
Computer Architecture:

Emerging Memory Technologies (Part II)

Prof. Onur Mutlu

Carnegie Mellon University

Emerging Memory Technologies Lectures

 These slides are from the Scalable Memory Systems course
taught at ACACES 2013 (July 15-19, 2013)

 Course Website:

 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html

 This is the second lecture on this topic:

 Lecture 4a (July 18, 2013): Emerging Memory Technologies
and Hybrid Memories: Hybrid Memory Design and
Management (pptx) (pdf)

2

http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Lecture4a-emerging-and-hybrid-memory-technologies-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Lecture4a-emerging-and-hybrid-memory-technologies-afterlecture.pdf

Scalable Many-Core Memory Systems

Lecture 4, Topic 2: Emerging

Technologies and Hybrid Memories

Prof. Onur Mutlu

http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013

July 18, 2013

http://www.ece.cmu.edu/~omutlu
mailto:onur@cmu.edu

Agenda

 Major Trends Affecting Main Memory

 Requirements from an Ideal Main Memory System

 Opportunity: Emerging Memory Technologies

 Background

 PCM (or Technology X) as DRAM Replacement

 Hybrid Memory Systems

 Conclusions

 Discussion

4

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM

 PCM is main memory; DRAM caches memory rows/blocks

 Benefits: Reduced latency on DRAM cache hit; write filtering

 Memory controller hardware manages the DRAM cache

 Benefit: Eliminates system software overhead

 Three issues:

 What data should be placed in DRAM versus kept in PCM?

 What is the granularity of data movement?

 How to design a low-cost hardware-managed DRAM cache?

 Two idea directions:

 Locality-aware data placement [Yoon+ , ICCD 2012]

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

 6

DRAM as a Cache for PCM

 Goal: Achieve the best of both DRAM and PCM/NVM

 Minimize amount of DRAM w/o sacrificing performance, endurance

 DRAM as cache to tolerate PCM latency and write bandwidth

 PCM as main memory to provide large capacity at good cost and power

7

DATA

PCM Main Memory

DATA T

DRAM Buffer

PCM Write Queue

T=Tag-Store

Processor

Flash

Or

HDD

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Write Filtering Techniques

 Lazy Write: Pages from disk installed only in DRAM, not PCM

 Partial Writes: Only dirty lines from DRAM page written back

 Page Bypass: Discard pages with poor reuse on DRAM eviction

 Qureshi et al., “Scalable high performance main memory system
using phase-change memory technology,” ISCA 2009.

 8

Processor

DATA

PCM Main Memory

DATA T

DRAM Buffer

Flash

Or

HDD

Results: DRAM as PCM Cache (I)

 Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles,
HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%

 Assumption: PCM 4x denser, 4x slower than DRAM

 DRAM block size = PCM page size (4kB)

9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

db1 db2 qsort bsearch kmeans gauss daxpy vdotp gmean

N
o

rm
a

li
z
e

d
 E

x
e
c

u
ti

o
n

 T
im

e

8GB DRAM

32GB PCM

32GB DRAM

32GB PCM + 1GB DRAM

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Results: DRAM as PCM Cache (II)

 PCM-DRAM Hybrid performs similarly to similar-size DRAM

 Significant power and energy savings with PCM-DRAM Hybrid

 Average lifetime: 9.7 years (no guarantees)

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Power Energy Energy x Delay

V
a

lu
e

 N
o

rm
a

li
z
e

d
 t

o
 8

G
B

 D
R

A
M 8GB DRAM

Hybrid (32GB PCM+ 1GB DRAM)

32GB DRAM

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.

Agenda

 Major Trends Affecting Main Memory

 Requirements from an Ideal Main Memory System

 Opportunity: Emerging Memory Technologies

 Background

 PCM (or Technology X) as DRAM Replacement

 Hybrid Memory Systems

 Row-Locality Aware Data Placement

 Efficient DRAM (or Technology X) Caches

 Conclusions

 Discussion

11

Row Buffer Locality Aware

Caching Policies for Hybrid Memories

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for Hybrid Memories"

Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (pptx) (pdf)

http://users.ece.cmu.edu/~omutlu/pub/rowbuffer-aware-caching_iccd12.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/yoon_iccd12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/yoon_iccd12_talk.pdf

Hybrid Memory

• Key question: How to place data between the
heterogeneous memory devices?

13

DRAM PCM

CPU

MC MC

Outline

• Background: Hybrid Memory Systems

• Motivation: Row Buffers and Implications on
Data Placement

• Mechanisms: Row Buffer Locality-Aware
Caching Policies

• Evaluation and Results

• Conclusion

14

Hybrid Memory: A Closer Look

15

MC MC

DRAM
(small capacity cache)

PCM
(large capacity store)

CPU

Memory channel

Bank Bank Bank Bank

Row buffer

 Row (buffer) hit: Access data from row buffer fast

 Row (buffer) miss: Access data from cell array slow

LOAD X LOAD X+1 LOAD X+1 LOAD X

Row Buffers and Latency

16

R
O

W
 A

D
D

R
ES

S

ROW DATA

Row buffer miss! Row buffer hit!

Bank

Row buffer

CELL ARRAY

Key Observation

• Row buffers exist in both DRAM and PCM

– Row hit latency similar in DRAM & PCM [Lee+ ISCA’09]

– Row miss latency small in DRAM, large in PCM

• Place data in DRAM which

– is likely to miss in the row buffer (low row buffer
locality) miss penalty is smaller in DRAM

 AND

– is reused many times cache only the data
worth the movement cost and DRAM space

17

RBL-Awareness: An Example

18

Let’s say a processor accesses four rows

Row A Row B Row C Row D

RBL-Awareness: An Example

19

Let’s say a processor accesses four rows
with different row buffer localities (RBL)

Row A Row B Row C Row D

Low RBL
(Frequently miss

in row buffer)

High RBL
(Frequently hit
in row buffer)

Case 1: RBL-Unaware Policy (state-of-the-art)
Case 2: RBL-Aware Policy (RBLA)

Case 1: RBL-Unaware Policy

20

A row buffer locality-unaware policy could
place these rows in the following manner

DRAM
(High RBL)

PCM
(Low RBL)

Row C
Row D

Row A
Row B

RBL-Unaware: Stall time is 6 PCM device accesses

Case 1: RBL-Unaware Policy

21

DRAM (High RBL)

PCM (Low RBL) A B

C D C C D D

A B A B

Access pattern to main memory:
A (oldest), B, C, C, C, A, B, D, D, D, A, B (youngest)

time

Case 2: RBL-Aware Policy (RBLA)

22

A row buffer locality-aware policy would
place these rows in the opposite manner

DRAM
(Low RBL)

PCM
(High RBL)

 Access data at lower row
buffer miss latency of DRAM

 Access data at low row
buffer hit latency of PCM

Row A
Row B

Row C
Row D

Saved cycles

DRAM (High RBL)

