
Computer Architecture:
Dataflow (Part I)

Prof. Onur Mutlu
Carnegie Mellon University

A Note on This Lecture
n  These slides are from 18-742 Fall 2012, Parallel Computer

Architecture, Lecture 22: Dataflow I

n  Video:
n  http://www.youtube.com/watch?

v=D2uue7izU2c&list=PL5PHm2jkkXmh4cDkC3s1VBB7-
njlgiG5d&index=19

2

Some Required Dataflow Readings
n  Dataflow at the ISA level

q  Dennis and Misunas, “A Preliminary Architecture for a Basic Data
Flow Processor,” ISCA 1974.

q  Arvind and Nikhil, “Executing a Program on the MIT Tagged-
Token Dataflow Architecture,” IEEE TC 1990.

n  Restricted Dataflow
q  Patt et al., “HPS, a new microarchitecture: rationale and

introduction,” MICRO 1985.
q  Patt et al., “Critical issues regarding HPS, a high performance

microarchitecture,” MICRO 1985.

3

Other Related Recommended Readings
n  Dataflow

n  Gurd et al., “The Manchester prototype dataflow computer,”
CACM 1985.

n  Lee and Hurson, “Dataflow Architectures and Multithreading,”
IEEE Computer 1994.

n  Restricted Dataflow
q  Sankaralingam et al., “Exploiting ILP, TLP and DLP with the

Polymorphous TRIPS Architecture,” ISCA 2003.
q  Burger et al., “Scaling to the End of Silicon with EDGE

Architectures,” IEEE Computer 2004.

4

Today
n  Start Dataflow

5

Data Flow

Readings: Data Flow (I)
n  Dennis and Misunas, “A Preliminary Architecture for a Basic

Data Flow Processor,” ISCA 1974.
n  Treleaven et al., “Data-Driven and Demand-Driven

Computer Architecture,” ACM Computing Surveys 1982.
n  Veen, “Dataflow Machine Architecture,” ACM Computing

Surveys 1986.
n  Gurd et al., “The Manchester prototype dataflow

computer,” CACM 1985.
n  Arvind and Nikhil, “Executing a Program on the MIT

Tagged-Token Dataflow Architecture,” IEEE TC 1990.
n  Patt et al., “HPS, a new microarchitecture: rationale and

introduction,” MICRO 1985.
n  Lee and Hurson, “Dataflow Architectures and

Multithreading,” IEEE Computer 1994.
7

Readings: Data Flow (II)
n  Sankaralingam et al., “Exploiting ILP, TLP and DLP with the

Polymorphous TRIPS Architecture,” ISCA 2003.
n  Burger et al., “Scaling to the End of Silicon with EDGE

Architectures,” IEEE Computer 2004.

8

Data Flow
n  The models we have examined in 447/740 all assumed

q  Instructions are fetched and retired in sequential, control flow
order

n  This is part of the Von-Neumann model of computation
q  Single program counter
q  Sequential execution
q  Control flow determines fetch, execution, commit order

n  What about out-of-order execution?
q  Architecture level: Obeys the control-flow model
q  Uarch level: A window of instructions executed in data-flow

order à execute an instruction when its operands become
available

9

Data Flow
n  In a data flow machine, a program consists of data flow

nodes
n  A data flow node fires (fetched and executed) when all its

inputs are ready
q  i.e. when all inputs have tokens

n  Data flow node and its ISA representation

10

Data Flow Nodes

11

Data Flow Nodes (II)

n  A small set of dataflow operators can be used to
define a general programming language

Fork Primitive Ops

+

Switch Merge

T F
T F

T T

+ T F
T F

T T

⇒

Dataflow Graphs

{x = a + b;
 y = b * 7
in
 (x-y) * (x+y)}

a b

+ *7

- +

*

y x

1 2

3 4

5

n  Values in dataflow graphs are
represented as tokens

n  An operator executes when all its
input tokens are present; copies of
the result token are distributed to
the destination operators

token < ip , p , v >
instruction ptr port data

ip = 3
p = L

no separate control flow

Example Data Flow Program

14

OUT

Control Flow vs. Data Flow

15

Static Dataflow
n  Allows only one instance of a node to be enabled for firing

n  A dataflow node is fired only when all of the tokens are
available on its input arcs and no tokens exist on any of its
its output arcs

n  Dennis and Misunas, “A Preliminary Architecture for a Basic
Data Flow Processor,” ISCA 1974.

16

Static Dataflow Machine:
Instruction Templates

Each arc in the graph has an
operand slot in the program

Presence bits

1
2

3
4
5

+ 3L 4L
* 3R 4R
- 5L
+ 5R
* out

a b

+ *7

- +

*

y
x

1 2

3 4

5

Static Dataflow Machine (Dennis+, ISCA 1974)

<s1, p1, v1>, <s2, p2, v2>

FU FU FU FU FU

Op dest1 dest2 p1 src1 p2 src2 1
2
.
.
.

Receive

Send

Instruction Templates

n  Many such processors can be connected together
n  Programs can be statically divided among the processors

Static versus Dynamic Dataflow Machines

19

Static Data Flow Machines
n  Mismatch between the model and the implementation

q  The model requires unbounded FIFO token queues per arc but
the architecture provides storage for one token per arc

q  The architecture does not ensure FIFO order in the reuse of
an operand slot

n  The static model does not support
q  Reentrant code

n  Function calls
n  Loops

q  Data Structures

20

Problems with Re-entrancy
n  Assume this

was in a loop
n  Or in a function

n  And operations
took variable
time to execute

n  How do you
ensure the
tokens that
match are of
the same
invocation?

