Computer Architecture:

SIMD and GPUs (Part I1I)
(and briefly VLLIW, DAE, Systolic Arrays)

Prof. Onur Mutlu
Carnegie Mellon University

A Note on This Lecture

= These slides are partly from 18-447 Spring 2013, Computer
Architecture, Lecture 20: GPUs, VLIW, DAE, Systolic Arrays

= Video of the part related to only SIMD and GPUs:

o http://www.youtube.com/watch?
v=vr5hbSkb1Eg&list=PL5PHmM2jkkXmidJOd59RE0g9iDnPDTG61]

&index=20

l.ast Lecture

SIMD Processing
GPU Fundamentals

Today

Wrap up GPUs
VLIW

If time permits

o Decoupled Access Execute
o Systolic Arrays

o Static Scheduling

Approaches to (Instruction-Level) Concurrency

Pipelined execution
Out-of-order execution
Dataflow (at the ISA level)
SIMD Processing

VLIW

Systolic Arrays
Decoupled Access Execute

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

Review: High-Level View of a GPU

(PC, Mask) H

[-Cache

Shader | | Shader| Shader| ,,, | Shader v

Core Core Core Core
Decode

bt ¢ NS o o ot o
. \ l
Interconnection Network \ : S_? & S_? S_? |
t t t \ | 2 2 2 2 '
\ |
Memory @ | Memory Memory | | :§ g --ag -f?' l
Controller| |Controller Controller] \ | '[&[|&| &S],
$ $ 4 3] (13]13][3]
I SIMD Execution !
GDDR3 GDDR3 GDDR3| | - === ====-=--

Review: Concept of ““T'hread Warps” and SIM'T

Warp: A set of threads that execute the same instruction
(on different data elements) - SIMT (Nvidia-speak)

All threads run the same kernel
Warp: The threads that run lengthwise in a woven fabric ...

_.=-7| |_Thread Warp 3
- yL_Thread Warp 38
Thread Warp Common PC 7 :
Scalar Scalar| Scalar, Scalar ;7 Thread Warp 7
ThreadThreadThread® * * |Thread | v
W X Y Z / - 1
2 SIMD Pipeline

Review: Loop Iterations as Threads

for (i=0; i < N; i++)
Cli] = A[i] + B[i]; |
Scalar Sequential Code Vectorized Code

Vector Instruction

Slide credit: Krste Asanovic 9

Review: SIMT Memory Access

= Same instruction in different threads uses thread id to index
and access different data elements

Let’s assume N=16, blockDim=4 - 4 blocks

10 11 12 13 14 15

10 11 12 13 14 15

Slide credit: Hyesoon Kim

Review: Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100; ++ii) {
[C[ii] = A[ii] + BJii];]

¥
CUDA code I

// there are 100 threads
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;
by

Slide credit: Hyesoon Kim

Review: Sample GPU Program (LLess Simplified)

CPU Program GPU Program

__global__ add_matrix

(float *a, float *b, float *c, int N) {
int 1 = blockldx.x * blockDim.x + threadldx.x;
Int j = blockldx.y * blockDim.y + threadldx.y;
Intindex =1 + J*N;
if i<N&&j<N)

c[index] = a[index]+b[index];

}

Int main() {
dim3 dimBlock(blocksize, blocksize) ;
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
add_matrix<<<dimGrid, dimBlock>>>(a, b, c, N);

}

Slide credit: Hyesoon Kim 12

Review: Latency Hiding with “Thread Warps”

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No branch
prediction)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

No OS context switching
Memory latency hiding
o Graphics has millions of pixels

Slide credit: Tor Aamodt

L 2
Thread Warp 3

Thread Warp 8

| ThreadIWarp 7 |

Warps available
for scheduling

SIMD Pipeline

v

|-Fetch
L 2

Decode

<NV ¢ I [

<NV ¢ I (€

(NN ¢ I €

D-Cache

All Hit?l

v

Writeback

n Thread Warp 1
,; Data Thread Warp 2

Warps accessing

memory hierarchy
Miss?

