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Hybrid Memory Systems 

 

 

 

 

 

 

 

 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 

 

 

CPU 
DRA
MCtrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 

 PCM is main memory; DRAM caches memory rows/blocks 

 Benefits: Reduced latency on DRAM cache hit; write filtering 

 Memory controller hardware manages the DRAM cache 

 Benefit: Eliminates system software overhead 

 

 Three issues: 

 What data should be placed in DRAM versus kept in PCM? 

 What is the granularity of data movement? 

 How to design a low-cost hardware-managed DRAM cache? 

 

 Two idea directions: 

 Locality-aware data placement [Yoon+ , ICCD 2012] 

 Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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DRAM as a Cache for PCM 

 Goal: Achieve the best of both DRAM and PCM/NVM 

 Minimize amount of DRAM w/o sacrificing performance, endurance 

 DRAM as cache to tolerate PCM latency and write bandwidth 

 PCM as main memory to provide large capacity at good cost and power 
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DATA 
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PCM Write Queue 

T=Tag-Store 

Processor 

Flash 

Or 

HDD 

Qureshi+, “Scalable high performance main memory system using phase-change memory technology,” ISCA 2009.  
 



Write Filtering Techniques 

 Lazy Write: Pages from disk installed only in DRAM, not PCM 

 Partial Writes:  Only dirty lines from DRAM page written back 

 Page Bypass: Discard pages with poor reuse on DRAM eviction 

 

 

 

 

 

 

 

 

 Qureshi et al., “Scalable high performance main memory system 
using phase-change memory technology,” ISCA 2009.  
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Processor 
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PCM Main Memory 
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Or 

HDD 



Results: DRAM as PCM Cache (I) 

 Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles, 
HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99% 

 Assumption: PCM 4x denser, 4x slower than DRAM  

 DRAM block size = PCM page size (4kB)  
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Results: DRAM as PCM Cache (II) 

 PCM-DRAM Hybrid performs similarly to similar-size DRAM 

 Significant power and energy savings with PCM-DRAM Hybrid 

 Average lifetime: 9.7 years (no guarantees) 
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Row Buffer Locality Aware 

Caching Policies for Hybrid Memories 

 

 

 

 

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, and Onur Mutlu, 
"Row Buffer Locality Aware Caching Policies for Hybrid Memories" 

Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),  
Montreal, Quebec, Canada, September 2012. Slides (pptx) (pdf)  
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Hybrid Memory 

• Key question:  How to place data between the 
heterogeneous memory devices? 
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CPU 
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Outline 

• Background: Hybrid Memory Systems 

• Motivation: Row Buffers and Implications on 
Data Placement 

• Mechanisms: Row Buffer Locality-Aware 
Caching Policies 

• Evaluation and Results 

• Conclusion 
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Hybrid Memory: A Closer Look 
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MC MC 

DRAM 
(small capacity cache) 

PCM 
(large capacity store) 

CPU 

Memory channel 

Bank Bank Bank Bank 

Row buffer 



 

 

 

 

 

 

 

    Row (buffer) hit: Access data from row buffer  fast 

    Row (buffer) miss: Access data from cell array  slow 

LOAD X LOAD X+1 LOAD X+1 LOAD X 

Row Buffers and Latency 
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Key Observation 

• Row buffers exist in both DRAM and PCM 

– Row hit latency similar in DRAM & PCM [Lee+ ISCA’09] 

– Row miss latency small in DRAM, large in PCM 
 

• Place data in DRAM which 

– is likely to miss in the row buffer (low row buffer 
locality) miss penalty is smaller in DRAM 

 AND 

– is reused many times  cache only the data 
worth the movement cost and DRAM space 

17 



RBL-Awareness: An Example 
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Let’s say a processor accesses four rows 

Row A Row B Row C Row D 



RBL-Awareness: An Example 
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Let’s say a processor accesses four rows 
with different row buffer localities (RBL) 

Row A Row B Row C Row D 

Low RBL 
(Frequently miss 

in row buffer) 

High RBL 
(Frequently hit 
in row buffer) 

Case 1: RBL-Unaware Policy (state-of-the-art) 
Case 2: RBL-Aware Policy (RBLA) 



Case 1: RBL-Unaware Policy 
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A row buffer locality-unaware policy could 
place these rows in the following manner 

DRAM 
(High RBL) 

PCM 
(Low RBL) 

Row C 
Row D 

Row A 
Row B 



RBL-Unaware:   Stall time is 6 PCM device accesses 

Case 1: RBL-Unaware Policy 
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DRAM (High RBL) 

PCM (Low RBL) A B 

C D C C D D 

A B A B 

Access pattern to main memory: 
A (oldest), B, C, C, C, A, B, D, D, D, A, B (youngest) 

time 



Case 2: RBL-Aware Policy (RBLA) 
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A row buffer locality-aware policy would 
place these rows in the opposite manner 

DRAM 
(Low RBL) 

PCM 
(High RBL) 

 Access data at lower row 
buffer miss latency of DRAM 

 Access data at low row 
buffer hit latency of PCM 

Row A 
Row B 

Row C 
Row D 



Saved cycles 

DRAM (High RBL) 

PCM (Low RBL) 

Case 2: RBL-Aware Policy (RBLA) 
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A B 

