
Computer Architecture:

Interconnects (Part I)

Prof. Onur Mutlu

Carnegie Mellon University

Memory Interference and QoS Lectures

 These slides are from a lecture delivered at Bogazici
University (June 10, 2013)

 Videos:

 https://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0e
jHhwOfLwTr8Q-UKXj

 https://www.youtube.com/watch?v=rKRFlpavGs8&list=PLVngZ7BemHHV6N
0ejHhwOfLwTr8Q-UKXj&index=3

 https://www.youtube.com/watch?v=go34f7v9KIs&list=PLVngZ7BemHHV6N
0ejHhwOfLwTr8Q-UKXj&index=4

 https://www.youtube.com/watch?v=nWDoUqoZY4s&list=PLVngZ7BemHHV6
N0ejHhwOfLwTr8Q-UKXj&index=5

2

https://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
https://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
https://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
https://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
https://www.youtube.com/watch?v=rKRFlpavGs8&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=3
https://www.youtube.com/watch?v=rKRFlpavGs8&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=3
https://www.youtube.com/watch?v=rKRFlpavGs8&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=3
https://www.youtube.com/watch?v=rKRFlpavGs8&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=3
https://www.youtube.com/watch?v=rKRFlpavGs8&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=3
https://www.youtube.com/watch?v=go34f7v9KIs&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=4
https://www.youtube.com/watch?v=go34f7v9KIs&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=4
https://www.youtube.com/watch?v=go34f7v9KIs&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=4
https://www.youtube.com/watch?v=go34f7v9KIs&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=4
https://www.youtube.com/watch?v=go34f7v9KIs&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=4
https://www.youtube.com/watch?v=nWDoUqoZY4s&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=5
https://www.youtube.com/watch?v=nWDoUqoZY4s&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=5
https://www.youtube.com/watch?v=nWDoUqoZY4s&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=5
https://www.youtube.com/watch?v=nWDoUqoZY4s&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=5
https://www.youtube.com/watch?v=nWDoUqoZY4s&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=5

Multi-Core Architectures and

Shared Resource Management

Lecture 3: Interconnects

Prof. Onur Mutlu

http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

Bogazici University

June 10, 2013

http://www.ece.cmu.edu/~omutlu
mailto:onur@cmu.edu
mailto:onur@cmu.edu
mailto:onur@cmu.edu

Last Lecture

 Wrap up Asymmetric Multi-Core Systems

 Handling Private Data Locality

 Asymmetry Everywhere

 Resource Sharing vs. Partitioning

 Cache Design for Multi-core Architectures

 MLP-aware Cache Replacement

 The Evicted-Address Filter Cache

 Base-Delta-Immediate Compression

 Linearly Compressed Pages

 Utility Based Cache Partitioning

 Fair Shared Cache Partitinoning

 Page Coloring Based Cache Partitioning

4

Agenda for Today

 Interconnect design for multi-core systems

 (Prefetcher design for multi-core systems)

 (Data Parallelism and GPUs)

5

Readings for Lecture June 6 (Lecture 1.1)
 Required – Symmetric and Asymmetric Multi-Core Systems

 Mutlu et al., “Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors,” HPCA 2003, IEEE Micro 2003.

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric
Multi-Core Architectures,” ASPLOS 2009, IEEE Micro 2010.

 Suleman et al., “Data Marshaling for Multi-Core Architectures,” ISCA 2010,
IEEE Micro 2011.

 Joao et al., “Bottleneck Identification and Scheduling for Multithreaded
Applications,” ASPLOS 2012.

 Joao et al., “Utility-Based Acceleration of Multithreaded Applications on
Asymmetric CMPs,” ISCA 2013.

 Recommended

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

 Olukotun et al., “The Case for a Single-Chip Multiprocessor,” ASPLOS 1996.

 Mutlu et al., “Techniques for Efficient Processing in Runahead Execution
Engines,” ISCA 2005, IEEE Micro 2006.

6

Videos for Lecture June 6 (Lecture 1.1)

 Runahead Execution
 http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd

59REog9jDnPDTG6IJ&index=28

 Multiprocessors
 Basics:http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkX

midJOd59REog9jDnPDTG6IJ&index=31

 Correctness and Coherence: http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32

 Heterogeneous Multi-Core:
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd5
9REog9jDnPDTG6IJ&index=34

7

http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28
http://www.youtube.com/watch?v=z8YpjqXQJIA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=28
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=31
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34
http://www.youtube.com/watch?v=r6r2NJxj3kI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=34

Readings for Lecture June 7 (Lecture 1.2)
 Required – Caches in Multi-Core

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2005.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches,” PACT 2012.

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,” SAFARI
Technical Report 2013.

 Recommended

 Qureshi et al., “Utility-Based Cache Partitioning: A Low-Overhead, High-
Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

8

Videos for Lecture June 7 (Lecture 1.2)

 Cache basics:

 http://www.youtube.com/watch?v=TpMdBrM1hVc&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=23

 Advanced caches:

 http://www.youtube.com/watch?v=TboaFbjTd-
E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24

9

http://www.youtube.com/watch?v=TpMdBrM1hVc&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=23
http://www.youtube.com/watch?v=TpMdBrM1hVc&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=23
http://www.youtube.com/watch?v=TboaFbjTd-E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24
http://www.youtube.com/watch?v=TboaFbjTd-E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24
http://www.youtube.com/watch?v=TboaFbjTd-E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24

Readings for Lecture June 10 (Lecture 1.3)
 Required – Interconnects in Multi-Core

 Moscibroda and Mutlu, “A Case for Bufferless Routing in On-Chip
Networks,” ISCA 2009.

 Fallin et al., “CHIPPER: A Low-Complexity Bufferless Deflection Router,”
HPCA 2011.

 Fallin et al., “MinBD: Minimally-Buffered Deflection Routing for Energy-
Efficient Interconnect,” NOCS 2012.

 Das et al., “Application-Aware Prioritization Mechanisms for On-Chip
Networks,” MICRO 2009.

 Das et al., “Aergia: Exploiting Packet Latency Slack in On-Chip
Networks,” ISCA 2010, IEEE Micro 2011.

 Recommended

 Grot et al. “Preemptive Virtual Clock: A Flexible, Efficient, and Cost-
effective QOS Scheme for Networks-on-Chip,” MICRO 2009.

 Grot et al., “Kilo-NOC: A Heterogeneous Network-on-Chip Architecture
for Scalability and Service Guarantees,” ISCA 2011, IEEE Micro 2012.

10

More Readings for Lecture 1.3

 Studies of congestion and congestion control in on-chip vs.
internet-like networks

 George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and
Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference (SIGCOMM),
Helsinki, Finland, August 2012. Slides (pptx)

 George Nychis, Chris Fallin, Thomas Moscibroda, and Onur Mutlu,
"Next Generation On-Chip Networks: What Kind of Congestion
Control Do We Need?"
Proceedings of the 9th ACM Workshop on Hot Topics in Networks
(HOTNETS), Monterey, CA, October 2010. Slides (ppt) (key)

11

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://conferences.sigcomm.org/hotnets/2010/
http://users.ece.cmu.edu/~omutlu/pub/nychis_hotnets10_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/nychis_hotnets10_talk.key

Videos for Lecture June 10 (Lecture 1.3)

 Interconnects

 http://www.youtube.com/watch?v=6xEpbFVgnf8&list=PL5PHm2j
kkXmidJOd59REog9jDnPDTG6IJ&index=33

 GPUs and SIMD processing
 Vector/array processing basics: http://www.youtube.com/watch?v=f-

XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15

 GPUs versus other execution models:
http://www.youtube.com/watch?v=dl5TZ4-
oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19

 GPUs in more detail:
http://www.youtube.com/watch?v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJO
d59REog9jDnPDTG6IJ&index=20

12

http://www.youtube.com/watch?v=6xEpbFVgnf8&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=33
http://www.youtube.com/watch?v=6xEpbFVgnf8&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=33
http://www.youtube.com/watch?v=f-XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15
http://www.youtube.com/watch?v=f-XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15
http://www.youtube.com/watch?v=f-XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15
http://www.youtube.com/watch?v=dl5TZ4-oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19
http://www.youtube.com/watch?v=dl5TZ4-oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19
http://www.youtube.com/watch?v=dl5TZ4-oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19
http://www.youtube.com/watch?v=dl5TZ4-oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19
http://www.youtube.com/watch?v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=20
http://www.youtube.com/watch?v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=20

Readings for Prefetching

 Prefetching

 Srinath et al., “Feedback Directed Prefetching: Improving the
Performance and Bandwidth-Efficiency of Hardware Prefetchers,”
HPCA 2007.

 Ebrahimi et al., “Coordinated Control of Multiple Prefetchers in Multi-
Core Systems,” MICRO 2009.

 Ebrahimi et al., “Techniques for Bandwidth-Efficient Prefetching of
Linked Data Structures in Hybrid Prefetching Systems,” HPCA 2009.

 Ebrahimi et al., “Prefetch-Aware Shared Resource Management for
Multi-Core Systems,” ISCA 2011.

 Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008.

 Recommended

 Lee et al., “Improving Memory Bank-Level Parallelism in the
Presence of Prefetching,” MICRO 2009.

13

Videos for Prefetching

 Prefetching

 http://www.youtube.com/watch?v=IIkIwiNNl0c&list=PL5PHm
2jkkXmidJOd59REog9jDnPDTG6IJ&index=29

 http://www.youtube.com/watch?v=yapQavK6LUk&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=30

14

http://www.youtube.com/watch?v=IIkIwiNNl0c&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=29
http://www.youtube.com/watch?v=IIkIwiNNl0c&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=29
http://www.youtube.com/watch?v=IIkIwiNNl0c&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=29
http://www.youtube.com/watch?v=yapQavK6LUk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=30
http://www.youtube.com/watch?v=yapQavK6LUk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=30
http://www.youtube.com/watch?v=yapQavK6LUk&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=30

Readings for GPUs and SIMD

 GPUs and SIMD processing

 Narasiman et al., “Improving GPU Performance via Large
Warps and Two-Level Warp Scheduling,” MICRO 2011.

 Jog et al., “OWL: Cooperative Thread Array Aware Scheduling
Techniques for Improving GPGPU Performance,” ASPLOS
2013.

 Jog et al., “Orchestrated Scheduling and Prefetching for
GPGPUs,” ISCA 2013.

 Lindholm et al., “NVIDIA Tesla: A Unified Graphics and
Computing Architecture,” IEEE Micro 2008.

 Fung et al., “Dynamic Warp Formation and Scheduling for
Efficient GPU Control Flow,” MICRO 2007.

15

Videos for GPUs and SIMD

 GPUs and SIMD processing
 Vector/array processing basics: http://www.youtube.com/watch?v=f-

XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15

 GPUs versus other execution models:
http://www.youtube.com/watch?v=dl5TZ4-
oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19

 GPUs in more detail:
http://www.youtube.com/watch?v=vr5hbSkb1Eg&list=PL5PHm2jkkXmid
JOd59REog9jDnPDTG6IJ&index=20

16

http://www.youtube.com/watch?v=f-XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15
http://www.youtube.com/watch?v=f-XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15
http://www.youtube.com/watch?v=f-XL4BNRoBA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=15
http://www.youtube.com/watch?v=dl5TZ4-oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19
http://www.youtube.com/watch?v=dl5TZ4-oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19
http://www.youtube.com/watch?v=dl5TZ4-oao0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=19
http://www.youtube.com/watch?v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=20
http://www.youtube.com/watch?v=vr5hbSkb1Eg&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=20

Online Lectures and More Information

 Online Computer Architecture Lectures

 http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59R
Eog9jDnPDTG6IJ

 Online Computer Architecture Courses

 Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php

 Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php

 Advanced: http://www.ece.cmu.edu/~ece742/doku.php

 Recent Research Papers

 http://users.ece.cmu.edu/~omutlu/projects.htm

 http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=e
n

17

http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.ece.cmu.edu/~ece447/s13/doku.php
http://www.ece.cmu.edu/~ece740/f11/doku.php
http://www.ece.cmu.edu/~ece742/doku.php
http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

Interconnect Basics

18

Interconnect in a Multi-Core System

19

Shared

Storage

Where Is Interconnect Used?

 To connect components

 Many examples

 Processors and processors

 Processors and memories (banks)

 Processors and caches (banks)

 Caches and caches

 I/O devices

20

Interconnection network

Why Is It Important?

 Affects the scalability of the system

 How large of a system can you build?

 How easily can you add more processors?

 Affects performance and energy efficiency

 How fast can processors, caches, and memory communicate?

 How long are the latencies to memory?

 How much energy is spent on communication?

