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Trend: Many Cores on Chip 

 Simpler and lower power than a single large core 

 Large scale parallelism on chip 
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IBM Cell BE 
8+1 cores 

Intel Core i7 
8 cores 

Tilera TILE Gx 
100 cores, networked 

IBM POWER7 
8 cores 

Intel SCC 
48 cores, networked 

Nvidia Fermi 
448 “cores” 

AMD Barcelona 
4 cores 

Sun Niagara II 
8 cores 



Many Cores on Chip 

 What we want: 

 N times the system performance with N times the cores 

 

 What do we get today? 
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Unfair Slowdowns due to Interference 

Memory Performance Hog 
Low priority 

High priority 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 

matlab 
(Core 1) 

gcc 
(Core 2) 
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Uncontrolled Interference: An Example 
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Memory System is the Major Shared Resource 
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threads’ requests  
interfere 



Much More of a Shared Resource in Future 
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Inter-Thread/Application Interference 

 Problem: Threads share the memory system, but memory 
system does not distinguish between threads’ requests 

 

 

 Existing memory systems  

 Free-for-all, shared based on demand 

 Control algorithms thread-unaware and thread-unfair 

 Aggressive threads can deny service to others 

 Do not try to reduce or control inter-thread interference 
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Unfair Slowdowns due to Interference 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 

matlab 
(Core 1) 

gcc 
(Core 2) 
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Uncontrolled Interference: An Example 
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// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = rand(); 
     A[index] = B[index]; 
     … 
} 
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A Memory Performance Hog 

STREAM 

- Sequential memory access  
- Very high row buffer locality (96% hit rate) 
- Memory intensive 

RANDOM 

- Random memory access 
- Very low row buffer locality (3% hit rate) 
- Similarly memory intensive 

// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = j*linesize; 
     A[index] = B[index]; 
     … 
} 

streaming random 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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What Does the Memory Hog Do? 

Row Buffer 
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T0: Row 0 

Row 0 

T1: Row 16 

T0: Row 0 T1: Row 111 

T0: Row 0 T0: Row 0 T1: Row 5 

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 

Memory Request Buffer 

T0: STREAM 
T1: RANDOM 

Row size: 8KB, cache block size: 64B 

128 (8KB/64B) requests of T0 serviced before T1 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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DRAM Controllers 

 A row-conflict memory access takes significantly longer 
than a row-hit access 

 

 Current controllers take advantage of the row buffer 
 

 Commonly used scheduling policy (FR-FCFS) [Rixner 2000]* 

(1) Row-hit first: Service row-hit memory accesses first 

(2) Oldest-first: Then service older accesses first 

 

 This scheduling policy aims to maximize DRAM throughput 

 But, it is unfair when multiple threads share the DRAM system   

 
*Rixner et al., “Memory Access Scheduling,” ISCA 2000. 

*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997. 



Effect of the Memory Performance Hog 
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1.18X slowdown 

2.82X slowdown 

Results on Intel Pentium D running Windows XP 
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)  
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Greater Problem with More Cores 

 Vulnerable to denial of service (DoS) 

 Unable to enforce priorities or SLAs  

 Low system performance 
 

Uncontrollable, unpredictable system 
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Greater Problem with More Cores 

 Vulnerable to denial of service (DoS) [Usenix Security’07] 

 Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

 Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 

 

Uncontrollable, unpredictable system 
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Distributed DoS in Networked Multi-Core Systems 
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Attackers 
(Cores 1-8) 

Stock option pricing application 
(Cores 9-64) 

    Cores connected via  

    packet-switched 

    routers on chip 

     ~5000X latency increase 

Grot, Hestness, Keckler, Mutlu,  
“Preemptive virtual clock: A Flexible,  
Efficient, and Cost-effective QOS  
Scheme for Networks-on-Chip,“ 
MICRO 2009. 



How Do We Solve The Problem? 

 Inter-thread interference is uncontrolled in all memory 
resources 

 Memory controller 

 Interconnect 

 Caches 

 

 We need to control it 

 i.e., design an interference-aware (QoS-aware) memory system 
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QoS-Aware Memory Systems: Challenges 

 How do we reduce inter-thread interference? 

