Computer Architecture:
Multithreading (I1I)

Prof. Onur Mutlu
Carnegie Mellon University

A Note on This Lecture

= These slides are partly from 18-742 Fall 2012, Parallel
Computer Architecture, Lecture 13: Multithreading III

= Video of that lecture:

o http://www.youtube.com/watch?v=7vkDpZ1-
hHM&list=PL5PHmM2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=13

http://www.youtube.com/watch?v=7vkDpZ1-hHM&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=13

Other Uses of Multithreading

Now that We Have MT Hardware ...

... what else can we use it for?
Redundant execution to tolerate soft (and hard?) errors

Implicit parallelization: thread level speculation
o Slipstream processors
o Leader-follower architectures

Helper threading
o Prefetching
a Branch prediction

Exception handling

SMT for Transient Fault Detection

Transient faults: Faults that persist for a “short” duration
o Also called “soft errors”

Caused by cosmic rays (e.g., neutrons)

Leads to transient changes in wires and state (e.g., 0>1)

Solution

o no practical absorbent for cosmic rays

o 1 fault per 1000 computers per year (estimated fault rate)
Fault rate likely to increase in the feature

o smaller feature size

o reduced voltage

o higher transistor count

o reduced noise margin

Need for Low-Cost Transient Fault Tolerance

The rate of transient faults is expected to increase
significantly = Processors will need some form of fault
tolerance.

However, different applications have different reliability
requirements (e.g. server-apps vs. games) - Users who do

not require high reliability may not want to pay the
overhead.

Fault tolerance mechanisms with low hardware cost are
attractive because they allow the designs to be used for a
wide variety of applications.

Traditional Mechanisms for Transient Fault Detection

Storage structures
o Space redundancy via parity or ECC

o Overhead of additional storage and operations can be high in
time-critical paths

Logic structures
o Space redundancy: replicate and compare
o Time redundancy: re-execute and compare

Space redundancy has high hardware overhead.

Time redundancy has low hardware overhead but high
performance overhead.

What additional benefit does space redundancy have?

Lockstepping (Tandem, Compaq Himalaya)

microprocessor MICroprocessor

on

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

Idea: Replicate the processor, compare the results of two
processors before committing an instruction

Transient Fault Detection with SMT (SR'T)

THREAD THREAD

Memory covered by ECC
RAID array covered by parity
Servernet covered by CRC

Idea: Replicate the threads, compare outputs before
committing an instruction

Reinhardt and Mukherjee, “Transient Fault Detection
via Simultaneous Multithreading,” ISCA 2000.

Rotenberg, "AR-SMT: A Microarchitectural Approach to Fault Tolerance
in Microprocessors,” FTCS 1999.

Sim. Redundant Threading vs. Lockstepping

SRT Advantages

+ No need to replicate the processor

+ Uses fine-grained idle FUs/cycles (due to dependencies, misses)
to execute the same program redundantly on the same processor

+ Lower hardware cost, better hardware utilization

Disadvantages

- More contention between redundant threads - higher
performance overhead (assuming unequal hardware)

- Requires changes to processor core for result comparison, value
communication

- Must carefully fetch & schedule instructions from threads
- Cannot easily detect hard (permanent) faults

10

Sphere of Replication

Logical boundary of redundant execution within a system

Need to replicate input data from outside of sphere of
replication to send to redundant threads

Need to compare and validate output before sending it out

of the sphere of replication
Sphere of Replication

Execution Execution E
Copy 1 Copy 2
K\“[Input }
Replication

[Rest of System }

11

Sphere of Replication in SRT

Fetch ~=—

PC

Cache

Instruction

\ 4

Decode

Register
Rename

Thread O

Thread 1

! [
i RUU , Fp
Fp A
Regs uUnits .
R1 « (R2) S
R3=R1 + RY 8
—R7* — Ld/St 7
Int. R§=R7=2 Units o)
Regs
i | Int.
Units
])

12

Input Replication

How to get the load data for redundant threads

o pair loads from redundant threads and access the cache when
oth are ready: too slow — threads fully synchronized

o allow both loads to probe cache separately: false alarms with
I/O or multiprocessors

Load Value Queue (LVQ)
0 pre-designated leading & trailing threads

add

orobe ca‘cfhe\load R1«(R2)

/P % add
load R1 « (R2)

sub

13

Output Comparison

o compare & validate at commit time

Store Store: ...
Queue

Store: ...
Store: ...