21

Interconnection Network Basics

 Topology

 Specifies the way switches are wired

 Affects routing, reliability, throughput, latency, building ease

 Routing (algorithm)

 How does a message get from source to destination

 Static or adaptive

 Buffering and Flow Control

 What do we store within the network?

 Entire packets, parts of packets, etc?

 How do we throttle during oversubscription?

 Tightly coupled with routing strategy

 22

Topology

 Bus (simplest)

 Point-to-point connections (ideal and most costly)

 Crossbar (less costly)

 Ring

 Tree

 Omega

 Hypercube

 Mesh

 Torus

 Butterfly

 …

23

Metrics to Evaluate Interconnect Topology

 Cost

 Latency (in hops, in nanoseconds)

 Contention

 Many others exist you should think about

 Energy

 Bandwidth

 Overall system performance

24

Bus

+ Simple

+ Cost effective for a small number of nodes

+ Easy to implement coherence (snooping and serialization)

- Not scalable to large number of nodes (limited bandwidth,
electrical loading reduced frequency)

- High contention fast saturation

25

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

0 1 2 3 4 5 6 7

Point-to-Point

Every node connected to every other

+ Lowest contention

+ Potentially lowest latency

+ Ideal, if cost is not an issue

-- Highest cost

 O(N) connections/ports

 per node

 O(N2) links

-- Not scalable

-- How to lay out on chip?

 26

0

1

2

3

4

5

6

7

Crossbar

 Every node connected to every other (non-blocking) except
one can be using the connection at any given time

 Enables concurrent sends to non-conflicting destinations

 Good for small number of nodes

+ Low latency and high throughput

- Expensive

- Not scalable O(N2) cost

- Difficult to arbitrate as N increases

Used in core-to-cache-bank

networks in

- IBM POWER5

- Sun Niagara I/II

27

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Another Crossbar Design

28

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Sun UltraSPARC T2 Core-to-Cache Crossbar

 High bandwidth
interface between 8
cores and 8 L2
banks & NCU

 4-stage pipeline:
req, arbitration,
selection,
transmission

 2-deep queue for
each src/dest pair
to hold data
transfer request

29

Buffered Crossbar

30

Output

Arbiter

Output

Arbiter

Output

Arbiter

Output

Arbiter

Flow

Control

Flow

Control

Flow

Control

Flow

Control

NI

NI

NI

NI

Buffered

Crossbar

0

1

2

3

NI

NI

NI

NI

Bufferless

Crossbar

0

1

2

3

+ Simpler
arbitration/
scheduling

+ Efficient
support for
variable-size
packets

- Requires
N2 buffers

Can We Get Lower Cost than A Crossbar?

 Yet still have low contention?

 Idea: Multistage networks

31

Multistage Logarithmic Networks

 Idea: Indirect networks with multiple layers of switches
between terminals/nodes

 Cost: O(NlogN), Latency: O(logN)

 Many variations (Omega, Butterfly, Benes, Banyan, …)

 Omega Network:

32

000

001

010

011

100

101

110

111

000

001

010

011

100

101

110

111

Omega Net w or k

conflict

Multistage Circuit Switched

 More restrictions on feasible concurrent Tx-Rx pairs

 But more scalable than crossbar in cost, e.g., O(N logN) for Butterfly

 33

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 crossbar

Multistage Packet Switched

 Packets “hop” from router to router, pending availability of
the next-required switch and buffer

34

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

2-by-2 router

Aside: Circuit vs. Packet Switching

 Circuit switching sets up full path

 Establish route then send data

 (no one else can use those links)

+ faster arbitration

-- setting up and bringing down links takes time

 Packet switching routes per packet

 Route each packet individually (possibly via different paths)

 if link is free, any packet can use it

-- potentially slower --- must dynamically switch

+ no setup, bring down time

+ more flexible, does not underutilize links

35

Switching vs. Topology

 Circuit/packet switching choice independent of topology

 It is a higher-level protocol on how a message gets sent to
a destination

 However, some topologies are more amenable to circuit vs.
packet switching

36

Another Example: Delta Network

 Single path from source to
destination

 Does not support all possible
permutations

 Proposed to replace costly
crossbars as processor-memory
interconnect

 Janak H. Patel ,“Processor-
Memory Interconnections for
Multiprocessors,” ISCA 1979.

37

8x8 Delta network

Another Example: Omega Network

 Single path from source to
destination

 All stages are the same

 Used in NYU
Ultracomputer

 Gottlieb et al. “The NYU
Ultracomputer-designing a
MIMD, shared-memory
parallel machine,” ISCA
1982.

38

Ring

+ Cheap: O(N) cost

- High latency: O(N)

- Not easy to scale

 - Bisection bandwidth remains constant

Used in Intel Haswell, Intel Larrabee, IBM Cell, many
commercial systems today

39

M

P

RING

S

M

P

S

M

P

S

Unidirectional Ring

 Simple topology and implementation

 Reasonable performance if N and performance needs
(bandwidth & latency) still moderately low

 O(N) cost

 N/2 average hops; latency depends on utilization

40

R

0

R

1

R

N-2

R

N-1

2

2x2 router

Bidirectional Rings

+ Reduces latency

+ Improves scalability

- Slightly more complex injection policy (need to select which
ring to inject a packet into)

41

Hierarchical Rings

+ More scalable

+ Lower latency

- More complex

42

More on Hierarchical Rings

 Chris Fallin, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, Greg Nazario, Reetuparna Das, and Onur
Mutlu,
"HiRD: A Low-Complexity, Energy-Efficient
Hierarchical Ring Interconnect"
SAFARI Technical Report, TR-SAFARI-2012-004, Carnegie
Mellon University, December 2012.

 Discusses the design and implementation of a mostly-
bufferless hierarchical ring

43

http://users.ece.cmu.edu/~omutlu/pub/hird_safari-tech-report-2012-004.pdf
http://users.ece.cmu.edu/~omutlu/pub/hird_safari-tech-report-2012-004.pdf
http://users.ece.cmu.edu/~omutlu/pub/hird_safari-tech-report-2012-004.pdf
http://users.ece.cmu.edu/~omutlu/pub/hird_safari-tech-report-2012-004.pdf
http://users.ece.cmu.edu/~omutlu/pub/hird_safari-tech-report-2012-004.pdf
http://users.ece.cmu.edu/~omutlu/pub/hird_safari-tech-report-2012-004.pdf
http://www.ece.cmu.edu/~safari/tr.html

Mesh

 O(N) cost

 Average latency: O(sqrt(N))

 Easy to layout on-chip: regular and equal-length links

 Path diversity: many ways to get from one node to another

 Used in Tilera 100-core

 And many on-chip network

 prototypes

44

Torus

 Mesh is not symmetric on edges: performance very
sensitive to placement of task on edge vs. middle

 Torus avoids this problem

+ Higher path diversity (and bisection bandwidth) than mesh

- Higher cost

- Harder to lay out on-chip

 - Unequal link lengths

45

Torus, continued

 Weave nodes to make inter-node latencies ~constant

46

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

S
M P

Planar, hierarchical topology

Latency: O(logN)

Good for local traffic

+ Cheap: O(N) cost

+ Easy to Layout

- Root can become a bottleneck

 Fat trees avoid this problem (CM-5)

Trees

47

Fat Tree

CM-5 Fat Tree

 Fat tree based on 4x2 switches

 Randomized routing on the way up

 Combining, multicast, reduction operators supported in
hardware

 Thinking Machines Corp., “The Connection Machine CM-5
Technical Summary,” Jan. 1992.

48

Hypercube

 Latency: O(logN)

 Radix: O(logN)

 #links: O(NlogN)

+ Low latency

- Hard to lay out in 2D/3D

49

00

00

01

01

01

00

00

01

00

11

00

10

01

10

01

11

10

00

11

01

11

00

10

01

10

11

10

10

11

10

11

11

Caltech Cosmic Cube

 64-node message passing
machine

 Seitz, “The Cosmic Cube,”
CACM 1985.

50

Handling Contention

 Two packets trying to use the same link at the same time

 What do you do?

 Buffer one

 Drop one

 Misroute one (deflection)

 Tradeoffs?

51

Destination

Bufferless Deflection Routing

 Key idea: Packets are never buffered in the network. When
two packets contend for the same link, one is deflected.1

52
1Baran, “On Distributed Communication Networks.” RAND Tech. Report., 1962 / IEEE Trans.Comm., 1964.

New traffic can be injected
whenever there is a free
output link.

Bufferless Deflection Routing

 Input buffers are eliminated: flits are buffered in
pipeline latches and on network links

53

North

South

East

West

Local

North

South

East

West

Local

Deflection Routing Logic

Input Buffers

Routing Algorithm

 Types

 Deterministic: always chooses the same path for a
communicating source-destination pair

 Oblivious: chooses different paths, without considering
network state

 Adaptive: can choose different paths, adapting to the state
of the network

 How to adapt

 Local/global feedback

 Minimal or non-minimal paths

54

Deterministic Routing

 All packets between the same (source, dest) pair take the
same path

 Dimension-order routing

 E.g., XY routing (used in Cray T3D, and many on-chip
networks)

 First traverse dimension X, then traverse dimension Y

+ Simple

+ Deadlock freedom (no cycles in resource allocation)

- Could lead to high contention

- Does not exploit path diversity

55

Deadlock

 No forward progress

 Caused by circular dependencies on resources

 Each packet waits for a buffer occupied by another packet
downstream

56

Handling Deadlock

 Avoid cycles in routing

 Dimension order routing

 Cannot build a circular dependency

 Restrict the “turns” each packet can take

 Avoid deadlock by adding more buffering (escape paths)

 Detect and break deadlock

 Preemption of buffers

57

Turn Model to Avoid Deadlock

 Idea

 Analyze directions in which packets can turn in the network

 Determine the cycles that such turns can form

 Prohibit just enough turns to break possible cycles

 Glass and Ni, “The Turn Model for Adaptive Routing,” ISCA
1992.

58

Oblivious Routing: Valiant’s Algorithm

 An example of oblivious algorithm

 Goal: Balance network load

 Idea: Randomly choose an intermediate destination, route
to it first, then route from there to destination

 Between source-intermediate and intermediate-dest, can use
dimension order routing

+ Randomizes/balances network load

- Non minimal (packet latency can increase)

 Optimizations:

 Do this on high load

 Restrict the intermediate node to be close (in the same quadrant)

59

Adaptive Routing

 Minimal adaptive

 Router uses network state (e.g., downstream buffer
occupancy) to pick which “productive” output port to send a
packet to

 Productive output port: port that gets the packet closer to its
destination

+ Aware of local congestion

- Minimality restricts achievable link utilization (load balance)

 Non-minimal (fully) adaptive

 “Misroute” packets to non-productive output ports based on
network state

+ Can achieve better network utilization and load balance

- Need to guarantee livelock freedom

60

On-Chip Networks

61

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R Router

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

PE

• Connect cores, caches, memory
controllers, etc

– Buses and crossbars are not scalable

• Packet switched

• 2D mesh: Most commonly used
topology

• Primarily serve cache misses and
memory requests

© Onur Mutlu, 2009, 2010

On-chip Networks

62

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossbar

R Router

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (SA)

© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects

 On-chip advantages

 Low latency between cores

 No pin constraints

 Rich wiring resources

 Very high bandwidth

 Simpler coordination

 On-chip constraints/disadvantages

 2D substrate limits implementable topologies

 Energy/power consumption a key concern

 Complex algorithms undesirable

 Logic area constrains use of wiring resources

 63

© Onur Mutlu, 2009, 2010

On-Chip vs. Off-Chip Interconnects (II)

 Cost

 Off-chip: Channels, pins, connectors, cables

 On-chip: Cost is storage and switches (wires are plentiful)

 Leads to networks with many wide channels, few buffers

 Channel characteristics

 On chip short distance low latency

 On chip RC lines need repeaters every 1-2mm

 Can put logic in repeaters

 Workloads

 Multi-core cache traffic vs. supercomputer interconnect traffic

64

Motivation for Efficient Interconnect

 In many-core chips, on-chip interconnect (NoC)
consumes significant power

 Intel Terascale: ~28% of chip power

 Intel SCC: ~10%

 MIT RAW: ~36%

 Recent work1 uses bufferless deflection routing to
reduce power and die area

65

Core L1

L2 Slice Router

1Moscibroda and Mutlu, “A Case for Bufferless Deflection Routing in On-Chip Networks.” ISCA 2009.

