previous stores

+ Simple and can be common case: no delay for independent loads

-- Requires recovery and re-execution of load and dependents on misprediction

 Option 3: Predict the dependence of a load on an 
outstanding store

+ More accurate. Load store dependencies persist over time

-- Still requires recovery/re-execution on misprediction

 Alpha 21264 : Initially assume load independent, delay loads found to be dependent

 Moshovos et al., “Dynamic speculation and synchronization of data dependences,”
ISCA 1997.

 Chrysos and Emer, “Memory Dependence Prediction Using Store Sets,”ISCA 1998.
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Memory Disambiguation (II)

 Chrysos and Emer, “Memory Dependence Prediction Using Store 
Sets,”ISCA 1998.

 Predicting store-load dependencies important for performance

 Simple predictors (based on past history) can achieve most of 
the potential performance 
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Food for Thought for You

 Many other design choices

 Should reservation stations be centralized or distributed?

 What are the tradeoffs?

 Should reservation stations and ROB store data values or 
should there be a centralized physical register file where all 
data values are stored?

 What are the tradeoffs?

 Exactly when does an instruction broadcast its tag?

 …
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More Food for Thought for You

 How can you implement branch prediction in an out-of-
order execution machine?

 Think about branch history register and PHT updates

 Think about recovery from mispredictions

 How to do this fast?

 How can you combine superscalar execution with out-of-
order execution?

 These are different concepts

 Concurrent renaming of instructions

 Concurrent broadcast of tags

 How can you combine superscalar + out-of-order + branch 
prediction?
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Recommended Readings

 Kessler, “The Alpha 21264 Microprocessor,”IEEE Micro, 
March-April 1999.

 Boggs et al., “The Microarchitecture of the Pentium 4 
Processor,” Intel Technology Journal, 2001.

 Yeager, “The MIPS R10000 Superscalar Microprocessor,”
IEEE Micro, April 1996

 Tendler et al., “POWER4 system microarchitecture,” IBM 
Journal of Research and Development, January 2002.
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The following slides 

are for your benefit



Other Approaches to Concurrency 

(or Instruction Level Parallelism)



Approaches to (Instruction-Level) Concurrency

 Out-of-order execution

 Dataflow (at the ISA level)

 SIMD Processing

 VLIW

 Systolic Arrays

 Decoupled Access Execute
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Data Flow:

Exploiting Irregular Parallelism



Remember: State of RAT and RS in Cycle 7
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Remember: Dataflow Graph
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Review: More on Data Flow

 In a data flow machine, a program consists of data flow 
nodes

 A data flow node fires (fetched and executed) when all it 
inputs are ready

 i.e. when all inputs have tokens

 Data flow node and its ISA representation
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Data Flow Nodes
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Dataflow Nodes (II)

 A small set of dataflow operators can be used to 
define a general programming language 

Fork Primitive Ops

+

Switch Merge
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Dataflow Graphs
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 Values in dataflow graphs are 
represented as tokens

 An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination   operators

token < ip , p , v >

instruction ptr port data

no separate control flow



Example Data Flow Program
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Control Flow vs. Data Flow
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Data Flow Characteristics

 Data-driven execution of instruction-level graphical code

 Nodes are operators

 Arcs are data (I/O)

 As opposed to control-driven execution

 Only real dependencies constrain processing

 No sequential I-stream 

 No program counter

 Operations execute asynchronously

 Execution triggered by the presence of data
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A Dataflow Processor
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MIT Tagged Token Data Flow Architecture

 Wait−Match Unit: 
try to match 
incoming token and 
context id and a 
waiting token with 
same instruction 
address 

 Success: Both 
tokens forwarded

 Fail: Incoming 
token −−> 
Waiting Token 
Mem, bubble (no-
op forwarded)
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TTDA Data Flow Example
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TTDA Data Flow Example
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TTDA Data Flow Example
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Manchester Data Flow Machine

 Matching Store: Pairs 
together tokens 
destined for the same 
instruction

 Large data set 

overflow in overflow 
unit

 Paired tokens fetch the 
appropriate instruction 
from the node store
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Data Flow Advantages/Disadvantages

 Advantages

 Very good at exploiting irregular parallelism

 Only real dependencies constrain processing

 Disadvantages

 No precise state

 Interrupt/exception handling is difficult 

 Debugging very difficult 

 Bookkeeping overhead (tag matching)

 Too much parallelism? (Parallelism control needed)

 Overflow of tag matching tables

 Implementing dynamic data structures difficult
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Data Flow Summary

 Availability of data determines order of execution

 A data flow node fires when its sources are ready

 Programs represented as data flow graphs (of nodes)

 Data Flow at the ISA level has not been (as) successful

 Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been very 
successful

 Out of order execution

 Hwu and Patt, “HPSm, a high performance restricted data flow 
architecture having minimal functionality,” ISCA 1986.
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Further Reading on Data Flow

 ISA level dataflow

 Gurd et al., “The Manchester prototype dataflow 
computer,” CACM 1985.

 Microarchitecture-level dataflow:

 Hwu and Patt, “HPSm, a high performance restricted 
data flow architecture having minimal functionality,”
ISCA 1986.
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