
Computer Architecture:

Memory Interference and QoS (Part I)

Prof. Onur Mutlu

Carnegie Mellon University

Memory Interference and QoS Lectures

 These slides are from a lecture delivered at INRIA (July 8,
2013)

 Similar slides were used at the ACACES 2013 course

 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html

2

http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html

QoS-Aware Memory Systems

Onur Mutlu

onur@cmu.edu

July 8, 2013

INRIA

mailto:onur@cmu.edu

Trend: Many Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

4

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

Many Cores on Chip

 What we want:

 N times the system performance with N times the cores

 What do we get today?

5

Unfair Slowdowns due to Interference

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

6

7

Uncontrolled Interference: An Example

CORE 1 CORE 2

 L2

CACHE

 L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

matlab gcc

DRAM

Bank 3

Memory System is the Major Shared Resource

8

threads’ requests
interfere

Much More of a Shared Resource in Future

9

Inter-Thread/Application Interference

 Problem: Threads share the memory system, but memory
system does not distinguish between threads’ requests

 Existing memory systems

 Free-for-all, shared based on demand

 Control algorithms thread-unaware and thread-unfair

 Aggressive threads can deny service to others

 Do not try to reduce or control inter-thread interference

10

Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

11

12

Uncontrolled Interference: An Example

CORE 1 CORE 2

 L2

CACHE

 L2

CACHE

DRAM MEMORY CONTROLLER

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

Shared DRAM

Memory System

Multi-Core

Chip

unfairness

INTERCONNECT

stream random

DRAM

Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

13

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

14

What Does the Memory Hog Do?

Row Buffer

R
o
w

 d
e

c
o

d
e

r
Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0 T1: Row 111

T0: Row 0 T0: Row 0 T1: Row 5

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B

128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

15

DRAM Controllers

 A row-conflict memory access takes significantly longer
than a row-hit access

 Current controllers take advantage of the row buffer

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first

(2) Oldest-first: Then service older accesses first

 This scheduling policy aims to maximize DRAM throughput

 But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

16

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

S
lo

w
d
o
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc

0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

 Vulnerable to denial of service (DoS)

 Unable to enforce priorities or SLAs

 Low system performance

Uncontrollable, unpredictable system

17

Greater Problem with More Cores

 Vulnerable to denial of service (DoS) [Usenix Security’07]

 Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10]

 Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12]

Uncontrollable, unpredictable system

18

Distributed DoS in Networked Multi-Core Systems

19

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

 Cores connected via

 packet-switched

 routers on chip

 ~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

How Do We Solve The Problem?

 Inter-thread interference is uncontrolled in all memory
resources

 Memory controller

 Interconnect

 Caches

 We need to control it

 i.e., design an interference-aware (QoS-aware) memory system

20

QoS-Aware Memory Systems: Challenges

 How do we reduce inter-thread interference?

 Improve system performance and core utilization

 Reduce request serialization and core starvation

 How do we control inter-thread interference?

 Provide mechanisms to enable system software to enforce
QoS policies

 While providing high system performance

 How do we make the memory system configurable/flexible?

 Enable flexible mechanisms that can achieve many goals

 Provide fairness or throughput when needed

 Satisfy performance guarantees when needed

 21

Designing QoS-Aware Memory Systems: Approaches

 Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,

ISCA’11, Top Picks ’12]

 QoS-aware caches

 Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

 QoS-aware thread scheduling to cores [Das+ HPCA’13]

22

QoS-Aware Memory Scheduling

 How to schedule requests to provide

 High system performance

 High fairness to applications

 Configurability to system software

 Memory controller needs to be aware of threads

23

Memory
Controller

Core Core

Core Core

Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling:

Evolution

QoS-Aware Memory Scheduling: Evolution

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns

 Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

 ATLAS memory scheduler [Kim+ HPCA’10]

25

Within-Thread Bank Parallelism

26

Bank 0

Bank 1

req

req req

req

memory service timeline

thread A

thread B

thread execution timeline

WAIT

WAIT

thread B

thread A

Bank 0

Bank 1

req

req req

req

memory service timeline

thread execution timeline

WAIT

WAIT

ra
n

k

thread B

thread A

thread A

thread B

SAVED CYCLES

Key Idea:

Parallelism-Aware Batch Scheduling [ISCA’08]

 Principle 1: Schedule requests from a
thread back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Group a fixed number of oldest
requests from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current batch is done