Research in Interconnects

Research Topics in Interconnects

 Plenty of topics in interconnection networks. Examples:

 Energy/power efficient and proportional design

 Reducing Complexity: Simplified router and protocol designs

 Adaptivity: Ability to adapt to different access patterns

 QoS and performance isolation

 Reducing and controlling interference, admission control

 Co-design of NoCs with other shared resources

 End-to-end performance, QoS, power/energy optimization

 Scalable topologies to many cores, heterogeneous systems

 Fault tolerance

 Request prioritization, priority inversion, coherence, …

 New technologies (optical, 3D)

67

One Example: Packet Scheduling

 Which packet to choose for a given output port?

 Router needs to prioritize between competing flits

 Which input port?

 Which virtual channel?

 Which application’s packet?

 Common strategies

 Round robin across virtual channels

 Oldest packet first (or an approximation)

 Prioritize some virtual channels over others

 Better policies in a multi-core environment

 Use application characteristics

 Minimize energy

68

Computer Architecture:

Interconnects (Part I)

Prof. Onur Mutlu

Carnegie Mellon University

Bufferless Routing

Thomas Moscibroda and Onur Mutlu,
"A Case for Bufferless Routing in On-Chip Networks"

Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 196-207, Austin, TX, June 2009.

Slides (pptx)

70

http://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
http://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
http://users.ece.cmu.edu/~omutlu/pub/bless_isca09.pdf
http://isca09.cs.columbia.edu/
http://isca09.cs.columbia.edu/
http://users.ece.cmu.edu/~omutlu/pub/moscibroda_isca09_talk.pptx

$

• Connect cores, caches, memory controllers, etc…

• Examples:

• Intel 80-core Terascale chip

• MIT RAW chip

• Design goals in NoC design:

• High throughput, low latency

• Fairness between cores, QoS, …

• Low complexity, low cost

• Power, low energy consumption

On-Chip Networks (NoC)

Energy/Power in On-Chip Networks

• Power is a key constraint in the design

 of high-performance processors

• NoCs consume substantial portion of system

 power

• ~30% in Intel 80-core Terascale [IEEE

Micro’07]

• ~40% in MIT RAW Chip [ISCA’04]

• NoCs estimated to consume 100s of Watts

 [Borkar, DAC’07]

$

• Existing approaches differ in numerous ways:

• Network topology [Kim et al, ISCA’07, Kim et al, ISCA’08 etc]

• Flow control [Michelogiannakis et al, HPCA’09, Kumar et al, MICRO’08, etc]

• Virtual Channels [Nicopoulos et al, MICRO’06, etc]

• QoS & fairness mechanisms [Lee et al, ISCA’08, etc]

• Routing algorithms [Singh et al, CAL’04]

• Router architecture [Park et al, ISCA’08]

• Broadcast, Multicast [Jerger et al, ISCA’08, Rodrigo et al, MICRO’08]

Current NoC Approaches

Existing work assumes existence of

buffers in routers!

$

A Typical Router

Routing Computation

VC Arbiter

Switch Arbiter

VC1

VC2

VCv

VC1

VC2

VCv

Input Port N

Input Port 1

N x N Crossbar

Input Channel 1

Input Channel N

Scheduler

Output Channel 1

Output Channel N

Credit Flow

to upstream

router

Buffers are integral part of

existing NoC Routers

Credit Flow

to upstream

router

$

• Buffers are necessary for high network throughput

 buffers increase total available bandwidth in network

Buffers in NoC Routers

Injection Rate

A
vg

. p
ac

ke
t

la
te

n
cy

large

buffers

medium

buffers

small

buffers

$

• Buffers are necessary for high network throughput

 buffers increase total available bandwidth in network

• Buffers consume significant energy/power

• Dynamic energy when read/write

• Static energy even when not occupied

• Buffers add complexity and latency

• Logic for buffer management

• Virtual channel allocation

• Credit-based flow control

• Buffers require significant chip area

• E.g., in TRIPS prototype chip, input buffers occupy 75% of

total on-chip network area [Gratz et al, ICCD’06]

Buffers in NoC Routers

$

• How much throughput do we lose?

 How is latency affected?

• Up to what injection rates can we use bufferless routing?

 Are there realistic scenarios in which NoC is

 operated at injection rates below the threshold?

• Can we achieve energy reduction?

 If so, how much…?

• Can we reduce area, complexity, etc…?

Going Bufferless…?

Injection Rate

la
te

n
cy

buffers
no

buffers

$

• Always forward all incoming flits to some output port

• If no productive direction is available, send to another

direction

• packet is deflected

 Hot-potato routing [Baran’64, etc]

BLESS: Bufferless Routing

Buffered BLESS

Deflected!

$

BLESS: Bufferless Routing

Routing

VC Arbiter

Switch Arbiter

Flit-Ranking

Port-

Prioritization

arbitration policy

Flit-Ranking 1. Create a ranking over all incoming flits

Port-

Prioritization 2. For a given flit in this ranking, find the best free output-port

 Apply to each flit in order of ranking

$

• Each flit is routed independently.

• Oldest-first arbitration (other policies evaluated in paper)

• Network Topology:
 Can be applied to most topologies (Mesh, Torus, Hypercube, Trees, …)
 1) #output ports ¸ #input ports at every router
 2) every router is reachable from every other router

• Flow Control & Injection Policy:

 Completely local, inject whenever input port is free

• Absence of Deadlocks: every flit is always moving

• Absence of Livelocks: with oldest-first ranking

FLIT-BLESS: Flit-Level Routing

Flit-Ranking 1. Oldest-first ranking

Port-

Prioritization
2. Assign flit to productive port, if possible.

Otherwise, assign to non-productive port.

$

• BLESS without buffers is extreme end of a continuum

• BLESS can be integrated with buffers

• FLIT-BLESS with Buffers

• WORM-BLESS with Buffers

• Whenever a buffer is full, it’s first flit becomes

must-schedule

• must-schedule flits must be deflected if necessary

BLESS with Buffers

See paper for details…

$

Advantages

• No buffers

• Purely local flow control

• Simplicity
- no credit-flows

- no virtual channels

- simplified router design

• No deadlocks, livelocks

• Adaptivity
- packets are deflected around

congested areas!

• Router latency reduction

• Area savings

BLESS: Advantages & Disadvantages

Disadvantages

• Increased latency

• Reduced bandwidth

• Increased buffering at
receiver

• Header information at
each flit

• Oldest-first arbitration
complex

• QoS becomes difficult

Impact on energy…?

$

• BLESS gets rid of input buffers

and virtual channels

Reduction of Router Latency

BW

RC

VA

SA
ST

LT

BW SA ST
LT

RC ST
LT

RC ST
LT

LA LT

BW: Buffer Write

RC: Route Computation

VA: Virtual Channel Allocation

SA: Switch Allocation

ST: Switch Traversal

LT: Link Traversal

LA LT: Link Traversal of Lookahead

Baseline

Router

(speculative)

head

flit

body

flit

BLESS

Router

(standard)

RC ST
LT

RC ST
LT

Router 1

Router 2

Router 1

Router 2

BLESS

Router

(optimized)

Router Latency = 3

Router Latency = 2

Router Latency = 1

Can be improved to 2.

[Dally, Towles’04]

$

Advantages

• No buffers

• Purely local flow control

• Simplicity
- no credit-flows

- no virtual channels

- simplified router design

• No deadlocks, livelocks

• Adaptivity
- packets are deflected around

congested areas!

• Router latency reduction

• Area savings

BLESS: Advantages & Disadvantages

Disadvantages

• Increased latency

• Reduced bandwidth

• Increased buffering at

receiver

• Header information at

each flit

Impact on energy…?

Extensive evaluations in the paper!

$

• 2D mesh network, router latency is 2 cycles

o 4x4, 8 core, 8 L2 cache banks (each node is a core or an L2 bank)

o 4x4, 16 core, 16 L2 cache banks (each node is a core and an L2 bank)

o 8x8, 16 core, 64 L2 cache banks (each node is L2 bank and may be a core)

o 128-bit wide links, 4-flit data packets, 1-flit address packets

o For baseline configuration: 4 VCs per physical input port, 1 packet deep

• Benchmarks

o Multiprogrammed SPEC CPU2006 and Windows Desktop applications

o Heterogeneous and homogenous application mixes

o Synthetic traffic patterns: UR, Transpose, Tornado, Bit Complement

• x86 processor model based on Intel Pentium M

o 2 GHz processor, 128-entry instruction window

o 64Kbyte private L1 caches

o Total 16Mbyte shared L2 caches; 16 MSHRs per bank

o DRAM model based on Micron DDR2-800

Evaluation Methodology

$

• Energy model provided by Orion simulator [MICRO’02]

o 70nm technology, 2 GHz routers at 1.0 Vdd

• For BLESS, we model

o Additional energy to transmit header information

o Additional buffers needed on the receiver side

o Additional logic to reorder flits of individual packets at receiver

• We partition network energy into

buffer energy, router energy, and link energy,

each having static and dynamic components.

• Comparisons against non-adaptive and aggressive

adaptive buffered routing algorithms (DO, MIN-AD, ROMM)

Evaluation Methodology

$

Evaluation – Synthetic Traces

• First, the bad news

• Uniform random injection

• BLESS has significantly lower

 saturation throughput

 compared to buffered

 baseline.

0
10
20
30
40
50
60
70
80
90

100

0

0
.0

7

0
.1

0
.1

3

0
.1

6

0
.1

9

0
.2

2

0
.2

5

0
.2

8

0
.3

1

0
.3

4

0
.3

7

0
.4

0
.4

3

0
.4

6

0
.4

9

A
v
e

ra
g
e

 L
a
te

n
c
y

Injection Rate (flits per cycle per node)

FLIT-2

WORM-2

FLIT-1

WORM-1

MIN-AD

BLESS Best

Baseline

$

Evaluation – Homogenous Case Study

• milc benchmarks

 (moderately intensive)

• Perfect caches!

• Very little performance

 degradation with BLESS

 (less than 4% in dense

 network)

• With router latency 1,

 BLESS can even

 outperform baseline

 (by ~10%)

• Significant energy

 improvements

 (almost 40%)

0
2
4
6
8

10
12
14
16
18

W
-S

p
e
e
d

u
p

4x4, 8x milc 4x4, 16x milc 8x8, 16x milc

0

0.2

0.4

0.6

0.8

1

1.2
E

n
e
rg

y
 (

n
o

rm
a
li
z
e
d

)
BufferEnergy LinkEnergy RouterEnergy

4x4, 16x milc 8x8, 16x milc 4x4, 8x milc

Baseline BLESS RL=1

$

Evaluation – Homogenous Case Study

0
2
4
6
8

10
12
14
16
18

W
-S

p
e
e
d

u
p

4x4, 8x milc 4x4, 16x milc 8x8, 16x milc

0

0.2

0.4

0.6

0.8

1

1.2
E

n
e
rg

y
 (

n
o

rm
a
li
z
e
d

)
BufferEnergy LinkEnergy RouterEnergy

4x4, 8 8x milc 4x4, 16x milc 8x8, 16x milc

Baseline BLESS RL=1

• milc benchmarks

 (moderately intensive)

• Perfect caches!

• Very little performance

 degradation with BLESS

 (less than 4% in dense

 network)

• With router latency 1,

 BLESS can even

 outperform baseline

 (by ~10%)

• Significant energy

 improvements

 (almost 40%)

Observations:

1) Injection rates not extremely high

on average

 self-throttling!

2) For bursts and temporary hotspots,

use network links as buffers!

$

Evaluation – Further Results

• BLESS increases buffer requirement

at receiver by at most 2x
 overall, energy is still reduced

• Impact of memory latency

 with real caches, very little slowdown! (at most 1.5%)

See paper for details…

0
2
4
6
8

10
12
14
16
18

D
O

M
IN

-A
D

R
O

M
M

F
L
IT

-2

W
O

R
M

-2

F
L
IT

-1

W
O

R
M

-1

D
O

M
IN

-A
D

R
O

M
M

F
L
IT

-2

W
O

R
M

-2

F
L
IT

-1

W
O

R
M

-1

D
O

M
IN

-A
D

R
O

M
M

F
L
IT

-2

W
O

R
M

-2

F
L
IT

-1

W
O

R
M

-1
 W

-S
p

e
e
d

u
p

4x4, 8x matlab 4x4, 16x matlab

8x8, 16x matlab

$

Evaluation – Further Results

• BLESS increases buffer requirement

at receiver by at most 2x
 overall, energy is still reduced

• Impact of memory latency

 with real caches, very little slowdown! (at most 1.5%)

• Heterogeneous application mixes

 (we evaluate several mixes of intensive and non-intensive applications)

 little performance degradation

 significant energy savings in all cases

 no significant increase in unfairness across different applications

• Area savings: ~60% of network area can be saved!

