
Computer Architecture:
SIMD and GPUs (Part III)

(and briefly VLIW, DAE, Systolic Arrays)

Prof. Onur Mutlu
Carnegie Mellon University

A Note on This Lecture
n  These slides are partly from 18-447 Spring 2013, Computer

Architecture, Lecture 20: GPUs, VLIW, DAE, Systolic Arrays

n  Video of the part related to only SIMD and GPUs:
q  http://www.youtube.com/watch?

v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
&index=20

2

Last Lecture
n  SIMD Processing
n  GPU Fundamentals

3

Today
n  Wrap up GPUs
n  VLIW

n  If time permits
q  Decoupled Access Execute
q  Systolic Arrays
q  Static Scheduling

4

Approaches to (Instruction-Level) Concurrency

n  Pipelined execution
n  Out-of-order execution
n  Dataflow (at the ISA level)
n  SIMD Processing
n  VLIW

n  Systolic Arrays
n  Decoupled Access Execute

5

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

Review: High-Level View of a GPU

7

Review: Concept of “Thread Warps” and SIMT

n  Warp: A set of threads that execute the same instruction
(on different data elements) à SIMT (Nvidia-speak)

n  All threads run the same kernel
n  Warp: The threads that run lengthwise in a woven fabric …

8

Thread Warp 3
Thread Warp 8

Thread Warp 7

Thread Warp
Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Review: Loop Iterations as Threads

9

for (i=0; i < N; i++)
 C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Ti
m

e

Slide credit: Krste Asanovic

n  Same instruction in different threads uses thread id to index
and access different data elements

Review: SIMT Memory Access

Let’s assume N=16, blockDim=4 à 4 blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Review: Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100 threads
__global__ void KernelFunction(…) {
 int tid = blockDim.x * blockIdx.x + threadIdx.x;
 int varA = aa[tid];
 int varB = bb[tid];
 C[tid] = varA + varB;
}

CPU code

CUDA code

Slide credit: Hyesoon Kim

Review: Sample GPU Program (Less Simplified)

12 Slide credit: Hyesoon Kim

Review: Latency Hiding with “Thread Warps”

n  Warp: A set of threads that
execute the same instruction
(on different data elements)

n  Fine-grained multithreading
q  One instruction per thread in

pipeline at a time (No branch
prediction)

q  Interleave warp execution to
hide latencies

n  Register values of all threads stay
in register file

n  No OS context switching
n  Memory latency hiding

q  Graphics has millions of pixels

13

Decode

R F

R F

R F

A L U

A L U

A L U

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2 Data All Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Review: Warp-based SIMD vs. Traditional SIMD
n  Traditional SIMD contains a single thread

q  Lock step
q  Programming model is SIMD (no threads) à SW needs to know vector

length
q  ISA contains vector/SIMD instructions

n  Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)
q  Does not have to be lock step
q  Each thread can be treated individually (i.e., placed in a different

warp) à programming model not SIMD
n  SW does not need to know vector length
n  Enables memory and branch latency tolerance

q  ISA is scalar à vector instructions formed dynamically
q  Essentially, it is SPMD programming model implemented on SIMD

hardware
14

Review: SPMD
n  Single procedure/program, multiple data

q  This is a programming model rather than computer organization

n  Each processing element executes the same procedure, except on
different data elements
q  Procedures can synchronize at certain points in program, e.g. barriers

n  Essentially, multiple instruction streams execute the same
program
q  Each program/procedure can 1) execute a different control-flow path,

2) work on different data, at run-time
q  Many scientific applications programmed this way and run on MIMD

computers (multiprocessors)
q  Modern GPUs programmed in a similar way on a SIMD computer

15

Branch Divergence Problem in Warp-based SIMD

n  SPMD Execution on SIMD Hardware
q  NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”)

execution

16

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMD
n  GPU uses SIMD

pipeline to save area
on control logic.
q  Group scalar threads into

warps

n  Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

17

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

Branch Divergence Handling (I)

