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Main Memory Lectures 

 These slides are from the Scalable Memory Systems course 
taught at ACACES 2013 (July 15-19, 2013) 

 

 Course Website: 

 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html 

 

 This is the third lecture: 

 Lecture 3a (July 17, 2013): DRAM Basics and DRAM Scaling: 
New DRAM Architectures II (pptx) (pdf) 
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New DRAM Architectures 

 RAIDR: Reducing Refresh Impact 

 TL-DRAM: Reducing DRAM Latency 

 SALP: Reducing Bank Conflict Impact 

 RowClone: Fast Bulk Data Copy and Initialization 
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Subarray-Level Parallelism: 

Reducing Bank Conflict Impact 

 

 

 

 

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu, 
"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM" 

Proceedings of the 39th International Symposium on Computer Architecture (ISCA),  
Portland, OR, June 2012. Slides (pptx)  
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The Memory Bank Conflict Problem 

 Two requests to the same bank are serviced serially 

 Problem: Costly in terms of performance and power 

 Goal: We would like to reduce bank conflicts without 
increasing the number of banks (at low cost) 

 

 Idea: Exploit the internal sub-array structure of a DRAM bank 
to parallelize bank conflicts 

 By reducing global sharing of hardware between sub-arrays 

 

 Kim, Seshadri, Lee, Liu, Mutlu, “A Case for Exploiting 
Subarray-Level Parallelism in DRAM,” ISCA 2012. 
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The Problem with Memory Bank Conflicts 



Goal 

• Goal: Mitigate the detrimental effects of 
bank conflicts in a cost-effective manner 

 

• Naïve solution: Add more banks 

– Very expensive 

 

• Cost-effective solution: Approximate the 
benefits of more banks without adding 
more banks 
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A DRAM bank is divided into subarrays 

Key Observation #1 
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Key Observation #2 
Each subarray is mostly independent…  

– except occasionally sharing global structures 
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Key Idea: Reduce Sharing of Globals 
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Overview of Our Mechanism 
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Challenges: Global Structures 

1. Global Address Latch 

 

 

2. Global Bitlines 
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Local 
row-buffer 
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row-buffer 

Challenge #1. Global Address Latch 
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Solution #1. Subarray Address Latch 
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Challenges: Global Structures 

1. Global Address Latch 

• Problem: Only one raised wordline 

• Solution: Subarray Address Latch 

2. Global Bitlines 
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Challenge #2. Global Bitlines 
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Challenges: Global Structures 

1. Global Address Latch 

• Problem: Only one raised wordline 

• Solution: Subarray Address Latch 

2. Global Bitlines 

• Problem: Collision during access 

• Solution: Designated-Bit Latch 
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MASA (Multitude of Activated Subarrays) 

 



• Baseline (Subarray-Oblivious) 

 

 

 

 

• MASA 

 

 

 

MASA: Advantages 
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MASA: Overhead 

• DRAM Die Size: 0.15% increase 

– Subarray Address Latches 

– Designated-Bit Latches & Wire 

• DRAM Static Energy: Small increase 

– 0.56mW for each activated subarray 

– But saves dynamic energy 

• Controller: Small additional storage 

– Keep track of subarray status (< 256B) 

– Keep track of new timing constraints 
21 



Cheaper Mechanisms 
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System Configuration 
• System Configuration 

– CPU: 5.3GHz, 128 ROB, 8 MSHR 

– LLC: 512kB per-core slice 

• Memory Configuration 
– DDR3-1066 

– (default) 1 channel, 1 rank, 8 banks, 8 subarrays-per-bank 

– (sensitivity) 1-8 chans, 1-8 ranks, 8-64 banks, 1-128 subarrays 

• Mapping & Row-Policy 
– (default) Line-interleaved & Closed-row 

– (sensitivity) Row-interleaved & Open-row 

• DRAM Controller Configuration 
– 64-/64-entry read/write queues per-channel 

– FR-FCFS, batch scheduling for writes 
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SALP: Single-core Results 
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SALP: Single-Core Results 
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Subarray-Level Parallelism: Results 
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New DRAM Architectures 

