
Computer Architecture:

Memory Interference and QoS (Part II)

Prof. Onur Mutlu

Carnegie Mellon University

Memory Interference and QoS Lectures

 These slides are from a lecture delivered at INRIA (July 8,
2013)

 Similar slides were used at the ACACES 2013 course

 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html

2

http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html

QoS-Aware Memory Systems

(Wrap Up)

Onur Mutlu

onur@cmu.edu

July 9, 2013

INRIA

mailto:onur@cmu.edu

Slides for These Lectures

 Architecting and Exploiting Asymmetry in Multi-Core

 http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-
asymmetry-jul-2-2013.pptx

 A Fresh Look At DRAM Architecture

 http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-
DRAM-jul-4-2013.pptx

 QoS-Aware Memory Systems

 http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-
memory-qos-jul-8-2013.pptx

 QoS-Aware Memory Systems and Waste Management

 http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-
memory-qos-and-waste-management-jul-9-2013.pptx

 4

http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://www.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture2-DRAM-jul-4-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture3-memory-qos-jul-8-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture1-asymmetry-jul-2-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-INRIA-lecture4-memory-qos-and-waste-management-jul-9-2013.pptx

Videos for Similar Lectures

 Basics (of Computer Architecture)

 http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59
REog9jDnPDTG6IJ

 Advanced (Longer versions of these lectures)

 http://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ej
HhwOfLwTr8Q-UKXj

5

http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
http://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
http://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
http://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
http://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj
http://www.youtube.com/playlist?list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]

6

ATLAS Pros and Cons

 Upsides:

 Good at improving overall throughput (compute-intensive
threads are prioritized)

 Low complexity

 Coordination among controllers happens infrequently

 Downsides:

 Lowest/medium ranked threads get delayed significantly

high unfairness

7

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_micro10_talk.pptx

No previous memory scheduling algorithm provides
both the best fairness and system throughput

1

3

5

7

9

11

13

15

17

7 7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

FCFS

FRFCFS

STFM

PAR-BS

ATLAS

Previous Scheduling Algorithms are Biased

9

System throughput bias

Fairness bias

Better system throughput

B
et

te
r

fa
ir

n
es

s
24 cores, 4 memory controllers, 96 workloads

Take turns accessing memory

Throughput vs. Fairness

10

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation unfairness

thread C thread B thread A

Does not starve

not prioritized
reduced throughput

Single policy for all threads is insufficient

Achieving the Best of Both Worlds

11

thread

thread

higher
priority

thread

thread

thread

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle thread ranking

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

thread

thread

thread

thread

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

12

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

13

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad
 higher

MPKI

T
α < 10%

ClusterThreshold

Intensive
cluster αT

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters

Prioritize non-intensive cluster

• Increases system throughput

– Non-intensive threads have greater potential for
making progress

• Does not degrade fairness

– Non-intensive threads are “light”

– Rarely interfere with intensive threads

Prioritization Between Clusters

14

>
priority

Prioritize threads according to MPKI

• Increases system throughput

– Least intensive thread has the greatest potential
for making progress in the processor

Non-Intensive Cluster

15

thread

thread

thread

thread

higher
priority lowest MPKI

highest MPKI

Periodically shuffle the priority of threads

• Is treating all threads equally good enough?

• BUT: Equal turns ≠ Same slowdown

Intensive Cluster

16

thread

thread

thread

Increases fairness

Most prioritized higher
priority

thread

thread

thread

0

2

4

6

8

10

12

14

random-access streaming
Sl

o
w

d
o

w
n

Case Study: A Tale of Two Threads
Case Study: Two intensive threads contending

1. random-access

2. streaming

17

Prioritize random-access Prioritize streaming

random-access thread is more easily slowed down

0

2

4

6

8

10

12

14

random-access streaming

Sl
o

w
d

o
w

n

7x
prioritized

1x

11x

prioritized
1x

Which is slowed down more easily?

