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A Note on This Lecture 

 These slides are partly from 18-742 Fall 2012, Parallel 
Computer Architecture, Lecture 10: Multithreading II 

 

 Video of that lecture: 

 http://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkX
mh4cDkC3s1VBB7-njlgiG5d&index=10  
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More Multithreading 
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Readings: Multithreading 
 Required 

 Spracklen and Abraham, “Chip Multithreading: Opportunities and 
Challenges,” HPCA Industrial Session, 2005.  

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an 
implementable simultaneous multithreading processor,” ISCA 1996. 

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for 
SMT Processors,” HPCA 2007. 

 

 Recommended 

 Hirata et al., “An Elementary Processor Architecture with Simultaneous 
Instruction Issuing from Multiple Threads,” ISCA 1992 

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978. 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA 
1990. 
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Review: Fine-grained vs. Coarse-grained MT 

 Fine-grained advantages 

+ Simpler to implement, can eliminate dependency checking, 
branch prediction logic completely 

+ Switching need not have any performance overhead (i.e. dead 
cycles) 

 + Coarse-grained requires a pipeline flush or a lot of hardware   
  to save pipeline state  

   Higher performance overhead with deep pipelines and  

     large windows 

 

 Disadvantages 

- Low single thread performance: each thread gets 1/Nth of the 
bandwidth of the pipeline 
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IBM RS64-IV 

 4-way superscalar, in-order, 5-stage pipeline 

 Two hardware contexts 

 On an L2 cache miss 

 Flush pipeline 

 Switch to the other thread 

 

 Considerations 

 Memory latency vs. thread switch overhead 

 Short pipeline, in-order execution (small instruction window) 
reduces the overhead of switching 
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Intel Montecito 
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium 

Processor,” IEEE Micro 2005. 

 

 

 

 

 

 

 Thread switch on 

 L3 cache miss/data return 

 Timeout – for fairness 

 Switch hint instruction 

 ALAT invalidation – synchronization fault 

 Transition to low power mode 

 <2% area overhead due to CGMT 
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Fairness in Coarse-grained Multithreading 

 Resource sharing in space and time always causes fairness 
considerations 

 Fairness: how much progress each thread makes  

 

 In CGMT, the time allocated to each thread affects both 
fairness and system throughput 

 When do we switch? 

 For how long do we switch? 

 When do we switch back? 

 How does the hardware scheduler interact with the software 
scheduler for fairness? 

 What is the switching overhead vs. benefit?  

 Where do we store the contexts? 
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Fairness in Coarse-grained Multithreading 

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,” 
MICRO 2006. 

 How can you solve the below problem? 
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Fairness vs. Throughput 

 Switch not only on miss, but also on data return 

 

 Problem: Switching has performance overhead 

 Pipeline and window flush 

 Reduced locality and increased resource contention (frequent 
switches increase resource contention and reduce locality) 

 

 One possible solution 

 Estimate the slowdown of each thread compared to when run 
alone 

 Enforce switching when slowdowns become significantly 
unbalanced  

 Gabor et al., “Fairness and Throughput in Switch on Event 
Multithreading,” MICRO 2006. 

 10 



Thread Switching Urgency in Montecito 

 Thread urgency levels 

 0-7 

 

 Nominal level 5: active progress 

 After timeout: set to 7 

 After ext. interrupt: set to 6 

 

 Reduce urgency level for each 
blocking operation 

 L3 miss 

 

 Switch if urgency of foreground 
lower than that of background 
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Simultaneous Multithreading 

 Fine-grained and coarse-grained multithreading can start 
execution of instructions from only a single thread at a 
given cycle 

 Execution unit (or pipeline stage) utilization can be low if 
there are not enough instructions from a thread to 
“dispatch” in one cycle 

 In a machine with multiple execution units (i.e., superscalar) 
 

 Idea: Dispatch instructions from multiple threads in the 
same cycle (to keep multiple execution units utilized)  
 Hirata et al., “An Elementary Processor Architecture with Simultaneous 

Instruction Issuing from Multiple Threads,” ISCA 1992. 

 Yamamoto et al., “Performance Estimation of Multistreamed, Superscalar 
Processors,” HICSS 1994. 

