
Computer Architecture: 
SIMD and GPUs (Part II) 

 
 

Prof. Onur Mutlu 
Carnegie Mellon University 

 
 



A Note on This Lecture 
n  These slides are partly from 18-447 Spring 2013, Computer 

Architecture, Lecture 19: SIMD and GPUs  
 

n  Video of the part related to only SIMD and GPUs: 
q  http://www.youtube.com/watch?v=dl5TZ4-

oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19  

2 



Readings for Today 
n  Lindholm et al., "NVIDIA Tesla: A Unified Graphics and 

Computing Architecture," IEEE Micro 2008. 

n  Fatahalian and Houston, “A Closer Look at GPUs,” CACM 
2008. 

n  See slides today for more readings (optional but 
recommended) 

3 



Today 
n  SIMD Processing  
n  GPU Fundamentals  
n  VLIW 

4 



Approaches to (Instruction-Level) Concurrency 

n  Pipelined execution 
n  Out-of-order execution 
n  Dataflow (at the ISA level) 
n  SIMD Processing 
n  VLIW 

n  Systolic Arrays 
n  Decoupled Access Execute 

5 



Review: SIMD Processing 
n  Single instruction operates on multiple data elements 

q  In time or in space 

n  Multiple processing elements  

n  Time-space duality 
q  Array processor: Instruction operates on multiple data 

elements at the same time 
q  Vector processor: Instruction operates on multiple data 

elements in consecutive time steps 

6 



Review: SIMD Array Processing vs. VLIW 
n  VLIW 

7 



Review: SIMD Array Processing vs. VLIW 
n  Array processor 

8 



Review: Vector Processors 
n  A vector is a one-dimensional array of numbers 
n  Many scientific/commercial programs use vectors 

for (i = 0; i<=49; i++) 
 C[i] = (A[i] + B[i]) / 2 

 

n  A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values 

n  Basic requirements 
q  Need to load/store vectors à vector registers (contain vectors) 
q  Need to operate on vectors of different lengths à vector length 

register (VLEN) 
q  Elements of a vector might be stored apart from each other in 

memory à vector stride register (VSTR) 
n  Stride: distance between two elements of a vector 

9 



Review: Vector Processor Advantages 
+ No dependencies within a vector  

q  Pipelining, parallelization work well 
q  Can have very deep pipelines, no dependencies!  

+ Each instruction generates a lot of work  
q  Reduces instruction fetch bandwidth 

+ Highly regular memory access pattern  
q  Interleaving multiple banks for higher memory bandwidth 
q  Prefetching 

+ No need to explicitly code loops  
q  Fewer branches in the instruction sequence 

10 



Review: Vector Processor Disadvantages 
-- Works (only) if parallelism is regular (data/SIMD parallelism) 

 ++ Vector operations 
    -- Very inefficient if parallelism is irregular 

     -- How about searching for a key in a linked list? 
 
 
 
 

11 Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 



Review: Vector Processor Limitations 
-- Memory (bandwidth) can easily become a bottleneck, 

especially if 
 1. compute/memory operation balance is not maintained 
 2. data is not mapped appropriately to memory banks 

 
 
 
 

12 



Vector Registers 
n  Each vector data register holds N M-bit values 
n  Vector control registers: VLEN, VSTR, VMASK 
n  Vector Mask Register (VMASK) 

q  Indicates which elements of vector to operate on 
q  Set by vector test instructions 

n  e.g., VMASK[i] = (Vk[i] == 0) 

n  Maximum VLEN can be N 
q  Maximum number of elements stored in a vector register 

13 

V0,0 
V0,1 

V0,N-1 

V1,0 
V1,1 

V1,N-1 

M-bit wide M-bit wide 



Vector Functional Units 
n  Use deep pipeline (=> fast 

clock) to execute element 
operations 

n  Simplifies control of deep 
pipeline because elements in 
vector are independent   