Why are Threads Different?

18

random-access streaming
req req req req

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows

•All requests parallel
•High bank-level parallelism

•All requests Same row
•High row-buffer locality

req req req req

activated row
req req req req req req req req stuck

Vulnerable to interference

Niceness

How to quantify difference between threads?

19

Vulnerability to interference

Bank-level parallelism

Causes interference

Row-buffer locality

+ Niceness -

Niceness High Low

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

20

Most prioritized

ShuffleInterval

Priority

Time

Nice thread

Least nice thread

GOOD: Each thread
prioritized once

 What can go wrong?

A

B

C

D

D A B C D

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

21

Most prioritized

ShuffleInterval

Priority

Time

Nice thread

Least nice thread

 What can go wrong?

A

B

C

D

D A B C D

A

B

D

C

B

C

A

D

C

D

B

A

D

A

C

B

BAD: Nice threads receive
lots of interference

GOOD: Each thread
prioritized once

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

22

Most prioritized

ShuffleInterval

Priority

Time

Nice thread

Least nice thread

GOOD: Each thread
prioritized once

A

B

C

D

D C B A D

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

23

Most prioritized

ShuffleInterval

Priority

Time

Nice thread

Least nice thread
A

B

C

D

D C B A D

D

A

C

B

B

A

C

D

A

D

B

C

D

A

C

B

GOOD: Each thread
prioritized once

GOOD: Least nice thread stays
mostly deprioritized

TCM Outline

24

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

4. Intensive
Cluster

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

4. Intensive
Cluster

Fairness

Throughput

TCM: Quantum-Based Operation

25

Time

Previous quantum
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM: Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity higher rank

• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

26

TCM: Implementation Cost

Required storage at memory controller (24 cores)

• No computation is on the critical path

27

Thread memory behavior Storage

MPKI ~0.2kb

Bank-level parallelism ~0.6kb

Row-buffer locality ~2.9kb

Total < 4kbits

Previous Work

FRFCFS [Rixner et al., ISCA00]: Prioritizes row-buffer hits

– Thread-oblivious Low throughput & Low fairness

STFM [Mutlu et al., MICRO07]: Equalizes thread slowdowns

– Non-intensive threads not prioritized Low throughput

PAR-BS [Mutlu et al., ISCA08]: Prioritizes oldest batch of requests
while preserving bank-level parallelism

– Non-intensive threads not always prioritized Low
throughput

ATLAS [Kim et al., HPCA10]: Prioritizes threads with less memory

service

– Most intensive thread starves Low fairness

28

TCM: Throughput and Fairness

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

29

Better system throughput

B
et

te
r

fa
ir

n
es

s
24 cores, 4 memory controllers, 96 workloads

TCM, a heterogeneous scheduling policy,
provides best fairness and system throughput

TCM: Fairness-Throughput Tradeoff

30

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM
PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
es

s FRFCFS

Operating System Support

• ClusterThreshold is a tunable knob

– OS can trade off between fairness and throughput

• Enforcing thread weights

– OS assigns weights to threads

– TCM enforces thread weights within each cluster

31

Conclusion

32

• No previous memory scheduling algorithm provides
both high system throughput and fairness

– Problem: They use a single policy for all threads

• TCM groups threads into two clusters

1. Prioritize non-intensive cluster throughput

2. Shuffle priorities in intensive cluster fairness

3. Shuffling should favor nice threads fairness

• TCM provides the best system throughput and fairness

TCM Pros and Cons

 Upsides:

 Provides both high fairness and high performance

 Downsides:

 Scalability to large buffer sizes?

 Effectiveness in a heterogeneous system?