Output
Store: ... Comparison — To Data Cache
Store: R1 — (R2

How to handle cached vs. uncacheable loads
Stores now need to live longer to wait for trailing thread
Need to ensure matching trailing store can commit

SRT Pertormance Optimizations

= Many performance improvements possible by supplying results
from the leading thread to the trailing thread: branch outcomes,
instruction results, etc

= Mukherjee et al., “Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” ISCA 2002.

Sphere o! _R.cp_lication

e w.= Sphere of Replication

...................... -
Leading Thre Trailing Theead
i

Microprocessor
Pipeline 2

Qutput P W [G OO .- . N B WL
omparator Replicat omparator

Microprocessor

N ————

Microprocessor

Pipeline . Pipeline 2
Rest of the System pe Rest of the System Pipeline | Rest of the System o
(a) Simultaneous and Redundantly (b) Lockstepped Microprocessor (¢) Chip-Level Redundantly Threaded
Threaded Processor (SRT) Pipelines Processor (CRT)

15

Recommended Reading

= Mukherjee et al., “Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” ISCA 2002.
ABSTRACT

Exponential growth in the number of on-chip transistors, coupled
with reductions in voltage levels, makes each generation of
microprocessors increasingly vulnerable to transient faults. In a
multithreaded environment, we can detect these faults by running
mweo copies of the same program as separate threads, feeding them
identical inputs, and comparing their outputs, a technique we call
Redundant Multithreading (RMT).

This paper studies RMT techniques in the context of both single-
and dual-processor simultaneous multithreaded (SMT) single-chip
devices. Using a detailed, commercial-grade, SMT processor
design we uncover subtle RMT implementation complexities, and
find thatr RMT can be a more significant burden for single-
processor devices than prior studies indicate. However, a novel
application of RMT techniques in a dual-processor device, which
we term chip-level redundant threading (CRT), shows higher
performance than lockstepping the two cores, especiallv on
multithreaded workloads.

Branch Outcome Queue

BOQ

~ T ~

[_L_Fetch _H_DecndeH:Dispatch H Execute H Commit ‘

Jrel

_[Data Cache 1

17

Line Prediction Queue

= Line Prediction Queue
o Alpha 21464 fetches chunks using line predictions
o Chunk = contiguous block of 8 instructions

LPQ

[Fetch HDemdeHDispatchH Execute HCom mit]
sl

[_ Data Cache }

Handling of Permanent Faults via SRT

SRT uses time redundancy
o Is this enough for detecting permanent faults?
o Can SRT detect some permanent faults? How?

Can we incorporate explicit space redundancy into SRT?

Idea: Execute the same instruction on different resources in
an SMT engine

o Send instructions from different threads to different execution
units (when possible)

19

SRT Evaluation

SPEC CPU9S5, 15M instrs/thread

a Constrained by simulation environment
ao > 120M instrs for 4 redundant thread pairs

Eight-issue, four-context SMT CPU
o Based on Alpha 21464
o 128-entry instruction queue

o 64-entry load and store queues
Default: statically partitioned among active threads

o 22-stage pipeline
o 64KB 2-way assoc. L1 caches
o 3 MB 8-way assoc L2

20

Performance Overhead of SRT

®m SRT

m SRT + ptSQ

wr
&
=
©
=
G
't
©
o
©
2
©
O
o=

Performance degradation = 30% (and unavailable thread
context)

Per-thread store queue improves performance by 4%

21

Chip Level Redundant Threading

SRT typically more efficient than splitting one processor
into two half-size cores

What if you already have two cores?