C D C C D D 

A B A B 

Access pattern to main memory: 
A (oldest), B, C, C, C, A, B, D, D, D, A, B (youngest) 

DRAM (Low RBL) 

PCM (High RBL) 

time 

A B 

C D C C D D 

A B A B 

RBL-Unaware:   Stall time is 6 PCM device accesses 

RBL-Aware: Stall time is 6 DRAM device accesses 



Outline 

• Background: Hybrid Memory Systems 

• Motivation: Row Buffers and Implications on 
Data Placement 

• Mechanisms: Row Buffer Locality-Aware 
Caching Policies 

• Evaluation and Results 

• Conclusion 
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Our Mechanism: RBLA 

1. For recently used rows in PCM: 

– Count row buffer misses as indicator of row buffer 
locality (RBL) 

 

2. Cache to DRAM rows with misses  threshold 

– Row buffer miss counts are periodically reset (only 
cache rows with high reuse) 
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Our Mechanism: RBLA-Dyn 

1. For recently used rows in PCM: 

– Count row buffer misses as indicator of row buffer 
locality (RBL) 

 

2. Cache to DRAM rows with misses  threshold 

– Row buffer miss counts are periodically reset (only 
cache rows with high reuse) 

 

3. Dynamically adjust threshold to adapt to 
workload/system characteristics 

– Interval-based cost-benefit analysis 26 



Implementation: “Statistics Store” 

• Goal: To keep count of row buffer misses to 
recently used rows in PCM 

 

• Hardware structure in memory controller 

– Operation is similar to a cache 

• Input: row address 

• Output: row buffer miss count 

– 128-set 16-way statistics store (9.25KB) achieves 
system performance within 0.3% of an unlimited-
sized statistics store 
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Outline 

• Background: Hybrid Memory Systems 

• Motivation: Row Buffers and Implications on 
Data Placement 

• Mechanisms: Row Buffer Locality-Aware 
Caching Policies 

• Evaluation and Results 

• Conclusion 
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Evaluation Methodology 

• Cycle-level x86 CPU-memory simulator 

– CPU: 16 out-of-order cores, 32KB private L1 per 
core, 512KB shared L2 per core 

– Memory: 1GB DRAM (8 banks), 16GB PCM (8 
banks), 4KB migration granularity 

• 36 multi-programmed server, cloud workloads 

– Server: TPC-C (OLTP), TPC-H (Decision Support) 

– Cloud: Apache (Webserv.), H.264 (Video), TPC-C/H 

• Metrics: Weighted speedup (perf.), perf./Watt 
(energy eff.), Maximum slowdown (fairness) 
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Comparison Points 

• Conventional LRU Caching 

• FREQ:  Access-frequency-based caching 

– Places “hot data” in cache [Jiang+ HPCA’10] 

– Cache to DRAM rows with accesses  threshold 

– Row buffer locality-unaware 

• FREQ-Dyn: Adaptive Freq.-based caching 

– FREQ + our dynamic threshold adjustment 

– Row buffer locality-unaware 

• RBLA: Row buffer locality-aware caching 

• RBLA-Dyn:  Adaptive RBL-aware caching 30 
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14% 

Benefit 1: Increased row buffer locality (RBL) 
in PCM by moving low RBL data to DRAM 

17% 

Benefit 1: Increased row buffer locality (RBL) 
in PCM by moving low RBL data to DRAM 

Benefit 2: Reduced memory bandwidth 
consumption due to stricter caching criteria 

Benefit 2: Reduced memory bandwidth 
consumption due to stricter caching criteria 

Benefit 3: Balanced memory request load 
between DRAM and PCM 
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14% 

9% 
12% 
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Increased performance & reduced data 
movement between DRAM and PCM 

7% 10% 13% 
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Compared to All-PCM/DRAM 
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Our mechanism achieves 31% better performance 
than all PCM, within 29% of all DRAM performance 

31% 

29% 



Summary 

35 

• Different memory technologies have different strengths 

• A hybrid memory system (DRAM-PCM) aims for best of both 

• Problem:  How to place data between these heterogeneous 
memory devices? 

• Observation: PCM array access latency is higher than 
DRAM’s – But peripheral circuit (row buffer) access latencies 
are similar 

• Key Idea: Use row buffer locality (RBL) as a key criterion for 
data placement 

• Solution: Cache to DRAM rows with low RBL and high reuse 

• Improves both performance and energy efficiency over 
state-of-the-art caching policies 
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The Problem with Large DRAM Caches 

 A large DRAM cache requires a large metadata (tag + 
block-based information) store 

 How do we design an efficient DRAM cache? 

