
Computer Architecture:
VLIW, DAE, Systolic Arrays

Prof. Onur Mutlu
Carnegie Mellon University

A Note on This Lecture
n  These slides are partly from 18-447 Spring 2013, Computer

Architecture, Lecture 20: GPUs, VLIW, DAE, Systolic Arrays

n  Video of the part related to only SIMD and GPUs:
q  http://www.youtube.com/watch?

v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
&index=20

2

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

n  Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

n  SISD: Single instruction operates on single data element
n  SIMD: Single instruction operates on multiple data elements

q  Array processor
q  Vector processor

n  MISD? Multiple instructions operate on single data element
q  Closest form: systolic array processor?

n  MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
q  Multiprocessor
q  Multithreaded processor

4

SISD Parallelism Extraction Techniques
n  We have already seen

q  Superscalar execution
q  Out-of-order execution

n  Are there simpler ways of extracting SISD parallelism?
q  VLIW (Very Long Instruction Word)
q  Decoupled Access/Execute

5

VLIW

VLIW (Very Long Instruction Word)
n  A very long instruction word consists of multiple

independent instructions packed together by the compiler
q  Packed instructions can be logically unrelated (contrast with

SIMD)

n  Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

n  Traditional Characteristics
q  Multiple functional units
q  Each instruction in a bundle executed in lock step
q  Instructions in a bundle statically aligned to be directly fed

into the functional units
7

VLIW Concept

n  Fisher, “Very Long Instruction Word architectures and the

ELI-512,” ISCA 1983.
q  ELI: Enormously longword instructions (512 bits)

8

SIMD Array Processing vs. VLIW
n  Array processor

9

VLIW Philosophy
n  Philosophy similar to RISC (simple instructions and hardware)

q  Except multiple instructions in parallel

n  RISC (John Cocke, 1970s, IBM 801 minicomputer)
q  Compiler does the hard work to translate high-level language

code to simple instructions (John Cocke: control signals)
n  And, to reorder simple instructions for high performance

q  Hardware does little translation/decoding à very simple

n  VLIW (Fisher, ISCA 1983)
q  Compiler does the hard work to find instruction level parallelism
q  Hardware stays as simple and streamlined as possible

n  Executes each instruction in a bundle in lock step
n  Simple à higher frequency, easier to design

10

VLIW Philosophy (II)

11 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines
n  Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n  Cydrome Cydra 5, Bob Rau
n  Transmeta Crusoe: x86 binary-translated into internal VLIW
n  TI C6000, Trimedia, STMicro (DSP & embedded processors)

q  Most successful commercially

n  Intel IA-64
q  Not fully VLIW, but based on VLIW principles
q  EPIC (Explicitly Parallel Instruction Computing)
q  Instruction bundles can have dependent instructions
q  A few bits in the instruction format specify explicitly which

instructions in the bundle are dependent on which other ones

12

VLIW Tradeoffs
n  Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to

different functional units à simple hardware

n  Disadvantages
-- Compiler needs to find N independent operations

 -- If it cannot, inserts NOPs in a VLIW instruction
 -- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
 -- No instruction can progress until the longest-latency instruction completes

 13

VLIW Summary
n  VLIW simplifies hardware, but requires complex compiler

techniques
n  Solely-compiler approach of VLIW has several downsides

that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

 -- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

q  Enable code optimizations

++ VLIW successful in embedded markets, e.g. DSP

14

DAE

Decoupled Access/Execute
n  Motivation: Tomasulo’s algorithm too complex to

implement
q  1980s before HPS, Pentium Pro

n  Idea: Decouple operand
 access and execution via
 two separate instruction
 streams that communicate
 via ISA-visible queues.

n  Smith, “Decoupled Access/Execute
 Computer Architectures,” ISCA 1982,
 ACM TOCS 1984.