PCM (Low RBL)

Case 2: RBL-Aware Policy (RBLA)

23

A B

C D C C D D

A B A B

Access pattern to main memory:
A (oldest), B, C, C, C, A, B, D, D, D, A, B (youngest)

DRAM (Low RBL)

PCM (High RBL)

time

A B

C D C C D D

A B A B

RBL-Unaware: Stall time is 6 PCM device accesses

RBL-Aware: Stall time is 6 DRAM device accesses

Outline

• Background: Hybrid Memory Systems

• Motivation: Row Buffers and Implications on
Data Placement

• Mechanisms: Row Buffer Locality-Aware
Caching Policies

• Evaluation and Results

• Conclusion

24

Our Mechanism: RBLA

1. For recently used rows in PCM:

– Count row buffer misses as indicator of row buffer
locality (RBL)

2. Cache to DRAM rows with misses threshold

– Row buffer miss counts are periodically reset (only
cache rows with high reuse)

25

Our Mechanism: RBLA-Dyn

1. For recently used rows in PCM:

– Count row buffer misses as indicator of row buffer
locality (RBL)

2. Cache to DRAM rows with misses threshold

– Row buffer miss counts are periodically reset (only
cache rows with high reuse)

3. Dynamically adjust threshold to adapt to
workload/system characteristics

– Interval-based cost-benefit analysis 26

Implementation: “Statistics Store”

• Goal: To keep count of row buffer misses to
recently used rows in PCM

• Hardware structure in memory controller

– Operation is similar to a cache

• Input: row address

• Output: row buffer miss count

– 128-set 16-way statistics store (9.25KB) achieves
system performance within 0.3% of an unlimited-
sized statistics store

27

Outline

• Background: Hybrid Memory Systems

• Motivation: Row Buffers and Implications on
Data Placement

• Mechanisms: Row Buffer Locality-Aware
Caching Policies

• Evaluation and Results

• Conclusion

28

Evaluation Methodology

• Cycle-level x86 CPU-memory simulator

– CPU: 16 out-of-order cores, 32KB private L1 per
core, 512KB shared L2 per core

– Memory: 1GB DRAM (8 banks), 16GB PCM (8
banks), 4KB migration granularity

• 36 multi-programmed server, cloud workloads

– Server: TPC-C (OLTP), TPC-H (Decision Support)

– Cloud: Apache (Webserv.), H.264 (Video), TPC-C/H

• Metrics: Weighted speedup (perf.), perf./Watt
(energy eff.), Maximum slowdown (fairness)

29

Comparison Points

• Conventional LRU Caching

• FREQ: Access-frequency-based caching

– Places “hot data” in cache [Jiang+ HPCA’10]

– Cache to DRAM rows with accesses threshold

– Row buffer locality-unaware

• FREQ-Dyn: Adaptive Freq.-based caching

– FREQ + our dynamic threshold adjustment

– Row buffer locality-unaware

• RBLA: Row buffer locality-aware caching

• RBLA-Dyn: Adaptive RBL-aware caching 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Server Cloud Avg

N
o

rm
a

li
ze

d
 W

ei
g

h
te

d
 S

p
ee

d
u

p

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

10%

System Performance

31

14%

Benefit 1: Increased row buffer locality (RBL)
in PCM by moving low RBL data to DRAM

17%

Benefit 1: Increased row buffer locality (RBL)
in PCM by moving low RBL data to DRAM

Benefit 2: Reduced memory bandwidth
consumption due to stricter caching criteria

Benefit 2: Reduced memory bandwidth
consumption due to stricter caching criteria

Benefit 3: Balanced memory request load
between DRAM and PCM

0

0.2

0.4

0.6

0.8

1

1.2

Server Cloud Avg

N
o

rm
a

li
ze

d
 A

v
g

 M
em

o
ry

 L
a

te
n

cy

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

Average Memory Latency

32

14%

9%
12%

0

0.2

0.4

0.6

0.8

1

1.2

Server Cloud Avg

N
o

rm
a

li
ze

d
 P

er
f.

 p
er

 W
a

tt

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

Memory Energy Efficiency

33

Increased performance & reduced data
movement between DRAM and PCM

7% 10% 13%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt

Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
o

rm
a

li
ze

d
 W

ei
g

h
te

d
 S

p
ee

d
u

p

0

0.2

0.4

0.6

0.8

1

1.2

N
o

rm
a

li
ze

d
 M

a
x
.
S

lo
w

d
o
w

n

Compared to All-PCM/DRAM

34

Our mechanism achieves 31% better performance
than all PCM, within 29% of all DRAM performance

31%

29%

Summary

35

• Different memory technologies have different strengths

• A hybrid memory system (DRAM-PCM) aims for best of both

• Problem: How to place data between these heterogeneous
memory devices?

• Observation: PCM array access latency is higher than
DRAM’s – But peripheral circuit (row buffer) access latencies
are similar

• Key Idea: Use row buffer locality (RBL) as a key criterion for
data placement

• Solution: Cache to DRAM rows with low RBL and high reuse

• Improves both performance and energy efficiency over
state-of-the-art caching policies

Row Buffer Locality Aware

Caching Policies for Hybrid Memories

HanBin Yoon
Justin Meza

Rachata Ausavarungnirun
Rachael Harding

Onur Mutlu

Agenda

 Major Trends Affecting Main Memory

 Requirements from an Ideal Main Memory System

 Opportunity: Emerging Memory Technologies

 Background

 PCM (or Technology X) as DRAM Replacement

 Hybrid Memory Systems

 Row-Locality Aware Data Placement

 Efficient DRAM (or Technology X) Caches

 Conclusions

 Discussion

37

The Problem with Large DRAM Caches

 A large DRAM cache requires a large metadata (tag +
block-based information) store

 How do we design an efficient DRAM cache?

38

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD X

Access X

Metadata:
X DRAM

X

Idea 1: Tags in Memory

 Store tags in the same row as data in DRAM

 Store metadata in same row as their data

 Data and metadata can be accessed together

 Benefit: No on-chip tag storage overhead

 Downsides:

 Cache hit determined only after a DRAM access

 Cache hit requires two DRAM accesses

39

Cache block 2 Cache block 0 Cache block 1

DRAM row
Tag

0
Tag

1
Tag

2

Idea 2: Cache Tags in SRAM

 Recall Idea 1: Store all metadata in DRAM

 To reduce metadata storage overhead

 Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

 Cache only a small amount to keep SRAM size small

40

Idea 3: Dynamic Data Transfer Granularity

 Some applications benefit from caching more data

 They have good spatial locality

 Others do not

 Large granularity wastes bandwidth and reduces cache
utilization

 Idea 3: Simple dynamic caching granularity policy

 Cost-benefit analysis to determine best DRAM cache block size

 Group main memory into sets of rows

 Some row sets follow a fixed caching granularity

 The rest of main memory follows the best granularity

 Cost–benefit analysis: access latency versus number of cachings

 Performed every quantum

 41

TIMBER Tag Management

 A Tag-In-Memory BuffER (TIMBER)