38 

DRAM PCM 

CPU 

(small, fast cache) (high capacity) 

Mem 
Ctlr 

Mem 
Ctlr 

LOAD X 

Access X 
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X  DRAM 

X 



Idea 1: Tags in Memory 

 Store tags in the same row as data in DRAM 

 Store metadata in same row as their data 

 Data and metadata can be accessed together 

 

 

 

 

 

 

 Benefit: No on-chip tag storage overhead 

 Downsides:  

 Cache hit determined only after a DRAM access 

 Cache hit requires two DRAM accesses 
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Idea 2: Cache Tags in SRAM 

 Recall Idea 1: Store all metadata in DRAM  

 To reduce metadata storage overhead 

 

 Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata 

 Cache only a small amount to keep SRAM size small 
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Idea 3: Dynamic Data Transfer Granularity 

 Some applications benefit from caching more data 

 They have good spatial locality 

 Others do not 

 Large granularity wastes bandwidth and reduces cache 
utilization 

 

 Idea 3: Simple dynamic caching granularity policy 

 Cost-benefit analysis to determine best DRAM cache block size 

 Group main memory into sets of rows 

 Some row sets follow a fixed caching granularity 

 The rest of main memory follows the best granularity 

 Cost–benefit analysis:  access latency versus number of cachings 

 Performed every quantum 

 41 



TIMBER Tag Management 

 A Tag-In-Memory BuffER (TIMBER) 

 Stores recently-used tags in a small amount of SRAM 

 

 

 

 

 

 

 

 

 Benefits: If tag is cached: 

 no need to access DRAM twice 

 cache hit determined quickly 
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TIMBER Tag Management Example (I) 

 Case 1: TIMBER hit 

43 

Bank Bank Bank Bank 

CPU 

Mem 
Ctlr 

Mem 
Ctlr 

LOAD X 

TIMBER:  X  DRAM 

X 

Access X 

Tag
0 

Tag
1 

Tag
2 

Row0 
Tag

0 
Tag

1 
Tag

2 
Row27 

Our proposal 



TIMBER Tag Management Example (II) 

 Case 2: TIMBER miss 
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Methodology 

 System:  8 out-of-order cores at 4 GHz 

 

 Memory: 512 MB direct-mapped DRAM, 8 GB PCM 

 128B caching granularity 

 DRAM row hit (miss): 200 cycles (400 cycles) 

 PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles) 

 

 Evaluated metadata storage techniques 

 All SRAM system (8MB of SRAM) 

 Region metadata storage 

 TIM metadata storage (same row as data) 

 TIMBER, 64-entry direct-mapped (8KB of SRAM) 
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Metadata Storage Performance 

-48% 

Performance degrades due 
to increased metadata 
lookup access latency 

(Ideal) 
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Metadata Storage Performance 

36% 

Increased row locality 
reduces average 

memory access latency 

(Ideal) 
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Metadata Storage Performance 

23% 
Data with locality can 

access metadata at 
SRAM latencies 

(Ideal) 
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Dynamic Granularity Performance 

10% 

Reduced channel 
contention and 

improved spatial locality 
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TIMBER Performance 

-6% 

Reduced channel 
contention and 

improved spatial locality 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
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TIMBER Energy Efficiency 

Fewer migrations reduce 
transmitted data and 
channel contention 

18% 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 



More on Large DRAM Cache Design 

 Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and 
Parthasarathy Ranganathan,  "Enabling Efficient and 
Scalable Hybrid Memories Using Fine-Granularity 
DRAM Cache Management" IEEE Computer 
Architecture Letters (CAL), February 2012. 

 

 Fundamental Latency Trade-offs in Architecting 
DRAM Caches  (pdf, slides)  Moinuddin K. Qureshi and 
Gabriel Loh  Appears in the International Symposium on 
Microarchitecture  (MICRO) 2012 
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Enabling and Exploiting NVM: Issues 

 Many issues and ideas from 
technology layer to algorithms layer 
 

 Enabling NVM and hybrid memory 

 How to tolerate errors? 

 How to enable secure operation? 

 How to tolerate performance and 
power shortcomings? 

 How to minimize cost? 

 

 Exploiting emerging technologies 

 How to exploit non-volatility? 

 How to minimize energy consumption? 

 How to exploit NVM on chip? 
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Security Challenges of Emerging Technologies 

1. Limited endurance  Wearout attacks 

 

 

 

 

2. Non-volatility  Data persists in memory after powerdown 

     Easy retrieval of privileged or private information 

 

 

 

3. Multiple bits per cell  Information leakage (via side channel) 
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Securing Emerging Memory Technologies 

1. Limited endurance  Wearout attacks 

    Better architecting of memory chips to absorb writes 

    Hybrid memory system management 

    Online wearout attack detection 

 

2. Non-volatility  Data persists in memory after powerdown 

     Easy retrieval of privileged or private information 

    Efficient encryption/decryption of whole main memory 

    Hybrid memory system management 

 

3. Multiple bits per cell  Information leakage (via side channel) 

    System design to hide side channel information 
56 
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Summary: Memory Scaling (with NVM) 

 Main memory scaling problems are a critical bottleneck for 
system performance, efficiency, and usability 
 

 Solution 1: Tolerate DRAM 

 Solution 2: Enable emerging memory technologies  

 Replace DRAM with NVM by architecting NVM chips well 

 Hybrid memory systems with automatic data management 

 

 An exciting topic with many other solution directions & ideas 

 Hardware/software/device cooperation essential 

 Memory, storage, controller, software/app co-design needed 

 Coordinated management of persistent memory and storage 

 Application and hardware cooperative management of NVM 
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Further: Overview Papers on Two Topics 

 Merging of Memory and Storage 

 Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, 
and Onur Mutlu, 
"A Case for Efficient Hardware-Software Cooperative 
Management of Storage and Memory" 
Proceedings of the 5th Workshop on Energy-Efficient Design 
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)  

 