14 

V
1 

V
2 

V
3 

V3 <- v1 * v2 

Six stage multiply pipeline 

Slide credit: Krste Asanovic 



Vector Machine Organization (CRAY-1) 
n  CRAY-1 
n  Russell, “The CRAY-1 

computer system,” 
CACM 1978. 

n  Scalar and vector modes 
n  8 64-element vector 

registers 
n  64 bits per element 
n  16 memory banks 
n  8 64-bit scalar registers 
n  8 24-bit address registers 

15 



Memory Banking 
n  Example: 16 banks; can start one bank access per cycle 
n  Bank latency: 11 cycles 
n  Can sustain 16 parallel accesses if they go to different banks 

16 

Bank 
0 

Bank 
1 

MDR MAR 

Bank 
2 

Bank 
15 

MDR MAR MDR MAR MDR MAR 

Data bus 

Address bus 

CPU 
Slide credit: Derek Chiou 



Vector Memory System 

17 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

+

Base Stride Vector Registers 

Memory Banks 

Address 
Generator 

Slide credit: Krste Asanovic 



Scalar Code Example 
n  For I = 0 to 49 

q  C[i] = (A[i] + B[i]) / 2 

n  Scalar code 
     MOVI R0 = 50    1 
     MOVA R1 = A    1 
     MOVA R2 = B    1 
     MOVA R3 = C    1 
X:  LD R4 = MEM[R1++]   11  ;autoincrement addressing 
     LD R5 = MEM[R2++]   11 
     ADD R6 = R4 + R5   4 
     SHFR R7 = R6 >> 1   1 
     ST MEM[R3++] = R7    11 
     DECBNZ --R0, X   2   ;decrement and branch if NZ 

18 

304 dynamic instructions 



Scalar Code Execution Time 

19 

n  Scalar execution time on an in-order processor with 1 bank 
q  First two loads in the loop cannot be pipelined: 2*11 cycles 
q  4 + 50*40 = 2004 cycles 

 
n  Scalar execution time on an in-order processor with 16 

banks (word-interleaved) 
q  First two loads in the loop can be pipelined 
q  4 + 50*30 = 1504 cycles 

n  Why 16 banks? 
q  11 cycle memory access latency 
q  Having 16 (>11) banks ensures there are enough banks to 

overlap enough memory operations to cover memory latency 



Vectorizable Loops 
n  A loop is vectorizable if each iteration is independent of any 

other 
n  For I = 0 to 49 

q  C[i] = (A[i] + B[i]) / 2 
n  Vectorized loop: 

  MOVI VLEN = 50    1 
  MOVI VSTR = 1    1 
  VLD V0 = A     11 + VLN - 1 
  VLD V1 = B     11 + VLN – 1 
  VADD V2 = V0 + V1    4 + VLN - 1 
  VSHFR V3 = V2 >> 1   1 + VLN - 1 
  VST C = V3     11 + VLN – 1 

20 

7 dynamic instructions 



Vector Code Performance 
n  No chaining  

q  i.e., output of a vector functional unit cannot be used as the 
input of another (i.e., no vector data forwarding) 

n  One memory port (one address generator) 
n  16 memory banks (word-interleaved) 

n  285 cycles 

21 

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE



Vector Chaining 
n  Vector chaining: Data forwarding from one vector 

functional unit to another 

22 

Memory 

V1 

Load 
Unit 

Mult. 

V
2 

V
3 

Chain 

Add 

V
4 

V
5 

Chain 

LV   v1 
MULV v3,v1,v2 
ADDV v5, v3, v4 

Slide credit: Krste Asanovic 



Vector Code Performance - Chaining 
n  Vector chaining: Data forwarding from one vector 

functional unit to another 

n  182 cycles 

23 

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be  
pipelined. WHY? 

VLD and VST cannot be  
pipelined. WHY? 