 Improve system performance and core utilization 

 Reduce request serialization and core starvation 

 

 How do we control inter-thread interference? 

 Provide mechanisms to enable system software to enforce 
QoS policies  

 While providing high system performance 

 

 How do we make the memory system configurable/flexible?  

 Enable flexible mechanisms that can achieve many goals 

 Provide fairness or throughput when needed 

 Satisfy performance guarantees when needed 
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Designing QoS-Aware Memory Systems: Approaches 

 Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 

 QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13] 

 QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 

ISCA’11, Top Picks ’12] 

 QoS-aware caches 
 

 Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping 

 Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12] 

 QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

 QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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QoS-Aware Memory Scheduling 

 

 

 

 

 

 How to schedule requests to provide 

 High system performance 

 High fairness to applications 

 Configurability to system software  

 

 Memory controller needs to be aware of threads 
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Memory 
Controller 

Core Core 

Core Core 

Memory 

Resolves memory contention 
by scheduling requests 



QoS-Aware Memory Scheduling: 

Evolution 

 

 

 

 



QoS-Aware Memory Scheduling: Evolution 

 Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

 Idea: Estimate and balance thread slowdowns 

 Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 
 

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

 Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 
 

 

 

 ATLAS memory scheduler [Kim+ HPCA’10] 
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Within-Thread Bank Parallelism 
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Parallelism-Aware Batch Scheduling [ISCA’08] 

 Principle 1: Schedule requests from a 
thread back to back 

 Preserves each thread’s bank parallelism 

 But, this can cause starvation… 

 

 

 Principle 2: Group a fixed number of oldest 
requests from each thread into a “batch” 

 Service the batch before all other requests 

 Form a new batch when the current batch is done 

 Eliminates starvation, provides fairness 
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QoS-Aware Memory Scheduling: Evolution 

 Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

 Idea: Estimate and balance thread slowdowns 

 Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 
 

 Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

 Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

 Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 
 

 ATLAS memory scheduler [Kim+ HPCA’10] 

 Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

 Takeaway: Prioritizing “light” threads improves performance 
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QoS-Aware Memory Scheduling: Evolution 

 Thread cluster memory scheduling [Kim+ MICRO’10] 

 Idea: Cluster threads into two groups (latency vs. bandwidth 
sensitive); prioritize the latency-sensitive ones; employ a fairness 
policy in the bandwidth sensitive group 

 Takeaway: Heterogeneous scheduling policy that is different based 
on thread behavior maximizes both performance and fairness 

 

 Integrated Memory Channel Partitioning and Scheduling 
[Muralidhara+ MICRO’11] 

 Idea: Only prioritize very latency-sensitive threads in the scheduler; 
mitigate all other applications’ interference via channel partitioning 

 Takeaway: Intelligently combining application-aware channel 
partitioning and memory scheduling provides better performance 
than either 

 

 

 

29 



QoS-Aware Memory Scheduling: Evolution 

 Parallel application memory scheduling [Ebrahimi+ MICRO’11] 

 Idea: Identify and prioritize limiter threads of a multithreaded 
application in the memory scheduler; provide fast and fair progress 
to non-limiter threads 

 Takeaway: Carefully prioritizing between limiter and non-limiter 
threads of a parallel application improves performance 

 

 Staged memory scheduling [Ausavarungnirun+ ISCA’12] 

 Idea: Divide the functional tasks of an application-aware memory 
scheduler into multiple distinct stages, where each stage is 
significantly simpler than a monolithic scheduler 

 Takeaway: Staging enables the design of a scalable and relatively 
simpler application-aware memory scheduler that works on very 
large request buffers 
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QoS-Aware Memory Scheduling: Evolution 

 MISE [Subramanian+ HPCA’13] 

 Idea: Estimate the performance of a thread by estimating its change 
in memory request service rate when run alone vs. shared  use 

this simple model to estimate slowdown to design a scheduling 
policy that provides predictable performance or fairness 

 Takeaway: Request service rate of a thread is a good proxy for its 
performance; alone request service rate can be estimated by giving 
high priority to the thread in memory scheduling for a while 
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QoS-Aware Memory Scheduling: Evolution 