See paper for details…

$

• Aggregate results over all 29 applications

Evaluation – Aggregate Results

Sparse Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -39.4% -28.1% -46.4% -41.0%

∆ System Performance -0.5% -3.2% -0.15% -0.55%

0

0.2

0.4

0.6

0.8

1

Mean Worst-Case

E
n

e
rg

y

(n
o

rm
a
li
z
e
d

)

BufferEnergy LinkEnergy RouterEnergy

FLIT WORM BASE FLIT WORM BASE 0
1
2
3
4
5
6
7
8

Mean Worst-Case

W
-S

p
e
e
d

u
p

FL
IT

W
O

R
M

B
A

SE

FL
IT

W
O

R
M

B
A

S
E

$

• Aggregate results over all 29 applications

Evaluation – Aggregate Results

Sparse Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -39.4% -28.1% -46.4% -41.0%

∆ System Performance -0.5% -3.2% -0.15% -0.55%

Dense Network Perfect L2 Realistic L2

Average Worst-Case Average Worst-Case

∆ Network Energy -32.8% -14.0% -42.5% -33.7%

∆ System Performance -3.6% -17.1% -0.7% -1.5%

$

• For a very wide range of applications and network settings,
buffers are not needed in NoC

• Significant energy savings
(32% even in dense networks and perfect caches)

• Area-savings of 60%

• Simplified router and network design (flow control, etc…)

• Performance slowdown is minimal (can even increase!)

 A strong case for a rethinking of NoC design!

• Future research:

• Support for quality of service, different traffic classes, energy-
management, etc…

BLESS Conclusions

CHIPPER: A Low-complexity

Bufferless Deflection Router

Chris Fallin, Chris Craik, and Onur Mutlu,
"CHIPPER: A Low-Complexity Bufferless Deflection Router"

Proceedings of the 17th International Symposium on High-Performance
Computer Architecture (HPCA), pages 144-155, San Antonio, TX, February

2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/chipper_hpca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/chipper_hpca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/chipper_hpca11.pdf
http://hpca17.ac.upc.edu/web/
http://hpca17.ac.upc.edu/web/
http://hpca17.ac.upc.edu/web/
http://hpca17.ac.upc.edu/web/
http://users.ece.cmu.edu/~omutlu/pub/fallin_hpca11_talk.pptx

Motivation

 Recent work has proposed bufferless deflection routing
(BLESS [Moscibroda, ISCA 2009])

 Energy savings: ~40% in total NoC energy

 Area reduction: ~40% in total NoC area

 Minimal performance loss: ~4% on average

 Unfortunately: unaddressed complexities in router

 long critical path, large reassembly buffers

 Goal: obtain these benefits while simplifying the router

 in order to make bufferless NoCs practical.

95

Problems that Bufferless Routers Must Solve

1. Must provide livelock freedom

 A packet should not be deflected forever

2. Must reassemble packets upon arrival

96

Flit: atomic routing unit

0 1 2 3

Packet: one or multiple flits

Local Node

Router

Inject

Deflection
Routing
Logic

Crossbar

A Bufferless Router: A High-Level View

97

Reassembly
Buffers

Eject

Problem 2: Packet Reassembly

Problem 1: Livelock Freedom

Complexity in Bufferless Deflection Routers

1. Must provide livelock freedom

 Flits are sorted by age, then assigned in age order to
output ports

 43% longer critical path than buffered router

2. Must reassemble packets upon arrival

 Reassembly buffers must be sized for worst case

 4KB per node

 (8x8, 64-byte cache block)

98

Inject

Deflection
Routing
Logic

Crossbar

Problem 1: Livelock Freedom

99

Reassembly
Buffers

Eject Problem 1: Livelock Freedom

Livelock Freedom in Previous Work

 What stops a flit from deflecting forever?

 All flits are timestamped

 Oldest flits are assigned their desired ports

 Total order among flits

 But what is the cost of this?

100

Flit age forms total order

Guaranteed
progress!

< < < < <

New traffic is lowest priority

Age-Based Priorities are Expensive: Sorting

 Router must sort flits by age: long-latency sort network

 Three comparator stages for 4 flits

101

4

1

2

3

Age-Based Priorities Are Expensive: Allocation

 After sorting, flits assigned to output ports in priority order

 Port assignment of younger flits depends on that of older flits

 sequential dependence in the port allocator

102

East? GRANT: Flit 1 East

DEFLECT: Flit 2 North

GRANT: Flit 3 South

DEFLECT: Flit 4 West

East?

{N,S,W}

{S,W}

{W}

South?

South?

Age-Ordered Flits

1

2

3

4

Age-Based Priorities Are Expensive

 Overall, deflection routing logic based on Oldest-First
has a 43% longer critical path than a buffered router

 Question: is there a cheaper way to route while
guaranteeing livelock-freedom?

103

Port Allocator Priority Sort

Solution: Golden Packet for Livelock Freedom

 What is really necessary for livelock freedom?

 Key Insight: No total order. it is enough to:

 1. Pick one flit to prioritize until arrival

 2. Ensure any flit is eventually picked

104

Flit age forms total order

Guaranteed
progress!

New traffic is
lowest-priority

< < <

Guaranteed
progress!

<

“Golden Flit”

partial ordering is sufficient!

 Only need to properly route the Golden Flit

 First Insight: no need for full sort

 Second Insight: no need for sequential allocation

What Does Golden Flit Routing Require?

105

Port Allocator Priority Sort

Golden Flit Routing With Two Inputs

 Let’s route the Golden Flit in a two-input router first

 Step 1: pick a “winning” flit: Golden Flit, else random

 Step 2: steer the winning flit to its desired output

 and deflect other flit

 Golden Flit always routes toward destination

106

Golden Flit Routing with Four Inputs

107

 Each block makes decisions independently!

 Deflection is a distributed decision

N

E

S

W

N

S

E

W

Permutation Network Operation

108

N

E

S

W

wins swap!

wins no swap! wins no swap!

deflected

Golden:

wins swap!

x

Port Allocator Priority Sort

N

E

S

W

N

S

E

W

Problem 2: Packet Reassembly

109

Inject/Eject

Reassembly
Buffers

Inject Eject

Reassembly Buffers are Large

 Worst case: every node sends a packet to one receiver

 Why can’t we make reassembly buffers smaller?

110

Node
0

Node
1

Node
N-1

Receiver

one packet in flight
 per node

N sending nodes …

O(N) space!

Small Reassembly Buffers Cause Deadlock

 What happens when reassembly buffer is too small?

111

Network

cannot eject:
reassembly
buffer full

reassembly
buffer

Many Senders

One Receiver

Remaining flits
must inject for
forward progress

cannot inject new traffic

network full

Reserve Space to Avoid Deadlock?

 What if every sender asks permission from the receiver
before it sends?

 adds additional delay to every request

112

reassembly buffers

Reserve Slot?

Reserved

ACK

Sender

1. Reserve Slot
2. ACK
3. Send Packet

Receiver

Escaping Deadlock with Retransmissions

 Sender is optimistic instead: assume buffer is free

 If not, receiver drops and NACKs; sender retransmits

 no additional delay in best case

 transmit buffering overhead for all packets

 potentially many retransmits

113

Reassembly
Buffers

Retransmit
Buffers

NACK!

Sender

ACK

Receiver

1. Send (2 flits)
2. Drop, NACK
3. Other packet completes
4. Retransmit packet
5. ACK
6. Sender frees data

Solution: Retransmitting Only Once

 Key Idea: Retransmit only when space becomes available.

 Receiver drops packet if full; notes which packet it drops

 When space frees up, receiver reserves space so

 retransmit is successful

 Receiver notifies sender to retransmit

114

Reassembly
Buffers

Retransmit
Buffers

NACK

Sender

Reserved

Receiver

Pending: Node 0 Req 0

Using MSHRs as Reassembly Buffers

115

Inject/Eject

Reassembly
Buffers

Inject Eject

Miss Buffers (MSHRs)

C Using miss buffers for

 reassembly makes this a
 truly bufferless network.

Inject

Deflection
Routing
Logic

Crossbar

CHIPPER: Cheap Interconnect Partially-Permuting Router

116

Reassembly
Buffers

Eject

Baseline Bufferless Deflection Router

Large buffers for worst case

Retransmit-Once
Cache buffers

Long critical path:
 1. Sort by age
 2. Allocate ports sequentially

Golden Packet
 Permutation Network

CHIPPER: Cheap Interconnect Partially-Permuting Router

117

Inject/Eject

Miss Buffers (MSHRs)

Inject Eject

EVALUATION

118

Methodology

 Multiprogrammed workloads: CPU2006, server, desktop

 8x8 (64 cores), 39 homogeneous and 10 mixed sets

 Multithreaded workloads: SPLASH-2, 16 threads

 4x4 (16 cores), 5 applications

 System configuration

 Buffered baseline: 2-cycle router, 4 VCs/channel, 8 flits/VC

 Bufferless baseline: 2-cycle latency, FLIT-BLESS

 Instruction-trace driven, closed-loop, 128-entry OoO window

 64KB L1, perfect L2 (stresses interconnect), XOR mapping

119

Methodology

 Hardware modeling

 Verilog models for CHIPPER, BLESS, buffered logic

 Synthesized with commercial 65nm library

 ORION for crossbar, buffers and links

 Power

 Static and dynamic power from hardware models

 Based on event counts in cycle-accurate simulations

120

0

0.2

0.4

0.6

0.8

1

lu
c

ch
o

le
sk

y

ra
d

ix

ff
t

lu
n

A
V

G

Sp
ee

d
u

p
 (

N
o

rm
al

iz
e

d
)

Multithreaded

0

8

16

24

32

40

48

56

64

p
er

lb
en

ch

to
n

to

gc
c

h
2

6
4

re
f

vp
r

se
ar

ch
.1

M
IX

.5

M
IX

.2

M
IX

.8

M
IX

.0

M
IX

.6

G
em

sF
D

TD

st
re

am

m
cf

A
V

G
 (

fu
ll

se
t)

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Multiprogrammed (subset of 49 total) Buffered

BLESS

CHIPPER

Results: Performance Degradation

121

13.6%
1.8%

3.6% 49.8%

C Minimal loss for low-to-medium-intensity workloads

0

2

4

6

8

10

12

14

16

18

p
er

lb
en

ch

to
n

to

gc
c

h
2

6
4

re
f

vp
r

se
ar

ch
.1

M
IX

.5

M
IX

.2

M
IX

.8

M
IX

.0

M
IX

.6

G
em

sF
D

TD

st
re

am

m
cf

A
V

G
 (

fu
ll

se
t)

N
e

tw
o

rk
 P

o
w

e
r

(W
)

Multiprogrammed (subset of 49 total)

Buffered

BLESS

CHIPPER

Results: Power Reduction

122

0

0.5

1

1.5

2

2.5

lu
c

ch
o

le
sk

y

ra
d

ix

ff
t

lu
n

A
V

G

Multithreaded

54.9%
73.4%

C Removing buffers majority of power savings

C Slight savings from BLESS to CHIPPER

Results: Area and Critical Path Reduction

123

0

0.25

0.5

0.75

1

1.25

1.5

Buffered BLESS CHIPPER

Normalized Router Area

0

0.25

0.5

0.75

1

1.25

1.5

Buffered BLESS CHIPPER

Normalized Critical Path

-36.2%

-29.1%

+1.1%

-1.6%

C CHIPPER maintains area savings of BLESS

C Critical path becomes competitive to buffered

Conclusions
 Two key issues in bufferless deflection routing

 livelock freedom and packet reassembly

 Bufferless deflection routers were high-complexity and impractical

 Oldest-first prioritization long critical path in router

 No end-to-end flow control for reassembly prone to deadlock with

reasonably-sized reassembly buffers

 CHIPPER is a new, practical bufferless deflection router

 Golden packet prioritization short critical path in router

 Retransmit-once protocol deadlock-free packet reassembly

 Cache miss buffers as reassembly buffers truly bufferless network

 CHIPPER frequency comparable to buffered routers at much lower
area and power cost, and minimal performance loss

124

MinBD:

Minimally-Buffered Deflection Routing

for Energy-Efficient Interconnect

Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata
Ausavarungnirun, and Onur Mutlu,

"MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient
Interconnect"

Proceedings of the 6th ACM/IEEE International Symposium on Networks on
Chip (NOCS), Lyngby, Denmark, May 2012. Slides (pptx) (pdf)

http://users.ece.cmu.edu/~omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://users.ece.cmu.edu/~omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://users.ece.cmu.edu/~omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://users.ece.cmu.edu/~omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://users.ece.cmu.edu/~omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://users.ece.cmu.edu/~omutlu/pub/minimally-buffered-deflection-router_nocs12.pdf
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
http://www2.imm.dtu.dk/projects/nocs_2012/nocs/Home.html
http://users.ece.cmu.edu/~omutlu/pub/fallin_nocs12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/fallin_nocs12_talk.pdf

Bufferless Deflection Routing
 Key idea: Packets are never buffered in the network. When two

packets contend for the same link, one is deflected.