 RAIDR: Reducing Refresh Impact 

 TL-DRAM: Reducing DRAM Latency 

 SALP: Reducing Bank Conflict Impact 

 RowClone: Fast Bulk Data Copy and Initialization 
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RowClone: Fast Bulk Data  

Copy and Initialization 

 

 

 

 

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,  
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry, 

"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data" 
CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie Mellon University, April 2013. 

http://users.ece.cmu.edu/~omutlu/pub/rowclone_CMU-CS-TR-13-108.pdf
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Today’s Memory: Bulk Data Copy 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) High latency 

2) High bandwidth utilization 

3) Cache pollution 

4) Unwanted data movement 
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Future: RowClone (In-Memory Copy) 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) Low latency 

2) Low bandwidth utilization 

3) No cache pollution 

4) No unwanted data movement 
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” CMU Tech Report 2013. 
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RowClone: in-DRAM Row Copy 

(and Initialization) 
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RowClone: Key Idea 

• DRAM banks contain 
1. Mutiple rows of DRAM cells – row = 8KB 

2. A row buffer shared by the DRAM rows 

 

• Large scale copy 
1. Copy data from source row to row buffer 

2. Copy data from row buffer to destination row 

 

Can be accomplished by two consecutive ACTIVATEs 

(if source and destination rows are in the same subarray) 
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RowClone: Intra-subarray Copy 
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RowClone: Inter-bank Copy 
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RowClone: Inter-subarray Copy 

I/O Bus 
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Fast Row Initialization 

0 0 0 0 0 0 0 0 0 0 0 0 

Fix a row at Zero 
(0.5% loss in capacity) 
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RowClone: Latency and Energy Savings 
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” CMU Tech Report 2013. 
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RowClone: Latency and Energy Savings 



RowClone: Overall Performance 

40 



Agenda for Topic 1 (DRAM Scaling) 

 What Will You Learn in This Mini-Lecture Series 

 Main Memory Basics (with a Focus on DRAM) 

 Major Trends Affecting Main Memory 

 DRAM Scaling Problem and Solution Directions 

 Solution Direction 1: System-DRAM Co-Design 

 Ongoing Research 

 Summary 
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Sampling of Ongoing Research 

 Online retention time profiling  

 Preliminary work in ISCA 2013 
 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms" 
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), 
Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)  

 

 More computation in memory and controllers 

 

 Refresh/demand parallelization 
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Agenda for Topic 1 (DRAM Scaling) 

 What Will You Learn in This Mini-Lecture Series 

 Main Memory Basics (with a Focus on DRAM) 

 Major Trends Affecting Main Memory 

 DRAM Scaling Problem and Solution Directions 

 Solution Direction 1: System-DRAM Co-Design 

 Ongoing Research 

 Summary 
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Summary 
 Major problems with DRAM scaling and design: high refresh 

rate, high latency, low parallelism, bulk data movement  
 

 Four new DRAM designs 

 RAIDR: Reduces refresh impact 

 TL-DRAM: Reduces DRAM latency at low cost 

 SALP: Improves DRAM parallelism  

 RowClone: Reduces energy and performance impact of bulk data copy 
 

 All four designs 

 Improve both performance and energy consumption 

 Are low cost (low DRAM area overhead) 

 Enable new degrees of freedom to software & controllers 
 

 Rethinking DRAM interface and design essential for scaling 

 Co-design DRAM with the rest of the system 
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Further Reading: Data Retention and Power 

 Characterization of Commodity DRAM Chips 
 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 

"An Experimental Study of Data Retention Behavior in Modern 
DRAM Devices: Implications for Retention Time Profiling 
Mechanisms" 
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)  

 

 Voltage and Frequency Scaling in DRAM 
 Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur 

Mutlu, 
"Memory Power Management via Dynamic Voltage/Frequency 
Scaling" 
Proceedings of the 8th International Conference on Autonomic Computing 
(ICAC), Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)  
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Three Papers 

 Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur Mutlu, 
"Memory Power Management via Dynamic Voltage/Frequency Scaling" 
Proceedings of the 8th International Conference on Autonomic Computing 
(ICAC), Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)  

 

 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms" 
Proceedings of the 40th International Symposium on Computer Architecture 
(ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)  

 

 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, 
and Ken Mai, 
"Error Analysis and Retention-Aware Error Management for NAND Flash 
Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 
1, May 2013.  
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Memory Power Management via 

Dynamic Voltage/Frequency Scaling 

Howard David (Intel) 

Eugene Gorbatov (Intel) 

Ulf R. Hanebutte (Intel) 

Chris Fallin (CMU) 

Onur Mutlu (CMU) 



Memory Power is Significant 
 Power consumption is a primary concern in modern servers 

 Many works: CPU, whole-system or cluster-level approach 

 But memory power is largely unaddressed 

 Our server system*: memory is 19% of system power (avg) 

 Some work notes up to 40% of total system power 

 Goal: Can we reduce this figure? 
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Existing Solution: Memory Sleep States? 

 Most memory energy-efficiency work uses sleep states 

 Shut down DRAM devices when no memory requests active 

 But, even low-memory-bandwidth workloads keep memory 
awake 

 Idle periods between requests diminish in multicore workloads 

 CPU-bound workloads/phases rarely completely cache-resident 
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Memory Bandwidth Varies Widely 

 Workload memory bandwidth requirements vary widely 

 

 

 

 

 

 

 

 

 

 Memory system is provisioned for peak capacity 

  often underutilized 
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Memory Power can be Scaled Down 

 DDR can operate at multiple frequencies  reduce power 

 Lower frequency directly reduces switching power 

 Lower frequency allows for lower voltage 

 Comparable to CPU DVFS 

 

 

 

 

 Frequency scaling increases latency  reduce performance 

 Memory storage array is asynchronous 

 But, bus transfer depends on frequency 

 When bus bandwidth is bottleneck, performance suffers 

54 

CPU 
Voltage/Freq. 

System 
Power 

Memory 
Freq. 

System 
Power 

↓ 15% ↓ 9.9% ↓ 40% ↓ 7.6% 



Observations So Far 

 Memory power is a significant portion of total power 

 19% (avg) in our system, up to 40% noted in other works 

 

 Sleep state residency is low in many workloads 

 Multicore workloads reduce idle periods 

 CPU-bound applications send requests frequently enough 
to keep memory devices awake 

 

 Memory bandwidth demand is very low in some workloads 

 

 Memory power is reduced by frequency scaling 

 And voltage scaling can give further reductions 
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DVFS for Memory 

 Key Idea: observe memory bandwidth utilization, then 
adjust memory frequency/voltage, to reduce power with 
minimal performance loss 

  

  Dynamic Voltage/Frequency Scaling (DVFS) 

    for memory 

 

 Goal in this work: 

 Implement DVFS in the memory system, by: 

 Developing a simple control algorithm to exploit opportunity 
for reduced memory frequency/voltage by observing behavior  

 Evaluating the proposed algorithm on a real system 
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Outline 

 Motivation 

 

 Background and Characterization 

 DRAM Operation 

 DRAM Power 

 Frequency and Voltage Scaling 

 

 Performance Effects of Frequency Scaling 

 

 Frequency Control Algorithm 

 

 Evaluation and Conclusions 
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 Motivation 

 

 Background and Characterization 

 DRAM Operation 

 DRAM Power 

 Frequency and Voltage Scaling 

 

 Performance Effects of Frequency Scaling 

 

 Frequency Control Algorithm 

 

 Evaluation and Conclusions 
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DRAM Operation 

 Main memory consists of DIMMs of DRAM devices 

 Each DIMM is attached to a memory bus (channel) 

 Multiple DIMMs can connect to one channel 
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Inside a DRAM Device 
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memory bus speed 

 

I/O Circuitry 
• Runs at bus speed 
• Clock sync/distribution 
• Bus drivers and receivers 
• Buffering/queueing 

 