18

- G 1111 TOS

B

C D

E

F

A

G

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B/1111

C/1001 D/0110

E/1111

A/1111

G/1111

- A 1111 TOS
E D 0110
E C 1001 TOS

- E 1111
E D 0110 TOS
- E 1111

A D G A

Time

C B E

- B 1111 TOS - E 1111 TOS
Reconv. PC Next PC Active Mask

Stack

E D 0110
E E 1001 TOS

- E 1111

Slide credit: Tor Aamodt

Branch Divergence Handling (II)

19

A

B C

D

A -- 1111
B D 1110
C D 0001

Next PC Recv PC Amask
D -- 1111

Control Flow Stack

One per warp

A;
if (some condition) {
 B;
} else {
 C;
}
D; TOS

D

1
1
1
1

A
0
0
0
1

C
1
1
1
0

B
1
1
1
1

D

Time

Execution Sequence

Slide credit: Tor Aamodt

Dynamic Warp Formation
n  Idea: Dynamically merge threads executing the same

instruction (after branch divergence)
n  Form new warp at divergence

q  Enough threads branching to each path to create full new
warps

20

Dynamic Warp Formation/Merging
n  Idea: Dynamically merge threads executing the same

instruction (after branch divergence)

n  Fung et al., “Dynamic Warp Formation and Scheduling for

Efficient GPU Control Flow,” MICRO 2007.
21

Branch

Path A

Path B

Branch

Path A

Dynamic Warp Formation Example

22

A A B B G G A A C C D D E E F F

Time
A A B B G G A A C D E E F

Time

A x/1111
y/1111

B x/1110
y/0011

C x/1000
y/0010 D x/0110

y/0001 F x/0001
y/1100

E x/1110
y/0011

G x/1111
y/1111

A new warp created from scalar
threads of both Warp x and y
executing at Basic Block D

D

Execution of Warp x
at Basic Block A

Execution of Warp y
at Basic Block A

Legend
A A

Baseline

Dynamic
Warp
Formation

Slide credit: Tor Aamodt

What About Memory Divergence?
n  Modern GPUs have caches
n  Ideally: Want all threads in the warp to hit (without

conflicting with each other)
n  Problem: One thread in a warp can stall the entire warp if it

misses in the cache.

n  Need techniques to

q  Tolerate memory divergence
q  Integrate solutions to branch and memory divergence

23

NVIDIA GeForce GTX 285
n  NVIDIA-speak:

q  240 stream processors
q  “SIMT execution”

n  Generic speak:
q  30 cores
q  8 SIMD functional units per core

24 Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

25

…

= instruction stream decode = SIMD functional unit, control
 shared across 8 units
 = execution context storage = multiply-add

= multiply

64 KB of storage
for fragment
contexts (registers)

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285 “core”

26

…
64 KB of storage
for thread contexts
(registers)

n  Groups of 32 threads share instruction stream (each group is
a Warp)

n  Up to 32 warps are simultaneously interleaved
n  Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

………

………

………

………

………

………

………

………

………

27

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

n  Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

n  SISD: Single instruction operates on single data element
n  SIMD: Single instruction operates on multiple data elements

q  Array processor
q  Vector processor

n  MISD? Multiple instructions operate on single data element
q  Closest form: systolic array processor?

n  MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
q  Multiprocessor
q  Multithreaded processor

29

SISD Parallelism Extraction Techniques
n  We have already seen

q  Superscalar execution
q  Out-of-order execution

n  Are there simpler ways of extracting SISD parallelism?
q  VLIW (Very Long Instruction Word)
q  Decoupled Access/Execute

30

VLIW

VLIW (Very Long Instruction Word)
n  A very long instruction word consists of multiple

independent instructions packed together by the compiler
q  Packed instructions can be logically unrelated (contrast with