 Removing buffers yields significant benefits

 Reduces power (CHIPPER: reduces NoC power by 55%)

 Reduces die area (CHIPPER: reduces NoC area by 36%)

 But, at high network utilization (load), bufferless deflection
routing causes unnecessary link & router traversals

 Reduces network throughput and application performance

 Increases dynamic power

 Goal: Improve high-load performance of low-cost deflection
networks by reducing the deflection rate.

126

Outline: This Talk

 Motivation

 Background: Bufferless Deflection Routing

 MinBD: Reducing Deflections

 Addressing Link Contention

 Addressing the Ejection Bottleneck

 Improving Deflection Arbitration

 Results

 Conclusions

127

Outline: This Talk

 Motivation

 Background: Bufferless Deflection Routing

 MinBD: Reducing Deflections

 Addressing Link Contention

 Addressing the Ejection Bottleneck

 Improving Deflection Arbitration

 Results

 Conclusions

128

Issues in Bufferless Deflection Routing

 Correctness: Deliver all packets without livelock

 CHIPPER1: Golden Packet

 Globally prioritize one packet until delivered

 Correctness: Reassemble packets without deadlock

 CHIPPER1: Retransmit-Once

 Performance: Avoid performance degradation at high load

 MinBD

129
1 Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA

2011.

Key Performance Issues

 1. Link contention: no buffers to hold traffic
 any link contention causes a deflection

 use side buffers

 2. Ejection bottleneck: only one flit can eject per router
 per cycle simultaneous arrival causes deflection

 eject up to 2 flits/cycle

 3. Deflection arbitration: practical (fast) deflection
 arbiters deflect unnecessarily

 new priority scheme (silver flit)

130

Outline: This Talk

 Motivation

 Background: Bufferless Deflection Routing

 MinBD: Reducing Deflections

 Addressing Link Contention

 Addressing the Ejection Bottleneck

 Improving Deflection Arbitration

 Results

 Conclusions

131

Outline: This Talk

 Motivation

 Background: Bufferless Deflection Routing

 MinBD: Reducing Deflections

 Addressing Link Contention

 Addressing the Ejection Bottleneck

 Improving Deflection Arbitration

 Results

 Conclusions

132

Addressing Link Contention

 Problem 1: Any link contention causes a deflection

 Buffering a flit can avoid deflection on contention

 But, input buffers are expensive:

 All flits are buffered on every hop high dynamic energy

 Large buffers necessary high static energy and large area

 Key Idea 1: add a small buffer to a bufferless deflection
router to buffer only flits that would have been deflected

133

How to Buffer Deflected Flits

134

Baseline Router Eject Inject

1 Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA

2011.

Destination

Destination

DEFLECTED

How to Buffer Deflected Flits

135

Side-Buffered Router Eject Inject

Step 1. Remove up to

one deflected flit per

cycle from the outputs.

Step 2. Buffer this flit in a small

FIFO “side buffer.”

Step 3. Re-inject this flit into

pipeline when a slot is available.

Side Buffer

Destination

Destination

DEFLECTED

Why Could A Side Buffer Work Well?

 Buffer some flits and deflect other flits at per-flit level

 Relative to bufferless routers, deflection rate reduces
(need not deflect all contending flits)

 4-flit buffer reduces deflection rate by 39%

 Relative to buffered routers, buffer is more efficiently
used (need not buffer all flits)

 similar performance with 25% of buffer space

136

Outline: This Talk

 Motivation

 Background: Bufferless Deflection Routing

 MinBD: Reducing Deflections

 Addressing Link Contention

 Addressing the Ejection Bottleneck

 Improving Deflection Arbitration

 Results

 Conclusions

137

Addressing the Ejection Bottleneck

 Problem 2: Flits deflect unnecessarily because only one flit
can eject per router per cycle

 In 20% of all ejections, ≥ 2 flits could have ejected
 all but one flit must deflect and try again

 these deflected flits cause additional contention

 Ejection width of 2 flits/cycle reduces deflection rate 21%

 Key idea 2: Reduce deflections due to a single-flit ejection
port by allowing two flits to eject per cycle

138

Addressing the Ejection Bottleneck

139

Single-Width Ejection Eject Inject

DEFLECTED

Addressing the Ejection Bottleneck

140

Dual-Width Ejection Eject Inject

For fair comparison, baseline routers have
dual-width ejection for perf. (not power/area)

Outline: This Talk

 Motivation

 Background: Bufferless Deflection Routing

 MinBD: Reducing Deflections

 Addressing Link Contention

 Addressing the Ejection Bottleneck

 Improving Deflection Arbitration

 Results

 Conclusions

141

Improving Deflection Arbitration

 Problem 3: Deflections occur unnecessarily because fast
arbiters must use simple priority schemes

 Age-based priorities (several past works): full priority order
gives fewer deflections, but requires slow arbiters

 State-of-the-art deflection arbitration (Golden Packet &
two-stage permutation network)

 Prioritize one packet globally (ensure forward progress)

 Arbitrate other flits randomly (fast critical path)

 Random common case leads to uncoordinated arbitration

142

Fast Deflection Routing Implementation

 Let’s route in a two-input router first:

 Step 1: pick a “winning” flit (Golden Packet, else random)

 Step 2: steer the winning flit to its desired output

 and deflect other flit

 Highest-priority flit always routes to destination

143

Fast Deflection Routing with Four Inputs

144

 Each block makes decisions independently

 Deflection is a distributed decision

N

E

S

W

N

S

E

W

Unnecessary Deflections in Fast Arbiters
 How does lack of coordination cause unnecessary deflections?

1. No flit is golden (pseudorandom arbitration)

2. Red flit wins at first stage

3. Green flit loses at first stage (must be deflected now)

4. Red flit loses at second stage; Red and Green are deflected

145

Destination

Destination

all flits have

equal priority

unnecessary

deflection!

Improving Deflection Arbitration

 Key idea 3: Add a priority level and prioritize one flit
to ensure at least one flit is not deflected in each cycle

 Highest priority: one Golden Packet in network

 Chosen in static round-robin schedule

 Ensures correctness

 Next-highest priority: one silver flit per router per cycle

 Chosen pseudo-randomly & local to one router

 Enhances performance

146

Adding A Silver Flit
 Randomly picking a silver flit ensures one flit is not deflected

1. No flit is golden but Red flit is silver

2. Red flit wins at first stage (silver)

3. Green flit is deflected at first stage

4. Red flit wins at second stage (silver); not deflected

147

Destination

Destination

At least one flit

is not deflected
red flit has

higher priority

all flits have

equal priority

Minimally-Buffered Deflection Router

148

Eject Inject

Problem 1: Link Contention

Solution 1: Side Buffer

Problem 2: Ejection Bottleneck

Solution 2: Dual-Width Ejection

Problem 3: Unnecessary Deflections

Solution 3: Two-level priority scheme

Outline: This Talk

 Motivation

 Background: Bufferless Deflection Routing

 MinBD: Reducing Deflections

 Addressing Link Contention

 Addressing the Ejection Bottleneck

 Improving Deflection Arbitration

149

Outline: This Talk

 Motivation

 Background: Bufferless Deflection Routing

 MinBD: Reducing Deflections

 Addressing Link Contention

 Addressing the Ejection Bottleneck

 Improving Deflection Arbitration

 Results

 Conclusions

150

Methodology: Simulated System

 Chip Multiprocessor Simulation

 64-core and 16-core models

 Closed-loop core/cache/NoC cycle-level model

 Directory cache coherence protocol (SGI Origin-based)

 64KB L1, perfect L2 (stresses interconnect), XOR-mapping

 Performance metric: Weighted Speedup
(similar conclusions from network-level latency)

 Workloads: multiprogrammed SPEC CPU2006

 75 randomly-chosen workloads

 Binned into network-load categories by average injection rate

151

Methodology: Routers and Network

 Input-buffered virtual-channel router

 8 VCs, 8 flits/VC [Buffered(8,8)]: large buffered router

 4 VCs, 4 flits/VC [Buffered(4,4)]: typical buffered router

 4 VCs, 1 flit/VC [Buffered(4,1)]: smallest deadlock-free router

 All power-of-2 buffer sizes up to (8, 8) for perf/power sweep

 Bufferless deflection router: CHIPPER1

 Bufferless-buffered hybrid router: AFC2

 Has input buffers and deflection routing logic

 Performs coarse-grained (multi-cycle) mode switching

 Common parameters

 2-cycle router latency, 1-cycle link latency

 2D-mesh topology (16-node: 4x4; 64-node: 8x8)

 Dual ejection assumed for baseline routers (for perf. only)

152
1Fallin et al., “CHIPPER: A Low-complexity Bufferless Deflection Router”, HPCA 2011.
2Jafri et al., “Adaptive Flow Control for Robust Performance and Energy”, MICRO 2010.

Methodology: Power, Die Area, Crit. Path

 Hardware modeling

 Verilog models for CHIPPER, MinBD, buffered control logic

 Synthesized with commercial 65nm library

 ORION 2.0 for datapath: crossbar, muxes, buffers and links

 Power

 Static and dynamic power from hardware models

 Based on event counts in cycle-accurate simulations

 Broken down into buffer, link, other

153

Deflection

Reduced Deflections & Improved Perf.

154

12

12.5

13

13.5

14

14.5

15

W
ei

gh
te

d
 S

p
ee

d
u

p

Baseline
B (Side-Buf)
D (Dual-Eject)
S (Silver Flits)
B+D
B+S+D (MinBD)

(Side Buffer)

Rate

28% 17% 22% 27% 11% 10%

1. All mechanisms individually reduce deflections

2. Side buffer alone is not sufficient for performance
(ejection bottleneck remains)

3. Overall, 5.8% over baseline, 2.7% over dual-eject
by reducing deflections 64% / 54%

5.8%
2.7%

Overall Performance Results

155

8

10

12

14

16

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Injection Rate

Buffered (8,8)

Buffered (4,4)

Buffered (4,1)

CHIPPER

AFC (4,4)

MinBD-4

• Improves 2.7% over CHIPPER (8.1% at high load) • Similar perf. to Buffered (4,1) @ 25% of buffering space

2.7%

8.1%

2.7%

8.3%

• Within 2.7% of Buffered (4,4) (8.3% at high load)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u

ff
er

ed

(8
,8

)

B
u

ff
er

ed

(4
,4

)

B
u

ff
er

ed

(4
,1

)

C
H

IP
P

ER

A
FC

(4
,4

)

M
in

B
D

-4

N
et

w
o

rk
 P

o
w

e
r

(W
)

dynamic static

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u

ff
er

ed

(8
,8

)

B
u

ff
er

ed

(4
,4

)

B
u

ff
er

ed

(4
,1

)

C
H

IP
P

ER

A
FC

(4
,4

)

M
in

B
D

-4

N
et

w
o

rk
 P

o
w

er
 (

W
)

non-buffer buffer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
u

ff
er

ed

(8
,8

)

B
u

ff
er

ed

(4
,4

)

B
u

ff
er

ed

(4
,1

)

C
H

IP
P

ER

A
FC

(4
,4

)

M
in

B
D

-4

N
et

w
o

rk
 P

o
w

e
r

(W
)

dynamic other dynamic link dynamic buffer
static other static link static buffer

Overall Power Results

156

• Buffers are significant fraction of power in baseline routers
• Buffer power is much smaller in MinBD (4-flit buffer)

• Dynamic power increases with deflection routing

• Dynamic power reduces in MinBD relative to CHIPPER

Performance-Power Spectrum

157

Buf (1,1)

13.0

13.2

13.4

13.6

13.8

14.0

14.2

14.4

14.6

14.8

15.0

0.5 1.0 1.5 2.0 2.5 3.0

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Network Power (W)

• Most energy-efficient (perf/watt) of any
evaluated network router design

Buf (4,4)

Buf (4,1)

More Perf/Power Less Perf/Power

Buf (8,8)

AFC

CHIPPER

MinBD

0

0.5

1

1.5

2

2.5

B
u

ff
er

ed
 (8

,8
)

B
u

ff
er

ed
 (4

,4
)

B
u

ff
er

ed
 (4

,1
)

C
H

IP
P

ER

M
in

B
D

Normalized Die Area

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
u

ff
er

ed
 (8

,8
)

B
u

ff
er

ed
 (4

,4
)

B
u

ff
er

ed
 (4

,1
)

C
H

IP
P

ER

M
in

B
D

Normalized Critical Path

Die Area and Critical Path

158

• Only 3% area increase over CHIPPER (4-flit buffer)
• Reduces area by 36% from Buffered (4,4) • Increases by 7% over CHIPPER, 8% over Buffered (4,4)