 Flash Memory Scaling 

 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian 
Cristal, Osman Unsal, and Ken Mai, 
"Error Analysis and Retention-Aware Error 
Management for NAND Flash Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory 
Resiliency, Vol. 17, No. 1, May 2013.  
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Overview Papers on Two Topics 

 Merging of Memory and Storage 

 Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, 
and Onur Mutlu, 
"A Case for Efficient Hardware-Software Cooperative 
Management of Storage and Memory" 
Proceedings of the 5th Workshop on Energy-Efficient Design 
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)  

 

 Flash Memory Scaling 

 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian 
Cristal, Osman Unsal, and Ken Mai, 
"Error Analysis and Retention-Aware Error 
Management for NAND Flash Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory 
Resiliency, Vol. 17, No. 1, May 2013.  
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Overview 
 Traditional systems have a two-level storage model 

 Access volatile data in memory with a load/store interface 

 Access persistent data in storage with a file system interface 

 Problem: Operating system (OS) and file system (FS) code and buffering 
for storage lead to energy and performance inefficiencies 

 

 Opportunity: New non-volatile memory (NVM) technologies can help 
provide fast (similar to DRAM), persistent storage (similar to Flash) 

 Unfortunately, OS and FS code can easily become energy efficiency and 
performance bottlenecks if we keep the traditional storage model 

 

 This work: makes a case for hardware/software cooperative 
management of storage and memory within a single-level 

 We describe the idea of a Persistent Memory Manager (PMM) for 
efficiently coordinating storage and memory, and quantify its benefit 

 And, examine questions and challenges to address to realize PMM 
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A Tale of Two Storage Levels 
 Traditional systems use a two-level storage model 

 Volatile data is stored in DRAM 

 Persistent data is stored in HDD and Flash 

 Accessed through two vastly different interfaces 
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A Tale of Two Storage Levels 
 Two-level storage arose in systems due to the widely different 

access latencies and methods of the commodity storage devices 

 Fast, low capacity, volatile DRAM  working storage 

 Slow, high capacity, non-volatile hard disk drives  persistent storage 

 

 Data from slow storage media is buffered in fast DRAM 

 After that it can be manipulated by programs  programs cannot 

directly access persistent storage 

 It is the programmer’s job to translate this data between the two 
formats of the two-level storage (files and data structures) 

 

 Locating, transferring, and translating data and formats between 
the two levels of storage can waste significant energy and 
performance 
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Opportunity: New Non-Volatile Memories 
 Emerging memory technologies provide the potential for unifying 

storage and memory (e.g., Phase-Change, STT-RAM, RRAM) 

 Byte-addressable (can be accessed like DRAM) 

 Low latency (comparable to DRAM) 

 Low power (idle power better than DRAM) 

 High capacity (closer to Flash) 

 Non-volatile (can enable persistent storage) 

 May have limited endurance (but, better than Flash) 

 

 Can provide fast access to both volatile data and persistent 
storage 

 

 Question: if such devices are used, is it efficient to keep a      
two-level storage model? 
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Eliminating Traditional Storage Bottlenecks 
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Eliminating Traditional Storage Bottlenecks 
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Where is Energy Spent in Each Model? 
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Our Proposal: Coordinated HW/SW      
Memory and Storage Management 

 Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 

 Improve both energy and performance 

 Simplify programming model as well 
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Our Proposal: Coordinated HW/SW    
Memory and Storage Management 

 Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 

 Improve both energy and performance 

 Simplify programming model as well 
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Our Proposal: Coordinated HW/SW     
Memory and Storage Management 

 Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 

 Improve both energy and performance 

 Simplify programming model as well 
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The Persistent Memory Manager (PMM) 
 Exposes a load/store interface to access persistent data 

 Applications can directly access persistent memory  no conversion, 

translation, location overhead for persistent data  

 

 Manages data placement, location, persistence, security 

 To get the best of multiple forms of storage 

 

 Manages metadata storage and retrieval 

 This can lead to overheads that need to be managed 

 

 Exposes hooks and interfaces for system software 

 To enable better data placement and management decisions 

78 



The Persistent Memory Manager 
 Persistent Memory Manager 

 Exposes a load/store interface to access persistent data 

 Manages data placement, location, persistence, security 

 Manages metadata storage and retrieval 

 Exposes hooks and interfaces for system software 

 

 Example program manipulating a persistent object: 
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Putting Everything Together 
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PMM uses access and hint information to allocate, locate, migrate 
and access data in the heterogeneous array of devices 
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Opportunities and Benefits 
 

 We’ve identified at least five opportunities and benefits of a unified 
storage/memory system that gets rid of the two-level model: 

1. Eliminating system calls for file operations 

2. Eliminating file system operations 

3. Efficient data mapping/location among heterogeneous devices 

4. Providing security and reliability in persistent memories 

5. Hardware/software cooperative data management 
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Eliminating System Calls for File Operations 

 

 A persistent memory can expose a large, linear, persistent 
address space 

 Persistent storage objects can be directly manipulated with 
load/store operations 

 

 This eliminates the need for layers of operating system code 

 Typically used for calls like open, read, and write 

 

 Also eliminates OS file metadata 

 File descriptors, file buffers, and so on 
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Eliminating File System Operations 
 

 Locating files is traditionally done using a file system 

 Runs code and traverses structures in software to locate files 

 