SIMD)

n  Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
instruction

n  Traditional Characteristics
q  Multiple functional units
q  Each instruction in a bundle executed in lock step
q  Instructions in a bundle statically aligned to be directly fed

into the functional units
32

VLIW Concept

n  Fisher, “Very Long Instruction Word architectures and the

ELI-512,” ISCA 1983.
q  ELI: Enormously longword instructions (512 bits)

33

SIMD Array Processing vs. VLIW
n  Array processor

34

VLIW Philosophy
n  Philosophy similar to RISC (simple instructions and hardware)

q  Except multiple instructions in parallel

n  RISC (John Cocke, 1970s, IBM 801 minicomputer)
q  Compiler does the hard work to translate high-level language

code to simple instructions (John Cocke: control signals)
n  And, to reorder simple instructions for high performance

q  Hardware does little translation/decoding à very simple

n  VLIW (Fisher, ISCA 1983)
q  Compiler does the hard work to find instruction level parallelism
q  Hardware stays as simple and streamlined as possible

n  Executes each instruction in a bundle in lock step
n  Simple à higher frequency, easier to design

35

VLIW Philosophy (II)

36 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Commercial VLIW Machines
n  Multiflow TRACE, Josh Fisher (7-wide, 28-wide)
n  Cydrome Cydra 5, Bob Rau
n  Transmeta Crusoe: x86 binary-translated into internal VLIW
n  TI C6000, Trimedia, STMicro (DSP & embedded processors)

q  Most successful commercially

n  Intel IA-64
q  Not fully VLIW, but based on VLIW principles
q  EPIC (Explicitly Parallel Instruction Computing)
q  Instruction bundles can have dependent instructions
q  A few bits in the instruction format specify explicitly which

instructions in the bundle are dependent on which other ones

37

VLIW Tradeoffs
n  Advantages

+ No need for dynamic scheduling hardware à simple hardware
+ No need for dependency checking within a VLIW instruction à

simple hardware for multiple instruction issue + no renaming
+ No need for instruction alignment/distribution after fetch to

different functional units à simple hardware

n  Disadvantages
-- Compiler needs to find N independent operations

 -- If it cannot, inserts NOPs in a VLIW instruction
 -- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall
 -- No instruction can progress until the longest-latency instruction completes

 38

VLIW Summary
n  VLIW simplifies hardware, but requires complex compiler

techniques
n  Solely-compiler approach of VLIW has several downsides

that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

 -- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

q  Enable code optimizations

++ VLIW successful in embedded markets, e.g. DSP

39

DAE

Decoupled Access/Execute
n  Motivation: Tomasulo’s algorithm too complex to

implement
q  1980s before HPS, Pentium Pro

n  Idea: Decouple operand
 access and execution via
 two separate instruction
 streams that communicate
 via ISA-visible queues.

n  Smith, “Decoupled Access/Execute
 Computer Architectures,” ISCA 1982,
 ACM TOCS 1984.

41

Decoupled Access/Execute (II)
n  Compiler generates two instruction streams (A and E)

q  Synchronizes the two upon control flow instructions (using branch queues)

42

Decoupled Access/Execute (III)
n  Advantages:

+ Execute stream can run ahead of the access stream and vice
versa
 + If A takes a cache miss, E can perform useful work

 + If A hits in cache, it supplies data to lagging E
 + Queues reduce the number of required registers

+ Limited out-of-order execution without wakeup/select complexity

n  Disadvantages:
 -- Compiler support to partition the program and manage queues

 -- Determines the amount of decoupling
 -- Branch instructions require synchronization between A and E
 -- Multiple instruction streams (can be done with a single one,
though)

43

Astronautics ZS-1
n  Single stream

steered into A and
X pipelines

n  Each pipeline in-
order

n  Smith et al., “The
ZS-1 central
processor,”
ASPLOS 1987.

n  Smith, “Dynamic
Instruction
Scheduling and
the Astronautics
ZS-1,” IEEE
Computer 1989.