 Tullsen et al., “Simultaneous Multithreading: Maximizing On-Chip 
Parallelism,” ISCA 1995. 
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Functional Unit Utilization 

 

 

 

 

 

 

 Data dependencies reduce functional unit utilization in 
pipelined processors 
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Functional Unit Utilization in Superscalar 

 

 

 

 

 

 

 

 

 

 

 Functional unit utilization becomes lower in superscalar, 
OoO machines. Finding 4 instructions in parallel is not 
always possible 
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Predicated Execution 

 

 

 

 

 

 

 

 

 

 

 Idea: Convert control dependencies into data dependencies 

 Improves FU utilization, but some results are thrown away 
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Chip Multiprocessor 

 

 

 

 

 

 

 

 

 
 

 Idea: Partition functional units across cores 

 Still limited FU utilization within a single thread; limited 
single-thread performance 
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Fine-grained Multithreading 

 

 

 

 

 

 

 

 

 

 

 Still low utilization due to intra-thread dependencies 

 Single thread performance suffers 
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Simultaneous Multithreading 

 

 

 

 

 

 

 

 

 

 

 Idea: Utilize functional units with independent operations 
from the same or different threads 
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Horizontal vs. Vertical Waste 

 

 

 

 

 

 

 

 

 

 

 Why is there horizontal and vertical waste? 

 How do you reduce each? 
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Simultaneous Multithreading 

 Reduces both horizontal and vertical waste 

 Required hardware 

 The ability to dispatch instructions from multiple threads 
simultaneously into different functional units 

 

 Superscalar, OoO processors already have this machinery 

 Dynamic instruction scheduler searches the scheduling 
window to wake up and select ready instructions 

 As long as dependencies are correctly tracked (via renaming 
and memory disambiguation), scheduler can be thread-
agnostic 
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Basic Superscalar OoO Pipeline 
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SMT Pipeline 

 Physical register file needs to become larger. Why? 
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Changes to Pipeline for SMT 

 Replicated resources 

 Program counter 

 Register map 

 Return address stack 

 Global history register 
 

 Shared resources 

 Register file (size increased) 

 Instruction queue (scheduler) 

 First and second level caches 

 Translation lookaside buffers 

 Branch predictor 
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Changes to OoO+SS Pipeline for SMT 
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Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable 
Simultaneous Multithreading Processor,” ISCA 1996. 
 



SMT Scalability 

 Diminishing returns from more threads. Why? 
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SMT Design Considerations 

 Fetch and prioritization policies 

 Which thread to fetch from? 
 

 Shared resource allocation policies 

 How to prevent starvation? 

 How to maximize throughput? 

 How to provide fairness/QoS? 

 Free-for-all vs. partitioned 
 

 How to measure performance 

 Is total IPC across all threads the right metric? 
 

 How to select threads to co-schedule  

 Snavely and Tullsen, “Symbiotic Jobscheduling for a 
Simultaneous Multithreading Processor,” ASPLOS 2000. 
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Which Thread to Fetch From? 

 (Somewhat) Static policies 

 Round-robin 

 8 instructions from one thread 

 4 instructions from two threads 

 2 instructions from four threads 

 … 

 

 Dynamic policies 

 Favor threads with minimal in-flight branches 

 Favor threads with minimal outstanding misses 

 Favor threads with minimal in-flight instructions 

 … 
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Which Instruction to Select/Dispatch? 

 Can be thread agnostic. 

 Why? 
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SMT Fetch Policies (I)  

 Round robin: Fetch from a different thread each cycle 

 Does not work well in practice. Why? 

 

 Instructions from slow threads hog the pipeline and block 
the instruction window  

 E.g., a thread with long-latency cache miss (L2 miss) fills up 
the window with its instructions 

 Once window is full, no other thread can issue and execute 
instructions and the entire core stalls 
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SMT Fetch Policies (II) 

 ICOUNT: Fetch from thread with the least instructions in 
the earlier pipeline stages (before execution) 

 

 

 

 

 

 

 

 

 

 Why does this improve throughput? 
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SMT ICOUNT Fetch Policy 

 Favors faster threads that have few instructions waiting 

 

 Advantages over round robin 

+ Allows faster threads to make more progress (before threads 
with long-latency instructions block the window fast) 

 + Higher IPC throughput 

 

 Disadvantages over round robin 

- Is this fair? 