 Stores recently-used tags in a small amount of SRAM

 Benefits: If tag is cached:

 no need to access DRAM twice

 cache hit determined quickly

42

Tag
0

Tag
1

Tag
2

Row0
Tag

0
Tag

1
Tag

2
Row27

Row Tag

LOAD X

Cache block 2 Cache block 0 Cache block 1

DRAM row
Tag

0
Tag

1
Tag

2

TIMBER Tag Management Example (I)

 Case 1: TIMBER hit

43

Bank Bank Bank Bank

CPU

Mem
Ctlr

Mem
Ctlr

LOAD X

TIMBER: X DRAM

X

Access X

Tag
0

Tag
1

Tag
2

Row0
Tag

0
Tag

1
Tag

2
Row27

Our proposal

TIMBER Tag Management Example (II)

 Case 2: TIMBER miss

44

CPU

Mem
Ctlr

Mem
Ctlr

LOAD Y

Y DRAM

Bank Bank Bank Bank

Access Metadata(Y)

Y

1. Access M(Y)

Tag
0

Tag
1

Tag
2

Row0
Tag

0
Tag

1
Tag

2
Row27

Miss

M(Y)

2. Cache M(Y)

Row143

3. Access Y (row hit)

Methodology

 System: 8 out-of-order cores at 4 GHz

 Memory: 512 MB direct-mapped DRAM, 8 GB PCM

 128B caching granularity

 DRAM row hit (miss): 200 cycles (400 cycles)

 PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles)

 Evaluated metadata storage techniques

 All SRAM system (8MB of SRAM)

 Region metadata storage

 TIM metadata storage (same row as data)

 TIMBER, 64-entry direct-mapped (8KB of SRAM)

45

46

Metadata Storage Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d
 S

p
e

ed
u

p

(Ideal)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d
 S

p
e

ed
u

p

47

Metadata Storage Performance

-48%

Performance degrades due
to increased metadata
lookup access latency

(Ideal)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d
 S

p
e

ed
u

p

48

Metadata Storage Performance

36%

Increased row locality
reduces average

memory access latency

(Ideal)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d
 S

p
e

ed
u

p

49

Metadata Storage Performance

23%
Data with locality can

access metadata at
SRAM latencies

(Ideal)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER TIMBER-Dyn

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

50

Dynamic Granularity Performance

10%

Reduced channel
contention and

improved spatial locality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SRAM Region TIM TIMBER TIMBER-Dyn

N
o

rm
al

iz
e

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

51

TIMBER Performance

-6%

Reduced channel
contention and

improved spatial locality

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

0

0.2

0.4

0.6

0.8

1

1.2

SRAM Region TIM TIMBER TIMBER-Dyn

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

 p
e

r
W

at
t

(f
o

r
M

e
m

o
ry

 S
ys

te
m

)

52

TIMBER Energy Efficiency

Fewer migrations reduce
transmitted data and
channel contention

18%

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

More on Large DRAM Cache Design

 Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,  "Enabling Efficient and
Scalable Hybrid Memories Using Fine-Granularity
DRAM Cache Management" IEEE Computer
Architecture Letters (CAL), February 2012.

 Fundamental Latency Trade-offs in Architecting
DRAM Caches (pdf, slides)  Moinuddin K. Qureshi and
Gabriel Loh  Appears in the International Symposium on
Microarchitecture (MICRO) 2012

53

http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://users.ece.cmu.edu/~omutlu/pub/timber-fine-grained-dram-cache_ieee-cal12.pdf
http://www.cs.virginia.edu/~tcca/
http://www.cs.virginia.edu/~tcca/
http://www.cs.virginia.edu/~tcca/
http://www.cs.virginia.edu/~tcca/
http://www.cs.virginia.edu/~tcca/
http://users.ece.gatech.edu/~moin/papers/micro12.pdf
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx
http://users.ece.gatech.edu/~moin/slides/micro12.pptx

Enabling and Exploiting NVM: Issues

 Many issues and ideas from
technology layer to algorithms layer

 Enabling NVM and hybrid memory

 How to tolerate errors?

 How to enable secure operation?

 How to tolerate performance and
power shortcomings?

 How to minimize cost?

 Exploiting emerging technologies

 How to exploit non-volatility?

 How to minimize energy consumption?

 How to exploit NVM on chip?

54

Microarchitecture

ISA

Programs

Algorithms

Problems

Logic

Devices

Runtime System

(VM, OS, MM)

User

Security Challenges of Emerging Technologies

1. Limited endurance Wearout attacks

2. Non-volatility Data persists in memory after powerdown

 Easy retrieval of privileged or private information

3. Multiple bits per cell Information leakage (via side channel)

55

Securing Emerging Memory Technologies

1. Limited endurance Wearout attacks

 Better architecting of memory chips to absorb writes

 Hybrid memory system management

 Online wearout attack detection

2. Non-volatility Data persists in memory after powerdown

 Easy retrieval of privileged or private information

 Efficient encryption/decryption of whole main memory

 Hybrid memory system management

3. Multiple bits per cell Information leakage (via side channel)

 System design to hide side channel information
56

Agenda

 Major Trends Affecting Main Memory

 Requirements from an Ideal Main Memory System

 Opportunity: Emerging Memory Technologies

 Background

 PCM (or Technology X) as DRAM Replacement

 Hybrid Memory Systems

 Conclusions

 Discussion

57

Summary: Memory Scaling (with NVM)

 Main memory scaling problems are a critical bottleneck for
system performance, efficiency, and usability

 Solution 1: Tolerate DRAM

 Solution 2: Enable emerging memory technologies

 Replace DRAM with NVM by architecting NVM chips well

 Hybrid memory systems with automatic data management

 An exciting topic with many other solution directions & ideas

 Hardware/software/device cooperation essential

 Memory, storage, controller, software/app co-design needed

 Coordinated management of persistent memory and storage

 Application and hardware cooperative management of NVM

58

Further: Overview Papers on Two Topics

 Merging of Memory and Storage

 Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie,
and Onur Mutlu,
"A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient Design
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

 Flash Memory Scaling

 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian
Cristal, Osman Unsal, and Ken Mai,
"Error Analysis and Retention-Aware Error
Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory
Resiliency, Vol. 17, No. 1, May 2013.

 59

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://research.ihost.com/weed2013/
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/technology-journal/2013/171/memory-resiliency

Scalable Many-Core Memory Systems

Lecture 4, Topic 2: Emerging

Technologies and Hybrid Memories

Prof. Onur Mutlu

http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013

July 18, 2013

http://www.ece.cmu.edu/~omutlu
mailto:onur@cmu.edu

Computer Architecture:

Emerging Memory Technologies (Part II)

Prof. Onur Mutlu

Carnegie Mellon University

Additional Material

62

Overview Papers on Two Topics

 Merging of Memory and Storage

 Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie,
and Onur Mutlu,
"A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient Design
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

 Flash Memory Scaling

 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian
Cristal, Osman Unsal, and Ken Mai,
"Error Analysis and Retention-Aware Error
Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory
Resiliency, Vol. 17, No. 1, May 2013.

