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A Note on This Lecture 
n  These slides are partly from 18-447 Spring 2013, Computer 

Architecture, Lecture 20: GPUs, VLIW, DAE, Systolic Arrays 
 

n  Video of the part related to only SIMD and GPUs: 
q  http://www.youtube.com/watch?

v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
&index=20  
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Last Lecture 
n  SIMD Processing 
n  GPU Fundamentals 
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Today 
n  Wrap up GPUs 
n  VLIW 

n  If time permits 
q  Decoupled Access Execute 
q  Systolic Arrays 
q  Static Scheduling 
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Approaches to (Instruction-Level) Concurrency 

n  Pipelined execution 
n  Out-of-order execution 
n  Dataflow (at the ISA level) 
n  SIMD Processing 
n  VLIW 

n  Systolic Arrays 
n  Decoupled Access Execute 
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Graphics Processing Units 
SIMD not Exposed to Programmer (SIMT) 

 
 
 
 
 
 



Review: High-Level View of a GPU 
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Review: Concept of “Thread Warps” and SIMT 

n  Warp: A set of threads that execute the same instruction 
(on different data elements) à SIMT (Nvidia-speak) 

n  All threads run the same kernel 
n  Warp: The threads that run lengthwise in a woven fabric … 
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Review: Loop Iterations as Threads 
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for (i=0; i < N; i++) 
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n  Same instruction in different threads uses thread id to index 
and access different data elements 

Review: SIMT Memory Access 

Let’s assume N=16, blockDim=4 à 4 blocks  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
+ 

+ + + + 

Slide credit: Hyesoon Kim 



Review: Sample GPU SIMT Code (Simplified) 

for (ii = 0; ii < 100; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 

Slide credit: Hyesoon Kim 



Review: Sample GPU Program (Less Simplified) 
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Review: Latency Hiding with “Thread Warps” 

n  Warp: A set of threads that 
execute the same instruction 
(on different data elements) 

n  Fine-grained multithreading 
q  One instruction per thread in 

pipeline at a time (No branch 
prediction) 

q  Interleave warp execution to 
hide latencies 

n  Register values of all threads stay 
in register file 

n  No OS context switching 
n  Memory latency hiding 

q  Graphics has millions of pixels 
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Review: Warp-based SIMD vs. Traditional SIMD 
n  Traditional SIMD contains a single thread  

q  Lock step 
q  Programming model is SIMD (no threads) à SW needs to know vector 

length 
q  ISA contains vector/SIMD instructions 

n  Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads) 
q  Does not have to be lock step 
q  Each thread can be treated individually (i.e., placed in a different 

warp) à programming model not SIMD 
n  SW does not need to know vector length 
n  Enables memory and branch latency tolerance 

q  ISA is scalar à vector instructions formed dynamically 
q  Essentially, it is SPMD programming model implemented on SIMD 

hardware 
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Review: SPMD 
n  Single procedure/program, multiple data  

q  This is a programming model rather than computer organization 

n  Each processing element executes the same procedure, except on 
different data elements 
q  Procedures can synchronize at certain points in program, e.g. barriers 

n  Essentially, multiple instruction streams execute the same 
program 
q  Each program/procedure can 1) execute a different control-flow path, 

2) work on different data, at run-time 
q  Many scientific applications programmed this way and run on MIMD 

computers (multiprocessors) 
q  Modern GPUs programmed in a similar way on a SIMD computer 
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Branch Divergence Problem in Warp-based SIMD 

n  SPMD Execution on SIMD Hardware  
q  NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”) 

execution 
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Control Flow Problem in GPUs/SIMD 
n  GPU uses SIMD 

pipeline to save area 
on control logic. 
q  Group scalar threads into 

warps 

n  Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths. 
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Branch Divergence Handling (I) 
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Branch Divergence Handling (II) 

