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A Note on This Lecture 
n  These slides are from 18-742 Fall 2012, Parallel Computer 

Architecture, Lecture 22: Dataflow I  

n  Video: 
n  http://www.youtube.com/watch?

v=D2uue7izU2c&list=PL5PHm2jkkXmh4cDkC3s1VBB7-
njlgiG5d&index=19 
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Some Required Dataflow Readings 
n  Dataflow at the ISA level 

q  Dennis and Misunas, “A Preliminary Architecture for a Basic Data 
Flow Processor,” ISCA 1974. 

q  Arvind and Nikhil, “Executing a Program on the MIT Tagged-
Token Dataflow Architecture,” IEEE TC 1990. 

n  Restricted Dataflow 
q  Patt et al., “HPS, a new microarchitecture: rationale and 

introduction,” MICRO 1985. 
q  Patt et al., “Critical issues regarding HPS, a high performance 

microarchitecture,” MICRO 1985. 
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Other Related Recommended Readings 
n  Dataflow 

n  Gurd et al., “The Manchester prototype dataflow computer,” 
CACM 1985. 

n  Lee and Hurson, “Dataflow Architectures and Multithreading,” 
IEEE Computer 1994. 

 

n  Restricted Dataflow 
q  Sankaralingam et al., “Exploiting ILP, TLP and DLP with the 

Polymorphous TRIPS Architecture,” ISCA 2003. 
q  Burger et al., “Scaling to the End of Silicon with EDGE 

Architectures,” IEEE Computer 2004.  
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Today 
n  Start Dataflow  
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Data Flow 

 
 
 
 
 



Readings: Data Flow (I) 
n  Dennis and Misunas, “A Preliminary Architecture for a Basic 

Data Flow Processor,” ISCA 1974. 
n  Treleaven et al., “Data-Driven and Demand-Driven 

Computer Architecture,” ACM Computing Surveys 1982. 
n  Veen, “Dataflow Machine Architecture,” ACM Computing 

Surveys 1986. 
n  Gurd et al., “The Manchester prototype dataflow 

computer,” CACM 1985. 
n  Arvind and Nikhil, “Executing a Program on the MIT 

Tagged-Token Dataflow Architecture,” IEEE TC 1990. 
n  Patt et al., “HPS, a new microarchitecture: rationale and 

introduction,” MICRO 1985. 
n  Lee and Hurson, “Dataflow Architectures and 

Multithreading,” IEEE Computer 1994. 
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Readings: Data Flow (II) 
n  Sankaralingam et al., “Exploiting ILP, TLP and DLP with the 

Polymorphous TRIPS Architecture,” ISCA 2003. 
n  Burger et al., “Scaling to the End of Silicon with EDGE 

Architectures,” IEEE Computer 2004.  
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Data Flow 
n  The models we have examined in 447/740 all assumed 

q  Instructions are fetched and retired in sequential, control flow 
order 

n  This is part of the Von-Neumann model of computation 
q  Single program counter 
q  Sequential execution 
q  Control flow determines fetch, execution, commit order 

n  What about out-of-order execution? 
q  Architecture level: Obeys the control-flow model 
q  Uarch level: A window of instructions executed in data-flow 

order à execute an instruction when its operands become 
available 
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Data Flow 
n  In a data flow machine, a program consists of data flow 

nodes 
n  A data flow node fires (fetched and executed) when all its 

inputs are ready 
q  i.e. when all inputs have tokens 

n  Data flow node and its ISA representation 
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Data Flow Nodes 

11 



Data Flow Nodes (II) 

n  A small set of dataflow operators can be used to 
define a general programming language  