 63

http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://users.ece.cmu.edu/~omutlu/pub/persistent-memory-management_weed13.pdf
http://research.ihost.com/weed2013/
http://research.ihost.com/weed2013/
http://research.ihost.com/weed2013/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_weed13_talk.pdf
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/technology-journal/2013/171/memory-resiliency

Merging of Memory and Storage:

Persistent Memory Managers

A Case for Efficient Hardware/Software

Cooperative Management of

Storage and Memory

 Justin Meza*, Yixin Luo*, Samira Khan*†, Jishen Zhao§,

Yuan Xie§‡, and Onur Mutlu*

 *Carnegie Mellon University

 §Pennsylvania State University
†Intel Labs ‡AMD Research

Overview
 Traditional systems have a two-level storage model

 Access volatile data in memory with a load/store interface

 Access persistent data in storage with a file system interface

 Problem: Operating system (OS) and file system (FS) code and buffering
for storage lead to energy and performance inefficiencies

 Opportunity: New non-volatile memory (NVM) technologies can help
provide fast (similar to DRAM), persistent storage (similar to Flash)

 Unfortunately, OS and FS code can easily become energy efficiency and
performance bottlenecks if we keep the traditional storage model

 This work: makes a case for hardware/software cooperative
management of storage and memory within a single-level

 We describe the idea of a Persistent Memory Manager (PMM) for
efficiently coordinating storage and memory, and quantify its benefit

 And, examine questions and challenges to address to realize PMM

66

Talk Outline

 Background: Storage and Memory Models

 Motivation: Eliminating Operating/File System Bottlenecks

 Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

 Opportunities and Benefits

 Evaluation Methodology

 Evaluation Results

 Related Work

 New Questions and Challenges

 Conclusions

67

A Tale of Two Storage Levels
 Traditional systems use a two-level storage model

 Volatile data is stored in DRAM

 Persistent data is stored in HDD and Flash

 Accessed through two vastly different interfaces

68

Processor

and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

A Tale of Two Storage Levels
 Two-level storage arose in systems due to the widely different

access latencies and methods of the commodity storage devices

 Fast, low capacity, volatile DRAM working storage

 Slow, high capacity, non-volatile hard disk drives persistent storage

 Data from slow storage media is buffered in fast DRAM

 After that it can be manipulated by programs programs cannot

directly access persistent storage

 It is the programmer’s job to translate this data between the two
formats of the two-level storage (files and data structures)

 Locating, transferring, and translating data and formats between
the two levels of storage can waste significant energy and
performance

69

Opportunity: New Non-Volatile Memories
 Emerging memory technologies provide the potential for unifying

storage and memory (e.g., Phase-Change, STT-RAM, RRAM)

 Byte-addressable (can be accessed like DRAM)

 Low latency (comparable to DRAM)

 Low power (idle power better than DRAM)

 High capacity (closer to Flash)

 Non-volatile (can enable persistent storage)

 May have limited endurance (but, better than Flash)

 Can provide fast access to both volatile data and persistent
storage

 Question: if such devices are used, is it efficient to keep a
two-level storage model?

70

Eliminating Traditional Storage Bottlenecks

71

Normalized Total Energy

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

F
ra

ct
io

n
of

 T
ot

al
 E

ne
rg

y

0.065
0.013

Today

(DRAM +

HDD) and

two-level

storage

model Replace HDD

with NVM

(PCM-like),

keep two-level

storage model

Replace HDD

and DRAM

with NVM

(PCM-like),

eliminate all

OS+FS

overhead

Results for PostMark

Eliminating Traditional Storage Bottlenecks

72 Results for PostMark

Where is Energy Spent in Each Model?

73

HDD access

wastes energy

FS/OS overhead

becomes important

Additional DRAM energy

due to buffering overhead

of two-level model

No FS/OS overhead

No additional buffering

overhead in DRAM

Results for PostMark

Outline

 Background: Storage and Memory Models

 Motivation: Eliminating Operating/File System Bottlenecks

 Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

 Opportunities and Benefits

 Evaluation Methodology

 Evaluation Results

 Related Work

 New Questions and Challenges

 Conclusions

74

Our Proposal: Coordinated HW/SW
Memory and Storage Management

 Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data

 Improve both energy and performance

 Simplify programming model as well

75

Our Proposal: Coordinated HW/SW
Memory and Storage Management

 Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data

 Improve both energy and performance

 Simplify programming model as well

76

Before: Traditional Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Our Proposal: Coordinated HW/SW
Memory and Storage Management

 Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data

 Improve both energy and performance

 Simplify programming model as well

77

After: Coordinated HW/SW Management

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

The Persistent Memory Manager (PMM)
 Exposes a load/store interface to access persistent data

 Applications can directly access persistent memory no conversion,

translation, location overhead for persistent data

 Manages data placement, location, persistence, security

 To get the best of multiple forms of storage

 Manages metadata storage and retrieval

 This can lead to overheads that need to be managed

 Exposes hooks and interfaces for system software

 To enable better data placement and management decisions

78

The Persistent Memory Manager
 Persistent Memory Manager

 Exposes a load/store interface to access persistent data

 Manages data placement, location, persistence, security

 Manages metadata storage and retrieval

 Exposes hooks and interfaces for system software

 Example program manipulating a persistent object:

79

Create persistent object and its handle

Allocate a persistent array and assign

Load/store interface

Putting Everything Together

80

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices

Outline

 Background: Storage and Memory Models

 Motivation: Eliminating Operating/File System Bottlenecks

 Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

 Opportunities and Benefits

 Evaluation Methodology

 Evaluation Results

 Related Work

 New Questions and Challenges

 Conclusions

81

Opportunities and Benefits

 We’ve identified at least five opportunities and benefits of a unified
storage/memory system that gets rid of the two-level model:

1. Eliminating system calls for file operations

2. Eliminating file system operations

3. Efficient data mapping/location among heterogeneous devices

4. Providing security and reliability in persistent memories

5. Hardware/software cooperative data management

82

Eliminating System Calls for File Operations

 A persistent memory can expose a large, linear, persistent
address space

 Persistent storage objects can be directly manipulated with
load/store operations

 This eliminates the need for layers of operating system code

 Typically used for calls like open, read, and write

 Also eliminates OS file metadata

 File descriptors, file buffers, and so on

83

Eliminating File System Operations

 Locating files is traditionally done using a file system

 Runs code and traverses structures in software to locate files

 Existing hardware structures for locating data in virtual memory
can be extended and adapted to meet the needs of persistent
memories