21

Dynamic Dataflow Architectures

n  Allocate instruction templates, i.e., a frame, dynamically to
support each loop iteration and procedure call
q  termination detection needed to deallocate frames

n  The code can be shared if we separate the code and the
operand storage

<fp, ip, port, data>

frame
pointer

instruction
pointer

a token

A Frame in Dynamic Dataflow
1
2
3
4
5

Program +

*
-

+

3

1

2

4

5

3L, 4L

3R, 4R

5L

5R

out *

1
2

4
5

7

a b

+ *7

- +

*

y
x

1 2

3 4

5

Need to provide storage for only one operand/operator

<fp, ip, p , v>

3

Frame

L

Monsoon Processor (ISCA 1990)

Instruction
Fetch

Operand
Fetch

ip

fp+r

Network Network

Frames

op r d1,d2

Code

Form
Token

ALU

Token
Queue

Concept of Tagging
n  Each invocation receives a separate tag

25

Procedure Linkage Operators
f

get frame extract tag

change Tag 0

change Tag 0

Graph for f

change Tag 1

a1

1:

change Tag n

an

n:

...

change Tag 1

Fork

token in frame 0
token in frame 1

Like standard
call/return
but caller &
callee can be
active
simultaneously

Function Calls
n  Need extra mechanism to direct the output token of the

function to the proper calling site

n  Usually done by sending special token containing the return
node address

27

Loops and Function Calls Summary

28

Control of Parallelism
n  Problem: Many loop iterations can be present in the

machine at any given time
q  100K iterations on a 256 processor machine can swamp the

machine (thrashing in token matching units)
q  Not enough bits to represent frame id

n  Solution: Throttle loops. Control how many loop iterations
can be in the machine at the same time.
q  Requires changes to loop dataflow graph to inhibit token

generation when number of iterations is greater than N

29

Data Structures
n  Dataflow by nature has write-once semantics
n  Each arc (token) represents a data value
n  An arc (token) gets transformed by a dataflow node into a

new arc (token) à No persistent state…

n  Data structures as we know of them (in imperative
languages) are structures with persistent state

n  Why do we want persistent state?
q  More natural representation for some tasks? (bank accounts,

databases, …)
q  To exploit locality

30

Data Structures in Dataflow

. . . . P P

Memory n  Data structures reside in a structure
store
	

⇒ tokens carry pointers

n  I-structures: Write-once, Read
multiple times or
q  allocate, write, read, ..., read,

deallocate 	

	

⇒ No problem if a reader arrives
before the writer at the memory
location

I-fetch

a

I-store

a v

I-Structures

32

Dynamic Data Structures
n  Write-multiple-times data structures
n  How can you support them in a dataflow machine?

q  Can you implement a linked list?

n  What are the ordering semantics for writes and reads?

n  Imperative vs. functional languages
q  Side effects and mutable state

 vs.
q  No side effects and no mutable state

33

MIT Tagged Token Data Flow Architecture

n  Resource Manager Nodes
q  responsible for Function allocation (allocation of context/frame

identifiers), Heap allocation, etc.

34

MIT Tagged Token Data Flow Architecture
n  Wait−Match Unit:

try to match
incoming token and
context id and a
waiting token with
same instruction
address
q  Success: Both

tokens forwarded
q  Fail: Incoming

token −−>
Waiting Token
Mem, bubble (no-
op forwarded)

35

TTDA Data Flow Example

36

TTDA Data Flow Example

37

TTDA Data Flow Example

38

TTDA Synchronization
n  Heap memory locations have FULL/EMPTY bits
n  if the heap location is EMPTY, heap memory module

queues request at that location When "I−Fetch" request
arrives (instead of "Fetch"),

n  Later, when "I−Store" arrives, pending requests are
discharged

n  No busy waiting
n  No extra messages

39

Manchester Data Flow Machine

n  Matching Store: Pairs
together tokens
destined for the same
instruction

n  Large data set à
overflow in overflow
unit

n  Paired tokens fetch the
appropriate instruction
from the node store

40

Data Flow Summary
n  Availability of data determines order of execution
n  A data flow node fires when its sources are ready
n  Programs represented as data flow graphs (of nodes)

n  Data Flow at the ISA level has not been (as) successful

n  Data Flow implementations under the hood (while
preserving sequential ISA semantics) have been successful
q  Out of order execution
q  Hwu and Patt, “HPSm, a high performance restricted data flow

architecture having minimal functionality,” ISCA 1986.

41

Data Flow Characteristics
n  Data-driven execution of instruction-level graphical code

q  Nodes are operators
q  Arcs are data (I/O)
q  As opposed to control-driven execution

n  Only real dependencies constrain processing
n  No sequential I-stream

q  No program counter

n  Operations execute asynchronously
n  Execution triggered by the presence of data
n  Single assignment languages and functional programming

q  E.g., SISAL in Manchester Data Flow Computer
q  No mutable state

42

Data Flow Advantages/Disadvantages
n  Advantages

q  Very good at exploiting irregular parallelism
q  Only real dependencies constrain processing

n  Disadvantages
q  Debugging difficult (no precise state)

n  Interrupt/exception handling is difficult (what is precise state
semantics?)

q  Implementing dynamic data structures difficult in pure data
flow models

q  Too much parallelism? (Parallelism control needed)
q  High bookkeeping overhead (tag matching, data storage)
q  Instruction cycle is inefficient (delay between dependent

instructions), memory locality is not exploited

43

Combining Data Flow and Control Flow
n  Can we get the best of both worlds?

n  Two possibilities
q  Model 1: Keep control flow at the ISA level, do dataflow

underneath, preserving sequential semantics
q  Model 2: Keep dataflow model, but incorporate control flow at

the ISA level to improve efficiency, exploit locality, and ease
resource management
n  Incorporate threads into dataflow: statically ordered instructions;

when the first instruction is fired, the remaining instructions
execute without interruption

44