 Existing hardware structures for locating data in virtual memory 
can be extended and adapted to meet the needs of persistent 
memories 

 Memory Management Units (MMUs), which map virtual addresses to 
physical addresses 

 Translation Lookaside Buffers (TLBs), which cache mappings of 
virtual-to-physical address translations 

 

 Potential to eliminate file system code 

 At the cost of additional hardware overhead to handle persistent 
data storage 
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Efficient Data Mapping among Heterogeneous Devices 

 A persistent memory exposes a large, persistent address space 

 But it may use many different devices to satisfy this goal 

 From fast, low-capacity volatile DRAM to slow, high-capacity non-
volatile HDD or Flash 

 And other NVM devices in between 

 

 Performance and energy can benefit from good placement of 
data among these devices 

 Utilizing the strengths of each device and avoiding their weaknesses, 
if possible 

 For example, consider two important application characteristics:  
locality and persistence 
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Providing Security and Reliability 
 

 A persistent memory deals with data at the granularity of bytes 
and not necessarily files 

 Provides the opportunity for much finer-grained security and 
protection than traditional two-level storage models provide/afford 

 Need efficient techniques to avoid large metadata overheads 

 

 A persistent memory can improve application reliability by 
ensuring updates to persistent data are less vulnerable to failures 

 Need to ensure that changes to copies of persistent data placed in 
volatile memories become persistent 
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HW/SW Cooperative Data Management 
 

 Persistent memories can expose hooks and interfaces to 
applications, the OS, and runtimes 

 Have the potential to provide improved system robustness and 
efficiency than by managing persistent data with either software or 
hardware alone 

 

 Can enable fast checkpointing and reboots, improve application 
reliability by ensuring persistence of data 

 How to redesign availability mechanisms to take advantage of these? 

 

 Persistent locks and other persistent synchronization constructs 
can enable more robust programs and systems 
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Quantifying Persistent Memory Benefits 
 

 We have identified several opportunities and benefits of using 
persistent memories without the traditional two-level store model 

 

 We will next quantify: 

 How do persistent memories affect system performance? 

 How much energy reduction is possible? 

 Can persistent memories achieve these benefits despite additional 
access latencies to the persistent memory manager? 
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Evaluation Methodology 

 Hybrid real system / simulation-based approach 

 System calls are executed on host machine (functional correctness) 

and timed to accurately model their latency in the simulator 

 Rest of execution is simulated in Multi2Sim (enables hardware-level 

exploration) 

 Power evaluated using McPAT and memory power models 

 16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz 

 Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency 

 Persistent memory 

 HDD (measured): 4ms seek latency, 6Gbps bus rate 

 NVM: (modeled after PCM) 4KB page size, 160-/480-cycle 

(read/write) latency 
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Evaluated Systems 
 HDD Baseline (HB) 

 Traditional system with volatile DRAM memory and persistent HDD storage 

 Overheads of operating system and file system code and buffering 

 HDD without OS/FS (HW) 

 Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads 

 System calls take 0 cycles (but HDD access takes normal latency) 

 NVM Baseline (NB) 

 Same as HDD Baseline, but HDD is replaced with NVM 

 Still has OS/FS overheads of the two-level storage model 

 Persistent Memory (PM) 

 Uses only NVM (no DRAM) to ensure full-system persistence 

 All data accessed using loads and stores 

 Does not waste energy on system calls 

 Data is manipulated directly on the NVM device 
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Evaluated Workloads 
 Unix utilities that manipulate files 

 cp: copy a large file from one location to another 

 cp –r: copy files in a directory tree from one location to another 

 grep: search for a string in a large file 

 grep –r: search for a string recursively in a directory tree 

 

 PostMark: an I/O-intensive benchmark from NetApp 

 Emulates typical access patterns for email, news, web commerce 

 

 MySQL Server: a popular database management system 

 OLTP-style queries generated by Sysbench 

 MySQL (simple): single, random read to an entry 

 MySQL (complex): reads/writes 1 to 100 entries per transaction 
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Performance Results 
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Performance Results: HDD w/o OS/FS 

97 

For HDD-based systems, eliminating OS/FS overheads typically leads to small 
performance improvements  execution time dominated by HDD access latency 



Performance Results: HDD w/o OS/FS 
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Though, for more complex file system operations like directory traversal (seen with 
cp -r and grep -r), eliminating the OS/FS overhead improves performance 



Performance Results: HDD to NVM 
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Switching from an HDD to NVM greatly reduces execution time due to NVM’s much 
faster access latencies, especially for I/O-intensive workloads (cp, PostMark, MySQL) 



Performance Results: NVM to PMM 
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For most workloads, eliminating OS/FS code and buffering improves performance 
greatly on top of the NVM Baseline system  

(even when DRAM is eliminated from the system) 



Performance Results 
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The workloads that see the greatest improvement from using a Persistent Memory 
are those that spend a large portion of their time executing system call code due to 

the two-level storage model 



Energy Results 
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Energy Results: HDD to NVM 
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Between HDD-based and NVM-based systems, lower NVM energy leads to greatly 
reduced energy consumption 



Energy Results: NVM to PMM 
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Between systems with and without OS/FS code, energy improvements come from:  
1. reduced code footprint, 2. reduced data movement 

