
Computer Architecture:

Multithreading (II)

Prof. Onur Mutlu

Carnegie Mellon University

A Note on This Lecture

 These slides are partly from 18-742 Fall 2012, Parallel
Computer Architecture, Lecture 10: Multithreading II

 Video of that lecture:

 http://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkX
mh4cDkC3s1VBB7-njlgiG5d&index=10

2

http://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=10
http://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=10
http://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=10
http://www.youtube.com/watch?v=e8lfl6MbILg&list=PL5PHm2jkkXmh4cDkC3s1VBB7-njlgiG5d&index=10

More Multithreading

3

Readings: Multithreading
 Required

 Spracklen and Abraham, “Chip Multithreading: Opportunities and
Challenges,” HPCA Industrial Session, 2005.

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

 Tullsen et al., “Exploiting choice: instruction fetch and issue on an
implementable simultaneous multithreading processor,” ISCA 1996.

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for
SMT Processors,” HPCA 2007.

 Recommended

 Hirata et al., “An Elementary Processor Architecture with Simultaneous
Instruction Issuing from Multiple Threads,” ISCA 1992

 Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 Agarwal et al., “APRIL: A Processor Architecture for Multiprocessing,” ISCA
1990.

4

Review: Fine-grained vs. Coarse-grained MT

 Fine-grained advantages

+ Simpler to implement, can eliminate dependency checking,
branch prediction logic completely

+ Switching need not have any performance overhead (i.e. dead
cycles)

 + Coarse-grained requires a pipeline flush or a lot of hardware
 to save pipeline state

 Higher performance overhead with deep pipelines and

 large windows

 Disadvantages

- Low single thread performance: each thread gets 1/Nth of the
bandwidth of the pipeline

 5

IBM RS64-IV

 4-way superscalar, in-order, 5-stage pipeline

 Two hardware contexts

 On an L2 cache miss

 Flush pipeline

 Switch to the other thread

 Considerations

 Memory latency vs. thread switch overhead

 Short pipeline, in-order execution (small instruction window)
reduces the overhead of switching

6

Intel Montecito
 McNairy and Bhatia, “Montecito: A Dual-Core, Dual-Thread Itanium

Processor,” IEEE Micro 2005.

 Thread switch on

 L3 cache miss/data return

 Timeout – for fairness

 Switch hint instruction

 ALAT invalidation – synchronization fault

 Transition to low power mode

 <2% area overhead due to CGMT

7

Fairness in Coarse-grained Multithreading

 Resource sharing in space and time always causes fairness
considerations

 Fairness: how much progress each thread makes

 In CGMT, the time allocated to each thread affects both
fairness and system throughput

 When do we switch?

 For how long do we switch?

 When do we switch back?

 How does the hardware scheduler interact with the software
scheduler for fairness?

 What is the switching overhead vs. benefit?

 Where do we store the contexts?

8

Fairness in Coarse-grained Multithreading

 Gabor et al., “Fairness and Throughput in Switch on Event Multithreading,”
MICRO 2006.

 How can you solve the below problem?

9

Fairness vs. Throughput

 Switch not only on miss, but also on data return

 Problem: Switching has performance overhead

 Pipeline and window flush

 Reduced locality and increased resource contention (frequent
switches increase resource contention and reduce locality)

 One possible solution

 Estimate the slowdown of each thread compared to when run
alone

 Enforce switching when slowdowns become significantly
unbalanced

 Gabor et al., “Fairness and Throughput in Switch on Event
Multithreading,” MICRO 2006.

 10

Thread Switching Urgency in Montecito

 Thread urgency levels

 0-7

 Nominal level 5: active progress

 After timeout: set to 7

 After ext. interrupt: set to 6

 Reduce urgency level for each
blocking operation

 L3 miss

 Switch if urgency of foreground
lower than that of background

11

Simultaneous Multithreading

 Fine-grained and coarse-grained multithreading can start
execution of instructions from only a single thread at a
given cycle

 Execution unit (or pipeline stage) utilization can be low if
there are not enough instructions from a thread to
“dispatch” in one cycle

 In a machine with multiple execution units (i.e., superscalar)

 Idea: Dispatch instructions from multiple threads in the
same cycle (to keep multiple execution units utilized)
 Hirata et al., “An Elementary Processor Architecture with Simultaneous

Instruction Issuing from Multiple Threads,” ISCA 1992.