 Eliminates starvation, provides fairness

27

Bank 0 Bank 1

T0

T0

T1

T1

T3

T3

T2

T2

T3 T3

T3

Batch

T1

T0 T0

QoS-Aware Memory Scheduling: Evolution

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Idea: Estimate and balance thread slowdowns

 Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

 Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

 Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

 ATLAS memory scheduler [Kim+ HPCA’10]

 Idea: Prioritize threads that have attained the least service from the
memory scheduler

 Takeaway: Prioritizing “light” threads improves performance

28

QoS-Aware Memory Scheduling: Evolution

 Thread cluster memory scheduling [Kim+ MICRO’10]

 Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

 Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

 Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO’11]

 Idea: Only prioritize very latency-sensitive threads in the scheduler;
mitigate all other applications’ interference via channel partitioning

 Takeaway: Intelligently combining application-aware channel
partitioning and memory scheduling provides better performance
than either

29

QoS-Aware Memory Scheduling: Evolution

 Parallel application memory scheduling [Ebrahimi+ MICRO’11]

 Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

 Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

 Staged memory scheduling [Ausavarungnirun+ ISCA’12]

 Idea: Divide the functional tasks of an application-aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

 Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

30

QoS-Aware Memory Scheduling: Evolution

 MISE [Subramanian+ HPCA’13]

 Idea: Estimate the performance of a thread by estimating its change
in memory request service rate when run alone vs. shared use

this simple model to estimate slowdown to design a scheduling
policy that provides predictable performance or fairness

 Takeaway: Request service rate of a thread is a good proxy for its
performance; alone request service rate can be estimated by giving
high priority to the thread in memory scheduling for a while

31

QoS-Aware Memory Scheduling: Evolution

 Prefetch-aware shared resource management [Ebrahimi+

ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08]

 Idea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of
the system

 Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

 DRAM-Aware last-level cache policies [Lee+ HPS Tech Report’10]

[Lee+ HPS Tech Report’10]

 Idea: Design cache eviction and replacement policies such that they
proactively exploit the state of the memory controller and DRAM
(e.g., proactively evict data from the cache that hit in open rows)

 Takeaway: Coordination of last-level cache and DRAM policies
improves performance and fairness

32

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),
pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/mutlu_micro07_talk.ppt

The Problem: Unfairness

 Vulnerable to denial of service (DoS) [Usenix Security’07]

 Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10]

 Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12]

Uncontrollable, unpredictable system

34

How Do We Solve the Problem?

 Stall-time fair memory scheduling [Mutlu+ MICRO’07]

 Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone
fair scheduling

 Also improves overall system performance by ensuring cores make
“proportional” progress

 Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

35

36

Stall-Time Fairness in Shared DRAM Systems

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory

 STshared: DRAM-related stall-time when the thread runs with other threads

 STalone: DRAM-related stall-time when the thread runs alone

 Memory-slowdown = STshared/STalone
 Relative increase in stall-time

 Stall-Time Fair Memory scheduler (STFM) aims to equalize
Memory-slowdown for interfering threads, without sacrificing performance

 Considers inherent DRAM performance of each thread

 Aims to allow proportional progress of threads

37

STFM Scheduling Algorithm [MICRO’07]

 For each thread, the DRAM controller

 Tracks STshared

 Estimates STalone

 Each cycle, the DRAM controller

 Computes Slowdown = STshared/STalone for threads with legal requests

 Computes unfairness = MAX Slowdown / MIN Slowdown

 If unfairness <

 Use DRAM throughput oriented scheduling policy

 If unfairness ≥

 Use fairness-oriented scheduling policy

 (1) requests from thread with MAX Slowdown first

 (2) row-hit first , (3) oldest-first

38

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16

T0: Row 0

T1: Row 111

T0: Row 0 T0: Row 0

T1: Row 5

T0: Row 0 T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00

1.00

1.00 Unfairness

1.03

1.03

1.06

1.06

 1.05

1.03

1.06

1.03 1.04

1.08

1.04

1.04

1.11

1.06

1.07

1.04

1.10

1.14

1.03

Row 16 Row 111

STFM Pros and Cons

 Upsides:

 Identifies fairness as an issue in multi-core memory
scheduling

 Good at providing fairness

 Being fair improves performance

 Downsides:

 Does not handle all types of interference

 Somewhat complex to implement

 Slowdown estimations can be incorrect

39

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt

Another Problem due to Interference

 Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests

 Memory-Level Parallelism (MLP)

 Out-of-order execution, non-blocking caches, runahead execution

 Effective only if the DRAM controller actually services the
multiple requests in parallel in DRAM banks