33

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,

"Staged Memory Scheduling: Achieving High Performance
and Scalability in Heterogeneous Systems”

39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

SMS ISCA 2012 Talk

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/rachata_isca12_talk.pptx

SMS: Executive Summary

 Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

 Problem: Existing monolithic application-aware memory

scheduler designs are hard to scale to large request buffer sizes

 Solution: Staged Memory Scheduling (SMS)

decomposes the memory controller into three simple stages:

1) Batch formation: maintains row buffer locality

2) Batch scheduler: reduces interference between applications

3) DRAM command scheduler: issues requests to DRAM

 Compared to state-of-the-art memory schedulers:

 SMS is significantly simpler and more scalable

 SMS provides higher performance and fairness

 35

SMS: Staged Memory Scheduling

36

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req

Req Req

Req Req

Req Req Req

Req

Req Req

Req

Req

Req

Req

Req Req

Req Req Req

Req Req Req Req Req Req

Req

Req

Req Req

Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
o
n
o
lit

h
ic

 S
ch

e
d
u
le

r

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

37

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Current Batch
Scheduling

Policy

SJF

Current Batch
Scheduling

Policy

RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

38

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Complexity

 Compared to a row hit first scheduler, SMS consumes*

 66% less area

 46% less static power

 Reduction comes from:

 Monolithic scheduler stages of simpler schedulers

 Each stage has a simpler scheduler (considers fewer
properties at a time to make the scheduling decision)

 Each stage has simpler buffers (FIFO instead of out-of-order)

 Each stage has a portion of the total buffer size (buffering is
distributed across stages)

39 * Based on a Verilog model using 180nm library

Performance at Different GPU Weights

40

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

 At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

Performance at Different GPU Weights

41

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

S
y
s
te

m
 P

e
rf

o
rm

a
n

c
e

GPUweight

Previous Best

SMS SMS

Best Previous
Scheduler

Stronger Memory Service Guarantees

Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu,
"MISE: Providing Performance Predictability and Improving Fairness in Shared Main Memory Systems"

Proceedings of the 19th International Symposium on High-Performance Computer Architecture (HPCA),
Shenzhen, China, February 2013. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

Strong Memory Service Guarantees

 Goal: Satisfy performance bounds/requirements in the
presence of shared main memory, prefetchers,
heterogeneous agents, and hybrid memory

 Approach:

 Develop techniques/models to accurately estimate the
performance of an application/agent in the presence of
resource sharing

 Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

 All the while providing high system performance

43

MISE:

Providing Performance Predictability

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,

Yoongu Kim, Ben Jaiyen, Onur Mutlu

44

Unpredictable Application Slowdowns

45

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

S
lo

w
d

o
w

n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

S
lo

w
d

o
w

n

An application’s performance depends on
which application it is running with

Need for Predictable Performance

 There is a need for predictable performance

 When multiple applications share resources

 Especially if some applications require performance
guarantees

 Example 1: In mobile systems

 Interactive applications run with non-interactive applications

 Need to guarantee performance for interactive applications

 Example 2: In server systems

 Different users’ jobs consolidated onto the same server

 Need to provide bounded slowdowns to critical jobs

46

Our Goal: Predictable performance
in the presence of memory interference

Outline

47

1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown

 Providing Soft Slowdown Guarantees

 Minimizing Maximum Slowdown

Slowdown: Definition

48

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown

Key Observation 1

For a memory bound application,
Performance Memory request service rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

Normalized Request Service Rate

omnetpp

mcf

astar

49

Shared

Alone

 Rate ServiceRequest

 Rate ServiceRequest
Slowdown

Shared

Alone

 ePerformanc

 ePerformanc
 Slowdown

Easy

Harder

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

Key Observation 2

Request Service Rate Alone (RSRAlone) of an application can be
estimated by giving the application highest priority in

accessing memory

Highest priority Little interference

(almost as if the application were run alone)