 Yamamoto et al., “Performance Estimation of Multistreamed, Superscalar
Processors,” HICSS 1994.

 Tullsen et al., “Simultaneous Multithreading: Maximizing On-Chip
Parallelism,” ISCA 1995.

 12

Functional Unit Utilization

 Data dependencies reduce functional unit utilization in
pipelined processors

13

Time

Functional Unit Utilization in Superscalar

 Functional unit utilization becomes lower in superscalar,
OoO machines. Finding 4 instructions in parallel is not
always possible

14

Time

Predicated Execution

 Idea: Convert control dependencies into data dependencies

 Improves FU utilization, but some results are thrown away

15

Time

Chip Multiprocessor

 Idea: Partition functional units across cores

 Still limited FU utilization within a single thread; limited
single-thread performance

16

Time

Fine-grained Multithreading

 Still low utilization due to intra-thread dependencies

 Single thread performance suffers

17

Time

Simultaneous Multithreading

 Idea: Utilize functional units with independent operations
from the same or different threads

18

Time

Horizontal vs. Vertical Waste

 Why is there horizontal and vertical waste?

 How do you reduce each?
19 Slide from Joel Emer

Simultaneous Multithreading

 Reduces both horizontal and vertical waste

 Required hardware

 The ability to dispatch instructions from multiple threads
simultaneously into different functional units

 Superscalar, OoO processors already have this machinery

 Dynamic instruction scheduler searches the scheduling
window to wake up and select ready instructions

 As long as dependencies are correctly tracked (via renaming
and memory disambiguation), scheduler can be thread-
agnostic

20

Basic Superscalar OoO Pipeline

21

Fetch Decode

/Map

Queue Reg

Read

Execute Dcache/

Store

Buffer

Reg

Write

Retire

PC

Icache

Register

Map

Dcache
Regs Regs

Thread-

blind

SMT Pipeline

 Physical register file needs to become larger. Why?

22

Fetch Decode

/Map

Queue Reg

Read

Execute Dcache/

Store

Buffer

Reg

Write

Retire

Icache

Dcache

PC

Register

Map

Regs Regs

Changes to Pipeline for SMT

 Replicated resources

 Program counter

 Register map

 Return address stack

 Global history register

 Shared resources

 Register file (size increased)

 Instruction queue (scheduler)

 First and second level caches

 Translation lookaside buffers

 Branch predictor

 23

Changes to OoO+SS Pipeline for SMT

24

Tullsen et al., “Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor,” ISCA 1996.

SMT Scalability

 Diminishing returns from more threads. Why?

25

SMT Design Considerations

 Fetch and prioritization policies

 Which thread to fetch from?

 Shared resource allocation policies

 How to prevent starvation?

 How to maximize throughput?

 How to provide fairness/QoS?

 Free-for-all vs. partitioned

 How to measure performance

 Is total IPC across all threads the right metric?

 How to select threads to co-schedule

 Snavely and Tullsen, “Symbiotic Jobscheduling for a
Simultaneous Multithreading Processor,” ASPLOS 2000.

26

Which Thread to Fetch From?

 (Somewhat) Static policies

 Round-robin

 8 instructions from one thread

 4 instructions from two threads

 2 instructions from four threads

 …

 Dynamic policies

 Favor threads with minimal in-flight branches

 Favor threads with minimal outstanding misses

 Favor threads with minimal in-flight instructions

 …

27

Which Instruction to Select/Dispatch?

 Can be thread agnostic.

 Why?

28

SMT Fetch Policies (I)

 Round robin: Fetch from a different thread each cycle

 Does not work well in practice. Why?

 Instructions from slow threads hog the pipeline and block
the instruction window

 E.g., a thread with long-latency cache miss (L2 miss) fills up
the window with its instructions

 Once window is full, no other thread can issue and execute
instructions and the entire core stalls

29

SMT Fetch Policies (II)

 ICOUNT: Fetch from thread with the least instructions in
the earlier pipeline stages (before execution)

 Why does this improve throughput?

