
Computer Architecture:

Multithreading (III)

Prof. Onur Mutlu

Carnegie Mellon University

A Note on This Lecture

 These slides are partly from 18-742 Fall 2012, Parallel
Computer Architecture, Lecture 13: Multithreading III

 Video of that lecture:

 http://www.youtube.com/watch?v=7vkDpZ1-
hHM&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=13

2

http://www.youtube.com/watch?v=7vkDpZ1-hHM&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=13

Other Uses of Multithreading

Now that We Have MT Hardware …

 … what else can we use it for?

 Redundant execution to tolerate soft (and hard?) errors

 Implicit parallelization: thread level speculation

 Slipstream processors

 Leader-follower architectures

 Helper threading

 Prefetching

 Branch prediction

 Exception handling
4

SMT for Transient Fault Detection

 Transient faults: Faults that persist for a “short” duration

 Also called “soft errors”

 Caused by cosmic rays (e.g., neutrons)

 Leads to transient changes in wires and state (e.g., 01)

 Solution

 no practical absorbent for cosmic rays

 1 fault per 1000 computers per year (estimated fault rate)

 Fault rate likely to increase in the feature

 smaller feature size

 reduced voltage

 higher transistor count

 reduced noise margin
5

Need for Low-Cost Transient Fault Tolerance

 The rate of transient faults is expected to increase
significantly Processors will need some form of fault

tolerance.

 However, different applications have different reliability
requirements (e.g. server-apps vs. games) Users who do

not require high reliability may not want to pay the
overhead.

 Fault tolerance mechanisms with low hardware cost are
attractive because they allow the designs to be used for a
wide variety of applications.

6

Traditional Mechanisms for Transient Fault Detection

 Storage structures

 Space redundancy via parity or ECC

 Overhead of additional storage and operations can be high in
time-critical paths

 Logic structures

 Space redundancy: replicate and compare

 Time redundancy: re-execute and compare

 Space redundancy has high hardware overhead.

 Time redundancy has low hardware overhead but high
performance overhead.

 What additional benefit does space redundancy have?

7

Lockstepping (Tandem, Compaq Himalaya)

 Idea: Replicate the processor, compare the results of two
processors before committing an instruction

8

R1 (R2)

Input

Replication

Output

Comparison

Memory covered by ECC

RAID array covered by parity

Servernet covered by CRC

R1 (R2)

microprocessor microprocessor

Transient Fault Detection with SMT (SRT)

 Idea: Replicate the threads, compare outputs before
committing an instruction

 Reinhardt and Mukherjee, “Transient Fault Detection
via Simultaneous Multithreading,” ISCA 2000.

 Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance
in Microprocessors,” FTCS 1999.

9

R1 (R2)

Input

Replication

Output

Comparison

Memory covered by ECC

RAID array covered by parity

Servernet covered by CRC

R1 (R2)

THREAD THREAD

Sim. Redundant Threading vs. Lockstepping
 SRT Advantages

+ No need to replicate the processor

+ Uses fine-grained idle FUs/cycles (due to dependencies, misses)
to execute the same program redundantly on the same processor

+ Lower hardware cost, better hardware utilization

 Disadvantages

- More contention between redundant threads higher

performance overhead (assuming unequal hardware)

- Requires changes to processor core for result comparison, value
communication

- Must carefully fetch & schedule instructions from threads

- Cannot easily detect hard (permanent) faults

10

Sphere of Replication

 Logical boundary of redundant execution within a system

 Need to replicate input data from outside of sphere of
replication to send to redundant threads

 Need to compare and validate output before sending it out
of the sphere of replication

11

Rest of System

Sphere of Replication

Output

Compariso

n

Input

Replication

Execution

Copy 1

Execution

Copy 2

Sphere of Replication in SRT

12

Fetch PC

Instruction

Cache

Decode Register
Rename

Fp
Regs

Int .
Regs

Fp
Units

Ld /St
Units

Int .
Units

Thread 0

Thread 1

R1 (R2)

R1 (R2)

R3 = R1 + R7

R8 = R7 * 2

RUU

Input Replication

 How to get the load data for redundant threads
 pair loads from redundant threads and access the cache when

both are ready: too slow – threads fully synchronized

 allow both loads to probe cache separately: false alarms with
I/O or multiprocessors

 Load Value Queue (LVQ)

 pre-designated leading & trailing threads

13

add

load R1(R2)

sub
add

load R1 (R2)

sub

probe cache

LVQ

Output Comparison

 <address, data> for stores from redundant threads
 compare & validate at commit time

 How to handle cached vs. uncacheable loads

 Stores now need to live longer to wait for trailing thread

 Need to ensure matching trailing store can commit

14

Store: ...

Store: R1 (R2)
Store: ...

Store: R1 (R2)
Store: ...
Store: ...

Store: ...Store

Queue

Output

Comparison To Data Cache

SRT Performance Optimizations

 Many performance improvements possible by supplying results
from the leading thread to the trailing thread: branch outcomes,
instruction results, etc

 Mukherjee et al., “Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” ISCA 2002.

15

Recommended Reading

16

 Mukherjee et al., “Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” ISCA 2002.

Branch Outcome Queue

17

Line Prediction Queue

 Line Prediction Queue

 Alpha 21464 fetches chunks using line predictions

 Chunk = contiguous block of 8 instructions

18

Handling of Permanent Faults via SRT

 SRT uses time redundancy

 Is this enough for detecting permanent faults?