 Multiple threads share the DRAM controller

 DRAM controllers are not aware of a thread’s MLP

 Can service each thread’s outstanding requests serially, not in parallel

41

Bank Parallelism of a Thread

42

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped

Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

43

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0

Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized

Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

44

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests

Parallelism-aware Scheduler:

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute

Bank 1

Stall

Stall

Baseline Scheduler:

Compute

Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:

~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

 Principle 1: Parallelism-awareness

 Schedule requests from a thread (to
different banks) back to back

 Preserves each thread’s bank parallelism

 But, this can cause starvation…

 Principle 2: Request Batching

 Group a fixed number of oldest requests
from each thread into a “batch”

 Service the batch before all other requests

 Form a new batch when the current one is done

 Eliminates starvation, provides fairness

 Allows parallelism-awareness within a batch

45

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

 Request batching

 Within-batch scheduling
 Parallelism aware

46

Request Batching

 Each memory request has a bit (marked) associated with it

 Batch formation:

 Mark up to Marking-Cap oldest requests per bank for each thread

 Marked requests constitute the batch

 Form a new batch when no marked requests are left

 Marked requests are prioritized over unmarked ones

 No reordering of requests across batches: no starvation, high fairness

 How to prioritize requests within a batch?

47

Within-Batch Scheduling

 Can use any existing DRAM scheduling policy

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

 But, we also want to preserve intra-thread bank parallelism

 Service each thread’s requests back to back

 Scheduler computes a ranking of threads when the batch is
formed

 Higher-ranked threads are prioritized over lower-ranked ones

 Improves the likelihood that requests from a thread are serviced in
parallel by different banks

 Different threads prioritized in the same order across ALL banks

48

HOW?

How to Rank Threads within a Batch

 Ranking scheme affects system throughput and fairness

 Maximize system throughput

 Minimize average stall-time of threads within the batch

 Minimize unfairness (Equalize the slowdown of threads)

 Service threads with inherently low stall-time early in the batch

 Insight: delaying memory non-intensive threads results in high
slowdown

 Shortest stall-time first (shortest job first) ranking

 Provides optimal system throughput [Smith, 1956]*

 Controller estimates each thread’s stall-time within the batch

 Ranks threads with shorter stall-time higher

49

* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

 Maximum number of marked requests to any bank (max-bank-load)

 Rank thread with lower max-bank-load higher (~ low stall-time)

 Total number of marked requests (total-load)

 Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

50

T2 T3 T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:

T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

51

T2 T3 T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3 Baseline Scheduling

Order (Arrival order)

PAR-BS Scheduling

Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3 T2 T2

T1 T2 T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7 Stall times

T
im

e

1

2

4

6

Ranking: T0 > T1 > T2 > T3

1

2

3

4

5

6

7

T
im

e

Putting It Together: PAR-BS Scheduling Policy

 PAR-BS Scheduling Policy

 (1) Marked requests first

 (2) Row-hit requests first

 (3) Higher-rank thread first (shortest stall-time first)

 (4) Oldest first

 Three properties:

 Exploits row-buffer locality and intra-thread bank parallelism

 Work-conserving

 Services unmarked requests to banks without marked requests

 Marking-Cap is important

 Too small cap: destroys row-buffer locality

 Too large cap: penalizes memory non-intensive threads

 Many more trade-offs analyzed in the paper

52

Batching

Parallelism-aware

within-batch

scheduling

Hardware Cost

 <1.5KB storage cost for

 8-core system with 128-entry memory request buffer

 No complex operations (e.g., divisions)

 Not on the critical path

 Scheduler makes a decision only every DRAM cycle

53

54

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

U
n

fa
ir

n
e
s
s
 (

lo
w

e
r

is
 b

e
tt

e
r)

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1.11X 1.08X

1.11X

55

System Performance (Hmean-speedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
o

rm
a
li
z
e
d

 H
m

e
a
n

 S
p

e
e
d

u
p

FR-FCFS

FCFS

NFQ

STFM

PAR-BS

8.3% 6.1% 5.1%

PAR-BS Pros and Cons

 Upsides:

 Identifies the problem of bank parallelism destruction across
multiple threads

 Simple mechanism

 Downsides:

 Does not always prioritize the latency-sensitive applications

lower overall throughput

 Implementation in multiple controllers needs coordination for
best performance too frequent coordination since batching

is done frequently

56

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_hpca10_talk.pptx

Rethinking Memory Scheduling

A thread alternates between two states (episodes)

 Compute episode: Zero outstanding memory requests High IPC

Memory episode: Non-zero outstanding memory requests Low IPC

58

Goal: Minimize time spent in memory episodes

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Time

Memory episode Compute episode

How to Minimize Memory Episode Time

 Minimizes time spent in memory episodes across all threads

 Supported by queueing theory:

 Shortest-Remaining-Processing-Time scheduling is optimal in
single-server queue

Remaining length of a memory episode?