30 Slide from Joel Emer

SMT ICOUNT Fetch Policy

 Favors faster threads that have few instructions waiting

 Advantages over round robin

+ Allows faster threads to make more progress (before threads
with long-latency instructions block the window fast)

 + Higher IPC throughput

 Disadvantages over round robin

- Is this fair?

- Prone to short-term starvation: Need additional methods to
ensure starvation freedom

31

Some Results on Fetch Policy

32

Handling Long Latency Loads

 Long-latency (L2/L3 miss) loads are a problem in a single-threaded
processor

 Block instruction/scheduling windows and cause the processor to stall

 In SMT, a long-latency load instruction can block the window for ALL
threads

 i.e. reduce the memory latency tolerance benefits of SMT

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous
Multithreading Processor,” MICRO 2001.

33

Proposed Solutions to Long-Latency Loads

 Idea: Flush the thread that incurs an L2 cache miss

 Brown and Tullsen, “Handling Long-latency Loads in a Simultaneous Multithreading
Processor,” MICRO 2001.

 Idea: Predict load miss on fetch and do not insert following instructions from
that thread into the scheduler

 El-Moursy and Albonesi, “Front-End Policies for Improved Issue Efficiency in SMT
Processors,” HPCA 2003.

 Idea: Partition the shared resources among threads so that a thread’s long-
latency load does not affect another

 Raasch and Reinhardt, “The Impact of Resource Partitioning on SMT Processors,”
PACT 2003.

 Idea: Predict if (and how much) a thread has MLP when it incurs a cache miss;
flush the thread after its MLP is exploited

 Eyerman and Eeckhout, “A Memory-Level Parallelism Aware Fetch Policy for SMT
Processors,” HPCA 2007.

34

MLP-Aware Fetch Policies

35

Eyerman and Eeckhout, “A Memory-Level
Parallelism Aware Fetch Policy for SMT
Processors,” HPCA 2007.

More Results …

36

Runahead Threads

 Idea: Use runahead execution on a long-latency load

+ Improves both single thread and multi-thread performance

 Ramirez et al., “Runahead Threads to Improve SMT
Performance,” HPCA 2008.

37

Doing Even Better

 Predict whether runahead will do well

 If so, runahead on thread until runahead becomes useless

 Else, exploit and flush thread

 Ramirez et al., “Efficient Runahead Threads,” PACT 2010.

 Van Craeynest et al., “MLP-Aware Runahead Threads in a
Simultaneous Multithreading Processor,” HiPEAC 2009.

38

Commercial SMT Implementations

 Intel Pentium 4 (Hyperthreading)

 IBM POWER5

 Intel Nehalem

 …

39

SMT in IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

40

IBM POWER5 HW Thread Priority Support

 Adjust decode cycles
dedicated to thread based
on priority level

 Why?

 A thread is in a spin loop
waiting for a lock

 A thread has no
immediate work to do and
is waiting in an idle loop

 One application is more
important than another

41

IBM POWER5 Thread Throttling

 Throttle under two conditions:

 Resource-balancing logic detects the point at which a thread
reaches a threshold of load misses in the L2 cache and
translation misses in the TLB.

 Resource-balancing logic detects that one thread is beginning
to use too many GCT (i.e., reorder buffer) entries.

 Throttling mechanisms:

 Reduce the priority of the thread

 Inhibit the instruction decoding of the thread until the
congestion clears

 Flush all of the thread’s instructions that are waiting for
dispatch and stop the thread from decoding additional
instructions until the congestion clears

42

Intel Pentium 4 Hyperthreading

43

Intel Pentium 4 Hyperthreading

 Long latency load handling

 Multi-level scheduling window

 More partitioned structures

 I-TLB

 Instruction Queues

 Store buffer

 Reorder buffer

 5% area overhead due to SMT

 Marr et al., “Hyper-Threading Technology Architecture and
Microarchitecture,” Intel Technology Journal 2002.

44

Other Uses of Multithreading

Now that We Have MT Hardware …

 … what else can we use it for?

 Redundant execution to tolerate soft (and hard?) errors

 Implicit parallelization: thread level speculation

 Slipstream processors

 Leader-follower architectures

 Helper threading

 Prefetching

 Branch prediction

 Exception handling
46