| Thread Warp 6 |

13

Review: Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread
o Lock step

o Programming model is SIMD (no threads) - SW needs to know vector
length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in
a SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different
warp) = programming model not SIMD

SW does not need to know vector length
Enables memory and branch latency tolerance
o ISA is scalar - vector instructions formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD
hardware
14

Review: SPMD

Single procedure/program, multiple data
o This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.qg. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure can 1) execute a different control-flow path,
2) work on different data, at run-time

o Many scientific applications programmed this way and run on MIMD
computers (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD computer

15

Branch Divergence Problem in Warp-based SIMD

SPMD Execution on SIMD Hardware

o NVIDIA calls this “Single Instruction, Multiple Thread” ("SIMT")
execution

Slide credit: Tor Aamodt

Thread Warp

Common PC

Thread
1

Thread
2

Thread

Thread
4

16

Control Flow Problem in GPUs/SIMD

GPU uses SIMD
pipeline to save area
on control logic.

o Group scalar threads into
warps

Branch divergence
occurs when threads
inside warps branch to
different execution
paths.

Slide credit: Tor Aamodt

RRRRRRY
RRRRRRY

Branch
E Path A

Path\BJ

PR
Pl

SRRRRRY

Branch Divergence Handling (I)

Slide credit: Tor Aamodt

Stack
A/1111 Reconv. PC Next PC Active Mask
TOS—* - E 1111
TOS— E D 0110
B/1111 TOS— E E 1001
C/1001] |D/0110
\/ Thread Warp Common PC
E/1111 Thread|Thread | Thread| Thread
1 2 3 4
G/1111
N D | E]G | A
. [(. | i
veee =i — 1>
| — | -l = — | —>
| | i = 1) — |
. > Time

Branch D1vergence Handling (1)

. if (some condition) {é
B One per warp
.} else { g \\\\
. C; Control Flow Stack
é . Next PC_Recv PC _Amask
S llll TOS —> D -- 1111
B D 1110
\ D D 0001

Execution Sequence

|:B A C B D
- 11 To] [1][1
1{1o][1]]1
1{1o][1]]1
1([1] 0] [1

Big!

Slide credit: Tor Aamodt 19

Dynamic Warp Formation

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

Form new warp at divergence

o Enough threads branching to each path to create full new
warps

bovd boyobh }
by } by }
T ol rid b

20

Dynamic Warp Formation/Merging

Idea: Dynamically merge threads executing the same
instruction (after branch divergence)

RERRERE
L b
{Q%A e[[+ o v

Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

Dynamic Warp Formation Example
¥

x/1111
A yI1111

A A
x/1110 £ £
B y/0011 I__:-i Execu’Fion of Warp x |:fi Execu’Fion of Warp y
| > at Basic Block A | > at Basic Block A
C x/1oooi D X/0110] [- x/0001 Lz g,
y/0010 y/0001 y/1100 D

\(A new warp created from scalar
0 1 threads of both Warp x and y
0011 — | executing at Basic Block D

Baseline *°*°

W_

o W

Dynamic G _A__A
EdE<d E< > > N (EHEd R Ee
Warp cool >l >l -> S>> > >l e
: EHENEIIEIIE Bl EIIES EEAENES
Formation 2l || e 22l 2l 2l 2
| > Time
22

Slide credit: Tor Aamodt

What About Memory Divergence?

Modern GPUs have caches

Ideally: Want all threads in the warp to hit (without
conflicting with each other)

Problem: One thread in a warp can stall the entire warp if it
misses in the cache.

Need techniques to
o Tolerate memory divergence
o Integrate solutions to branch and memory divergence

23

NVIDIA GeForce GTX 285

NVIDIA-speak:
o 240 stream processors
o “SIMT execution”

Generic speak:
o 30 cores
o 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian 24

NVIDIA GeForce GTX 285 “core”

64 KB of storage
for fragment

Ol = SIMD functional unit, control
shared across 8 units

= multiply-add
] = multiply

Slide credit: Kayvon Fatahalian 25

contexts (registers)

= instruction stream decode

= execution context storage

NVIDIA GeForce GTX 285 “core”

64 KB of storage

for thread contexts

.