Fork Primitive Ops 

+ 

Switch Merge 

T F 
T F 

T T 

+ T F 
T F 

T T 

⇒
 



Dataflow Graphs 

{x = a + b;    
 y = b * 7 
in 
   (x-y) * (x+y)} 

a b 

+ *7 

- + 

* 

y x 

1 2 

3 4 

5 

n  Values in dataflow graphs are 
represented as tokens 

n  An operator executes when all its 
input tokens are present; copies of 
the result token are distributed to 
the destination operators 

token < ip , p , v > 
instruction ptr port data 

ip = 3  
p = L 

no separate control flow 



Example Data Flow Program 
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Control Flow vs. Data Flow 
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Static Dataflow 
n  Allows only one instance of a node to be enabled for firing 

n  A dataflow node is fired only when all of the tokens are 
available on its input arcs and no tokens exist on any of its 
its output arcs 

n  Dennis and Misunas, “A Preliminary Architecture for a Basic 
Data Flow Processor,” ISCA 1974. 
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Static Dataflow Machine: 
Instruction Templates 

Each arc in the graph has an 
operand slot in the program 

Presence bits 

1 
2 

3 
4 
5 
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* out 
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Static Dataflow Machine (Dennis+, ISCA 1974) 

<s1, p1, v1>, <s2, p2, v2> 

FU FU FU FU FU 

Op   dest1  dest2  p1  src1   p2   src2 1 
2 
. 
. 
. 

Receive 

Send 

Instruction Templates 

n  Many such processors can be connected together 
n  Programs can be statically divided among the processors 



Static versus Dynamic Dataflow Machines 
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Static Data Flow Machines 
n  Mismatch between the model and the implementation 

q  The model requires unbounded FIFO token queues per arc but 
the architecture provides storage for one token per arc 

q  The architecture does not ensure FIFO order in the reuse of 
an operand slot 

n  The static model does not support 
q  Reentrant code 

n  Function calls 
n  Loops 

q   Data Structures 
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Problems with Re-entrancy 
n  Assume this 

was in a loop 
n  Or in a function 

n  And operations 
took variable 
time to execute 

n  How do you 
ensure the 
tokens that 
match are of 
the same 
invocation? 
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Dynamic Dataflow Architectures 

n  Allocate instruction templates, i.e., a frame, dynamically to 
support each loop iteration and procedure call 
q  termination detection needed to deallocate frames 

n  The code can be shared if we separate the code and the 
operand storage 

<fp, ip, port, data> 

frame  
pointer 

instruction 
pointer 

a token 



A Frame in Dynamic Dataflow 
1 
2 
3 
4 
5 

Program + 

* 
- 

+ 
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3R, 4R 
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Need to provide storage for only one operand/operator 

<fp, ip, p , v> 

3 

Frame 
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Monsoon Processor (ISCA 1990)  
 

Instruction 
Fetch 

Operand 
Fetch 

ip 

fp+r 

Network Network 

Frames 

op r d1,d2 

Code 

Form 
Token 

ALU 

Token 
Queue 



Concept of Tagging 
n  Each invocation receives a separate tag 
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Procedure Linkage Operators 
f 

get frame extract tag 

change Tag 0 

change Tag 0 

Graph for f 

change Tag 1 

a1 

1: 

change Tag n 

an 

n: 

... 

change Tag 1 

Fork 

token in frame 0 
token in frame 1 

Like standard 
call/return 
but caller & 
callee can be 
active 
simultaneously 



Function Calls 
n  Need extra mechanism to direct the output token of the 

function to the proper calling site 

n  Usually done by sending special token containing the return 
node address 
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Loops and Function Calls Summary 
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Control of Parallelism 
n  Problem: Many loop iterations can be present in the 

machine at any given time 
q  100K iterations on a 256 processor machine can swamp the 

machine (thrashing in token matching units) 
q  Not enough bits to represent frame id  

n  Solution: Throttle loops. Control how many loop iterations 
can be in the machine at the same time.  
q  Requires changes to loop dataflow graph to inhibit token 

generation when number of iterations is greater than N 
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Data Structures 
n  Dataflow by nature has write-once semantics 
n  Each arc (token) represents a data value 
n  An arc (token) gets transformed by a dataflow node into a 

new arc (token) à No persistent state…  

n  Data structures as we know of them (in imperative 
languages) are structures with persistent state 

n  Why do we want persistent state? 
q  More natural representation for some tasks? (bank accounts, 

databases, …) 
q  To exploit locality  
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Data Structures in Dataflow 