Strict assumption: 
Each memory bank  
has a single port  
(memory bandwidth 
bottleneck) 



Vector Code Performance – Multiple Memory Ports 

n  Chaining and 2 load ports, 1 store port in each bank 

n  79 cycles 

24 

1 1 11 49

4 49

1 49

11 49

11 491



Questions (I) 
n  What if # data elements > # elements in a vector register? 

q  Need to break loops so that each iteration operates on # 
elements in a vector register 
n  E.g., 527 data elements, 64-element VREGs 
n  8 iterations where VLEN = 64 
n  1 iteration where VLEN = 15 (need to change value of VLEN) 

q  Called vector stripmining 
 
n  What if vector data is not stored in a strided fashion in 

memory? (irregular memory access to a vector) 
q  Use indirection to combine elements into vector registers 
q  Called scatter/gather operations 

25 



Gather/Scatter Operations 

26 

Want to vectorize loops with indirect accesses: 
for (i=0; i<N; i++) 
    A[i] = B[i] + C[D[i]] 

 

Indexed load instruction (Gather) 
LV vD, rD       # Load indices in D vector 
LVI vC, rC, vD  # Load indirect from rC base 
LV vB, rB       # Load B vector 
ADDV.D vA,vB,vC # Do add 
SV vA, rA       # Store result 
 



Gather/Scatter Operations 
n  Gather/scatter operations often implemented in hardware 

to handle sparse matrices  
n  Vector loads and stores use an index vector which is added 

to the base register to generate the addresses 

27 

Index Vector   Data Vector   Equivalent 
 
        1           3.14         3.14 
        3           6.5              0.0 
        7         71.2             6.5 
        8           2.71             0.0 

          0.0 
           0.0 

          0.0 
         71.2 
          2.7   



Conditional Operations in a Loop 
n  What if some operations should not be executed on a vector 

(based on a dynamically-determined condition)? 
loop:  if (a[i] != 0) then b[i]=a[i]*b[i] 

   goto loop 

n  Idea: Masked operations  
q  VMASK register is a bit mask determining which data element 

should not be acted upon 
  VLD V0 = A 
  VLD V1 = B 
  VMASK = (V0 != 0) 
  VMUL V1 = V0 * V1 
  VST B = V1 

q  Does this look familiar? This is essentially predicated execution. 
28 



Another Example with Masking 

29 

for (i = 0; i < 64; ++i) 
 if (a[i] >= b[i]) then c[i] = a[i] 
 else c[i] = b[i] 

A  B  VMASK     
1  2     0                  
2  2     1 
3  2     1 
4  10     0 
-5  -4     0 
0  -3     1 
6  5     1 
-7  -8     1 

Steps to execute loop 
 
1. Compare A, B to get  

 VMASK 
 
2. Masked store of  A into C 
 
3. Complement VMASK 
 
4. Masked store of B into C 



Masked Vector Instructions 

30 

C[4] 

C[5] 

C[1] 

Write data port 

A[7] B[7] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

M[7]=1 

      Density-Time Implementation 
–  scan mask vector and only execute 

elements with non-zero masks 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

M[3]=0 

M[4]=1 

M[5]=1 

M[6]=0 

M[2]=0 

M[1]=1 

M[0]=0 

Write data port Write Enable 

A[7] B[7] M[7]=1 

     Simple Implementation 
–  execute all N operations, turn off 

result writeback according to mask 

Slide credit: Krste Asanovic 



Some Issues 
n  Stride and banking 

q  As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, consecutive 
accesses proceed in parallel 

n  Storage of a matrix 
q  Row major: Consecutive elements in a row are laid out 

consecutively in memory 
q  Column major: Consecutive elements in a column are laid out 

consecutively in memory 
q  You need to change the stride when accessing a row versus 

column 

31 



32 



Array vs. Vector Processors, Revisited 
n  Array vs. vector processor distinction is a “purist’s” 

distinction 

n  Most “modern” SIMD processors are a combination of both 
q  They exploit data parallelism in both time and space 