 Memory Management Units (MMUs), which map virtual addresses to
physical addresses

 Translation Lookaside Buffers (TLBs), which cache mappings of
virtual-to-physical address translations

 Potential to eliminate file system code

 At the cost of additional hardware overhead to handle persistent
data storage

84

Efficient Data Mapping among Heterogeneous Devices

 A persistent memory exposes a large, persistent address space

 But it may use many different devices to satisfy this goal

 From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash

 And other NVM devices in between

 Performance and energy can benefit from good placement of
data among these devices

 Utilizing the strengths of each device and avoiding their weaknesses,
if possible

 For example, consider two important application characteristics:
locality and persistence

85

86

Efficient Data Mapping among Heterogeneous Devices

87

X

Columns in a column store that are
scanned through only infrequently

 place on Flash

Efficient Data Mapping among Heterogeneous Devices

88

X

Columns in a column store that are
scanned through only infrequently

 place on Flash

X

Frequently-updated index for a
Content Delivery Network (CDN)

 place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applications or system software can provide hints for data placement

Providing Security and Reliability

 A persistent memory deals with data at the granularity of bytes
and not necessarily files

 Provides the opportunity for much finer-grained security and
protection than traditional two-level storage models provide/afford

 Need efficient techniques to avoid large metadata overheads

 A persistent memory can improve application reliability by
ensuring updates to persistent data are less vulnerable to failures

 Need to ensure that changes to copies of persistent data placed in
volatile memories become persistent

89

HW/SW Cooperative Data Management

 Persistent memories can expose hooks and interfaces to
applications, the OS, and runtimes

 Have the potential to provide improved system robustness and
efficiency than by managing persistent data with either software or
hardware alone

 Can enable fast checkpointing and reboots, improve application
reliability by ensuring persistence of data

 How to redesign availability mechanisms to take advantage of these?

 Persistent locks and other persistent synchronization constructs
can enable more robust programs and systems

90

Quantifying Persistent Memory Benefits

 We have identified several opportunities and benefits of using
persistent memories without the traditional two-level store model

 We will next quantify:

 How do persistent memories affect system performance?

 How much energy reduction is possible?

 Can persistent memories achieve these benefits despite additional
access latencies to the persistent memory manager?

91

Outline

 Background: Storage and Memory Models

 Motivation: Eliminating Operating/File System Bottlenecks

 Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

 Opportunities and Benefits

 Evaluation Methodology

 Evaluation Results

 Related Work

 New Questions and Challenges

 Conclusions

92

Evaluation Methodology

 Hybrid real system / simulation-based approach

 System calls are executed on host machine (functional correctness)

and timed to accurately model their latency in the simulator

 Rest of execution is simulated in Multi2Sim (enables hardware-level

exploration)

 Power evaluated using McPAT and memory power models

 16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz

 Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency

 Persistent memory

 HDD (measured): 4ms seek latency, 6Gbps bus rate

 NVM: (modeled after PCM) 4KB page size, 160-/480-cycle

(read/write) latency

93

Evaluated Systems
 HDD Baseline (HB)

 Traditional system with volatile DRAM memory and persistent HDD storage

 Overheads of operating system and file system code and buffering

 HDD without OS/FS (HW)

 Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads

 System calls take 0 cycles (but HDD access takes normal latency)

 NVM Baseline (NB)

 Same as HDD Baseline, but HDD is replaced with NVM

 Still has OS/FS overheads of the two-level storage model

 Persistent Memory (PM)

 Uses only NVM (no DRAM) to ensure full-system persistence

 All data accessed using loads and stores

 Does not waste energy on system calls

 Data is manipulated directly on the NVM device

94

Evaluated Workloads
 Unix utilities that manipulate files

 cp: copy a large file from one location to another

 cp –r: copy files in a directory tree from one location to another

 grep: search for a string in a large file

 grep –r: search for a string recursively in a directory tree

 PostMark: an I/O-intensive benchmark from NetApp

 Emulates typical access patterns for email, news, web commerce

 MySQL Server: a popular database management system

 OLTP-style queries generated by Sysbench

 MySQL (simple): single, random read to an entry

 MySQL (complex): reads/writes 1 to 100 entries per transaction

95

Performance Results

96

Performance Results: HDD w/o OS/FS

97

For HDD-based systems, eliminating OS/FS overheads typically leads to small
performance improvements execution time dominated by HDD access latency

Performance Results: HDD w/o OS/FS

98

Though, for more complex file system operations like directory traversal (seen with
cp -r and grep -r), eliminating the OS/FS overhead improves performance

Performance Results: HDD to NVM

99

Switching from an HDD to NVM greatly reduces execution time due to NVM’s much
faster access latencies, especially for I/O-intensive workloads (cp, PostMark, MySQL)

Performance Results: NVM to PMM

100

For most workloads, eliminating OS/FS code and buffering improves performance
greatly on top of the NVM Baseline system

(even when DRAM is eliminated from the system)

Performance Results

101

The workloads that see the greatest improvement from using a Persistent Memory
are those that spend a large portion of their time executing system call code due to

the two-level storage model

Energy Results

102

Energy Results: HDD to NVM

103

Between HDD-based and NVM-based systems, lower NVM energy leads to greatly
reduced energy consumption

Energy Results: NVM to PMM

104

Between systems with and without OS/FS code, energy improvements come from:
1. reduced code footprint, 2. reduced data movement

Large energy reductions with a PMM over the NVM based system

Scalability Analysis: Effect of PMM Latency

105

Even if each PMM access takes a non-overlapped 50 cycles (conservative),
PMM still provides an overall improvement compared to the NVM baseline

Future research should target keeping PMM latencies in check

Outline

 Background: Storage and Memory Models

 Motivation: Eliminating Operating/File System Bottlenecks

 Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

 Opportunities and Benefits

 Evaluation Methodology

 Evaluation Results

 Related Work

 New Questions and Challenges

 Conclusions

106

Related Work
 We provide a comprehensive overview of past work related to

single-level stores and persistent memory techniques

1. Integrating file systems with persistent memory

 Need optimized hardware to fully take advantage of new technologies

2. Programming language support for persistent objects

 Incurs the added latency of indirect data access through software

3. Load/store interfaces to persistent storage

 Lack efficient and fast hardware support for address translation, efficient
file indexing, fast reliability and protection guarantees

4. Analysis of OS overheads with Flash devices

 Our study corroborates findings in this area and shows even larger
consequences for systems with emerging NVM devices

 The goal of our work is to provide cheap and fast hardware support
for memories to enable high energy efficiency and performance

107

Outline

 Background: Storage and Memory Models

 Motivation: Eliminating Operating/File System Bottlenecks

 Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

 Opportunities and Benefits

 Evaluation Methodology

 Evaluation Results

 Related Work

 New Questions and Challenges

 Conclusions

108

New Questions and Challenges
 We identify and discuss several open research questions

 Q1. How to tailor applications for systems with persistent
memory?