Large energy reductions with a PMM over the NVM based system 



Scalability Analysis: Effect of PMM Latency 
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Even if each PMM access takes a non-overlapped 50 cycles (conservative),  
PMM still provides an overall improvement compared to the NVM baseline 

Future research should target keeping PMM latencies in check 
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Related Work 
 We provide a comprehensive overview of past work related to 

single-level stores and persistent memory techniques 

 

1. Integrating file systems with persistent memory 

 Need optimized hardware to fully take advantage of new technologies 

2. Programming language support for persistent objects 

 Incurs the added latency of indirect data access through software 

3. Load/store interfaces to persistent storage 

 Lack efficient and fast hardware support for address translation, efficient 
file indexing, fast reliability and protection guarantees 

4. Analysis of OS overheads with Flash devices 

 Our study corroborates findings in this area and shows even larger 
consequences for systems with emerging NVM devices 

 

 The goal of our work is to provide cheap and fast hardware support 
for memories to enable high energy efficiency and performance 
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New Questions and Challenges 
 We identify and discuss several open research questions 

 

 Q1. How to tailor applications for systems with persistent 
memory? 

 

 Q2. How can hardware and software cooperate to support a 
scalable, persistent single-level address space? 

 

 Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems? 

 

 Q4. How to mitigate potential hardware performance and energy 
overheads? 
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Summary and Conclusions 
 Traditional two-level storage model is inefficient in terms of 

performance and energy 

 Due to OS/FS code and buffering needed to manage two models 

 Especially so in future devices with NVM technologies, as we show 
 

 New non-volatile memory based persistent memory designs that 
use a single-level storage model to unify memory and storage can 
alleviate this problem 
 

 We quantified the performance and energy benefits of such a 
single-level persistent memory/storage design 

 Showed significant benefits from reduced code footprint, data 
movement, and system software overhead on a variety of workloads 

 

 Such a design requires more research to answer the questions we 
have posed and enable efficient persistent memory managers 

 can lead to a fundamentally more efficient storage system 
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Evolution of NAND Flash Memory 

 Flash memory widening its range of applications 

 Portable consumer devices, laptop PCs and enterprise servers 

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix) 

CMOS scaling 

More bits per Cell 



UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

 Endurance of flash memory decreasing with scaling and multi-level cells 

 Error correction capability required to guarantee storage-class reliability  
(UBER < 10-15) is increasing exponentially to reach less endurance 
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Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit) 
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Future NAND Flash Storage Architecture 
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Test System Infrastructure 
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NAND Flash Testing Platform 
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NAND Flash Usage and Error Model 
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Error Types and Testing Methodology 

 Erase errors 

  Count the number of cells that fail to be erased to “11” state 
 

 Program interference errors 

 Compare the data immediately after page programming and the data 
after the whole block being programmed 
 

 Read errors 

 Continuously read a given block and compare the data between 
consecutive read sequences 
 

 Retention errors 

 Compare the data read after an amount of time to data written 

 Characterize short term retention errors under room temperature 

 Characterize long term retention errors by baking in the oven 
under 125℃ 



retention errors 

 Raw bit error rate increases exponentially with P/E cycles 

 Retention errors are dominant (>99% for 1-year ret. time) 

 Retention errors increase with retention time requirement 

 

Observations: Flash Error Analysis 
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Retention Error Mechanism 
LSB/MSB 

 Electron loss from the floating gate causes retention errors 

  Cells with more programmed electrons suffer more from 

retention errors 

  Threshold voltage is more likely to shift  by one window than by 

multiple 
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Retention Error Value Dependency  

00 01 
01 10 

 Cells with more programmed electrons tend to suffer more 

from retention noise (i.e. 00 and 01) 



More Details on Flash Error Analysis 

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"  
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Dresden, Germany, March 2012. Slides 
(ppt) 
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Threshold Voltage Distribution Shifts 

As P/E cycles increase ... 

Distribution shifts to the right  

Distribution becomes wider 

 

P1 State P2 State P3 State



More Detail 

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling"  
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Grenoble, France, March 2013. Slides 
(ppt) 

 

127 

http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://www.date-conference.com/
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt


Flash Correct-and-Refresh 
  

Retention-Aware Error Management  

for Increased Flash Memory Lifetime 

Yu Cai1   Gulay Yalcin2   Onur Mutlu1   Erich F. Haratsch3  

Adrian Cristal2   Osman S. Unsal2   Ken Mai1 

1 Carnegie Mellon University 
2 Barcelona Supercomputing Center  
3 LSI Corporation 

 



Executive Summary 
 NAND flash memory has low endurance: a flash cell dies after 3k P/E 

cycles vs. 50k desired  Major scaling challenge for flash memory 

 Flash error rate increases exponentially over flash lifetime 

 Problem: Stronger error correction codes (ECC) are ineffective and 
undesirable for improving flash lifetime due to 

 diminishing returns on lifetime with increased correction strength 

 prohibitively high power, area, latency overheads 

 Our Goal: Develop techniques to tolerate high error rates w/o strong ECC 

 Observation: Retention errors are the dominant errors in MLC NAND flash 

 flash cell loses charge over time; retention errors increase as cell gets worn out 

 Solution: Flash Correct-and-Refresh (FCR) 

 Periodically read, correct, and reprogram (in place) or remap each flash page 
before it accumulates more errors than can be corrected by simple ECC 

 Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles) 

 Results: FCR improves flash memory lifetime by 46X with no hardware 
changes and low energy overhead; outperforms strong ECCs 
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Problem: Limited Endurance of Flash Memory 

 NAND flash has limited endurance 

 A cell can tolerate a small number of Program/Erase (P/E) cycles 

 3x-nm flash with 2 bits/cell  3K P/E cycles 

 

 Enterprise data storage requirements demand very high 
endurance 

 >50K P/E cycles (10 full disk writes per day for 3-5 years) 

 

 Continued process scaling and more bits per cell will reduce 
flash endurance 

 

 One potential solution: stronger error correction codes (ECC) 

 Stronger ECC not effective enough and inefficient 
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UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

 Endurance of flash memory decreasing with scaling and multi-level cells 

 Error correction capability required to guarantee storage-class reliability  
(UBER < 10-15) is increasing exponentially to reach less endurance 
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Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit) 
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The Problem with Stronger Error Correction 

 Stronger ECC detects and corrects more raw bit errors  
increases P/E cycles endured 

 

 Two shortcomings of stronger ECC: 

 

1. High implementation complexity 

     Power and area overheads increase super-linearly, but    

   correction capability increases sub-linearly with ECC strength 

  

2. Diminishing returns on flash lifetime improvement 

     Raw bit error rate increases exponentially with P/E cycles, but 

   correction capability increases sub-linearly with ECC strength 
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Methodology: Error and ECC Analysis 

 Characterized errors and error rates of 3x-nm MLC NAND 
flash using an experimental FPGA-based flash platform 

 Cai et al., “Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis,” DATE 2012. 

 

 Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 

 Raw Bit Error Rate: Fraction of erroneous bits without any correction 
 

 

 Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 

 Identified how much RBER each code can tolerate  

     how many P/E cycles (flash lifetime) each code can sustain  
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NAND Flash Error Types 

 Four types of errors [Cai+, DATE 2012] 

 

 Caused by common flash operations 

 Read errors 

 Erase errors 

 Program (interference) errors 

 

 Caused by flash cell losing charge over time 

 Retention errors 

 Whether an error happens depends on required retention time 

 Especially problematic in MLC flash because voltage threshold 
window to determine stored value is smaller 
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retention errors 

 Raw bit error rate increases exponentially with P/E cycles 

 Retention errors are dominant (>99% for 1-year ret. time) 

 Retention errors increase with retention time requirement 

 

Observations: Flash Error Analysis 
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P/E Cycles 



Methodology: Error and ECC Analysis 

 Characterized errors and error rates of 3x-nm MLC NAND 
flash using an experimental FPGA-based flash platform 

 Cai et al., “Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis,” DATE 2012. 

 

 Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 

 Raw Bit Error Rate: Fraction of erroneous bits without any correction 
 

 

 Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 

 Identified how much RBER each code can tolerate  

     how many P/E cycles (flash lifetime) each code can sustain  
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ECC Strength Analysis 

 Examined characteristics of various-strength BCH codes 
with the following criteria 

 Storage efficiency: >89% coding rate (user data/total storage) 

 Reliability: <10-15 uncorrectable bit error rate 

 Code length: segment of one flash page (e.g., 4kB) 
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Code length 

(n)

Correctable 

Errors (t)

Acceptable 

Raw BER

Norm. 

Power

Norm. Area

512 7 1.0x10-4 (1x) 1 1

1024 12 4.0x10-4 (4x) 2 2.1

2048 22 1.0x10-3 (10x) 4.1 3.9

4096 40 1.7x10-3 (17x) 8.6 10.3

8192 74 2.2x10-3 (22x) 17.8 21.3

32768 259 2.6x10-3 (26x) 71 85

Error correction capability increases sub-linearly 

Power and area overheads increase super-linearly 



 

 Lifetime improvement comparison of various BCH codes 

 

 

 

 

 
 

 

 

Resulting Flash Lifetime with Strong ECC 
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Strong ECC is very inefficient at improving lifetime 



Our Goal 

     

 

    Develop new techniques  

    to improve flash lifetime   

    without relying on stronger ECC 
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Flash Correct-and-Refresh (FCR) 

 Key Observations: 

 Retention errors are the dominant source of errors in flash 
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011] 

     limit flash lifetime as they increase over time 

 Retention errors can be corrected by “refreshing” each flash 
page periodically  

 

 Key Idea: 

 Periodically read each flash page, 

 Correct its errors using “weak” ECC, and  

 Either remap it to a new physical page or reprogram it in-place, 

 Before the page accumulates more errors than ECC-correctable 

 Optimization: Adapt refresh rate to endured P/E cycles 
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FCR Intuition 
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FCR: Two Key Questions 

 How to refresh?  

 Remap a page to another one 

 Reprogram a page (in-place) 

 Hybrid of remap and reprogram 

 

 When to refresh?  