33 



Remember: Array vs. Vector Processors 

34 

ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR ß A[3:0] 
ADD  VR ß VR, 1  
MUL  VR ß VR, 2 
ST     A[3:0] ß VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 
AD0 AD1 AD2 AD3 
MU0 MU1 MU2 MU3 
ST0 ST1 ST2 ST3 

LD0 
LD1 AD0 
LD2 AD1 MU0 
LD3 AD2 MU1 ST0 

AD3 MU2 ST1 
MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



Vector Instruction Execution 

35 

ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

A[6] B[6] 

Execution using 
one pipelined 
functional unit 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

A[24] B[24] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

A[25] B[25] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

A[26] B[26] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

A[27] B[27] 

Execution using 
four pipelined 
functional units 

Slide credit: Krste Asanovic 



Vector Unit Structure 

36 

Lane 

Functional Unit 

Vector 
Registers 

Memory Subsystem 

Elements 
0, 4, 8, … 

Elements 
1, 5, 9, … 

Elements 
2, 6, 10, … 

Elements 
3, 7, 11, … 

Slide credit: Krste Asanovic 



Vector Instruction Level Parallelism 
Can overlap execution of multiple vector instructions 

q  example machine has 32 elements per vector register and 8 lanes 
q  Complete 24 operations/cycle while issuing 1 short instruction/cycle 

37 

load 

load 
mul 

mul 

add 

add 

Load Unit Multiply Unit Add Unit 

time 

Instruction 
issue 

Slide credit: Krste Asanovic 



Automatic Code Vectorization 

38 

for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vectorization is a compile-time reordering of 
operation sequencing 
⇒ requires extensive loop dependence analysis 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

Ti
m

e 

Slide credit: Krste Asanovic 



Vector/SIMD Processing Summary 
n  Vector/SIMD machines good at exploiting regular data-level 

parallelism 
q  Same operation performed on many data elements 
q  Improve performance, simplify design (no intra-vector 

dependencies) 

n  Performance improvement limited by vectorizability of code 
q  Scalar operations limit vector machine performance 
q  Amdahl’s Law 
q  CRAY-1 was the fastest SCALAR machine at its time! 

n  Many existing ISAs include (vector-like) SIMD operations 
q  Intel MMX/SSEn/AVX, PowerPC AltiVec, ARM Advanced SIMD 

39 



SIMD Operations in Modern ISAs 

 
 
 
 
 
 



Intel Pentium MMX Operations 
n  Idea: One instruction operates on multiple data elements 

simultaneously 
q  Ala array processing (yet much more limited) 
q  Designed with multimedia (graphics) operations in mind 

41 

Peleg and Weiser, “MMX Technology 
Extension to the Intel Architecture,” 
IEEE Micro, 1996. 

No VLEN register 
Opcode determines data type: 
8 8-bit bytes 
4 16-bit words 
2 32-bit doublewords 
1 64-bit quadword 
 
Stride always equal to 1. 
 



MMX Example: Image Overlaying (I) 

42 



MMX Example: Image Overlaying (II) 

43 



Graphics Processing Units 
SIMD not Exposed to Programmer (SIMT) 

 
 
 
 
 
 



High-Level View of a GPU 

45 



Concept of “Thread Warps” and SIMT 
n  Warp: A set of threads that execute the same instruction 

(on different data elements) à SIMT (Nvidia-speak) 
n  All threads run the same kernel 
n  Warp: The threads that run lengthwise in a woven fabric … 

46 

Thread Warp 3 
Thread Warp 8 

Thread Warp 7 

Thread Warp 
Scalar 
Thread 

W 

Scalar 
Thread 

X 

Scalar 
Thread 

Y 

Scalar 
Thread 

Z 

Common PC 

SIMD Pipeline 



Loop Iterations as Threads 

47 

for (i=0; i < N; i++) 
    C[i] = A[i] + B[i]; 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 1 