 Q2. How can hardware and software cooperate to support a
scalable, persistent single-level address space?

 Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems?

 Q4. How to mitigate potential hardware performance and energy
overheads?

109

Outline

 Background: Storage and Memory Models

 Motivation: Eliminating Operating/File System Bottlenecks

 Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

 Opportunities and Benefits

 Evaluation Methodology

 Evaluation Results

 Related Work

 New Questions and Challenges

 Conclusions

110

Summary and Conclusions
 Traditional two-level storage model is inefficient in terms of

performance and energy

 Due to OS/FS code and buffering needed to manage two models

 Especially so in future devices with NVM technologies, as we show

 New non-volatile memory based persistent memory designs that
use a single-level storage model to unify memory and storage can
alleviate this problem

 We quantified the performance and energy benefits of such a
single-level persistent memory/storage design

 Showed significant benefits from reduced code footprint, data
movement, and system software overhead on a variety of workloads

 Such a design requires more research to answer the questions we
have posed and enable efficient persistent memory managers

 can lead to a fundamentally more efficient storage system

111

A Case for Efficient Hardware/Software

Cooperative Management of

Storage and Memory

 Justin Meza*, Yixin Luo*, Samira Khan*†, Jishen Zhao§,

Yuan Xie§‡, and Onur Mutlu*

 *Carnegie Mellon University

 §Pennsylvania State University
†Intel Labs ‡AMD Research

Flash Memory Scaling

Readings in Flash Memory
 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization,
Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble,
France, March 2013. Slides (ppt)

 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken
Mai,
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime"
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden,
Germany, March 2012. Slides (ppt)

114

http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/content/paper-8-error-analysis-and-retention-aware-error-management-for-nand-flash-memory
http://noggin.intel.com/technology-journal/2013/171/memory-resiliency
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-correct-and-refresh_iccd12.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_iccd12_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_iccd12_talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt

Evolution of NAND Flash Memory

 Flash memory widening its range of applications

 Portable consumer devices, laptop PCs and enterprise servers

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

CMOS scaling

More bits per Cell

UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction.

Decreasing Endurance with Flash Scaling

 Endurance of flash memory decreasing with scaling and multi-level cells

 Error correction capability required to guarantee storage-class reliability
(UBER < 10-15) is increasing exponentially to reach less endurance

116

Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

SLC 5x-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC

P
/
E

 C
y
c
le

 E
n

d
u

ra
n

c
e

100k

10k
5k 3k 1k

4-bit ECC

8-bit ECC

15-bit ECC

24-bit ECC

Error Correction Capability

(per 1 kB of data)

Future NAND Flash Storage Architecture

Memory

Signal

Processing

Error

Correction

Raw Bit

Error Rate

• Hamming codes

• BCH codes

• Reed-Solomon codes

• LDPC codes

• Other Flash friendly codes

BER < 10-15

Need to understand NAND flash error patterns

• Read voltage adjusting

• Data scrambler

• Data recovery

• Soft-information estimation

Noisy

Test System Infrastructure

Host USB PHY

USB Driver

Software Platform

USB
PHYChip

Control
Firmware

FPGA
USB controller

NAND
Controller

Signal Processing

Wear Leveling

Address Mapping

Garbage Collection

Algorithms

ECC

(BCH, RS, LDPC)

Flash
Memories

Host Computer USB Daughter Board Mother Board Flash Board

1. Reset

2. Erase block

3. Program page

4. Read page

NAND Flash Testing Platform

USB Jack

Virtex-II Pro

(USB controller)

Virtex-V FPGA

(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm

NAND Flash

NAND Flash Usage and Error Model

…

(Page0 - Page128)
Program

Page

Erase

Block

Retention1

(t1 days)

Read

Page

Retention j
(tj days)

Read

Page

P/E cycle 0

P/E cycle i

Start

…

P/E cycle n

…

End of life

Erase Errors Program Errors

Retention Errors Read Errors

Read Errors
Retention Errors

Error Types and Testing Methodology

 Erase errors

 Count the number of cells that fail to be erased to “11” state

 Program interference errors

 Compare the data immediately after page programming and the data
after the whole block being programmed

 Read errors

 Continuously read a given block and compare the data between
consecutive read sequences

 Retention errors

 Compare the data read after an amount of time to data written

 Characterize short term retention errors under room temperature

 Characterize long term retention errors by baking in the oven
under 125℃

retention errors

 Raw bit error rate increases exponentially with P/E cycles

 Retention errors are dominant (>99% for 1-year ret. time)

 Retention errors increase with retention time requirement

Observations: Flash Error Analysis

122

P/E Cycles

Retention Error Mechanism
LSB/MSB

 Electron loss from the floating gate causes retention errors

 Cells with more programmed electrons suffer more from

retention errors

 Threshold voltage is more likely to shift by one window than by

multiple

11 10 01 00
Vth

REF1 REF2 REF3

Erased Fully programmed

Stress Induced Leakage Current (SILC)

Floating

Gate

Retention Error Value Dependency

00 01
01 10

 Cells with more programmed electrons tend to suffer more

from retention noise (i.e. 00 and 01)

More Details on Flash Error Analysis

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis"
Proceedings of the Design, Automation, and Test in Europe
Conference (DATE), Dresden, Germany, March 2012. Slides
(ppt)

125

http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://www.date-conference.com/
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt

Threshold Voltage Distribution Shifts

As P/E cycles increase ...

Distribution shifts to the right

Distribution becomes wider

P1 State P2 State P3 State

More Detail

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash
Memory: Characterization, Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe
Conference (DATE), Grenoble, France, March 2013. Slides
(ppt)

127

http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://www.date-conference.com/
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt

Flash Correct-and-Refresh

Retention-Aware Error Management

for Increased Flash Memory Lifetime

Yu Cai1 Gulay Yalcin2 Onur Mutlu1 Erich F. Haratsch3

Adrian Cristal2 Osman S. Unsal2 Ken Mai1

1 Carnegie Mellon University
2 Barcelona Supercomputing Center
3 LSI Corporation

Executive Summary
 NAND flash memory has low endurance: a flash cell dies after 3k P/E

cycles vs. 50k desired Major scaling challenge for flash memory

 Flash error rate increases exponentially over flash lifetime

 Problem: Stronger error correction codes (ECC) are ineffective and
undesirable for improving flash lifetime due to

 diminishing returns on lifetime with increased correction strength

 prohibitively high power, area, latency overheads

 Our Goal: Develop techniques to tolerate high error rates w/o strong ECC

 Observation: Retention errors are the dominant errors in MLC NAND flash

 flash cell loses charge over time; retention errors increase as cell gets worn out

 Solution: Flash Correct-and-Refresh (FCR)

 Periodically read, correct, and reprogram (in place) or remap each flash page
before it accumulates more errors than can be corrected by simple ECC

 Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles)

 Results: FCR improves flash memory lifetime by 46X with no hardware
changes and low energy overhead; outperforms strong ECCs

 129

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

 Evaluation

 Conclusions

130

Problem: Limited Endurance of Flash Memory

 NAND flash has limited endurance

 A cell can tolerate a small number of Program/Erase (P/E) cycles

 3x-nm flash with 2 bits/cell 3K P/E cycles

 Enterprise data storage requirements demand very high
endurance

 >50K P/E cycles (10 full disk writes per day for 3-5 years)

 Continued process scaling and more bits per cell will reduce
flash endurance

 One potential solution: stronger error correction codes (ECC)

 Stronger ECC not effective enough and inefficient

131

UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction.