Conceptually easy to run these in lock-step
o Benefit: full physical redundancy
o Costs:

Latency through centralized checker logic
Overheads (e.g., branch mispredictions) incurred twice

We can get both time redundancy and space redundancy if

we have multiple SMT cores
a SRT for CMPs

22

Chip Level Redundant Threading

E...
—»

Trailing
Thread A

Trailing
Thread B

Some Other Approaches to Transient Fault Tolerance

Austin, "DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

Qureshi et al., "Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

24

DIVA

Idea: Have a “functional checker” unit that checks the
correctness of the computation done in the "main
processor”

Austin, “"DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

Benefit: Main processor can be prone to faults or
sometimes incorrect (yet very fast)

How can checker keep up with the main processor?

o Verification of different instructions can be performed in
parallel (if an older one is incorrect all later instructions will be
flushed anyway)

25

DIVA (Austin, MICRO 1999)

TwoO cores

Traditional Out—of—-Order Core

out-of -order

execute
EX |
..{ nonspec
IF | ID|REN|—=} |R|O|B| ST
in-order in-order
issue retirement
DIVA Core DIVA Checker
- out-oforder | - |
| execute | | |
| =Xp |t |
| V_lipemecions |y |
'1iF|D|REN=] |R|O|B| Hemacumeees o lopk|er| |
| in-order | | in-order |
| iggue | | verify and commit |

26

DIVA Checker for One Instruction

CHKcomp pipeline RD CHK CT
<in5t,re5ult.,srcl,5rc2i__ E C ALU! read srcl check srcl WB result
- X’ M <guccess?s> AGEN}I check src2
P read src2 wait for or _
speculative | BR CHKcomp | €xception
computation <inst, result> - (T:
from DIVA read addr check addr WB result
core C LD read mem check mem | or
=|R | g exception
-:inst,result,srcl,srcz;r % K <BUCCEBS?>
read addr |[check addr ST mem
reg/mem bypass ST read st data |check st data | or
exception
CHKcomm pipeline
a) b)

Figure 2. A Dynamic Implementation Verification Architecture (DIVA). Figure a) illustrates the DIVA architecture and its interface to
the core processor. Figure b) details the DIVA CHKcomm pipeline operation for each instruction class.

27

A Selt-Tuned System using DIVA

insts to verify

DIVA Core

and commit

—

| DIVA
Checker

= clk’
— Vdd’

clk

core temperature ¢

EITor
rate

Vdd

-
-

Clock Gen
Voltage Gen

Figure 8. A Self-

In a self-tuned system [19], clock frequency and voltage

Tuned System. j.vels are tuned to the system operating environment, e.g.,

temperature. The approach minimizes timing and voltage
margins which can improve performance and reduce power
consumption. Using the DIVA checker, a self-tuned system
could be constructed by introducing a voltage and frequency
control system into the processor, as shown in Figure 8.
The control system decreases voltage and/or increases fre-
quency while monitoring system temperature and error rates
until the desired system performance-power characteristics
are attained. If the control system over steps the bounds of
correct operation in the core, the DIVA checker will correct
the error, reset the core processor, and notify the control
system. To ensure correct operation of the DIVA checker,
it is sourced by a fixed voltage and frequency that ensures
reliable operation under all operating conditions.

DIV A Discussion

= Upsides?

= Downsides?

29

Some Other Approaches to Transient Fault Tolerance

Austin, "DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

Qureshi et al., "Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

30

Microarchitecture Based Introspection

Idea: Use cache miss stall cycles to redundantly execute
the program instructions

Qureshi et al., "Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

Benefit: Redundant execution does not have high
performance overhead (when there are stall cycles)

Downside: What if there are no/few stall cycles?

31

Introspection

An example from the human domain:

IDLE || FORCED

PERFORM CHECK
ACTIONS ACTIONS
KEEP RECORD
PERFORM o -

DONE || IDLE

32

MBI (Qureshi+, DSN 2005)

Extending it to the microarchitecture domain:

L2-MISS || BUFFER-FULL

EXECUTE VERIFY
INSTRUCTIONS RESULTS

BACKLOG BUFFER

PERFORM - -

MISS—SERVICED || BUFFER-EMPTY

Microarchitecture-Based Introspection (MBI)

33

MBI Microarchitecture

LZCACHE < °Us = MEMORY
I CACHE | T = D CACHE =
1 MODE — g BACKLOG
- COMPARATOR BUFFER =
F E ":-? ‘)
L PROCESSOR PIPELINE T | PERF
T (VULNERABLE TO TRANSIENT FAULTS) 1 | ARF ERROR
C 3 F— - ~TAIL-PTR
H £ | ARF

Figure 3. Microarchitecture support for MBI.