 Prefetch-aware shared resource management [Ebrahimi+ 

ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08] 

 Idea: Prioritize prefetches depending on how they affect system 
performance; even accurate prefetches can degrade performance of 
the system  

 Takeaway: Carefully controlling and prioritizing prefetch requests 
improves performance and fairness 

 

 DRAM-Aware last-level cache policies [Lee+ HPS Tech Report’10] 

[Lee+ HPS Tech Report’10] 

 Idea: Design cache eviction and replacement policies such that they 
proactively exploit the state of the memory controller and DRAM 
(e.g., proactively evict data from the cache that hit in open rows) 

 Takeaway: Coordination of last-level cache and DRAM policies 
improves performance and fairness 
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Stall-Time Fair Memory Scheduling 

 

 

 

 

Onur Mutlu and Thomas Moscibroda,  
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"  

40th International Symposium on Microarchitecture (MICRO),  
pages 146-158, Chicago, IL, December 2007. Slides (ppt)  

STFM Micro 2007 Talk 

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/mutlu_micro07_talk.ppt


The Problem: Unfairness 

 Vulnerable to denial of service (DoS) [Usenix Security’07] 

 Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

 Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 

 

Uncontrollable, unpredictable system 
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How Do We Solve the Problem? 

 Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

 

 Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone  
fair scheduling 

 Also improves overall system performance by ensuring cores make 
“proportional” progress 

 

 Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns 

 

 Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007.  
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Stall-Time Fairness in Shared DRAM Systems 

 A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system 

 

 DRAM-related stall-time: The time a thread spends waiting for DRAM memory 

 STshared: DRAM-related stall-time when the thread runs with other threads 

 STalone:  DRAM-related stall-time when the thread runs alone 

 Memory-slowdown = STshared/STalone    
 Relative increase in stall-time 

 

 Stall-Time Fair Memory scheduler (STFM) aims to equalize             
Memory-slowdown for interfering threads, without sacrificing performance 

 Considers inherent DRAM performance of each thread 

 Aims to allow proportional progress of threads 
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STFM Scheduling Algorithm [MICRO’07] 

 
 For each thread, the DRAM controller 

 Tracks STshared  

 Estimates STalone  

 

 Each cycle, the DRAM controller 

 Computes Slowdown = STshared/STalone for threads with legal requests 

 Computes unfairness = MAX Slowdown / MIN Slowdown 

 

 If unfairness <  

 Use DRAM throughput oriented scheduling policy 

 If unfairness ≥  

 Use fairness-oriented scheduling policy  

 (1) requests from thread with MAX Slowdown first  

 (2) row-hit first , (3) oldest-first 
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How Does STFM Prevent Unfairness? 
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STFM Pros and Cons 

 Upsides:  

 Identifies fairness as an issue in multi-core memory 
scheduling 

 Good at providing fairness 

 Being fair improves performance  

 

 Downsides: 

 Does not handle all types of interference 

 Somewhat complex to implement 

 Slowdown estimations can be incorrect 
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Parallelism-Aware Batch Scheduling 

 

 

 

 

Onur Mutlu and Thomas Moscibroda,  
"Parallelism-Aware Batch Scheduling: Enhancing both  
Performance and Fairness of Shared DRAM Systems” 

35th International Symposium on Computer Architecture (ISCA),  
pages 63-74, Beijing, China, June 2008. Slides (ppt) 

PAR-BS ISCA 2008 Talk 

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt
//localhost/Users/omutlu/Documents/presentations/CMU/SNU Lectures June 18-20 2012/previous talks/parbs-isca08-talk.ppt


Another Problem due to Interference 

 Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests 

 Memory-Level Parallelism (MLP)  

 Out-of-order execution, non-blocking caches, runahead execution 

 

 Effective only if the DRAM controller actually services the 
multiple requests in parallel in DRAM banks 

 

 Multiple threads share the DRAM controller 

 DRAM controllers are not aware of a thread’s MLP 

 Can service each thread’s outstanding requests serially, not in parallel 
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Bank Parallelism of a Thread 
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Thread A: Bank 0, Row 1 