19 

A 

B C 

D 

A -- 1111 
B D 1110 
C D 0001 

Next PC Recv PC Amask 
D -- 1111 

Control Flow Stack 

One per warp 

A; 
if (some condition) { 
   B; 
} else { 
   C; 
} 
D; TOS 

D 

1 
1 
1 
1 

A 
0 
0 
0 
1 

C 
1 
1 
1 
0 

B 
1 
1 
1 
1 

D 

Time 

Execution Sequence 

Slide credit: Tor Aamodt 



Dynamic Warp Formation 
n  Idea: Dynamically merge threads executing the same 

instruction (after branch divergence) 
n  Form new warp at divergence 

q  Enough threads branching to each path to create full new 
warps 
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Dynamic Warp Formation/Merging 
n  Idea: Dynamically merge threads executing the same 

instruction (after branch divergence) 

 
n  Fung et al., “Dynamic Warp Formation and Scheduling for 

Efficient GPU Control Flow,” MICRO 2007. 
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Dynamic Warp Formation Example 
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What About Memory Divergence? 
n  Modern GPUs have caches 
n  Ideally: Want all threads in the warp to hit (without 

conflicting with each other) 
n  Problem: One thread in a warp can stall the entire warp if it 

misses in the cache. 
 
n  Need techniques to  

q  Tolerate memory divergence 
q  Integrate solutions to branch and memory divergence 
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NVIDIA GeForce GTX 285 
n  NVIDIA-speak: 

q  240 stream processors 
q  “SIMT execution” 

  

n  Generic speak: 
q  30 cores 
q  8 SIMD functional units per core 

24 Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 
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… 
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NVIDIA GeForce GTX 285 “core” 
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… 
64 KB of storage  
for thread contexts 
(registers) 

n  Groups of 32 threads share instruction stream (each group is 
a Warp) 

n  Up to 32 warps are simultaneously interleaved 
n  Up to 1024 thread contexts can be stored    
 
Slide credit: Kayvon Fatahalian 
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VLIW and DAE 

 
 
 
 
 
 



Remember: SIMD/MIMD Classification of Computers 

n  Mike Flynn, “Very High Speed Computing Systems,” Proc. 
of the IEEE, 1966 

n  SISD: Single instruction operates on single data element 
n  SIMD: Single instruction operates on multiple data elements 

q  Array processor 
q  Vector processor 

n  MISD? Multiple instructions operate on single data element 
q  Closest form: systolic array processor? 

n  MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 
q  Multiprocessor 
q  Multithreaded processor 
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SISD Parallelism Extraction Techniques 
n  We have already seen 

q  Superscalar execution 
q  Out-of-order execution 

n  Are there simpler ways of extracting SISD parallelism? 
q  VLIW (Very Long Instruction Word) 
q  Decoupled Access/Execute 
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VLIW 

 
 
 
 
 
 



VLIW (Very Long Instruction Word) 
n  A very long instruction word consists of multiple 

independent instructions packed together by the compiler 
q  Packed instructions can be logically unrelated (contrast with 

SIMD) 

n  Idea: Compiler finds independent instructions and statically 
schedules (i.e. packs/bundles) them into a single VLIW 
instruction 

n  Traditional Characteristics 
q  Multiple functional units 
q  Each instruction in a bundle executed in lock step 
q  Instructions in a bundle statically aligned to be directly fed 

into the functional units 
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VLIW Concept 

 
n  Fisher, “Very Long Instruction Word architectures and the 

ELI-512,” ISCA 1983. 
q  ELI: Enormously longword instructions (512 bits) 
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SIMD Array Processing vs. VLIW 
n  Array processor 
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VLIW Philosophy 
n  Philosophy similar to RISC (simple instructions and hardware) 

q  Except multiple instructions in parallel 

n  RISC (John Cocke, 1970s, IBM 801 minicomputer) 
q  Compiler does the hard work to translate high-level language 

code to simple instructions (John Cocke: control signals) 
n  And, to reorder simple instructions for high performance 

q  Hardware does little translation/decoding à very simple 

n  VLIW (Fisher, ISCA 1983) 
q  Compiler does the hard work to find instruction level parallelism  
q  Hardware stays as simple and streamlined as possible 

n  Executes each instruction in a bundle in lock step 
n  Simple à higher frequency, easier to design 
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VLIW Philosophy (II) 