+3%

-36%

+7% +8%

Conclusions
 Bufferless deflection routing offers reduced power & area

 But, high deflection rate hurts performance at high load

 MinBD (Minimally-Buffered Deflection Router) introduces:

 Side buffer to hold only flits that would have been deflected

 Dual-width ejection to address ejection bottleneck

 Two-level prioritization to avoid unnecessary deflections

 MinBD yields reduced power (31%) & reduced area (36%)
relative to buffered routers

 MinBD yields improved performance (8.1% at high load)
relative to bufferless routers closes half of perf. gap

 MinBD has the best energy efficiency of all evaluated designs
with competitive performance

159

More Readings

 Studies of congestion and congestion control in on-chip vs.
internet-like networks

 George Nychis, Chris Fallin, Thomas Moscibroda, Onur Mutlu, and
Srinivasan Seshan,
"On-Chip Networks from a Networking Perspective:
Congestion and Scalability in Many-core Interconnects"
Proceedings of the 2012 ACM SIGCOMM Conference (SIGCOMM),
Helsinki, Finland, August 2012. Slides (pptx)

 George Nychis, Chris Fallin, Thomas Moscibroda, and Onur Mutlu,
"Next Generation On-Chip Networks: What Kind of Congestion
Control Do We Need?"
Proceedings of the 9th ACM Workshop on Hot Topics in Networks
(HOTNETS), Monterey, CA, October 2010. Slides (ppt) (key)

160

http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://users.ece.cmu.edu/~omutlu/pub/onchip-network-congestion-scalability_sigcomm2012.pdf
http://conferences.sigcomm.org/sigcomm/2012/
http://users.ece.cmu.edu/~omutlu/pub/nychis_sigcomm12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://users.ece.cmu.edu/~omutlu/pub/noc-congestion_hotnets10.pdf
http://conferences.sigcomm.org/hotnets/2010/
http://users.ece.cmu.edu/~omutlu/pub/nychis_hotnets10_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/nychis_hotnets10_talk.key

HAT: Heterogeneous Adaptive
Throttling for On-Chip Networks

Kevin Chang, Rachata Ausavarungnirun, Chris Fallin, and Onur Mutlu,
"HAT: Heterogeneous Adaptive Throttling for On-Chip Networks"

Proceedings of the 24th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD), New York, NY, October 2012. Slides

(pptx) (pdf)

http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://users.ece.cmu.edu/~omutlu/pub/hetero-adaptive-source-throttling_sbacpad12.pdf
http://www.sbc.org.br/sbac/2012/
http://www.sbc.org.br/sbac/2012/
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/chang_sbacpad12_talk.pdf

Executive Summary
• Problem: Packets contend in on-chip networks (NoCs),

causing congestion, thus reducing performance

• Observations:

 1) Some applications are more sensitive to network
latency than others
2) Applications must be throttled differently to achieve
peak performance

• Key Idea: Heterogeneous Adaptive Throttling (HAT)
1) Application-aware source throttling
2) Network-load-aware throttling rate adjustment

• Result: Improves performance and energy efficiency over
state-of-the-art source throttling policies

162

Outline

• Background and Motivation

• Mechanism

• Prior Works

• Results

163

On-Chip Networks

164

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R Router

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

PE

• Connect cores, caches, memory
controllers, etc

• Packet switched

• 2D mesh: Most commonly used topology

• Primarily serve cache misses and
memory requests

• Router designs

– Buffered: Input buffers to hold
contending packets

– Bufferless: Misroute (deflect)
contending packets

Network Congestion Reduces Performance

165

Network congestion:
Network throughput
Application performance R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

P P P

P

P

R Router

Processing Element
(Cores, L2 Banks, Memory Controllers, etc)

PE

P Packet

Limited shared resources
(buffers and links)
• Design constraints: power,
chip area, and timing

Goal
• Improve performance in a highly congested NoC

• Reducing network load decreases network
congestion, hence improves performance

• Approach: source throttling to reduce network load

– Temporarily delay new traffic injection

• Naïve mechanism: throttle every single node

166

0.0

0.2

0.4

0.6

0.8

1.0

1.2

mcf gromacs system

N
o

rm
al

iz
e

d

P
e

rf
o

rm
an

ce

Throttle gromacs
Throttle mcf

Key Observation #1

167

gromacs: network-non-intensive

+ 9%
- 2%

Different applications respond differently to changes in
network latency

mcf: network-intensive

Throttling mcf reduces congestion
gromacs is more sensitive to network latency
Throttling network-intensive applications benefits
system performance more

6

7

8

9

10

11

12

13

14

15

16

80 82 84 86 88 90 92 94 96 98 100

P
e

rf
o

rm
an

ce

(W
e

ig
h

te
d

 S
p

e
e

d
u

p
)

Throttling Rate (%)

Workload 1
Workload 2
Workload 3

Key Observation #2

168

Different workloads achieve peak performance at
different throttling rates

Dynamically adjusting throttling rate yields
better performance than a single static rate

90% 92%

94%

Outline

• Background and Motivation

• Mechanism

• Prior Works

• Results

169

Heterogeneous Adaptive Throttling (HAT)

1. Application-aware throttling:
Throttle network-intensive applications that
interfere with network-non-intensive
applications

2. Network-load-aware throttling rate
adjustment:
Dynamically adjusts throttling rate to adapt to
different workloads

170

Heterogeneous Adaptive Throttling (HAT)

1. Application-aware throttling:
Throttle network-intensive applications that
interfere with network-non-intensive
applications

2. Network-load-aware throttling rate
adjustment:
Dynamically adjusts throttling rate to adapt to
different workloads

171

Application-Aware Throttling
1. Measure Network Intensity

Use L1 MPKI (misses per thousand instructions) to estimate
network intensity

2. Classify Application

Sort applications by L1 MPKI

3. Throttle network-intensive applications

172

A
p

p

Σ MPKI < NonIntensiveCap

Network-non-intensive Network-intensive

Higher L1 MPKI

Heterogeneous Adaptive Throttling (HAT)

1. Application-aware throttling:
Throttle network-intensive applications that
interfere with network-non-intensive
applications

2. Network-load-aware throttling rate
adjustment:
Dynamically adjusts throttling rate to adapt to
different workloads

173

Dynamic Throttling Rate Adjustment

• For a given network design, peak performance
tends to occur at a fixed network load point

• Dynamically adjust throttling rate to achieve that
network load point

174

Dynamic Throttling Rate Adjustment

• Goal: maintain network load at a peak
performance point

1. Measure network load

2. Compare and adjust throttling rate

If network load > peak point:

 Increase throttling rate

elif network load ≤ peak point:

 Decrease throttling rate

175

Epoch-Based Operation
• Continuous HAT operation is expensive

• Solution: performs HAT at epoch granularity

176

Time

Current Epoch
(100K cycles)

Next Epoch
(100K cycles)

During epoch:
1) Measure L1 MPKI

of each application
2) Measure network

load

Beginning of epoch:
1) Classify applications
2) Adjust throttling rate
3) Reset measurements

Outline

• Background and Motivation

• Mechanism

• Prior Works

• Results

177

Prior Source Throttling Works
• Source throttling for bufferless NoCs

[Nychis+ Hotnets’10, SIGCOMM’12]

– Application-aware throttling based on starvation rate

– Does not adaptively adjust throttling rate

– “Heterogeneous Throttling”

• Source throttling off-chip buffered networks
[Thottethodi+ HPCA’01]

– Dynamically trigger throttling based on fraction of
buffer occupancy

– Not application-aware: fully block packet injections of
every node

– “Self-tuned Throttling”

178

Outline

• Background and Motivation

• Mechanism

• Prior Works

• Results

179

Methodology
• Chip Multiprocessor Simulator

– 64-node multi-core systems with a 2D-mesh topology

– Closed-loop core/cache/NoC cycle-level model

– 64KB L1, perfect L2 (always hits to stress NoC)

• Router Designs
– Virtual-channel buffered router: 4 VCs, 4 flits/VC [Dally+ IEEE TPDS’92]

– Bufferless deflection routers: BLESS [Moscibroda+ ISCA’09]

• Workloads
– 60 multi-core workloads: SPEC CPU2006 benchmarks

– Categorized based on their network intensity

• Low/Medium/High intensity categories

• Metrics: Weighted Speedup (perf.), perf./Watt (energy eff.),
and maximum slowdown (fairness)

180

0
5

10
15
20
25
30
35
40
45
50

HL HML HM H amean

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Workload Categories

BLESS

Hetero.

HAT

Performance: Bufferless NoC (BLESS)

181

HAT provides better performance improvement than
past work
Highest improvement on heterogeneous workload mixes
- L and M are more sensitive to network latency

7.4%

0

5

10

15

20

25

30

35

40

45

50

HL HML HM H amean

W
e

ig
h

te
d

 S
p

e
e

d
u

p

Workload Categories

Buffered

Self-Tuned

Hetero.

HAT

Performance: Buffered NoC

182

Congestion is much lower in Buffered NoC, but HAT still
provides performance benefit

+ 3.5%

Application Fairness

183

HAT provides better fairness than prior works

0.0

0.2

0.4

0.6

0.8

1.0

1.2

amean

N
o

rm
al

iz
e

d
 M

ax
im

u
m

 S
lo

w
d

w
o

n

BLESS Hetero. HAT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

amean

Buffered Self-Tuned

Hetero. HAT

- 15%
- 5%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

BLESS Buffered

N
o

rm
al

iz
e

d
 P

er
f.

 p
er

 W
at

Baseline

HAT

Network Energy Efficiency

184

8.5% 5%

HAT increases energy efficiency by
reducing congestion

Other Results in Paper

• Performance on CHIPPER

• Performance on multithreaded workloads

• Parameters sensitivity sweep of HAT

185

Conclusion
• Problem: Packets contend in on-chip networks (NoCs),

causing congestion, thus reducing performance

• Observations:

 1) Some applications are more sensitive to network
latency than others
2) Applications must be throttled differently to achieve
peak performance

• Key Idea: Heterogeneous Adaptive Throttling (HAT)
1) Application-aware source throttling
2) Network-load-aware throttling rate adjustment

• Result: Improves performance and energy efficiency over
state-of-the-art source throttling policies

186

Application-Aware Packet Scheduling

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,

"Application-Aware Prioritization Mechanisms for On-Chip Networks"

Proceedings of the 42nd International Symposium on Microarchitecture

(MICRO), pages 280-291, New York, NY, December 2009. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://users.ece.cmu.edu/~omutlu/pub/app-aware-noc_micro09.pdf
http://www.microarch.org/micro42/
http://users.ece.cmu.edu/~omutlu/pub/das_micro09_talk.pptx

© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

188

Network-on-Chip

L2$ L2$
L2$

L2$

Bank

mem

cont

Memory

Controller

P

Accelerator
L2$

Bank

L2$

Bank

P P P P P P P

On-chip Network

App1 App2 App N+1 App N

On-chip Network is a critical resource

shared by multiple applications

© Onur Mutlu, 2009, 2010

From East

From West

From North

From South

From PE

VC 0

VC Identifier

VC 1

VC 2

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

R

PE

Crossbar (5 x 5)

To East

To PE

To West

To North

To South

Input Port with Buffers

Control Logic

Crossba

r

R Routers

PE Processing Element
(Cores, L2 Banks, Memory Controllers etc)

Routing Unit
(RC)

VC Allocator
(VA)

Switch
Allocator (S

A)

The Problem: Packet Scheduling

189

© Onur Mutlu, 2009, 2010

VC 0
Routing Unit

(RC)

VC

Allocator (VA)

Switch
Allocator (S

A)

VC 1

VC 2

From East

From West

From North

From South

From PE

The Problem: Packet Scheduling

190

© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

191

Conceptual

View

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

VC 0
Routing Unit

(RC)

VC

Allocator (VA)

Switch

VC 1

VC 2

From East

From West

From North

From South

From PE

Allocator (SA

)

© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

192

S
c

h
e
d

u
le

r

Conceptual

View

VC 0
Routing Unit

(RC)

VC

Allocator (VA)

Switch
Allocator (SA

)

VC 1

VC 2

From East

From West

From North

From South

From PE

From East

From West

From North

From South

From PE

VC 0

VC 1

VC 2

App1 App2 App3 App4
App5 App6 App7 App8

Which packet to choose?

© Onur Mutlu, 2009, 2010

The Problem: Packet Scheduling

 Existing scheduling policies

 Round Robin

 Age

 Problem 1: Local to a router

 Lead to contradictory decision making between routers:
packets from one application may be prioritized at one router,
to be delayed at next.