(registers)

= Groups of 32 threads share instruction stream (each group is

a Warp)

= Up to 32 warps are simultaneously interleaved
= Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian

26

NVIDIA GeForce GTX 285

[=1=]| (=[5} (=T=]{ [=I=1 i) (sT=] | [=[=]) (=Ts]{ =]) (=T=]) [=[=1)| [T=]{ [=[=]) T Tt 5151} [=[=]| [=I=]{ [=[=] § g} (=T=]{ [=[=1}| [=T=]| [=[=1 § R} [=[=]| [=T=] | [=T=]| [=T=]|
 [a]=] | [=]=]) [=I=]1{ [=I=] {§} [=T=]| [=T=]| [=I=]1| [=I=] R} [=I=]{ [=I=] | [=I=] | [=I=]| ex | [=[=]{[=[=]1|[=[=1| [=1=] {{] == | =E EEH EEH EEN EE EE] EE]
-t e -1 =T e e e -1
IDIHDI”DI”DIIIDIHDI”DI”DIIIDI”DIHDI”DIITEX Tex | [=[=]{[=I=]1| [=[=1| [=1=] |§§ [=I=] | [=I=]| [=[=] | [=T=] §§ [=I=] | [=]=] | [=1=] | [=T=]|
 [a]=] | [=[=]1) [=I=]{ [=I=] {§} == | == =E EE R EE | EE EE EE] | [=[=]{[=I=]1| [=[=1| [=1=] |§§ [=I=] | [=I=]| [=[=] | [=T=] §§ [=I=] | [=]=] | [=1=] | [=T=]|
-ty Ty --1Ir Il ey eI -1 Irtd
IDIHDIHDIHDIIIDIHDIHDIHDIIIDIHDIHDIHDIITEX T FEEE|EE EEEEEE EE EE N EE EE EE EE)
 [a]=] | [=[=]1) [=I=]{ [=I=] {§} == | [=I=] | [=I=]| [=I=] QA [=I=] | (=I=] | [=I=] | [=1=]) ex | [=[=]{[=I=]1| [=[=1| [=1=] |§§ [=I=] | [=I=]| [=[=] | [=T=] §§ [=I=] | [=]=] | [=1=] | [=T=]|
ety T -1t =T e e -1
IDIHDIHDIHDIIIDIHDIHDIHDIIIDIHDIHDIHDIITEX T EE|EE|EE EE N EE EE EE EE N EE EE EE EE)
[=1=]| [=[=1} (=T=]{ [=I=1) (=T=] | [=I=1) (=T=]{ =]) (=1=]] =151 (sT=]{ =] eX | [oo)[oa)[oa)[oa) | | [Ga| [Ga)[Ca|[ca| | | [Ga][Ga| [Ga][Ga]
-ty T 111l el g - Irrtt
(0o](oo||oo||oo]| |[oo][oo][oe][oa] | |[oo][oe][oa] [oa] Tex T E|EEEE EE N EE EE EE EE N EE EE EE | EE
== =15 EE] EE R EE] EE]) EE) Y EE EE EE) EE]) ex | [=[=]| [=T=]{ [=[=]| =[=1]} [=I=1| == | [=EH EE T EE EE | EE EE])

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian

27

VLIW and DAE

Remember: SIMD/MIMD Classification of Computers

Mike Flynn, “Very High Speed Computing Systems,” Proc.
of the IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD? Multiple instructions operate on single data element
o Closest form: systolic array processor?