. . . . P P 

Memory n  Data structures reside in a structure 
store   
	

⇒ tokens carry pointers 

n  I-structures: Write-once, Read 
multiple times or 
q  allocate, write, read, ..., read, 

deallocate      	


	

⇒ No problem if a reader arrives 
before the writer at the memory 
location   

 

I-fetch 

a 

I-store 

a v 



I-Structures 
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Dynamic Data Structures 
n  Write-multiple-times data structures 
n  How can you support them in a dataflow machine? 

q  Can you implement a linked list? 

n  What are the ordering semantics for writes and reads? 

n  Imperative vs. functional languages 
q  Side effects and mutable state  

   vs.  
q  No side effects and no mutable state 
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MIT Tagged Token Data Flow Architecture 

n  Resource Manager Nodes  
q  responsible for Function allocation (allocation of context/frame 

identifiers), Heap allocation, etc.  
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MIT Tagged Token Data Flow Architecture 
n  Wait−Match Unit: 

try to match 
incoming token and 
context id and a 
waiting token with 
same instruction 
address  
q  Success: Both 

tokens forwarded 
q  Fail: Incoming 

token −−> 
Waiting Token 
Mem, bubble (no-
op forwarded) 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Data Flow Example 
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TTDA Synchronization 
n  Heap memory locations have FULL/EMPTY bits 
n  if the heap location is EMPTY,  heap memory module 

queues request at that location When "I−Fetch" request 
arrives (instead of "Fetch"),  

n  Later, when "I−Store" arrives, pending requests are 
discharged 

n  No busy waiting 
n  No extra messages 
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Manchester Data Flow Machine 

n  Matching Store: Pairs 
together tokens 
destined for the same 
instruction 

n  Large data set à 
overflow in overflow 
unit 

n  Paired tokens fetch the 
appropriate instruction 
from the node store 
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Data Flow Summary 
n  Availability of data determines order of execution 
n  A data flow node fires when its sources are ready 
n  Programs represented as data flow graphs (of nodes) 

n  Data Flow at the ISA level has not been (as) successful 

n  Data Flow implementations under the hood (while 
preserving sequential ISA semantics) have been successful 
q  Out of order execution 
q  Hwu and Patt, “HPSm, a high performance restricted data flow 

architecture having minimal functionality,” ISCA 1986. 
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Data Flow Characteristics 
n  Data-driven execution of instruction-level graphical code 

q  Nodes are operators 
q  Arcs are data (I/O) 
q  As opposed to control-driven execution 

n  Only real dependencies constrain processing 
n  No sequential I-stream  

q  No program counter 

n  Operations execute asynchronously 
n  Execution triggered by the presence of data 
n  Single assignment languages and functional programming 

q  E.g., SISAL in Manchester Data Flow Computer 
q  No mutable state 
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Data Flow Advantages/Disadvantages 
n  Advantages 

q  Very good at exploiting irregular parallelism 
q  Only real dependencies constrain processing 

n  Disadvantages 
q  Debugging difficult (no precise state) 

n  Interrupt/exception handling is difficult (what is precise state 
semantics?) 

q  Implementing dynamic data structures difficult in pure data 
flow models 

q  Too much parallelism? (Parallelism control needed) 
q  High bookkeeping overhead (tag matching, data storage) 
q  Instruction cycle is inefficient (delay between dependent 

instructions), memory locality is not exploited 
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Combining Data Flow and Control Flow 
n  Can we get the best of both worlds? 

n  Two possibilities 
q  Model 1: Keep control flow at the ISA level, do dataflow 

underneath, preserving sequential semantics 
q  Model 2: Keep dataflow model, but incorporate control flow at 

the ISA level to improve efficiency, exploit locality, and ease 
resource management 
n  Incorporate threads into dataflow: statically ordered instructions; 

when the first instruction is fired, the remaining instructions 
execute without interruption 
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