 Prioritize thread whose memory episode will end the soonest

Time

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

How much longer?

59

Predicting Memory Episode Lengths

Large attained service Large expected remaining service

Q: Why?

A: Memory episode lengths are Pareto distributed…

60

We discovered: past is excellent predictor for future

Time

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Remaining service
FUTURE

Attained service
PAST

Pareto Distribution of Memory Episode Lengths

61

401.bzip2

Favoring least-attained-service memory episode

 = Favoring memory episode which will end the soonest

P
r{

M
em

.
ep

is
o

d
e

>
 x

}

x (cycles)

Memory episode lengths of
SPEC benchmarks

Pareto distribution

Attained service correlates with
remaining service

The longer an episode has lasted
 The longer it will last further

Prioritize the job with
shortest-remaining-processing-time

Provably optimal

 Remaining service: Correlates with attained service

 Attained service: Tracked by per-thread counter

Least Attained Service (LAS) Memory Scheduling

62

Prioritize the memory episode with
least-remaining-service

Our Approach Queueing Theory

Least-attained-service (LAS) scheduling:

Minimize memory episode time

However, LAS does not consider
long-term thread behavior

Prioritize the memory episode with
least-attained-service

Long-Term Thread Behavior

63

Mem.
episode

Thread 1 Thread 2

Short-term
thread behavior

Mem.
episode

Long-term
thread behavior

Compute
episode

Compute
episode

>
priority

<
priority

Prioritizing Thread 2 is more beneficial:
results in very long stretches of compute episodes

Short memory episode Long memory episode

Quantum-Based Attained Service of a Thread

64

Time
O

u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s
Attained service

Short-term
thread behavior

We divide time into large, fixed-length intervals:
quanta (millions of cycles)

Attained service

Long-term
thread behavior

O
u
ts

ta
n
d
in

g

m
e
m

o
ry

 r
e
q
u
e
st

s

Time

…

Quantum (millions of cycles)

LAS Thread Ranking

Each thread’s attained service (AS) is tracked by MCs

ASi = A thread’s AS during only the i-th quantum

Each thread’s TotalAS computed as:

TotalASi = α · TotalASi-1 + (1- α) · ASi

High α More bias towards history

Threads are ranked, favoring threads with lower TotalAS

Threads are serviced according to their ranking

During a quantum

End of a quantum

Next quantum

65

ATLAS Scheduling Algorithm

ATLAS
 Adaptive per-Thread Least Attained Service

 Request prioritization order

 1. Prevent starvation: Over threshold request

 2. Maximize performance: Higher LAS rank

 3. Exploit locality: Row-hit request

 4. Tie-breaker: Oldest request

66

How to coordinate MCs to agree upon a consistent ranking?

4

6

8

10

12

14

16

1 2 4 8 16

Memory controllers

Sy
st

em
 t

h
ro

u
gh

p
u

t

FCFS FR_FCFS STFM PAR-BS ATLAS

System Throughput: 24-Core System

67

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%

8.4%

5.9%

3.5%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of memory controllers

0

2

4

6

8

10

12

14

4 8 16 24 32

Cores

Sy
st

em
 t

h
ro

u
gh

p
u

t

PAR-BS ATLAS

System Throughput: 4-MC System

of cores increases ATLAS performance benefit increases

68

1.1%
3.5%

4.0%

8.4%

10.8%

S
y
st

e
m

 t
h
ro

u
g
h
p
u
t

of cores

Properties of ATLAS

 LAS-ranking

 Bank-level parallelism

 Row-buffer locality

 Very infrequent coordination

 Scale attained service with
thread weight (in paper)

 Low complexity: Attained
service requires a single
counter per thread in each MC

69

 Maximize system performance

 Scalable to large number of controllers

 Configurable by system software

Goals Properties of ATLAS

ATLAS Pros and Cons

 Upsides:

 Good at improving overall throughput (compute-intensive
threads are prioritized)

 Low complexity

 Coordination among controllers happens infrequently

 Downsides:

 Lowest/medium ranked threads get delayed significantly

high unfairness

70

TCM:

Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/kim_micro10_talk.pptx

Computer Architecture:

Memory Interference and QoS (Part I)

Prof. Onur Mutlu

Carnegie Mellon University