 Can SRT detect some permanent faults? How?

 Can we incorporate explicit space redundancy into SRT?

 Idea: Execute the same instruction on different resources in
an SMT engine

 Send instructions from different threads to different execution
units (when possible)

19

SRT Evaluation

 SPEC CPU95, 15M instrs/thread

 Constrained by simulation environment

 120M instrs for 4 redundant thread pairs

 Eight-issue, four-context SMT CPU

 Based on Alpha 21464

 128-entry instruction queue

 64-entry load and store queues

 Default: statically partitioned among active threads

 22-stage pipeline

 64KB 2-way assoc. L1 caches

 3 MB 8-way assoc L2

20

Performance Overhead of SRT

 Performance degradation = 30% (and unavailable thread
context)

 Per-thread store queue improves performance by 4%

21

Chip Level Redundant Threading

 SRT typically more efficient than splitting one processor
into two half-size cores

 What if you already have two cores?

 Conceptually easy to run these in lock-step

 Benefit: full physical redundancy

 Costs:

 Latency through centralized checker logic

 Overheads (e.g., branch mispredictions) incurred twice

 We can get both time redundancy and space redundancy if
we have multiple SMT cores

 SRT for CMPs

22

Chip Level Redundant Threading

23

Some Other Approaches to Transient Fault Tolerance

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

24

DIVA

 Idea: Have a “functional checker” unit that checks the
correctness of the computation done in the “main
processor”

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Benefit: Main processor can be prone to faults or
sometimes incorrect (yet very fast)

 How can checker keep up with the main processor?

 Verification of different instructions can be performed in
parallel (if an older one is incorrect all later instructions will be
flushed anyway)

25

DIVA (Austin, MICRO 1999)

 Two cores

26

DIVA Checker for One Instruction

27

A Self-Tuned System using DIVA

28

DIVA Discussion

 Upsides?

 Downsides?

29

Some Other Approaches to Transient Fault Tolerance

 Austin, “DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design,” MICRO 1999.

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

30

Microarchitecture Based Introspection

 Idea: Use cache miss stall cycles to redundantly execute
the program instructions

 Qureshi et al., “Microarchitecture-Based Introspection: A
Technique for Transient-Fault Tolerance in
Microprocessors,” DSN 2005.

 Benefit: Redundant execution does not have high
performance overhead (when there are stall cycles)

 Downside: What if there are no/few stall cycles?

31

Introspection

32

MBI (Qureshi+, DSN 2005)

33

MBI Microarchitecture

34

Performance Impact of MBI

35

Food for Thought

 Do you need to check that the result of every instruction is
correct?

 Do you need to check that the result of any instruction is
correct?

 What do you really need to check for to ensure correct
operation?

 Soft errors?

 Hard errors?

36

Other Uses of Multithreading

MT for Exception Handling

 Exceptions cause overhead (especially if handled in software)

 Some exceptions are recoverable from (TLB miss, unaligned
access, emulated instructions)

 Pipe flushes due to exceptions reduce thread performance

38

MT for Exception Handling

 Cost of software TLB miss handling

 Zilles et al., “The use of multithreading for exception
handling,” MICRO 1999.

39

MT for Exception Handling

 Observation:

 The same application instructions are executed in the same
order INDEPENDENT of the exception handler’s execution

 The data dependences between the thread and exception
handler are minimal

 Idea: Execute the exception handler in a separate thread
context; ensure appearance of sequential execution

40

MT for Exception Handling

 Better than pure software, not as good as pure hardware
handling

41

Why These Uses?

 What benefit of multithreading hardware enables them?

 Ability to communicate/synchronize with very low latency
between threads

 Enabled by proximity of threads in hardware

 Multi-core has higher latency to achieve this

42

Helper Threading for Prefetching

 Idea: Pre-execute a piece of the (pruned) program solely
for prefetching data

 Only need to distill pieces that lead to cache misses

 Speculative thread: Pre-executed program piece can be
considered a “thread”

 Speculative thread can be executed

 On a separate processor/core

 On a separate hardware thread context

 On the same thread context in idle cycles (during cache misses)

43

Helper Threading for Prefetching

 How to construct the speculative thread:

 Software based pruning and “spawn” instructions

 Hardware based pruning and “spawn” instructions

 Use the original program (no construction), but

 Execute it faster without stalling and correctness constraints

 Speculative thread

 Needs to discover misses before the main program

 Avoid waiting/stalling and/or compute less

 To get ahead, uses

 Branch prediction, value prediction, only address generation
computation

44

Generalized Thread-Based Pre-Execution

 Dubois and Song, “Assisted
Execution,” USC Tech
Report 1998.

 Chappell et al.,
“Simultaneous Subordinate
Microthreading (SSMT),”
ISCA 1999.

 Zilles and Sohi, “Execution-
based Prediction Using
Speculative Slices”, ISCA
2001.

45

Thread-Based Pre-Execution Issues

 Where to execute the precomputation thread?

1. Separate core (least contention with main thread)

2. Separate thread context on the same core (more contention)

3. Same core, same context

 When the main thread is stalled

 When to spawn the precomputation thread?

1. Insert spawn instructions well before the “problem” load

 How far ahead?

 Too early: prefetch might not be needed

 Too late: prefetch might not be timely

2. When the main thread is stalled

 When to terminate the precomputation thread?

1. With pre-inserted CANCEL instructions

2. Based on effectiveness/contention feedback

46