Iter. 2 

Scalar Sequential Code 

Vector Instruction 

load 

load 

add 

store 

load 

load 

add 

store 

Iter. 
1 

Iter. 
2 

Vectorized Code 

Ti
m

e 

Slide credit: Krste Asanovic 



n  Same instruction in different threads uses thread id to index 
and access different data elements 

SIMT Memory Access 

Let’s assume N=16, blockDim=4 à 4 blocks  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
+ 

+ + + + 

Slide credit: Hyesoon Kim 



Sample GPU SIMT Code (Simplified) 

for (ii = 0; ii < 100; ++ii) { 
C[ii] = A[ii] + B[ii]; 
} 

// there are 100 threads 
__global__ void KernelFunction(…) { 
  int tid = blockDim.x * blockIdx.x + threadIdx.x; 
  int varA = aa[tid]; 
  int varB = bb[tid]; 
  C[tid] = varA + varB; 
} 

CPU code 

CUDA code 

Slide credit: Hyesoon Kim 



Sample GPU Program (Less Simplified) 

50 Slide credit: Hyesoon Kim 



Latency Hiding with “Thread Warps” 
n  Warp: A set of threads that 

execute the same instruction 
(on different data elements) 

n  Fine-grained multithreading 
q  One instruction per thread in 

pipeline at a time (No branch 
prediction) 

q  Interleave warp execution to 
hide latencies 

n  Register values of all threads stay 
in register file 

n  No OS context switching 
n  Memory latency hiding 

q  Graphics has millions of pixels 

51 

Decode 

R F 

R F 

R F 

A L U 

A L U 

A L U 

D-Cache 

Thread Warp 6 

Thread Warp 1 
Thread Warp 2 Data All Hit? 

Miss? 

Warps accessing 
memory hierarchy 

Thread Warp 3 
Thread Warp 8 

Writeback 

Warps available 
for scheduling 

Thread Warp 7 

I-Fetch 

SIMD Pipeline 

Slide credit: Tor Aamodt 



Warp-based SIMD vs. Traditional SIMD 
n  Traditional SIMD contains a single thread  

q  Lock step 
q  Programming model is SIMD (no threads) à SW needs to know vector 

length 
q  ISA contains vector/SIMD instructions 

n  Warp-based SIMD consists of multiple scalar threads executing in 
a SIMD manner (i.e., same instruction executed by all threads) 
q  Does not have to be lock step 
q  Each thread can be treated individually (i.e., placed in a different 

warp) à programming model not SIMD 
n  SW does not need to know vector length 
n  Enables memory and branch latency tolerance 

q  ISA is scalar à vector instructions formed dynamically 
q  Essentially, it is SPMD programming model implemented on SIMD 

hardware 
52 



SPMD 
n  Single procedure/program, multiple data  

q  This is a programming model rather than computer organization 

n  Each processing element executes the same procedure, except on 
different data elements 
q  Procedures can synchronize at certain points in program, e.g. barriers 

n  Essentially, multiple instruction streams execute the same 
program 
q  Each program/procedure can 1) execute a different control-flow path, 

2) work on different data, at run-time 
q  Many scientific applications programmed this way and run on MIMD 

computers (multiprocessors) 
q  Modern GPUs programmed in a similar way on a SIMD computer 

53 



We did not cover the following slides in lecture. 
These are for your preparation for the next lecture.  



Branch Divergence Problem in Warp-based SIMD 

n  SPMD Execution on SIMD Hardware  
q  NVIDIA calls this “Single Instruction, Multiple Thread” (“SIMT”) 

execution 

55 

Thread Warp Common PC 

Thread 
2 

Thread 
3 

Thread 
4 

Thread 
1 

B 

C D 

E 

F 

A 

G 

Slide credit: Tor Aamodt 



Control Flow Problem in GPUs/SIMD 
n  GPU uses SIMD 

pipeline to save area 
on control logic. 
q  Group scalar threads into 

warps 

n  Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths. 