50

Key Observation 2

51

Request Buffer State

Main
Memory

1. Run alone
Time units Service order

Main
Memory

1 2

Request Buffer State

Main
Memory

2. Run with another application
Service order

Main
Memory

1 2 3

Request Buffer State

Main
Memory

3. Run with another application: highest priority
Service order

Main
Memory

1 2 3

Time units

Time units

3

52

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

)(RSR Rate ServiceRequest

)(RSR Rate ServiceRequest
Slowdown

SharedShared

AloneAlone

Key Observation 3

 Memory-bound application

53

No
interference

Compute Phase

Memory Phase

With
interference

Memory phase slowdown dominates overall slowdown

time

time

Req

Req

Req Req

Req Req

Key Observation 3

 Non-memory-bound application

54

time

time

No
interference

Compute Phase

Memory Phase

With
interference

Only memory fraction () slows down with interference

1

1

Shared

Alone

RSR

RSR

Shared

Alone

RSR

RSR
) - (1 Slowdown

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

Measuring RSRShared and α

 Request Service Rate Shared (RSRShared)

 Per-core counter to track number of requests serviced

 At the end of each interval, measure

 Memory Phase Fraction ()

 Count number of stall cycles at the core

 Compute fraction of cycles stalled for memory

Length Interval

Serviced Requests ofNumber
 RSRShared

a

55

Estimating Request Service Rate Alone (RSRAlone)

 Divide each interval into shorter epochs

 At the beginning of each epoch

 Memory controller randomly picks an application as the
highest priority application

 At the end of an interval, for each application, estimate

PriorityHigh Given n Applicatio Cycles ofNumber

EpochsPriority High During Requests ofNumber
RSR

Alone

56

Goal: Estimate RSRAlone

How: Periodically give each application
highest priority in accessing memory

Inaccuracy in Estimating RSRAlone

57

Request Buffer
 State

Main
Memory

Time units Service order

Main
Memory

1 2 3

 When an application has highest priority

 Still experiences some interference

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

1 2 3

Time units Service order

Main
Memory

1 2 3

Interference Cycles

High Priority

Main
Memory

Time units Service order

Main
Memory

1 2 3

Request Buffer
State

Accounting for Interference in RSRAlone Estimation

 Solution: Determine and remove interference cycles from
RSRAlone calculation

 A cycle is an interference cycle if

 a request from the highest priority application is
waiting in the request buffer and

 another application’s request was issued previously

58

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber

EpochsPriority High During Requests ofNumber
RSR

Alone

Outline

59

1. Estimate Slowdown

 Key Observations

 Implementation

 MISE Model: Putting it All Together

 Evaluating the Model

2. Control Slowdown

 Providing Soft Slowdown Guarantees

 Minimizing Maximum Slowdown

MISE Model: Putting it All Together

60

time

Interval

Estimate

slowdown

Interval

Estimate

slowdown

 Measure RSRShared,

 Estimate RSRAlone

 Measure RSRShared,

 Estimate RSRAlone

Previous Work on Slowdown Estimation

 Previous work on slowdown estimation

 STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07]

 FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

 Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

 Basic Idea:

61

Shared

Alone

 Time Stall

 Time Stall
 Slowdown

Hard

Easy

Count number of cycles application receives interference

Two Major Advantages of MISE Over STFM

 Advantage 1:

 STFM estimates alone performance while an
application is receiving interference Hard

 MISE estimates alone performance while giving an
application the highest priority Easier

 Advantage 2:

 STFM does not take into account compute phase for
non-memory-bound applications

 MISE accounts for compute phase Better accuracy

62

Methodology

 Configuration of our simulated system

 4 cores

 1 channel, 8 banks/channel

 DDR3 1066 DRAM

 512 KB private cache/core

 Workloads

 SPEC CPU2006

 300 multi programmed workloads

63

Quantitative Comparison

64

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

S
lo

w
d

o
w

n

Million Cycles

Actual

STFM

MISE

SPEC CPU 2006 application
leslie3d

Comparison to STFM

65

cactusADM

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

0

1

2

3

4

0 50 100
S

lo
w

d
o

w
n

GemsFDTD

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

soplex

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

wrf

0

1

2

3

4

0 50 100

S
lo

w
d

o
w

n

calculix

0

1

2

3

4

0 50 100
S

lo
w

d
o

w
n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)