On-Die Termination 
• Required by bus electrical characteristics 

for reliable operation 
• Resistive element that dissipates power 

when bus is active 



Effect of Frequency Scaling on Power 
 Reduced memory bus frequency: 

 Does not affect bank power: 

 Constant energy per operation 

 Depends only on utilized memory bandwidth 

 Decreases I/O power: 

 Dynamic power in bus interface and clock circuitry 
reduces due to less frequent switching 

 Increases termination power: 

 Same data takes longer to transfer 

 Hence, bus utilization increases 

 Tradeoff between I/O and termination results in a net 
power reduction at lower frequencies 
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Effects of Voltage Scaling on Power 

 Voltage scaling further reduces power because all parts of 
memory devices will draw less current (at less voltage) 

 Voltage reduction is possible because stable operation 
requires lower voltage at lower frequency: 
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How Much Memory Bandwidth is Needed? 
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Performance Impact of Static Frequency Scaling 
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 Performance impact is proportional to bandwidth demand 

 Many workloads tolerate lower frequency with minimal 
performance drop 
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Memory Latency Under Load 

 At low load, most time is in array access and bus transfer 

  small constant offset between bus-frequency latency curves 

 As load increases, queueing delay begins to dominate 

  bus frequency significantly affects latency 
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Control Algorithm: Demand-Based Switching 

After each epoch of length Tepoch: 

 Measure per-channel bandwidth BW 

 if     BW < T800 : switch to   800MHz 

 else if BW < T1066 : switch to 1066MHz 

 else   : switch to 1333MHz 
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Implementing V/F Switching 

 Halt Memory Operations 

 Pause requests 

 Put DRAM in Self-Refresh 

 Stop the DIMM clock 

 Transition Voltage/Frequency 

 Begin voltage ramp 

 Relock memory controller PLL at new frequency 

 Restart DIMM clock 

 Wait for DIMM PLLs to relock 

 Begin Memory Operations 

 Take DRAM out of Self-Refresh 

 Resume requests 
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C Memory frequency already adjustable statically 

C Voltage regulators for CPU DVFS can work for 

     memory DVFS 

C Full transition takes ~20µs 
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Evaluation Methodology 
 Real-system evaluation 

 Dual 4-core Intel Xeon®, 3 memory channels/socket 

 48 GB of DDR3 (12 DIMMs, 4GB dual-rank, 1333MHz) 

 

 Emulating memory frequency for performance 

 Altered memory controller timing registers (tRC, tB2BCAS) 

 Gives performance equivalent to slower memory frequencies 

 

 Modeling power reduction 

 Measure baseline system (AC power meter, 1s samples) 

 Compute reductions with an analytical model (see paper) 
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Evaluation Methodology 
 

 Workloads 

 SPEC CPU2006: CPU-intensive workloads 

 All cores run a copy of the benchmark 

 

 Parameters 

 Tepoch = 10ms 

 Two variants of algorithm with different switching thresholds: 

 BW(0.5, 1): T800 = 0.5GB/s, T1066 = 1GB/s 

 BW(0.5, 2): T800  = 0.5GB/s, T1066 = 2GB/s 

 More aggressive frequency/voltage scaling 
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Performance Impact of Memory DVFS 

 Minimal performance degradation: 0.2% (avg), 1.7% (max)   

 Experimental error ~1% 
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Memory Frequency Distribution 

 Frequency distribution shifts toward higher memory 
   frequencies with more memory-intensive benchmarks 
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Memory Power Reduction 

 Memory power reduces by 10.4% (avg), 20.5% (max)  
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System Power Reduction 
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 As a result, system power reduces by 1.9% (avg), 3.5% (max)  



 System energy reduces by 2.4% (avg), 5.1% (max)  

System Energy Reduction 

77 

-1 

0 

1 

2 

3 

4 

5 

6 
lb

m
 

G
em

sF
D

TD
 

m
ilc

 

le
sl

ie
3

d
 

lib
q

u
an

tu
m

 

so
p

le
x 

sp
h

in
x3

 

m
cf

 

ca
ct

u
sA

D
M

 

gc
c 

d
ea

lII
 

to
n

to
 

b
zi

p
2

 

go
b

m
k 

sj
en

g 

ca
lc

u
lix

 

p
er

lb
en

ch
 

h
2

6
4

re
f 

n
am

d
 

gr
o

m
ac

s 

ga
m

es
s 

p
o

vr
ay

 

h
m

m
er

 