16

Decoupled Access/Execute (II)
n  Compiler generates two instruction streams (A and E)

q  Synchronizes the two upon control flow instructions (using branch queues)

17

Decoupled Access/Execute (III)
n  Advantages:

+ Execute stream can run ahead of the access stream and vice
versa
 + If A takes a cache miss, E can perform useful work

 + If A hits in cache, it supplies data to lagging E
 + Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

n  Disadvantages:
 -- Compiler support to partition the program and manage queues

 -- Determines the amount of decoupling
 -- Branch instructions require synchronization between A and E
 -- Multiple instruction streams (can be done with a single one,
though)

18

Astronautics ZS-1
n  Single stream

steered into A and
X pipelines

n  Each pipeline in-
order

n  Smith et al., “The
ZS-1 central
processor,”
ASPLOS 1987.

n  Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

19

Astronautics ZS-1 Instruction Scheduling
n  Dynamic scheduling

q  A and X streams are issued/executed independently
q  Loads can bypass stores in the memory unit (if no conflict)
q  Branches executed early in the pipeline

n  To reduce synchronization penalty of A/X streams
n  Works only if the register a branch sources is available

n  Static scheduling
q  Move compare instructions as early as possible before a branch

n  So that branch source register is available when branch is decoded

q  Reorder code to expose parallelism in each stream
q  Loop unrolling:

n  Reduces branch count + exposes code reordering opportunities

20

Loop Unrolling

n  Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead

q  Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
q  Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
21

Systolic Arrays

22

Why Systolic Architectures?
n  Idea: Data flows from the computer memory in a rhythmic

fashion, passing through many processing elements before it
returns to memory

n  Similar to an assembly line
q  Different people work on the same car
q  Many cars are assembled simultaneously
q  Can be two-dimensional

n  Why? Special purpose accelerators/architectures need
q  Simple, regular designs (keep # unique parts small and regular)
q  High concurrency à high performance
q  Balanced computation and I/O (memory access)

23

Systolic Architectures
n  H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

24

Memory: heart
PEs: cells

Memory pulses
data through
cells

Systolic Architectures
n  Basic principle: Replace a single PE with a regular array of

PEs and carefully orchestrate flow of data between the PEs
à achieve high throughput w/o increasing memory
bandwidth requirements

n  Differences from pipelining:
q  Array structure can be non-linear and multi-dimensional
q  PE connections can be multidirectional (and different speed)
q  PEs can have local memory and execute kernels (rather than a

piece of the instruction)

25

Systolic Computation Example
n  Convolution

q  Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

q  Many image processing tasks

26

Systolic Computation Example: Convolution

n  y1 = w1x1 +
w2x2 + w3x3

n  y2 = w1x2 +
w2x3 + w3x4

n  y3 = w1x3 +
w2x4 + w3x5

27

Systolic Computation Example: Convolution

n  Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

28

n  Each PE in a systolic array
q  Can store multiple “weights”
q  Weights can be selected on the fly
q  Eases implementation of, e.g., adaptive filtering

n  Taken further
q  Each PE can have its own data and instruction memory
q  Data memory à to store partial/temporary results, constants
q  Leads to stream processing, pipeline parallelism

n  More generally, staged execution

29

More Programmability

Pipeline Parallelism

30

File Compression Example

31

Systolic Array
n  Advantages

q  Makes multiple uses of each data item à reduced need for
fetching/refetching

q  High concurrency
q  Regular design (both data and control flow)

n  Disadvantages
q  Not good at exploiting irregular parallelism
q  Relatively special purpose à need software, programmer

support to be a general purpose model

32

The WARP Computer
n  HT Kung, CMU, 1984-1988

n  Linear array of 10 cells, each cell a 10 Mflop programmable
processor

n  Attached to a general purpose host machine
n  HLL and optimizing compiler to program the systolic array
n  Used extensively to accelerate vision and robotics tasks

n  Annaratone et al., “Warp Architecture and Implementation,”
ISCA 1986.

n  Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

33

The WARP Computer

34

The WARP Computer

35

Systolic Arrays vs. SIMD
n  Food for thought…

36

Some More Recommended Readings
n  Recommended:

q  Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

q  Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

q  Russell, “The CRAY-1 computer system,” CACM 1978.
q  Rau and Fisher, “Instruction-level parallel processing: history,

overview, and perspective,” Journal of Supercomputing, 1993.
q  Faraboschi et al., “Instruction Scheduling for Instruction Level

Parallel Processors,” Proc. IEEE, Nov. 2001.

37