- Prone to short-term starvation: Need additional methods to 
ensure starvation freedom 
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Some Results on Fetch Policy 
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Handling Long Latency Loads 

 Long-latency (L2/L3 miss) loads are a problem in a single-threaded 
processor 

 Block instruction/scheduling windows and cause the processor to stall 

 In SMT, a long-latency load instruction can block the window for ALL 
threads 

 i.e. reduce the memory latency tolerance benefits of SMT 

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous 
Multithreading Processor,” MICRO 2001. 
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Proposed Solutions to Long-Latency Loads 

 Idea: Flush the thread that incurs an L2 cache miss 

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous Multithreading 
Processor,” MICRO 2001. 

 

 Idea: Predict load miss on fetch and do not insert following instructions from 
that thread into the scheduler 

 El-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency in SMT 
Processors,” HPCA 2003. 

 

 Idea: Partition the shared resources among threads so that a thread’s long-
latency load does not affect another 

 Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT Processors,” 
PACT 2003. 

 

 Idea: Predict if (and how much) a thread has MLP when it incurs a cache miss; 
flush the thread after its MLP is exploited 

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for SMT 
Processors,” HPCA 2007. 
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MLP-Aware Fetch Policies 
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Eyerman and Eeckhout, “A Memory-Level 
Parallelism Aware Fetch Policy for SMT 
Processors,” HPCA 2007. 

 



More Results … 
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Runahead Threads 

 Idea: Use runahead execution on a long-latency load 

+ Improves both single thread and multi-thread performance  

 Ramirez et al., “Runahead Threads to Improve SMT 
Performance,” HPCA 2008. 
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Doing Even Better 

 Predict whether runahead will do well 

 If so, runahead on thread until runahead becomes useless 

 Else, exploit and flush thread 

 

 Ramirez et al., “Efficient Runahead Threads,” PACT 2010. 

 Van Craeynest et al., “MLP-Aware Runahead Threads in a 
Simultaneous Multithreading Processor,” HiPEAC 2009. 
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Commercial SMT Implementations 

 Intel Pentium 4 (Hyperthreading) 

 IBM POWER5 

 Intel Nehalem 

 … 

39 



SMT in IBM POWER5 

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 
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IBM POWER5 HW Thread Priority Support 

 Adjust decode cycles 
dedicated to thread based 
on priority level 

 

 Why? 

 A thread is in a spin loop 
waiting for a lock 

 A thread has no 
immediate work to do and 
is waiting in an idle loop 

 One application is more 
important than another 
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IBM POWER5 Thread Throttling 

 Throttle under two conditions: 

 Resource-balancing logic detects the point at which a thread 
reaches a threshold of load misses in the L2 cache and 
translation misses in the TLB.  

 Resource-balancing logic detects that one thread is beginning 
to use too many GCT (i.e., reorder buffer) entries. 

 

 Throttling mechanisms: 

 Reduce the priority of the thread 

 Inhibit the instruction decoding of the thread until the 
congestion clears 

 Flush all of the thread’s instructions that are waiting for 
dispatch and stop the thread from decoding additional 
instructions until the congestion clears 
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Intel Pentium 4 Hyperthreading 
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Intel Pentium 4 Hyperthreading 

 Long latency load handling 

 Multi-level scheduling window 

 

 More partitioned structures 

 I-TLB 

 Instruction Queues 

 Store buffer 

 Reorder buffer 

 

 5% area overhead due to SMT 

 

 Marr et al., “Hyper-Threading Technology Architecture and 
Microarchitecture,” Intel Technology Journal 2002. 
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Other Uses of Multithreading 

 

 

 

 

 



Now that We Have MT Hardware …  

 … what else can we use it for? 

 

 Redundant execution to tolerate soft (and hard?) errors 

 

 Implicit parallelization: thread level speculation 

 Slipstream processors 

 Leader-follower architectures 

 

 Helper threading  

 Prefetching 

 Branch prediction 

 

 Exception handling 
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