Providing “Soft” Slowdown Guarantees

 Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

 Basic Idea

 Allocate just enough bandwidth to QoS-critical
application

 Assign remaining bandwidth to other applications

66

MISE-QoS: Mechanism to Provide Soft QoS

 Assign an initial bandwidth allocation to QoS-critical application

 Estimate slowdown of QoS-critical application using the MISE
model

 After every N intervals

 If slowdown > bound B +/- ε, increase bandwidth allocation

 If slowdown < bound B +/- ε, decrease bandwidth allocation

 When slowdown bound not met for N intervals

 Notify the OS so it can migrate/de-schedule jobs

67

Methodology

 Each application (25 applications in total) considered the
QoS-critical application

 Run with 12 sets of co-runners of different memory
intensities

 Total of 300 multiprogrammed workloads

 Each workload run with 10 slowdown bound values

 Baseline memory scheduling mechanism

 Always prioritize QoS-critical application

 [Iyer+, SIGMETRICS 2007]

 Other applications’ requests scheduled in FRFCFS order

 [Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

68

A Look at One Workload

69

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

S
lo

w
d

o
w

n

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

QoS-critical non-QoS-critical

MISE is effective in
1. meeting the slowdown bound for the QoS-

critical application
2. improving performance of non-QoS-critical

applications

Slowdown Bound = 10
Slowdown Bound = 3.33

Slowdown Bound = 2

Effectiveness of MISE in Enforcing QoS

70

Predicted
Met

Predicted
Not Met

QoS Bound
Met

78.8% 2.1%

QoS Bound
Not Met

2.2% 16.9%

Across 3000 data points

MISE-QoS meets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not the bound

is met for 95.7% of workloads

Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
a

rm
o

n
ic

 S
p

e
e

d
u

p

Number of Memory Intensive Applications

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

71

Higher performance when bound is loose

When slowdown bound is 10/3
MISE-QoS improves system performance by 10%

Other Results in the Paper

 Sensitivity to model parameters

 Robust across different values of model parameters

 Comparison of STFM and MISE models in enforcing soft
slowdown guarantees

 MISE significantly more effective in enforcing guarantees

 Minimizing maximum slowdown

 MISE improves fairness across several system configurations

72

Summary

 Uncontrolled memory interference slows down
applications unpredictably

 Goal: Estimate and control slowdowns

 Key contribution
 MISE: An accurate slowdown estimation model

 Average error of MISE: 8.2%

 Key Idea
 Request Service Rate is a proxy for performance

 Request Service Rate Alone estimated by giving an application highest
priority in accessing memory

 Leverage slowdown estimates to control slowdowns
 Providing soft slowdown guarantees

 Minimizing maximum slowdown

73

MISE:

Providing Performance Predictability

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,

Yoongu Kim, Ben Jaiyen, Onur Mutlu

74

Memory Scheduling

for Parallel Applications

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,

"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/parallel-memory-scheduling_micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_micro11_talk.pptx

Handling Interference in Parallel Applications

 Threads in a multithreaded application are inter-dependent

 Some threads can be on the critical path of execution due
to synchronization; some threads are not

 How do we schedule requests of inter-dependent threads
to maximize multithreaded application performance?

 Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

 Hardware/software cooperative limiter thread estimation:

 Thread executing the most contended critical section

 Thread that is falling behind the most in a parallel for loop

 76 PAMS Micro 2011 Talk

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_micro2011_talk.pptx

Aside:

Self-Optimizing Memory Controllers

Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on Computer Architecture (ISCA),

pages 39-50, Beijing, China, June 2008. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/ipek_isca08_talk.pptx

Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to optimize for performance (in the presence of constraints)

 Reordering is not simple

 Predicting the future?