Decreasing Endurance with Flash Scaling

 Endurance of flash memory decreasing with scaling and multi-level cells

 Error correction capability required to guarantee storage-class reliability
(UBER < 10-15) is increasing exponentially to reach less endurance

132

Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

SLC 5x-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC

P
/
E

 C
y
c
le

 E
n

d
u

ra
n

c
e

100k

10k
5k 3k 1k

4-bit ECC

8-bit ECC

15-bit ECC

24-bit ECC

Error Correction Capability

(per 1 kB of data)

The Problem with Stronger Error Correction

 Stronger ECC detects and corrects more raw bit errors
increases P/E cycles endured

 Two shortcomings of stronger ECC:

1. High implementation complexity

 Power and area overheads increase super-linearly, but

 correction capability increases sub-linearly with ECC strength

2. Diminishing returns on flash lifetime improvement

 Raw bit error rate increases exponentially with P/E cycles, but

 correction capability increases sub-linearly with ECC strength

133

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

 Evaluation

 Conclusions

134

Methodology: Error and ECC Analysis

 Characterized errors and error rates of 3x-nm MLC NAND
flash using an experimental FPGA-based flash platform

 Cai et al., “Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis,” DATE 2012.

 Quantified Raw Bit Error Rate (RBER) at a given P/E cycle

 Raw Bit Error Rate: Fraction of erroneous bits without any correction

 Quantified error correction capability (and area and power
consumption) of various BCH-code implementations

 Identified how much RBER each code can tolerate

 how many P/E cycles (flash lifetime) each code can sustain

135

NAND Flash Error Types

 Four types of errors [Cai+, DATE 2012]

 Caused by common flash operations

 Read errors

 Erase errors

 Program (interference) errors

 Caused by flash cell losing charge over time

 Retention errors

 Whether an error happens depends on required retention time

 Especially problematic in MLC flash because voltage threshold
window to determine stored value is smaller

136

retention errors

 Raw bit error rate increases exponentially with P/E cycles

 Retention errors are dominant (>99% for 1-year ret. time)

 Retention errors increase with retention time requirement

Observations: Flash Error Analysis

137

P/E Cycles

Methodology: Error and ECC Analysis

 Characterized errors and error rates of 3x-nm MLC NAND
flash using an experimental FPGA-based flash platform

 Cai et al., “Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis,” DATE 2012.

 Quantified Raw Bit Error Rate (RBER) at a given P/E cycle

 Raw Bit Error Rate: Fraction of erroneous bits without any correction

 Quantified error correction capability (and area and power
consumption) of various BCH-code implementations

 Identified how much RBER each code can tolerate

 how many P/E cycles (flash lifetime) each code can sustain

138

ECC Strength Analysis

 Examined characteristics of various-strength BCH codes
with the following criteria

 Storage efficiency: >89% coding rate (user data/total storage)

 Reliability: <10-15 uncorrectable bit error rate

 Code length: segment of one flash page (e.g., 4kB)

139

Code length

(n)

Correctable

Errors (t)

Acceptable

Raw BER

Norm.

Power

Norm. Area

512 7 1.0x10-4 (1x) 1 1

1024 12 4.0x10-4 (4x) 2 2.1

2048 22 1.0x10-3 (10x) 4.1 3.9

4096 40 1.7x10-3 (17x) 8.6 10.3

8192 74 2.2x10-3 (22x) 17.8 21.3

32768 259 2.6x10-3 (26x) 71 85

Error correction capability increases sub-linearly

Power and area overheads increase super-linearly

 Lifetime improvement comparison of various BCH codes

Resulting Flash Lifetime with Strong ECC

140

0

2000

4000

6000

8000

10000

12000

14000

512b-BCH 1k-BCH 2k-BCH 4k-BCH 8k-BCH 32k-BCH

P
/
E

 C
y
c
le

E

n
d

u
ra

n
c
e

4X Lifetime

Improvement

71X Power Consumption

85X Area Consumption

Strong ECC is very inefficient at improving lifetime

Our Goal

 Develop new techniques

 to improve flash lifetime

 without relying on stronger ECC

141

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

 Evaluation

 Conclusions

142

Flash Correct-and-Refresh (FCR)

 Key Observations:

 Retention errors are the dominant source of errors in flash
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011]

 limit flash lifetime as they increase over time

 Retention errors can be corrected by “refreshing” each flash
page periodically

 Key Idea:

 Periodically read each flash page,

 Correct its errors using “weak” ECC, and

 Either remap it to a new physical page or reprogram it in-place,

 Before the page accumulates more errors than ECC-correctable

 Optimization: Adapt refresh rate to endured P/E cycles

143

FCR Intuition

144

Errors with

No refresh

Program

Page ×

After

time T × × ×

After

time 2T × × × × ×

After

time 3T × × × × × × ×

×

× × ×

× × ×

× × ×

×

×

Errors with

Periodic refresh

×

× Retention Error × Program Error

FCR: Two Key Questions

 How to refresh?

 Remap a page to another one

 Reprogram a page (in-place)

 Hybrid of remap and reprogram

 When to refresh?

 Fixed period

 Adapt the period to retention error severity

145

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR

2. Hybrid Reprogramming and Remapping based FCR

3. Adaptive-Rate FCR

 Evaluation

 Conclusions

146

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR

2. Hybrid Reprogramming and Remapping based FCR

3. Adaptive-Rate FCR

 Evaluation

 Conclusions

147

Remapping Based FCR

 Idea: Periodically remap each page to a different physical
page (after correcting errors)

 Also [Pan et al., HPCA 2012]

 FTL already has support for

 changing logical physical

 flash block/page mappings

 Deallocated block is

 erased by garbage collector

 Problem: Causes additional erase operations more wearout

 Bad for read-intensive workloads (few erases really needed)

 Lifetime degrades for such workloads (see paper)

148

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR

2. Hybrid Reprogramming and Remapping based FCR

3. Adaptive-Rate FCR

 Evaluation

 Conclusions

149

In-Place Reprogramming Based FCR

 Idea: Periodically reprogram (in-place) each physical page
(after correcting errors)

 Flash programming techniques

 (ISPP) can correct retention

 errors in-place by recharging

 flash cells

 Problem: Program errors accumulate on the same page
may not be correctable by ECC after some time