36 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Commercial VLIW Machines 
n  Multiflow TRACE, Josh Fisher (7-wide, 28-wide) 
n  Cydrome Cydra 5, Bob Rau 
n  Transmeta Crusoe: x86 binary-translated into internal VLIW 
n  TI C6000, Trimedia, STMicro (DSP & embedded processors) 

q  Most successful commercially 

n  Intel IA-64 
q  Not fully VLIW, but based on VLIW principles 
q  EPIC (Explicitly Parallel Instruction Computing) 
q  Instruction bundles can have dependent instructions 
q  A few bits in the instruction format specify explicitly which 

instructions in the bundle are dependent on which other ones 
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VLIW Tradeoffs 
n  Advantages 

+ No need for dynamic scheduling hardware à simple hardware 
+ No need for dependency checking within a VLIW instruction à 

simple hardware for multiple instruction issue + no renaming 
+ No need for instruction alignment/distribution after fetch to 

different functional units à simple hardware 
 

n  Disadvantages 
-- Compiler needs to find N independent operations 

 -- If it cannot, inserts NOPs in a VLIW instruction 
 -- Parallelism loss AND code size increase 

-- Recompilation required when execution width (N), instruction 
latencies, functional units change (Unlike superscalar processing) 

-- Lockstep execution causes independent operations to stall 
 -- No instruction can progress until the longest-latency instruction completes 
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VLIW Summary 
n  VLIW simplifies hardware, but requires complex compiler 

techniques 
n  Solely-compiler approach of VLIW has several downsides 

that reduce performance 
-- Too many NOPs (not enough parallelism discovered) 
-- Static schedule intimately tied to microarchitecture 

 -- Code optimized for one generation performs poorly for next 
-- No tolerance for variable or long-latency operations (lock step) 
 

++ Most compiler optimizations developed for VLIW employed 
in optimizing compilers (for superscalar compilation) 

q  Enable code optimizations 

++ VLIW successful in embedded markets, e.g. DSP 
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DAE 

 
 
 
 
 
 



Decoupled Access/Execute 
n  Motivation: Tomasulo’s algorithm too complex to 

implement  
q  1980s before HPS, Pentium Pro 

n  Idea: Decouple operand  
    access and execution via  
    two separate instruction  
    streams that communicate  
    via ISA-visible queues.  

n  Smith, “Decoupled Access/Execute  
     Computer Architectures,” ISCA 1982,  
     ACM TOCS 1984. 
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Decoupled Access/Execute (II) 
n  Compiler generates two instruction streams (A and E) 

q  Synchronizes the two upon control flow instructions (using branch queues) 
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Decoupled Access/Execute (III) 
n  Advantages: 

+ Execute stream can run ahead of the access stream and vice 
versa 
 + If A takes a cache miss, E can perform useful work 

    + If A hits in cache, it supplies data to lagging E 
 + Queues reduce the number of required registers 

+ Limited out-of-order execution without wakeup/select complexity 
 

n  Disadvantages: 
 -- Compiler support to partition the program and manage queues 

        -- Determines the amount of decoupling 
 -- Branch instructions require synchronization between A and E 
 -- Multiple instruction streams (can be done with a single one, 
though) 
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Astronautics ZS-1 
n  Single stream 

steered into A and 
X pipelines 

n  Each pipeline in-
order 

n  Smith et al., “The 
ZS-1 central 
processor,” 
ASPLOS 1987. 

n  Smith, “Dynamic 
Instruction 
Scheduling and 
the Astronautics 
ZS-1,” IEEE 
Computer 1989. 
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Astronautics ZS-1 Instruction Scheduling 
n  Dynamic scheduling 

q  A and X streams are issued/executed independently 
q  Loads can bypass stores in the memory unit (if no conflict) 
q  Branches executed early in the pipeline 

n  To reduce synchronization penalty of A/X streams 
n  Works only if the register a branch sources is available 

n  Static scheduling 
q  Move compare instructions as early as possible before a branch 

n  So that branch source register is available when branch is decoded 

q  Reorder code to expose parallelism in each stream 
q  Loop unrolling: 

n  Reduces branch count + exposes code reordering opportunities 
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Loop Unrolling 

n  Idea: Replicate loop body multiple times within an iteration 
+ Reduces loop maintenance overhead 

q  Induction variable increment or loop condition test 

+ Enlarges basic block (and analysis scope) 
q  Enables code optimization and scheduling opportunities 