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
o Multiprocessor
o Multithreaded processor
29

SISD Parallelism Extraction Techniques

We have already seen
o Superscalar execution
o Out-of-order execution

Are there simpler ways of extracting SISD parallelism?
o VLIW (Very Long Instruction Word)
o Decoupled Access/Execute

30

VLIW

VLIW (Very Long Instruction Word)

A very long instruction word consists of multiple
independent instructions packed together by the compiler

o Packed instructions can be logically unrelated (contrast with
SIMD)

Idea: Compiler finds independent instructions and statically
schedules (i.e. packs/bundles) them into a single VLIW
Instruction

Traditional Characteristics
o Multiple functional units
o Each instruction in a bundle executed in lock step

o Instructions in a bundle statically aligned to be directly fed

into the functional units
32

VLIW Concept

Memory

add r1.r2,r3 load r4,r5+4 mov r6,r2 mul r7.r8.r9

Erograml
ounter

Instruction
Execution

= Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

o ELI: Enormously longword instructions (512 bits)
33

SIMD Array Processing vs. VLLIW

= Array processor

Program
ounter

VLEN = 4|

add VR[O],VR[0],1 add VR[1],VR[1],1 add VR[2],VR[2],1 add VR[3],VR[3],1

Instruction

Execution . . .
PE PE PE PE

34

VLIW Philosophy

Philosophy similar to RISC (simple instructions and hardware)
o Except multiple instructions in parallel

RISC (John Cocke, 1970s, IBM 801 minicomputer)

o Compiler does the hard work to translate high-level language
code to simple instructions (John Cocke: control signals)

And, to reorder simple instructions for high performance
o Hardware does little translation/decoding - very simple

VLIW (Fisher, ISCA 1983)
o Compiler does the hard work to find instruction level parallelism

o Hardware stays as simple and streamlined as possible
Executes each instruction in a bundle in lock step

Simple - higher frequency, easier to design
35

VLIW Philosophy (1)

More formally, VLIW architectures have the following
properties:

There is one central control unit issuing a single long

instruction per cycle.

Each long instruction consists of many tightly coupled
independent operations.

Each operation requires a small, statically predictable
number of cycles to execute.

Operations can be pipelined. These properties distinguish
VLIWs from multiprocessors (with large asynchronous tasks)
and dataflow machines (without a single flow of control, and
without the tight coupling). VLIWs have none of the required
regularity of a vector processor, or true array processor.

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 30

Commercial VLIW Machines

Multiflow TRACE, Josh Fisher (7-wide, 28-wide)

Cydrome Cydra 5, Bob Rau

Transmeta Crusoe: x86 binary-translated into internal VLIW
TI C6000, Trimedia, STMicro (DSP & embedded processors)
o Most successful commercially

Intel IA-64

o Not fully VLIW, but based on VLIW principles

o EPIC (Explicitly Parallel Instruction Computing)

o Instruction bundles can have dependent instructions

a A few bits in the instruction format specify explicitly which
instructions in the bundle are dependent on which other ones

37

VLIW Tradeoffs

Advantages
+ No need for dynamic scheduling hardware - simple hardware

+ No need for dependency checking within a VLIW instruction -2
simple hardware for multiple instruction issue + no renaming

+ No need for instruction alignment/distribution after fetch to
different functional units - simple hardware

Disadvantages

-- Compiler needs to find N independent operations
-- If it cannot, inserts NOPs in a VLIW instruction
-- Parallelism loss AND code size increase

-- Recompilation required when execution width (N), instruction
latencies, functional units change (Unlike superscalar processing)

-- Lockstep execution causes independent operations to stall

-- No instruction can progress until the longest-latency instruction completes
38

VLIW Summary

VLIW simplifies hardware, but requires complex compiler
techniques

Solely-compiler approach of VLIW has several downsides
that reduce performance
-- Too many NOPs (not enough parallelism discovered)
-- Static schedule intimately tied to microarchitecture

-- Code optimized for one generation performs poorly for next
-- No tolerance for variable or long-latency operations (lock step)

++ Most compiler optimizations developed for VLIW employed
in optimizing compilers (for superscalar compilation)

o Enable code optimizations
++ VLIW successful in embedded markets, e.g. DSP

39

DAE

Decoupled Access/Execute

Motivation: Tomasulo’ s algorithm too complex to

implement
o 1980s before HPS, Pentium Pro

Idea: Decouple operand
access and execution via
two separate instruction
streams that communicate
via ISA-visible queues.