150

Reprogram corrected data

 Pro: No remapping needed no additional erase operations

 Con: Increases the occurrence of program errors

In-Place Reprogramming of Flash Cells

151

Retention errors are

caused by cell voltage

shifting to the left

ISPP moves cell

voltage to the right;

fixes retention errors

Floating Gate

Voltage Distribution

for each Stored Value

Floating Gate

Program Errors in Flash Memory

 When a cell is being programmed, voltage level of a
neighboring cell changes (unintentionally) due to parasitic
capacitance coupling

 can change the data value stored

 Also called program interference error

 Program interference causes neighboring cell voltage to
shift to the right

152

Problem with In-Place Reprogramming

153

11 10 01 00
VT

REF1 REF2 REF3

Floating

Gate

Additional

Electrons Injected

… … 11 01 00 10 11 00 00 Original data

to be programmed

… … 10 01 00 10 11 00 00 Program errors after

initial programming

… … Retention errors

after some time
10 10 00 11 11 01 01

… … Errors after in-place

reprogramming
10 01 00 10 10 00 00

1. Read data

2. Correct errors

3. Reprogram back

Problem: Program errors can accumulate over time

Floating Gate

Voltage Distribution

Hybrid Reprogramming/Remapping Based FCR

 Idea:

 Monitor the count of right-shift errors (after error correction)

 If count < threshold, in-place reprogram the page

 Else, remap the page to a new page

 Observation:

 Program errors much less frequent than retention errors

Remapping happens only infrequently

 Benefit:

 Hybrid FCR greatly reduces erase operations due to remapping

154

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR

2. Hybrid Reprogramming and Remapping based FCR

3. Adaptive-Rate FCR

 Evaluation

 Conclusions

155

Adaptive-Rate FCR

 Observation:

 Retention error rate strongly depends on the P/E cycles a flash
page endured so far

 No need to refresh frequently (at all) early in flash lifetime

 Idea:

 Adapt the refresh rate to the P/E cycles endured by each page

 Increase refresh rate gradually with increasing P/E cycles

 Benefits:

 Reduces overhead of refresh operations

 Can use existing FTL mechanisms that keep track of P/E
cycles

156

Adaptive-Rate FCR (Example)

157

Acceptable raw BER for 512b-BCH

3-year

FCR

3-month

FCR

3-week

FCR

3-day

FCR

P/E Cycles

Select refresh frequency such that error rate is below acceptable rate

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR

2. Hybrid Reprogramming and Remapping based FCR

3. Adaptive-Rate FCR

 Evaluation

 Conclusions

158

FCR: Other Considerations

 Implementation cost

 No hardware changes

 FTL software/firmware needs modification

 Response time impact

 FCR not as frequent as DRAM refresh; low impact

 Adaptation to variations in retention error rate

 Adapt refresh rate based on, e.g., temperature [Liu+ ISCA 2012]

 FCR requires power

 Enterprise storage systems typically powered on

159

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

 Evaluation

 Conclusions

160

Evaluation Methodology

 Experimental flash platform to obtain error rates at
different P/E cycles [Cai+ DATE 2012]

 Simulation framework to obtain P/E cycles of real
workloads: DiskSim with SSD extensions

 Simulated system: 256GB flash, 4 channels, 8
chips/channel, 8K blocks/chip, 128 pages/block, 8KB pages

 Workloads

 File system applications, databases, web search

 Categories: Write-heavy, read-heavy, balanced

 Evaluation metrics

 Lifetime (extrapolated)

 Energy overhead, P/E cycle overhead

 161

Extrapolated Lifetime

162

Maximum full disk P/E Cycles for a Technique

Total full disk P/E Cycles for a Workload
× # of Days of Given Application

Obtained from Experimental Platform Data

Obtained from Workload Simulation
Real length (in time) of

each workload trace

Normalized Flash Memory Lifetime

163

0

20

40

60

80

100

120

140

160

180

200

512b-BCH 1k-BCH 2k-BCH 4k-BCH 8k-BCH 32k-BCH

N
o

rm
al

iz
e

d
 L

if
et

im
e

Base (No-Refresh)

Remapping-Based FCR

Hybrid FCR

Adaptive FCR

46x

Adaptive-rate FCR provides the highest lifetime Lifetime of FCR much higher than lifetime of stronger ECC

4x

Lifetime Evaluation Takeaways

 Significant average lifetime improvement over no refresh

 Adaptive-rate FCR: 46X

 Hybrid reprogramming/remapping based FCR: 31X

 Remapping based FCR: 9X

 FCR lifetime improvement larger than that of stronger ECC

 46X vs. 4X with 32-kbit ECC (over 512-bit ECC)

 FCR is less complex and less costly than stronger ECC

 Lifetime on all workloads improves with Hybrid FCR

 Remapping based FCR can degrade lifetime on read-heavy WL

 Lifetime improvement highest in write-heavy workloads

164

Energy Overhead

 Adaptive-rate refresh: <1.8% energy increase until daily
refresh is triggered

165

0%

2%

4%

6%

8%

10%

1 Year 3 Months 3 Weeks 3 Days 1 Day

E
n

e
rg

y
 O

v
e

rh
e

a
d

Remapping-based Refresh Hybrid Refresh

7.8%

5.5%

2.6%
1.8%

0.4% 0.3%

Refresh Interval

Overhead of Additional Erases

 Additional erases happen due to remapping of pages

 Low (2%-20%) for write intensive workloads

 High (up to 10X) for read-intensive workloads

 Improved P/E cycle lifetime of all workloads largely
outweighs the additional P/E cycles due to remapping

166

More Results in the Paper

 Detailed workload analysis

 Effect of refresh rate

167

Outline

 Executive Summary

 The Problem: Limited Flash Memory Endurance/Lifetime

 Error and ECC Analysis for Flash Memory

 Flash Correct and Refresh Techniques (FCR)

 Evaluation

 Conclusions

168

Conclusion

 NAND flash memory lifetime is limited due to uncorrectable
errors, which increase over lifetime (P/E cycles)

 Observation: Dominant source of errors in flash memory is
retention errors retention error rate limits lifetime

 Flash Correct-and-Refresh (FCR) techniques reduce
retention error rate to improve flash lifetime

 Periodically read, correct, and remap or reprogram each page
before it accumulates more errors than can be corrected

 Adapt refresh period to the severity of errors

 FCR improves flash lifetime by 46X at no hardware cost

 More effective and efficient than stronger ECC

 Can enable better flash memory scaling

 169

Flash Correct-and-Refresh

Retention-Aware Error Management

for Increased Flash Memory Lifetime

Yu Cai1 Gulay Yalcin2 Onur Mutlu1 Erich F. Haratsch3

Adrian Cristal2 Osman S. Unsal2 Ken Mai1

1 Carnegie Mellon University
2 Barcelona Supercomputing Center
3 LSI Corporation