 Fixed period 

 Adapt the period to retention error severity 
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Remapping Based FCR 

 Idea: Periodically remap each page to a different physical 
page (after correcting errors) 

 

 Also [Pan et al., HPCA 2012] 

 FTL already has support for 

    changing logical  physical 

    flash block/page mappings 

 Deallocated block is 

    erased by garbage collector 

 

 Problem: Causes additional erase operations  more wearout 

 Bad for read-intensive workloads (few erases really needed) 

 Lifetime degrades for such workloads (see paper) 
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In-Place Reprogramming Based FCR 

 Idea: Periodically reprogram (in-place) each physical page 
(after correcting errors) 

 

 Flash programming techniques 

    (ISPP) can correct retention  

    errors in-place by recharging 

    flash cells 

 

 

 

 Problem: Program errors accumulate on the same page  
may not be correctable by ECC after some time 
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Reprogram corrected data 



 

 

 

 

 

 

 

 

 

 Pro: No remapping needed  no additional erase operations 

 Con: Increases the occurrence of program errors 

In-Place Reprogramming of Flash Cells 
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Retention errors are 

caused by cell voltage 

shifting to the left 

 

ISPP moves cell 

voltage to the right; 

fixes retention errors 
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Program Errors in Flash Memory 

 When a cell is being programmed, voltage level of a 
neighboring cell changes (unintentionally) due to parasitic 
capacitance coupling  

    can change the data value stored 

 

 Also called program interference error 

 

 Program interference causes neighboring cell voltage to 
shift to the right 
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Problem with In-Place Reprogramming 
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Hybrid Reprogramming/Remapping Based FCR 

 Idea: 

 Monitor the count of right-shift errors (after error correction) 

 If count < threshold, in-place reprogram the page 

 Else, remap the page to a new page 

 

 Observation: 

 Program errors much less frequent than retention errors  

Remapping happens only infrequently  

 

 Benefit:  

 Hybrid FCR greatly reduces erase operations due to remapping 
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Adaptive-Rate FCR 

 Observation: 

 Retention error rate strongly depends on the P/E cycles a flash 
page endured so far 

 No need to refresh frequently (at all) early in flash lifetime 

 

 Idea: 

 Adapt the refresh rate to the P/E cycles endured by each page 

 Increase refresh rate gradually with increasing P/E cycles 

 

 Benefits: 

 Reduces overhead of refresh operations 

 Can use existing FTL mechanisms that keep track of P/E 
cycles 
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Adaptive-Rate FCR (Example) 
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FCR: Other Considerations 

 Implementation cost 

 No hardware changes 

 FTL software/firmware needs modification 

 

 Response time impact 

 FCR not as frequent as DRAM refresh; low impact 

 

 Adaptation to variations in retention error rate 

 Adapt refresh rate based on, e.g., temperature [Liu+ ISCA 2012] 

 

 FCR requires power 

 Enterprise storage systems typically powered on 
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Evaluation Methodology 

 Experimental flash platform to obtain error rates at 
different P/E cycles [Cai+ DATE 2012] 
 

 Simulation framework to obtain P/E cycles of real 
workloads: DiskSim with SSD extensions 
 

 Simulated system: 256GB flash, 4 channels, 8 
chips/channel, 8K blocks/chip, 128 pages/block, 8KB pages 
 

 Workloads  

 File system applications, databases, web search 

 Categories: Write-heavy, read-heavy, balanced 
 

 Evaluation metrics 

 Lifetime (extrapolated) 

 Energy overhead, P/E cycle overhead 
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Extrapolated Lifetime 
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Maximum full disk P/E Cycles for a Technique 

Total full disk P/E Cycles for a Workload 
× # of Days of Given Application 

Obtained from Experimental Platform Data 

Obtained from Workload Simulation 
Real length (in time) of  

each workload trace 



Normalized Flash Memory Lifetime  
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Lifetime Evaluation Takeaways 

 Significant average lifetime improvement over no refresh 

 Adaptive-rate FCR: 46X 

 Hybrid reprogramming/remapping based FCR: 31X 

 Remapping based FCR: 9X 

 

 FCR lifetime improvement larger than that of stronger ECC 

 46X vs. 4X with 32-kbit ECC (over 512-bit ECC) 

 FCR is less complex and less costly than stronger ECC 

 

 Lifetime on all workloads improves with Hybrid FCR 

 Remapping based FCR can degrade lifetime on read-heavy WL 

 Lifetime improvement highest in write-heavy workloads 
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Energy Overhead 

 

 

 

 

 

 

 

 

 

 Adaptive-rate refresh: <1.8% energy increase until daily 
refresh is triggered 
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Overhead of Additional Erases 

 Additional erases happen due to remapping of pages 

 

 Low (2%-20%) for write intensive workloads 

 High (up to 10X) for read-intensive workloads 

 

 Improved P/E cycle lifetime of all workloads largely 
outweighs the additional P/E cycles due to remapping 
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More Results in the Paper 

 Detailed workload analysis 

 

 Effect of refresh rate 
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Conclusion 

 NAND flash memory lifetime is limited due to uncorrectable 
errors, which increase over lifetime (P/E cycles) 
 

 Observation: Dominant source of errors in flash memory is 
retention errors  retention error rate limits lifetime 
 

 Flash Correct-and-Refresh (FCR) techniques reduce 
retention error rate to improve flash lifetime 

 Periodically read, correct, and remap or reprogram each page 
before it accumulates more errors than can be corrected 

 Adapt refresh period to the severity of errors 
 

 FCR improves flash lifetime by 46X at no hardware cost 

 More effective and efficient than stronger ECC  

 Can enable better flash memory scaling 
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