44

Astronautics ZS-1 Instruction Scheduling
n  Dynamic scheduling

q  A and X streams are issued/executed independently
q  Loads can bypass stores in the memory unit (if no conflict)
q  Branches executed early in the pipeline

n  To reduce synchronization penalty of A/X streams
n  Works only if the register a branch sources is available

n  Static scheduling
q  Move compare instructions as early as possible before a branch

n  So that branch source register is available when branch is decoded

q  Reorder code to expose parallelism in each stream
q  Loop unrolling:

n  Reduces branch count + exposes code reordering opportunities

45

Loop Unrolling

n  Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead

q  Induction variable increment or loop condition test

+ Enlarges basic block (and analysis scope)
q  Enables code optimization and scheduling opportunities

-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
46

Systolic Arrays

47

Why Systolic Architectures?
n  Idea: Data flows from the computer memory in a rhythmic

fashion, passing through many processing elements before it
returns to memory

n  Similar to an assembly line
q  Different people work on the same car
q  Many cars are assembled simultaneously
q  Can be two-dimensional

n  Why? Special purpose accelerators/architectures need
q  Simple, regular designs (keep # unique parts small and regular)
q  High concurrency à high performance
q  Balanced computation and I/O (memory access)

48

Systolic Architectures
n  H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

49

Memory: heart
PEs: cells

Memory pulses
data through
cells

Systolic Architectures
n  Basic principle: Replace a single PE with a regular array of

PEs and carefully orchestrate flow of data between the PEs
à achieve high throughput w/o increasing memory
bandwidth requirements

n  Differences from pipelining:
q  Array structure can be non-linear and multi-dimensional
q  PE connections can be multidirectional (and different speed)
q  PEs can have local memory and execute kernels (rather than a

piece of the instruction)

50

Systolic Computation Example
n  Convolution

q  Used in filtering, pattern matching, correlation, polynomial
evaluation, etc …

q  Many image processing tasks

51

Systolic Computation Example: Convolution

n  y1 = w1x1 +
w2x2 + w3x3

n  y2 = w1x2 +
w2x3 + w3x4

n  y3 = w1x3 +
w2x4 + w3x5

52

Systolic Computation Example: Convolution

n  Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

53

n  Each PE in a systolic array
q  Can store multiple “weights”
q  Weights can be selected on the fly
q  Eases implementation of, e.g., adaptive filtering

n  Taken further
q  Each PE can have its own data and instruction memory
q  Data memory à to store partial/temporary results, constants
q  Leads to stream processing, pipeline parallelism

n  More generally, staged execution

54

More Programmability

Pipeline Parallelism

55

File Compression Example

56

Systolic Array
n  Advantages

q  Makes multiple uses of each data item à reduced need for
fetching/refetching

q  High concurrency
q  Regular design (both data and control flow)

n  Disadvantages
q  Not good at exploiting irregular parallelism
q  Relatively special purpose à need software, programmer

support to be a general purpose model

57

The WARP Computer
n  HT Kung, CMU, 1984-1988

n  Linear array of 10 cells, each cell a 10 Mflop programmable
processor

n  Attached to a general purpose host machine
n  HLL and optimizing compiler to program the systolic array
n  Used extensively to accelerate vision and robotics tasks

n  Annaratone et al., “Warp Architecture and Implementation,”
ISCA 1986.

n  Annaratone et al., “The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

58

The WARP Computer

59

The WARP Computer

60

Systolic Arrays vs. SIMD
n  Food for thought…

61

Some More Recommended Readings
n  Recommended:

q  Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

q  Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

q  Russell, “The CRAY-1 computer system,” CACM 1978.
q  Rau and Fisher, “Instruction-level parallel processing: history,

overview, and perspective,” Journal of Supercomputing, 1993.
q  Faraboschi et al., “Instruction Scheduling for Instruction Level

Parallel Processors,” Proc. IEEE, Nov. 2001.

62