 Problem 2: Application oblivious

 Treat all applications packets equally

 But applications are heterogeneous

 Solution: Application-aware global scheduling policies.

 193

© Onur Mutlu, 2009, 2010

Motivation: Stall-Time Criticality

 Applications are not homogenous

 Applications have different criticality with respect to the
network

 Some applications are network latency sensitive

 Some applications are network latency tolerant

 Application’s Stall Time Criticality (STC) can be measured
by its average network stall time per packet (i.e.
NST/packet)

 Network Stall Time (NST) is number of cycles the processor
stalls waiting for network transactions to complete

194

© Onur Mutlu, 2009, 2010

Motivation: Stall-Time Criticality

 Why do applications have different network stall time
criticality (STC)?

 Memory Level Parallelism (MLP)

 Lower MLP leads to higher criticality

 Shortest Job First Principle (SJF)

 Lower network load leads to higher criticality

195

© Onur Mutlu, 2009, 2010

STC Principle 1: MLP

 Observation 1: Packet Latency != Network Stall Time

196

STALL STALL

STALL of Red Packet = 0

LATENCY

LATENCY

LATENCY

Application with high MLP

Compute

© Onur Mutlu, 2009, 2010

STC Principle 1: MLP

 Observation 1: Packet Latency != Network Stall Time

 Observation 2: A low MLP application’s packets have
higher criticality than a high MLP application’s

197

STALL STALL

STALL of Red Packet = 0

LATENCY

LATENCY

LATENCY

Application with high MLP

Compute

STALL

LATENCY

STALL

LATENCY

STALL

LATENCY

Application with low MLP

© Onur Mutlu, 2009, 2010

STC Principle 2: Shortest-Job-First

198

4X network slow down

1.2X network slow down

1.3X network slow down

1.6X network slow down

Overall system throughput (weighted speedup) increases by 34%

Running ALONE

Baseline (RR) Scheduling

SJF Scheduling

Light Application Heavy Application

© Onur Mutlu, 2009, 2010

Solution: Application-Aware Policies

 Idea

 Identify critical applications (i.e. network
sensitive applications) and prioritize their packets
in each router.

 Key components of scheduling policy:

 Application Ranking

 Packet Batching

 Propose low-hardware complexity solution

199

© Onur Mutlu, 2009, 2010

Component 1: Ranking

 Ranking distinguishes applications based on Stall Time
Criticality (STC)

 Periodically rank applications based on STC

 Explored many heuristics for estimating STC

 Heuristic based on outermost private cache Misses Per
Instruction (L1-MPI) is the most effective

 Low L1-MPI => high STC => higher rank

 Why Misses Per Instruction (L1-MPI)?

 Easy to Compute (low complexity)

 Stable Metric (unaffected by interference in network)

200

© Onur Mutlu, 2009, 2010

Component 1 : How to Rank?

 Execution time is divided into fixed “ranking intervals”
 Ranking interval is 350,000 cycles

 At the end of an interval, each core calculates their L1-MPI
and sends it to the Central Decision Logic (CDL)

 CDL is located in the central node of mesh

 CDL forms a rank order and sends back its rank to each core

 Two control packets per core every ranking interval

 Ranking order is a “partial order”

 Rank formation is not on the critical path

 Ranking interval is significantly longer than rank computation time

 Cores use older rank values until new ranking is available

201

© Onur Mutlu, 2009, 2010

Component 2: Batching

 Problem: Starvation

 Prioritizing a higher ranked application can lead to starvation
of lower ranked application

 Solution: Packet Batching

 Network packets are grouped into finite sized batches

 Packets of older batches are prioritized over younger
batches

 Time-Based Batching

 New batches are formed in a periodic, synchronous manner
across all nodes in the network, every T cycles

202

© Onur Mutlu, 2009, 2010

Putting it all together: STC Scheduling

Policy
 Before injecting a packet into the network, it is tagged with

 Batch ID (3 bits)

 Rank ID (3 bits)

 Three tier priority structure at routers

 Oldest batch first (prevent starvation)

 Highest rank first (maximize performance)

 Local Round-Robin (final tie breaker)

 Simple hardware support: priority arbiters

 Global coordinated scheduling

 Ranking order and batching order are same across all routers

203

© Onur Mutlu, 2009, 2010

STC Scheduling Example

204

4 8

5

1 7

2

1

6 2

1

3

Router

S
c

h
e
d

u
le

r

In
je

c
ti
o

n
 C

y
c
le

s

1

2

3

4

5

6

7

8

2 2

3

Batch 2

Batch 1

Batch 0

Applications

© Onur Mutlu, 2009, 2010

STC Scheduling Example

205

4 8

5

1 7

3

2

6 2

2

3

Router

S
c

h
e

d
u

le
r

Round Robin

3 2 8 7 6

STALL CYCLES Avg

RR 8 6 11 8.3

Age

STC

Time

© Onur Mutlu, 2009, 2010

STC Scheduling Example

206

4 8

5

1 7

3

2

6 2

2

3

Router

S
c

h
e

d
u

le
r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

3 3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC

Time

Time

© Onur Mutlu, 2009, 2010

STC Scheduling Example

207

4 8

5

1 7

3

2

6 2

2

3

Router

S
c

h
e

d
u

le
r

Round Robin

5 4 3 1 2 2 3 2 8 7 6

Age

2 3 3 5 4 6 7 8 1 2 2

STC

3 5 4 6 7 8

STALL CYCLES Avg

RR 8 6 11 8.3

Age 4 6 11 7.0

STC 1 3 11 5.0

Time

Time

Time

Rank order

© Onur Mutlu, 2009, 2010

STC Evaluation Methodology

 64-core system
 x86 processor model based on Intel Pentium M

 2 GHz processor, 128-entry instruction window

 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers

 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

 Detailed Network-on-Chip model
 2-stage routers (with speculation and look ahead routing)

 Wormhole switching (8 flit data packets)

 Virtual channel flow control (6 VCs, 5 flit buffer depth)

 8x8 Mesh (128 bit bi-directional channels)

 Benchmarks
 Multiprogrammed scientific, server, desktop workloads (35 applications)

 96 workload combinations

208

© Onur Mutlu, 2009, 2010

Comparison to Previous Policies

 Round Robin & Age (Oldest-First)

 Local and application oblivious

 Age is biased towards heavy applications

 heavy applications flood the network

 higher likelihood of an older packet being from heavy application

 Globally Synchronized Frames (GSF) [Lee et al., ISCA 2008]

 Provides bandwidth fairness at the expense of system
performance

 Penalizes heavy and bursty applications

 Each application gets equal and fixed quota of flits (credits) in each batch.

 Heavy application quickly run out of credits after injecting into all active
batches & stalls until oldest batch completes and frees up fresh credits.

 Underutilization of network resources

209

© Onur Mutlu, 2009, 2010

STC System Performance and Fairness

 9.1% improvement in weighted speedup over the best
existing policy (averaged across 96 workloads)

210

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
al

iz
ed

 S
y

st
e

m
 S

p
e

ed
u

p

LocalRR LocalAge

GSF STC

0

2

4

6

8

10

N
e

tw
o

rk
 U

n
fa

ir
n

e
ss

LocalRR LocalAge

GSF STC

© Onur Mutlu, 2009, 2010

Enforcing Operating System Priorities

 Existing policies cannot enforce operating system (OS)
assigned priorities in Network-on-Chip

 Proposed framework can enforce OS assigned priorities

 Weight of applications => Ranking of applications

 Configurable batching interval based on application weight

211

0

2

4

6

8

10

12

14

16

18

20

LocalRR LocalAge GSF STC

N
et

w
o

rk
 S

lo
w

d
o

w
n

xalan-1

xalan-2

xalan-3

xalan-4

xalan-5

xalan-6

xalan-7

xalan-8
0

2

4

6

8

10

12

14

16

18

20

22

LocalRR LocalAge GSF-1-2-2-8 STC-1-2-2-8

N
et

w
o

rk
 S

lo
w

d
o

w
n

xalan-weight-1 leslie-weight-2
lbm-weight-2 tpcw-weight-8

W. Speedup 0.49 0.49 0.46 0.52 W. Speedup 0.46 0.44 0.27 0.43

© Onur Mutlu, 2009, 2010

Application Aware Packet Scheduling: Summary

 Packet scheduling policies critically impact performance and
fairness of NoCs

 Existing packet scheduling policies are local and application
oblivious

 STC is a new, global, application-aware approach to
packet scheduling in NoCs

 Ranking: differentiates applications based on their criticality

 Batching: avoids starvation due to rank-based prioritization

 Proposed framework

 provides higher system performance and fairness than existing
policies

 can enforce OS assigned priorities in network-on-chip

212

Slack-Driven Packet Scheduling

Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R. Das,

"Aergia: Exploiting Packet Latency Slack in On-Chip Networks"

Proceedings of the 37th International Symposium on Computer Architecture

(ISCA), pages 106-116, Saint-Malo, France, June 2010. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/aergia_isca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/aergia_isca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/aergia_isca10.pdf
http://isca2010.inria.fr/
http://users.ece.cmu.edu/~omutlu/pub/moscibroda_isca10_talk.pptx

Packet Scheduling in NoC

 Existing scheduling policies

 Round robin

 Age

 Problem

 Treat all packets equally

 Application-oblivious

 Packets have different criticality

 Packet is critical if latency of a packet affects application’s

performance

 Different criticality due to memory level parallelism (MLP)

All packets are not the same…!!!

Latency ()

MLP Principle

Stall Compute

Latency ()

Latency ()

Stall () = 0

Packet Latency != Network Stall Time

Different Packets have different criticality due to MLP

Criticality() > Criticality() > Criticality()

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Ae ́rgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

What is Aérgia?

 Ae ́rgia is the spirit of laziness in Greek mythology

 Some packets can afford to slack!

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Ae ́rgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Slack of Packets

 What is slack of a packet?

 Slack of a packet is number of cycles it can be delayed in a router
without (significantly) reducing application’s performance

 Local network slack

 Source of slack: Memory-Level Parallelism (MLP)

 Latency of an application’s packet hidden from application due to
overlap with latency of pending cache miss requests

 Prioritize packets with lower slack

Concept of Slack
Instruction

 Window

Stall

Network-on-Chip

Load Miss Causes

 returns earlier than necessary

Compute

Slack () = Latency () – Latency () = 26 – 6 = 20 hops

Execution Time

Packet() can be delayed for available slack cycles

without reducing performance!

Causes Load Miss

Latency ()

Latency ()

Slack Slack

Prioritizing using Slack

Core A

Core B

Packet Latency Slack

13 hops 0 hops

3 hops 10 hops

10 hops 0 hops

4 hops 6 hops

Causes

Causes Load Miss

Load Miss

Prioritize

Load Miss

Load Miss Causes

Causes

Interference at 3 hops

Slack() > Slack ()

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f
a

ll
P

a
c
k
e

ts
 (

%
)

Slack in cycles

Gems

50% of packets have 350+ slack cycles

10% of packets have <50 slack cycles

Non-critical

critical

Slack in Applications

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

art

68% of packets have zero slack cycles

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref

Diversity in Slack

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
e
rc

e
n
ta

g
e
 o

f
a
ll

P
a
c
k
e
ts

 (
%

)

Slack in cycles

Gems

omnet

tpcw

mcf

bzip2

sjbb

sap

sphinx

deal

barnes

astar

calculix

art

libquantum

sjeng

h264ref

Slack varies between packets of different applications

Slack varies between packets of a single application

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Ae ́rgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Estimating Slack Priority

Slack (P) = Max (Latencies of P’s Predecessors) – Latency of P

 Predecessors(P) are the packets of outstanding cache miss

requests when P is issued

 Packet latencies not known when issued

 Predicting latency of any packet Q

 Higher latency if Q corresponds to an L2 miss

 Higher latency if Q has to travel farther number of hops

 Slack of P = Maximum Predecessor Latency – Latency of P

 Slack(P) =

PredL2: Set if any predecessor packet is servicing L2 miss

MyL2: Set if P is NOT servicing an L2 miss

HopEstimate: Max (# of hops of Predecessors) – hops of P

Estimating Slack Priority

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)

Estimating Slack Priority

 How to predict L2 hit or miss at core?

 Global Branch Predictor based L2 Miss Predictor

 Use Pattern History Table and 2-bit saturating counters

 Threshold based L2 Miss Predictor

 If #L2 misses in “M” misses >= “T” threshold then next load is a L2 miss.

 Number of miss predecessors?

 List of outstanding L2 Misses

 Hops estimate?