Thread A: Bank 1, Row 1 

Bank access latencies of the two requests overlapped 

Thread stalls for ~ONE bank access latency 
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Bank Parallelism Interference in DRAM 
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Parallelism-Aware Batch Scheduling (PAR-BS) 

 Principle 1: Parallelism-awareness 

 Schedule requests from a thread (to 
different banks) back to back 

 Preserves each thread’s bank parallelism 

 But, this can cause starvation… 

 

 Principle 2: Request Batching 

 Group a fixed number of oldest requests 
from each thread into a “batch” 

 Service the batch before all other requests 

 Form a new batch when the current one is done 

 Eliminates starvation, provides fairness 

 Allows parallelism-awareness within a batch 
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008. 



PAR-BS Components 

 Request batching 
 

 

 

 Within-batch scheduling 
 Parallelism aware 
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Request Batching 

 Each memory request has a bit (marked) associated with it 

 

 Batch formation: 

 Mark up to Marking-Cap oldest requests per bank for each thread 

 Marked requests constitute the batch 

 Form a new batch when no marked requests are left 

 

 Marked requests are prioritized over unmarked ones 

 No reordering of requests across batches: no starvation, high fairness 

 

 How to prioritize requests within a batch? 
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Within-Batch Scheduling 

 Can use any existing DRAM scheduling policy 

 FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality 

 But, we also want to preserve intra-thread bank parallelism 

 Service each thread’s requests back to back 

 

 

 Scheduler computes a ranking of threads when the batch is 
formed 

 Higher-ranked threads are prioritized over lower-ranked ones 

 Improves the likelihood that requests from a thread are serviced in 
parallel by different banks 

 Different threads prioritized in the same order across ALL banks 
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How to Rank Threads within a Batch 

 Ranking scheme affects system throughput and fairness 
 

 Maximize system throughput 

 Minimize average stall-time of threads within the batch 

 Minimize unfairness (Equalize the slowdown of threads) 

 Service threads with inherently low stall-time early in the batch 

 Insight: delaying memory non-intensive threads results in high 
slowdown 

 

 Shortest stall-time first (shortest job first) ranking 

 Provides optimal system throughput [Smith, 1956]* 

 Controller estimates each thread’s stall-time within the batch 

 Ranks threads with shorter stall-time higher 
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* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956. 



 Maximum number of marked requests to any bank (max-bank-load) 

 Rank thread with lower max-bank-load higher (~ low stall-time) 

 Total number of marked requests (total-load) 

 Breaks ties: rank thread with lower total-load higher 

 

Shortest Stall-Time First Ranking 
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Putting It Together: PAR-BS Scheduling Policy 

 PAR-BS Scheduling Policy 

  (1) Marked requests first 

  (2) Row-hit requests first 

  (3) Higher-rank thread first (shortest stall-time first) 

  (4) Oldest first 

 

 Three properties: 

 Exploits row-buffer locality and intra-thread bank parallelism  

 Work-conserving 

 Services unmarked requests to banks without marked requests  

 Marking-Cap is important 

 Too small cap: destroys row-buffer locality 

 Too large cap: penalizes memory non-intensive threads    

 Many more trade-offs analyzed in the paper 
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Hardware Cost 

 <1.5KB storage cost for 

 8-core system with 128-entry memory request buffer 

 

 No complex operations (e.g., divisions) 

 

 Not on the critical path 

 Scheduler makes a decision only every DRAM cycle 
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Unfairness on 4-, 8-, 16-core Systems 
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System Performance (Hmean-speedup) 
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PAR-BS Pros and Cons 

 Upsides:  

 Identifies the problem of bank parallelism destruction across 
multiple threads 

 Simple mechanism 

 

 Downsides: 

 Does not always prioritize the latency-sensitive applications  

lower overall throughput 

 Implementation in multiple controllers needs coordination for 
best performance  too frequent coordination since batching 

is done frequently 
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ATLAS Memory Scheduler 

 

 

 

 

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter, 
"ATLAS: A Scalable and High-Performance  

Scheduling Algorithm for Multiple Memory Controllers"  
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Rethinking Memory Scheduling 

A thread alternates between two states (episodes) 

 Compute episode: Zero outstanding memory requests  High IPC 

Memory episode: Non-zero outstanding memory requests  Low IPC 
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Goal: Minimize time spent in memory episodes 
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How to Minimize Memory Episode Time 

  Minimizes time spent in memory episodes across all threads 

  Supported by queueing theory: 

 Shortest-Remaining-Processing-Time scheduling is optimal in 
single-server queue 

Remaining length of a memory episode? 