Smith, “Decoupled Access/Execute
Computer Architectures,” ISCA 1982,
ACM TOCS 1984.

Memory

E-instructions

Access
Processor

A
register
file

wag I Mo Il l‘—

-
wl| r

ri{ e

il a

E d A-instructions 1

-_—ffrl’—’

EAQ
AEBQ

EABQ

Execute
Processor

X
register
file

41

Decoupled Access/Execute (11)

Compiler generates two instruction streams (A and E)
o Synchronizes the two upon control flow instructions (using branch queues)

q= 0.0
Do 1 k =1, 400
1 x(k) = q+ y(k) * (r * z(k+10) + t * z(k+11))
Fig. 2a. Lawrence Livermore Loop 1 (HYDRO
EXCERPT) Access Execute
A7 « -400 . negative loop count .
A2 « 0 . initialize index
A3 « 1 . index increment .
X2 <r . 1oad loop invariants AEQ « z + 10, A2 X4 « X2 *f AEQ
X5 « t . into registers AEQ « z + 11, A2 X3 « X5 *f AF
loop: X3 « z + 10, A2 . load Z(k+10) AES “y, A2 X6 ¢« X3 +f X4Q
X7 « z + 11, A2 . load z(k+11) AT « A7 + 1 EAQ « AEQ *f X6
X4 « X2 *f X3 « r*z(k+10)-f1t. mult.
X3 « X5 *f X7 .t % z(k+11) x, A2 « EAQ .
X7 « y, A2 . load y(k) A2 <« A2+ A3 .
X6 « X3 +f X4 . r*z(x+10)+t*z(k+11)) . .
X4 « X7 *f X6 . y(k) * (above) .
A7 « A7 + 1 . increment loop counter .
x, A2 « X4 . store into x(k)
A2 « A2 + A3 . increment index
JAM loo . Branch if A7 < 0
P Fig. 2c. Access and execute programs for
Fig. 2b. Compilation onto CRAY-1-like straight-line section of loop

architecture

42

Decoupled Access/Execute (111

Advantages:

+ Execute stream can run ahead of the access stream and vice
versa

+ If A takes a cache miss, E can perform useful work
+ If A hits in cache, it supplies data to lagging E
+ Queues reduce the number of required registers
+ Limited out-of-order execution without wakeup/select complexity

Disadvantages:

-- Compiler support to partition the program and manage queues
-- Determines the amount of decoupling

-- Branch instructions require synchronization between A and E

-- Multiple instruction streams (can be done with a single one,
though)

43

Astronautics Z.S-1

Single stream

~ steered into A and
LOGICAL - ="
UNIT X pipelines
x RecisTeRs | | [FLOATING _ ‘ Each pipeline in-
:S]:} — MULTIPLIER Order
FLOATING
o o |
RESTART . . “
o I e | Smith et al., “The
PIPELINE N STORE ZS5-1 central
4 WsTRUCTION | 1 -y copy 1 ;;:L:pz | Processor,
— h oems ASPLOS 1987,
INSTRUGTION [| WreceR oca K=
S PELINE || sHiFTER — MEMORY Smith. Dynamic
UNIT ’
Scheduling and
I e W I N the Astronautics
| - DIVIDER ZS-]_,” IEEE
’ ' Computer 1989.