 Hops => ∆X + ∆ Y distance

 Use predecessor list to calculate slack hop estimate

Starvation Avoidance

 Problem: Starvation

 Prioritizing packets can lead to starvation of lower priority

packets

 Solution: Time-Based Packet Batching

 New batches are formed at every T cycles

 Packets of older batches are prioritized over younger batches

Putting it all together

 Tag header of the packet with priority bits before injection

 Priority(P)?

 P’s batch (highest priority)

 P’s Slack

 Local Round-Robin (final tie breaker)

PredL2

(2 bits)

MyL2

(1 bit)

HopEstimate

(2 bits)

Batch

(3 bits)
Priority (P) =

Outline

 Introduction

 Packet Scheduling

 Memory Level Parallelism

 Ae ́rgia

 Concept of Slack

 Estimating Slack

 Evaluation

 Conclusion

Evaluation Methodology
 64-core system
 x86 processor model based on Intel Pentium M

 2 GHz processor, 128-entry instruction window

 32KB private L1 and 1MB per core shared L2 caches, 32 miss buffers

 4GB DRAM, 320 cycle access latency, 4 on-chip DRAM controllers

 Detailed Network-on-Chip model
 2-stage routers (with speculation and look ahead routing)

 Wormhole switching (8 flit data packets)

 Virtual channel flow control (6 VCs, 5 flit buffer depth)

 8x8 Mesh (128 bit bi-directional channels)

 Benchmarks
 Multiprogrammed scientific, server, desktop workloads (35 applications)

 96 workload combinations

Qualitative Comparison

 Round Robin & Age

 Local and application oblivious

 Age is biased towards heavy applications

 Globally Synchronized Frames (GSF)
[Lee et al., ISCA 2008]

 Provides bandwidth fairness at the expense of system performance

 Penalizes heavy and bursty applications

 Application-Aware Prioritization Policies (SJF)
[Das et al., MICRO 2009]

 Shortest-Job-First Principle

 Packet scheduling policies which prioritize network sensitive

applications which inject lower load

System Performance

 SJF provides 8.9% improvement

in weighted speedup

 Ae ́rgia improves system

throughput by 10.3%

 Ae ́rgia+SJF improves system

throughput by 16.1%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

N
o

rm
al

iz
ed

 S
y

st
e

m
 S

p
e

ed
u

p

Age RR

GSF SJF

Aergia SJF+Aergia

Network Unfairness

 SJF does not imbalance

 network fairness

 Aergia improves network

unfairness by 1.5X

 SJF+Aergia improves

network unfairness by 1.3X

0.0

3.0

6.0

9.0

12.0

 N
e

tw
o

rk
 U

n
fa

ir
n

e
ss

Age RR

GSF SJF

Aergia SJF+Aergia

Conclusions & Future Directions

 Packets have different criticality, yet existing packet

scheduling policies treat all packets equally

 We propose a new approach to packet scheduling in NoCs

 We define Slack as a key measure that characterizes the relative

importance of a packet.

 We propose Aérgia a novel architecture to accelerate low slack

critical packets

 Result

 Improves system performance: 16.1%

 Improves network fairness: 30.8%

Express-Cube Topologies

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,

"Express Cube Topologies for On-Chip Interconnects"

Proceedings of the 15th International Symposium on High-Performance

Computer Architecture (HPCA), pages 163-174, Raleigh, NC, February 2009.

Slides (ppt)

http://users.ece.cmu.edu/~omutlu/pub/mecs_hpca09.pdf
http://users.ece.cmu.edu/~omutlu/pub/mecs_hpca09.pdf
http://users.ece.cmu.edu/~omutlu/pub/mecs_hpca09.pdf
http://www.comparch.ncsu.edu/hpca/
http://www.comparch.ncsu.edu/hpca/
http://www.comparch.ncsu.edu/hpca/
http://www.comparch.ncsu.edu/hpca/
http://www.comparch.ncsu.edu/hpca/
http://users.ece.cmu.edu/~omutlu/pub/grot_hpca09_talk.ppt

UTCS 239 HPCA '09

2-D Mesh

 Pros
 Low design & layout

complexity

 Simple, fast routers

 Cons
 Large diameter

 Energy & latency impact

UTCS 240 HPCA '09

2-D Mesh

 Pros
 Multiple terminals

attached to a router node

 Fast nearest-neighbor
communication via the
crossbar

 Hop count reduction
proportional to
concentration degree

 Cons
 Benefits limited by

crossbar complexity

UTCS 241 HPCA '09

Concentration (Balfour & Dally, ICS ‘06)

UTCS 242 HPCA '09

Concentration

 Side-effects
 Fewer channels

 Greater channel width

UTCS 243 HPCA ‘09

Replication

CMesh-X2

 Benefits
 Restores bisection

channel count

 Restores channel width

 Reduced crossbar
complexity

UTCS 244 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

 Objectives:
 Improve connectivity

 Exploit the wire budget

UTCS 245 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

UTCS 246 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

UTCS 247 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

UTCS 248 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

 Pros
 Excellent connectivity

 Low diameter: 2 hops

 Cons
 High channel count:
k2/2 per row/column

 Low channel utilization

 Increased control
(arbitration) complexity

UTCS 249 HPCA '09

Flattened Butterfly (Kim et al., Micro

‘07)

UTCS 250 HPCA '09

Multidrop Express Channels (MECS)

 Objectives:
 Connectivity

 More scalable channel
count

 Better channel
utilization

UTCS 251 HPCA '09

Multidrop Express Channels (MECS)

UTCS 252 HPCA '09

Multidrop Express Channels (MECS)

UTCS 253 HPCA '09

Multidrop Express Channels (MECS)

UTCS 254 HPCA '09

Multidrop Express Channels (MECS)

UTCS 255 HPCA ‘09

Multidrop Express Channels (MECS)

 Pros
 One-to-many topology

 Low diameter: 2 hops

 k channels row/column

 Asymmetric

 Cons
 Asymmetric

 Increased control
(arbitration) complexity

UTCS 256 HPCA ‘09

Multidrop Express Channels (MECS)

Partitioning: a GEC Example

UTCS 257 HPCA '09

MECS

MECS-X2

Flattened
Butterfly

Partitioned
MECS

Analytical Comparison

UTCS 258 HPCA '09

CMesh FBfly MECS

Network Size 64 256 64 256 64 256

Radix (conctr’d) 4 8 4 8 4 8

Diameter 6 14 2 2 2 2

Channel count 2 2 8 32 4 8

Channel width 576 1152 144 72 288 288

Router inputs 4 4 6 14 6 14

Router outputs 4 4 6 14 4 4

Experimental Methodology

Topologies Mesh, CMesh, CMesh-X2, FBFly, MECS, MECS-X2

Network sizes 64 & 256 terminals

Routing DOR, adaptive

Messages 64 & 576 bits

Synthetic traffic Uniform random, bit complement, transpose, self-similar

PARSEC

benchmarks

Blackscholes, Bodytrack, Canneal, Ferret,

Fluidanimate, Freqmine, Vip, x264

Full-system config M5 simulator, Alpha ISA, 64 OOO cores

Energy evaluation Orion + CACTI 6

UTCS 259 HPCA '09

UTCS 260 HPCA '09

64 nodes: Uniform Random

0

10

20

30

40

1 4 7 10 13 16 19 22 25 28 31 34 37 40

La
te

n
cy

 (c
yc

le
s)

injection rate (%)

mesh cmesh cmesh-x2 fbfly mecs mecs-x2

UTCS 261 HPCA '09

256 nodes: Uniform Random

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25

La
te

n
cy

 (c
yc

le
s)

Injection rate (%)

mesh cmesh-x2 fbfly mecs mecs-x2

UTCS 262 HPCA '09

Energy (100K pkts, Uniform Random)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 p
ac

ke
t e

n
er

gy
 (n

J)

Link Energy Router Energy

64 nodes 256 nodes

UTCS 263 HPCA '09

64 Nodes: PARSEC

0

2

4

6

8

10

12

14

16

18

20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Router Energy Link Energy latency

Blackscholes Canneal Vip

To
ta

l n
e

tw
o

rk
 E

n
e

rg
y

(J
)

A
vg

 p
ac

ke
t

la
te

n
cy

 (c
yc

le
s)

x264

Summary

 MECS
 A new one-to-many topology

 Good fit for planar substrates

 Excellent connectivity

 Effective wire utilization

 Generalized Express Cubes
 Framework & taxonomy for NOC topologies

 Extension of the k-ary n-cube model

 Useful for understanding and exploring
on-chip interconnect options

 Future: expand & formalize

UTCS 264 HPCA '09

Kilo-NoC: Topology-Aware QoS

Boris Grot, Joel Hestness, Stephen W. Keckler, and Onur Mutlu,
"Kilo-NOC: A Heterogeneous Network-on-Chip Architecture for

Scalability and Service Guarantees"
Proceedings of the 38th International Symposium on Computer

Architecture (ISCA), San Jose, CA, June 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://users.ece.cmu.edu/~omutlu/pub/kilonoc_isca11.pdf
http://isca2011.umaine.edu/
http://isca2011.umaine.edu/
http://isca2011.umaine.edu/
http://users.ece.cmu.edu/~omutlu/pub/grot_isca11_talk.pptx

Motivation

 Extreme-scale chip-level integration

 Cores

 Cache banks

 Accelerators

 I/O logic

 Network-on-chip (NOC)

 10-100 cores today

 1000+ assets in the near future

266

Kilo-NOC requirements

 High efficiency

 Area

 Energy

 Good performance

 Strong service guarantees (QoS)

267

Topology-Aware QoS

 Problem: QoS support in each router is expensive (in terms
of buffering, arbitration, bookkeeping)

 E.g., Grot et al., “Preemptive Virtual Clock: A Flexible,
Efficient, and Cost-effective QOS Scheme for Networks-on-
Chip,” MICRO 2009.

 Goal: Provide QoS guarantees at low area and power cost

 Idea:

 Isolate shared resources in a region of the network, support
QoS within that area

 Design the topology so that applications can access the region
without interference

268

Baseline QOS-enabled CMP

Multiple VMs

sharing a die

269

Shared resources
(e.g., memory controllers)

VM-private resources
(cores, caches)

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM #1

VM #1

VM #3

VM #2

QOS-enabled router Q

Conventional NOC QOS

Contention scenarios:

 Shared resources

 memory access

 Intra-VM traffic

 shared cache access

 Inter-VM traffic

 VM page sharing

270

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM #1

VM #1

VM #3

VM #2

Conventional NOC QOS

271

Q Q Q Q

Q Q Q Q

Q Q Q Q

Q Q Q Q

VM #1

VM #1

VM #3

VM #2

Contention scenarios:

 Shared resources

 memory access

 Intra-VM traffic

 shared cache access

 Inter-VM traffic

 VM page sharing

Network-wide guarantees without

network-wide QOS support

Kilo-NOC QOS

 Insight: leverage rich network connectivity

 Naturally reduce interference among flows

 Limit the extent of hardware QOS support

 Requires a low-diameter topology

 This work: Multidrop Express Channels (MECS)

272

Grot et al., HPCA

2009

 Dedicated, QOS-enabled
regions

 Rest of die: QOS-free

 Richly-connected
topology

 Traffic isolation

 Special routing rules

 Manage interference

273

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware QOS

 Dedicated, QOS-enabled
regions

 Rest of die: QOS-free

 Richly-connected
topology

 Traffic isolation

 Special routing rules

 Manage interference

274

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware QOS

 Dedicated, QOS-enabled
regions

 Rest of die: QOS-free

 Richly-connected
topology

 Traffic isolation

 Special routing rules

 Manage interference

275

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware QOS

 Dedicated, QOS-enabled
regions

 Rest of die: QOS-free

 Richly-connected
topology

 Traffic isolation

 Special routing rules

 Manage interference

276

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Topology-Aware QOS

 Topology-aware QOS
support

 Limit QOS complexity to
a fraction of the die

 Optimized flow control

 Reduce buffer
requirements in QOS-
free regions

277

Q

Q

Q

Q

VM #1 VM #2

VM #1

VM #3

Kilo-NOC view

Parameter Value

Technology 15 nm

Vdd 0.7 V

System 1024 tiles:
256 concentrated nodes (64 shared resources)

Networks:

MECS+PVC VC flow control, QOS support (PVC) at each node

MECS+TAQ VC flow control, QOS support only in shared regions

MECS+TAQ+EB EB flow control outside of SRs,
Separate Request and Reply networks

K-MECS Proposed organization: TAQ + hybrid flow control

278

279

280

Kilo-NOC: a heterogeneous NOC architecture
for kilo-node substrates

 Topology-aware QOS

 Limits QOS support to a fraction of the die

 Leverages low-diameter topologies

 Improves NOC area- and energy-efficiency

 Provides strong guarantees

281