 Prioritize thread whose memory episode will end the soonest  
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Predicting Memory Episode Lengths 

Large attained service  Large expected remaining service 

 

Q: Why? 

A: Memory episode lengths are Pareto distributed… 
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We discovered: past is excellent predictor for future 
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Pareto Distribution of Memory Episode Lengths 
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401.bzip2 

Favoring least-attained-service memory episode  

 = Favoring memory episode which will end the soonest 
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x (cycles) 

Memory episode lengths of  
SPEC benchmarks 

Pareto distribution 

Attained service correlates with 
remaining service 

The longer an episode has lasted 
 The longer it will last further 



Prioritize the job with  
shortest-remaining-processing-time 

 
Provably optimal 

 Remaining service: Correlates with attained service 
 
 Attained service: Tracked by per-thread counter 

Least Attained Service (LAS) Memory Scheduling 
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Prioritize the memory episode with 
least-remaining-service 

Our Approach Queueing Theory 

Least-attained-service (LAS) scheduling: 

Minimize memory episode time 

However, LAS does not consider  
long-term thread behavior 

Prioritize the memory episode with 
least-attained-service 



Long-Term Thread Behavior 

63 

Mem. 
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Thread 1 Thread 2 

Short-term 
thread behavior 

Mem. 
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Long-term 
thread behavior 

Compute  
episode 

Compute 
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priority 
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Prioritizing Thread 2 is more beneficial:  
results in very long stretches of compute episodes 

Short memory episode Long memory episode 



Quantum-Based Attained Service of a Thread 
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We divide time into large, fixed-length intervals:  
quanta (millions of cycles)  

Attained service 

Long-term 
thread behavior 

O
u
ts

ta
n
d
in

g
 

m
e
m

o
ry

 r
e
q
u
e
st

s 

Time 

… 

Quantum (millions of cycles) 



LAS Thread Ranking 

Each thread’s attained service (AS) is tracked by MCs 
 

ASi = A thread’s AS during only the i-th quantum 

Each thread’s TotalAS computed as: 
 

TotalASi = α · TotalASi-1 + (1- α) · ASi 

High α  More bias towards history 
 

Threads are ranked, favoring threads with lower TotalAS 

Threads are serviced according to their ranking 

During a quantum 

End of a quantum 

Next quantum 
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ATLAS Scheduling Algorithm 

ATLAS 
 Adaptive per-Thread Least Attained Service 

 

 Request prioritization order 

 1. Prevent starvation: Over threshold request 

 2. Maximize performance: Higher LAS rank 

 3. Exploit locality: Row-hit request 

 4. Tie-breaker: Oldest request 
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How to coordinate MCs to agree upon a consistent ranking? 
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System throughput = ∑ Speedup 

ATLAS consistently provides higher system throughput than 
all previous scheduling algorithms 
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Properties of ATLAS 

 LAS-ranking 

 Bank-level parallelism 

 Row-buffer locality 

 

 Very infrequent coordination 

 

 

 Scale attained service with 
thread weight (in paper) 

 

 Low complexity: Attained 
service requires a single 
counter per thread in each MC 
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 Maximize system performance 
 
 
 

 Scalable to large number of controllers 
 
 
 

 Configurable by system software 

Goals Properties of ATLAS 



ATLAS Pros and Cons 

 Upsides: 

 Good at improving overall throughput (compute-intensive 
threads are prioritized)  

 Low complexity 

 Coordination among controllers happens infrequently 

 

 Downsides: 

 Lowest/medium ranked threads get delayed significantly  

high unfairness 
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TCM: 

Thread Cluster Memory Scheduling 
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