-- What if iteration count not a multiple of unroll factor? (need extra code to detect 
this) 

-- Increases code size 
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Systolic Arrays 
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Why Systolic Architectures? 
n  Idea: Data flows from the computer memory in a rhythmic 

fashion, passing through many processing elements before it 
returns to memory 

n  Similar to an assembly line 
q  Different people work on the same car 
q  Many cars are assembled simultaneously 
q  Can be two-dimensional 

n  Why? Special purpose accelerators/architectures need 
q  Simple, regular designs (keep # unique parts small and regular) 
q  High concurrency à high performance 
q  Balanced computation and I/O (memory access) 

48 



Systolic Architectures 
n  H. T. Kung, “Why Systolic Architectures?,” IEEE Computer 1982. 
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Systolic Architectures 
n  Basic principle: Replace a single PE with a regular array of 

PEs and carefully orchestrate flow of data between the PEs 
à achieve high throughput w/o increasing memory 
bandwidth requirements 

n  Differences from pipelining: 
q  Array structure can be non-linear and multi-dimensional  
q  PE connections can be multidirectional (and different speed) 
q  PEs can have local memory and execute kernels (rather than a 

piece of the instruction) 
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Systolic Computation Example 
n  Convolution 

q  Used in filtering, pattern matching, correlation, polynomial 
evaluation, etc … 

q  Many image processing tasks 
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Systolic Computation Example: Convolution 

n  y1 = w1x1 + 
w2x2 + w3x3 

n  y2 = w1x2 + 
w2x3 + w3x4 

n  y3 = w1x3 + 
w2x4 + w3x5 
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Systolic Computation Example: Convolution 

n  Worthwhile to implement adder and multiplier separately  
to allow overlapping of add/mul executions 
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n  Each PE in a systolic array 
q  Can store multiple “weights” 
q  Weights can be selected on the fly 
q  Eases implementation of, e.g., adaptive filtering 

n  Taken further 
q  Each PE can have its own data and instruction memory 
q  Data memory à to store partial/temporary results, constants 
q  Leads to stream processing, pipeline parallelism 

n  More generally, staged execution 
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More Programmability 



Pipeline Parallelism 
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File Compression Example 
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Systolic Array 
n  Advantages 

q  Makes multiple uses of each data item à reduced need for 
fetching/refetching 

q  High concurrency 
q  Regular design (both data and control flow) 

n  Disadvantages 
q  Not good at exploiting irregular parallelism 
q  Relatively special purpose à need software, programmer 

support to be a general purpose model 
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The WARP Computer 
n  HT Kung, CMU, 1984-1988 

n  Linear array of 10 cells, each cell a 10 Mflop programmable 
processor 

n  Attached to a general purpose host machine 
n  HLL and optimizing compiler to program the systolic array 
n  Used extensively to accelerate vision and robotics tasks 

n  Annaratone et al., “Warp Architecture and Implementation,” 
ISCA 1986.  

n  Annaratone et al., “The Warp Computer: Architecture, 
Implementation, and Performance,” IEEE TC 1987.  
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The WARP Computer  
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The WARP Computer  
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Systolic Arrays vs. SIMD 
n  Food for thought… 
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Some More Recommended Readings 
n  Recommended: 

q  Fisher, “Very Long Instruction Word architectures and the 
ELI-512,” ISCA 1983. 

q  Huck et al., “Introducing the IA-64 Architecture,” IEEE Micro 
2000. 

 
q  Russell, “The CRAY-1 computer system,” CACM 1978. 
q  Rau and Fisher, “Instruction-level parallel processing: history, 

overview, and perspective,” Journal of Supercomputing, 1993. 
q  Faraboschi et al., “Instruction Scheduling for Instruction Level 

Parallel Processors,” Proc. IEEE, Nov. 2001. 
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