56 

Branch 

Path A 

Path B 

Branch 

Path A 

Path B 

Slide credit: Tor Aamodt 



Branch Divergence Handling (I) 

57 

- G 1111 TOS 

B 

C D 

E 

F 

A 

G 

Thread Warp Common PC 

Thread 
2 

Thread 
3 

Thread 
4 

Thread 
1 

B/1111 

C/1001 D/0110 

E/1111 

A/1111 

G/1111 

- A 1111 TOS 
E D 0110 
E C 1001 TOS 

- E 1111 
E D 0110 TOS 
- E 1111 

A D G A 

Time 

C B E 

- B 1111 TOS - E 1111 TOS 
Reconv. PC Next PC Active Mask 

Stack 

E D 0110 
E E 1001 TOS 

- E 1111 

Slide credit: Tor Aamodt 



Branch Divergence Handling (II) 

58 

A 

B C 

D 

A -- 1111 
B D 1110 
C D 0001 

Next PC Recv PC Amask 
D -- 1111 

Control Flow Stack 

One per warp 

A; 
if (some condition) { 
   B; 
} else { 
   C; 
} 
D; TOS 

D 

1 
1 
1 
1 

A 
0 
0 
0 
1 

C 
1 
1 
1 
0 

B 
1 
1 
1 
1 

D 

Time 

Execution Sequence 

Slide credit: Tor Aamodt 



Dynamic Warp Formation 
n  Idea: Dynamically merge threads executing the same 

instruction (after branch divergence) 
n  Form new warp at divergence 

q  Enough threads branching to each path to create full new 
warps 

59 



Dynamic Warp Formation/Merging 
n  Idea: Dynamically merge threads executing the same 

instruction (after branch divergence) 

 
n  Fung et al., “Dynamic Warp Formation and Scheduling for 

Efficient GPU Control Flow,” MICRO 2007. 
60 

Branch 

Path A 

Path B 

Branch 

Path A 



Dynamic Warp Formation Example 

61 

A A B B G G A A C C D D E E F F 

Time 
A A B B G G A A C D E E F 

Time 

A x/1111 
y/1111 

B x/1110 
y/0011 

C x/1000 
y/0010 D x/0110 

y/0001 F x/0001 
y/1100 

E x/1110 
y/0011 

G x/1111 
y/1111 

A new warp created from scalar 
threads of both Warp x and y 
executing at Basic Block D 

D 

Execution of Warp x 
at Basic Block A 

Execution of Warp y 
at Basic Block A 

Legend 
A A 

Baseline 

Dynamic 
Warp 
Formation 

Slide credit: Tor Aamodt 



What About Memory Divergence? 
n  Modern GPUs have caches 
n  Ideally: Want all threads in the warp to hit (without 

conflicting with each other) 
n  Problem: One thread in a warp can stall the entire warp if it 

misses in the cache. 
 
n  Need techniques to  

q  Tolerate memory divergence 
q  Integrate solutions to branch and memory divergence 

62 



NVIDIA GeForce GTX 285 
n  NVIDIA-speak: 

q  240 stream processors 
q  “SIMT execution” 

  

n  Generic speak: 
q  30 cores 
q  8 SIMD functional units per core 

63 Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 

64 

… 

= instruction stream decode = SIMD functional unit, control  
   shared across 8 units 
    = execution context storage  = multiply-add 

= multiply 

64 KB of storage  
for fragment 
contexts (registers) 

Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 “core” 

65 

… 
64 KB of storage  
for thread contexts 
(registers) 

n  Groups of 32 threads share instruction stream (each group is 
a Warp) 

n  Up to 32 warps are simultaneously interleaved 
n  Up to 1024 thread contexts can be stored    
 
Slide credit: Kayvon Fatahalian 



NVIDIA GeForce GTX 285 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

Tex 

… … …

………

………

………

………

………

………

………

………

………

66 

There are 30 of these things on the GTX 285: 30,720 threads 

Slide credit: Kayvon Fatahalian 