34

Performance Impact of MBI

TIV-DAY
Hfrfr..f. NH W-HOTH- DAY

..;c
N N (N N N N

o
"

&
S
LOW-MEM CATEGORY

HIGH-MEM CATEGORY

S0
45

= sy = e = Lal] =
o - -l — —

Odl W Uonanpay

Figure 4. IPC reduction due to the MBI mechanism.

35

Food for Thought

Do you need to check that the result of every instruction is
correct?

Do you need to check that the result of any instruction is
correct?

What do you really need to check for to ensure correct
operation?

Soft errors?

Hard errors?

36

Other Uses of Multithreading

MT tor Exception Handling

= Exceptions cause overhead (especially if handled in software)

= Some exceptions are recoverable from (TLB miss, unaligned
access, emulated instructions)

= Pipe flushes due to exceptions reduce thread performance

EXCEPTION DETECTED
eJeXicePt RPPLEAT postEXcHpT[AdPLICATIdN
SQUASH THE EXCEPTION AND POST-EXCEPTION INSTRUCTIONS
hﬂﬂﬂﬂﬁﬂﬂﬂﬂ

FETCH/EXECUTE EXCEPTION HANDLER
E{EXICE PPLICATI

REFETCH APPLICATION CODE

__PRE{EXCEPT APPLICATION POSTEXCHPTJARF

DYNAMIC INSTRUCTION STREA V] m——]- —

MT for Exception Handling

Cost of software TLB miss handling

Zilles et al., "The use of multithreading for exception
handling,” MICRO 1999.

45

= 3 STAGE
7 STAGE
40 11 STAGE |

[}
N

2
=

]
N

!
(=]

Y
n

penalty cycles per TLB miss

-
o=

N

ALPHADOOM COMPRESS Gcc MURPHI AVERAGE
APPLU DELTABLUE HYDROZ2D VORTEX

39

MT for Exception Handling

= Observation:

o The same application instructions are executed in the same
order INDEPENDENT of the exception handler’s execution

o The data dependences between the thread and exception
handler are minimal

= Idea: Execute the exception handler in a separate thread
context; ensure appearance of sequential execution

THREAD

#1 EEEEIEEEEEIEEEEIEMEEM

4o |EXCPRARDEER] - .

40

MT for Exception Handling

Better than pure software, not as good as pure hardware

handling

40

35

penalty cycles per TLB miss
s o 38 & 8

o

TRADITIOMNAL
MULTITHREAD- 1
MULTITHREAD-3
HARDWARE
ALPHADOOM COMPRESS Gcce MURPHI AVERAGE
APPLU DELTABLUE HYDROZ2D VORTEX

41

Why These Uses?

What benefit of multithreading hardware enables them?

Ability to communicate/synchronize with very low latency
between threads

o Enabled by proximity of threads in hardware
o Multi-core has higher latency to achieve this

42

Helper Threading for Prefetching

Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

o Only need to distill pieces that lead to cache misses

Speculative thread: Pre-executed program piece can be
considered a “thread”

Speculative thread can be executed

On a separate processor/core

On a separate hardware thread context

On the same thread context in idle cycles (during cache misses)

43

Helper Threading for Prefetching

How to construct the speculative thread:
o Software based pruning and “spawn” instructions
o Hardware based pruning and “spawn” instructions

o Use the original program (no construction), but
Execute it faster without stalling and correctness constraints

Speculative thread
o Needs to discover misses before the main program
Avoid waiting/stalling and/or compute less

o To get ahead, uses

Branch prediction, value prediction, only address generation
computation

44

Generalized Thread-Based Pre-Execution

= Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

fork

prediction

= Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999,

BRANCH

= Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
speedup 2001.

45

Thread-Based Pre-Execution Issues

Where to execute the precomputation thread?
1. Separate core (least contention with main thread)
2. Separate thread context on the same core (more contention)
3. Same core, same context
When the main thread is stalled

When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load
How far ahead?

0 Too early: prefetch might not be needed
0 Too late: prefetch might not be timely

2. When the main thread is stalled

When to terminate the precomputation thread?
1. With pre-inserted CANCEL instructions
2. Based on effectiveness/contention feedback

46