78

Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

79

More on DRAM Operation and Constraints

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

80

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

81

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

82

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

83

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Performance Results

84

QoS-Aware Memory Systems:

The Dumb Resources Approach

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]

86

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://users.ece.cmu.edu/~omutlu/pub/fst_asplos10.pdf
http://www.ece.cmu.edu/CALCM/asplos10/doku.php
http://users.ece.cmu.edu/~omutlu/pub/ebrahimi_asplos10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/ebrahimi_asplos10_talk.pdf

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip Boundary
On-chip

Off-chip

88

The Problem with “Smart Resources”

 Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

 Explicitly coordinating mechanisms for different
resources requires complex implementation

 How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

89

An Alternative Approach: Source Throttling

 Manage inter-thread interference at the cores, not at the
shared resources

 Dynamically estimate unfairness in the memory system

 Feed back this information into a controller

 Throttle cores’ memory access rates accordingly

 Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

 E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

 Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

90

91

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 (limit injection rate and parallelism)

 2-Throttle up App-slowest
}

FST

Unfairness Estimate

App-slowest

App-interfering

⎪

⎨

⎪

⎧

⎩

Slowdown
Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST) [ASPLOS’10]

System Software Support

 Different fairness objectives can be configured by

system software

 Keep maximum slowdown in check

 Estimated Max Slowdown < Target Max Slowdown

 Keep slowdown of particular applications in check to achieve a
particular performance target

 Estimated Slowdown(i) < Target Slowdown(i)

 Support for thread priorities

 Weighted Slowdown(i) =
 Estimated Slowdown(i) x Weight(i)

92

Source Throttling Results: Takeaways

 Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching

 Decisions made at the memory scheduler and the cache
sometimes contradict each other

 Neither source throttling alone nor “smart resources” alone
provides the best performance

 Combined approaches are even more powerful

 Source throttling and resource-based interference control

93

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]

94

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,

"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”

 44th International Symposium on Microarchitecture (MICRO),
Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx

 Memory Channel Partitioning

 Idea: System software maps badly-interfering applications’ pages
to different channels [Muralidhara+, MICRO’11]

 Separate data of low/high intensity and low/high row-locality applications

 Especially effective in reducing interference of threads with “medium” and
“heavy” memory intensity

 11% higher performance over existing systems (200 workloads)

Another Way to Reduce Memory Interference

96

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0

Bank 1

Bank 0

Conventional Page Mapping

Time Units

1 2 3 4 5

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0

Bank 1

Bank 0

Time Units

1 2 3 4 5

Channel 1

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications

2. Classify applications into groups

3. Partition channels between application groups

4. Assign a preferred channel to each application

5. Allocate application pages to preferred channel

97

Hardware

System
Software

2. Classify Applications

98

Test MPKI

High Intensity

High Low

Low Intensity

Test RBH

High Intensity
Low Row-Buffer

Locality

Low

High Intensity
High Row-Buffer

Locality

High

Summary: Memory QoS

 Technology, application, architecture trends dictate
new needs from memory system

 A fresh look at (re-designing) the memory hierarchy

 Scalability: DRAM-System Codesign and New Technologies

 QoS: Reducing and controlling main memory interference:
QoS-aware memory system design

 Efficiency: Customizability, minimal waste, new technologies

 QoS-unaware memory: uncontrollable and unpredictable

 Providing QoS awareness improves performance,
predictability, fairness, and utilization of the memory system

99

Summary: Memory QoS Approaches and Techniques

 Approaches: Smart vs. dumb resources

 Smart resources: QoS-aware memory scheduling

 Dumb resources: Source throttling; channel partitioning

 Both approaches are effective in reducing interference

 No single best approach for all workloads

 Techniques: Request/thread scheduling, source throttling,
memory partitioning

 All approaches are effective in reducing interference

 Can be applied at different levels: hardware vs. software

 No single best technique for all workloads

 Combined approaches and techniques are the most powerful

 Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

100 MCP Micro 2011 Talk

//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/subramanian_micro11_talk.pptx

Computer Architecture:

Memory Interference and QoS (Part II)

Prof. Onur Mutlu

Carnegie Mellon University