44

Astronautics ZS-1 Instruction Scheduling

Dynamic scheduling
o A and X streams are issued/executed independently
o Loads can bypass stores in the memory unit (if no conflict)

o Branches executed early in the pipeline
To reduce synchronization penalty of A/X streams
Works only if the register a branch sources is available

Static scheduling
o Move compare instructions as early as possible before a branch
So that branch source register is available when branch is decoded
o Reorder code to expose parallelism in each stream
o Loop unrolling:
Reduces branch count + exposes code reordering opportunities

45

Loop Unrolling

| = 1, =1

while (i<100){ Iwhne’(i<100){
afi] = b[i+1] + (i+1)/m = b[i+1] + (i+1)/m
bli] = i“'” - i/m b[i] = a[i-1] - i/m
1=+

} a[|+1] = b[i+2] + (iI+2)/m

b[iI+1] = a[i] - (1I+1)/m
1=1+2

}

Idea: Replicate loop body multiple times within an iteration
+ Reduces loop maintenance overhead
o Induction variable increment or loop condition test
+ Enlarges basic block (and analysis scope)
o Enables code optimization and scheduling opportunities
-- What if iteration count not a multiple of unroll factor? (need extra code to detect
this)

-- Increases code size
46

Systolic Arrays

Why Systolic Architectures?

Idea: Data flows from the computer memory in a rhythmic
fashion, passing through many processing elements before it
returns to memory

Similar to an assembly line
o Different people work on the same car

o Many cars are assembled simultaneously
o Can be two-dimensional

Why? Special purpose accelerators/architectures need

o Simple, regular designs (keep # unique parts small and regular)
o High concurrency - high performance

o Balanced computation and I/O (memory access)

48

Systolic Architectures

H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982.

INSTEAD OF:
4 MEMORY [€—
100 ns
o
WE HAVE: MEMORY L&
100 ns
—’{PE PE | PE | PE | PE | PE
THE SYSTOLIC ARRAY

5 MILLION
OPERATIONS
PER SECOND
AT MOST

30 MOPS
POSSIBLE

Figure 1. Basic principle of a systolic system.

Memory: heart
PEs: cells

Memory pulses
data through
cells

49

Systolic Architectures

Basic principle: Replace a single PE with a regular array of
PEs and carefully orchestrate flow of data between the PEs
—> achieve high throughput w/o increasing memory
bandwidth requirements

AT MOST
P e

INSTEAD OF:

WE HAVE:

MEMORY 30 MOPS

POSSIBLE

100 ns

PE|PE | PE | PE | PE | PE

THE SYSTOLIC ARRAY

Diffe rences from pi pel i n i ng : Figure 1. Basic principle of a systolic system.
o Array structure can be non-linear and multi-dimensional
o PE connections can be multidirectional (and different speed)

o PEs can have local memory and execute kernels (rather than a
piece of the instruction)

50

Systolic Computation Example

= Convolution

o Used in filtering, pattern matching, correlation, polynomial
evaluation, etc ...

o Many image processing tasks

Given the sequence of weights (wy, wy, . . ., Wy
and the input sequence X;, X2, . . . , X,

compute the result sequence ¥y, V2, - - - s Vn+1-k
defined by

Vi=WXi+WoXipo + .00 F WelXig k-

51

Systolic Computation |

yl = wlxl +
W2Xx2 + W3x3

y2 = Wilx2 +
w2x3 + w3x4

y3 = wlx3 +
w2x4 + w3x5

“xample: Convolution

Yout |

it

(b)

r

w

A
L J

Yin

Xout

Yout = Yin + W X

Xout = Xin

Figure 8. Design W1: systolic convolution array (a) and
cell (b) where w;’s stay and x;’s and y;’s move systolically
in opposite directions.

52

Systolic Computation |

“xample: Convolution

===

) -

RESULTS ‘—?—

w3

o

%

AX?

4—?4— —

5

xl

MULTIPLIER

@ .

X1

—|—> [IGNORED}

ADDER

= LATCH

Figure 10. Overlapping the executions of multiply and add in design W1.

= Worthwhile to implement adder and multiplier separately
to allow overlapping of add/mul executions

53

More Programmability

Each PE in a systolic array

o Can store multiple “weights”

o Weights can be selected on the fly

o Eases implementation of, e.g., adaptive filtering

Taken further
o Each PE can have its own data and instruction memory
o Data memory - to store partial/temporary results, constants

o Leads to stream processing, pipeline parallelism
More generally, staged execution

54

Pipeline Parallelism

' fori=1toN
(”eodelnmgeA] PO eo cofa1)B1[c1|a2)B2|c2 (A3 33@
[// code in stageB]
T S i
(// code in stagec] ot ot ottt ot ottt to ot ot .
k (a) (c)
‘é) | GEEEME -
} P1 Bo|B1|B2|B3|B4|BS
Bi
P2 cofc1]c2]ca[cs[cs)
¢ —tt—t———————+—————— time
t, ofot, ottt ot ottt ot
) {b) {d)

Figure 1. (a) The code of a loop, (b) Each iteration is split into 3 pipeline stages: A, B, and C. Iteration i comprises Ai, Bi, Ci.
(c) Sequential execution of 4 iterations. (d) Parallel execution of 6 iterations using pipeline parallelism on a three-core machine.
Each stage executes on one core.

55

File Compression Example

STAGEST ~ [| STAGES2 [| STAGES3 [| STAGES4 [| STAGESS
'ALLOCATE | s [READINPUT| o [COMPRESS | || (WRTEOUTPUT || [DEALLOCATE
Input . Alocatebuflers | olo o Q=QUEUERop) Lol Q=QUEUE2POD) || o Q=QUEVE3Pop) || o Q=QUEVE4Pop) | o
File QUEUET.Push(Buf : Read file to Buf : Compress Q | Write oldest Q to File 1 Deallocate Buffers
o QUEUE2Push(Buf) | 'o| | QUEUESPush(C) o | QUEUESPush(Q) 0
\. J || \ J L \. J L \. || \. y,
L] L] L .
QUEUET QUEUE?2 QUEUE3 QUEUE4

Figure 3. File compression algorithm executed using pipeline parallelism

56

Systolic Array

Advantages

o Makes multiple uses of each data item - reduced need for
fetching/refetching

o High concurrency
o Regular design (both data and control flow)

Disadvantages
o Not good at exploiting irregular parallelism

o Relatively special purpose - need software, programmer
support to be a general purpose model

57

The WARP Computer
HT Kung, CMU, 1984-1988

Linear array of 10 cells, each cell a 10 Mflop programmable
processor

Attached to a general purpose host machine
HLL and optimizing compiler to program the systolic array
Used extensively to accelerate vision and robotics tasks

Annaratone et al., “Warp Architecture and Implementation,
ISCA 1986.

Annaratone et al., "The Warp Computer: Architecture,
Implementation, and Performance,” IEEE TC 1987.

/4

58

The WARP Computer

Cell
1

WARP PROCESSOR ARRAY

Figure 1: Warp system overview

59

The WARP Computer

XQ >
—>— -
$12 x 32
- >
Y P
Q >— < j
512 x 32
> AReg Lo add
31 31 x 32 >
Data A\/
Mem el g;gss <] Mem
32K x 32 ——>1 2K x 32
Y4 A
——>{ MReg L5 mpy
> 31 x 32 -l
<Literal> ~ '
[v
\
P Address € AGU
<] Cross
Aer Bar
> > >
512 x 32

Figure 2: Warp cell data path

60

Systolic Arrays vs. SIMD

= Food for thought...

601

Some More Recommended Readings

= Recommended:

a

Fisher, “Very Long Instruction Word architectures and the
ELI-512,” ISCA 1983.

Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro
2000.

Russell, “The CRAY-1 computer system,” CACM 1978.

Rau and Fisher, “Instruction-level parallel processing: history,
overview, and perspective,” Journal of Supercomputing, 1993.

Faraboschi et al., “Instruction Scheduling for Instruction Level
Parallel Processors,” Proc. IEEE, Nov. 2001.

62