A
V

G
 

Sy
st

e
m

 E
n

e
rg

y 
R

e
d

u
ct

io
n

 (
%

) 

BW(0.5,1) 
BW(0.5,2) 



Related Work 

 MemScale [Deng11], concurrent work (ASPLOS 2011) 

 Also proposes Memory DVFS 

 Application performance impact model to decide voltage and 
frequency: requires specific modeling for a given system; our 
bandwidth-based approach avoids this complexity 

 Simulation-based evaluation; our work is a real-system proof 
of concept 

 

 Memory Sleep States (Creating opportunity with data placement 
[Lebeck00,Pandey06], OS scheduling [Delaluz02], VM subsystem [Huang05]; 
Making better decisions with better models [Hur08,Fan01]) 

 Power Limiting/Shifting (RAPL [David10] uses memory throttling for 
thermal limits; CPU throttling for memory traffic [Lin07,08]; Power shifting 
across system [Felter05]) 
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Conclusions 
 Memory power is a significant component of system power 

 19% average in our evaluation system, 40% in other work 

 

 Workloads often keep memory active but underutilized 

 Channel bandwidth demands are highly variable 

 Use of memory sleep states is often limited 

 

 Scaling memory frequency/voltage can reduce memory 
power with minimal system performance impact 

 10.4% average memory power reduction 

 Yields 2.4% average system energy reduction 

 

 Greater reductions are possible with wider 
frequency/voltage range and better control algorithms 
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Summary (I) 

 DRAM requires periodic refresh to avoid data loss 

 Refresh wastes energy, reduces performance, limits DRAM density scaling 

 Many past works observed that different DRAM cells can retain data for 
different times without being refreshed; proposed reducing refresh rate 
for strong DRAM cells 

 Problem: These techniques require an accurate profile of the retention time of 
all DRAM cells 

 Our goal: To analyze the retention time behavior of DRAM cells in modern 
DRAM devices to aid the collection of accurate profile information 

 Our experiments: We characterize 248 modern commodity DDR3 DRAM 
chips from 5 manufacturers using an FPGA based testing platform 

 Two Key Issues:  

1. Data Pattern Dependence: A cell’s retention time is heavily dependent on data    
values stored in itself and nearby cells, which cannot easily be controlled.  

2. Variable Retention Time: Retention time of some cells change unpredictably 
from high to low at large timescales. 

 

 



Summary (II) 

 Key findings on Data Pattern Dependence 

 There is no observed single data pattern that elicits the lowest 
retention times for a DRAM device  very hard to find this pattern  

 DPD varies between devices due to variation in DRAM array circuit 
design between manufacturers 

 DPD of retention time gets worse as DRAM scales to smaller feature 
sizes 

 

 Key findings on Variable Retention Time 

 VRT is common in modern DRAM cells that are weak 

 The timescale at which VRT occurs is very large (e.g., a cell can stay 
in high retention time state for a day or longer)  finding minimum 

retention time can take very long 
 

 Future work on retention time profiling must address these 
issues 
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A DRAM Cell 

 

 

 

 

 

 

 

 

 

 A DRAM cell consists of a capacitor and an access transistor 

 It stores data in terms of charge in the capacitor 

 A DRAM chip consists of (10s of 1000s of) rows of such cells 

wordline 

b
it
lin

e
 

b
it
lin

e
 

b
it
lin

e
 

b
it
lin

e
 

(row enable) 



DRAM Refresh 

 DRAM capacitor charge leaks over time 

 

 Each DRAM row is periodically refreshed to restore charge 

 Activate each row every N ms 

 Typical N = 64 ms 

 

 Downsides of refresh 

    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 

-- Refresh rate limits DRAM capacity scaling  
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Refresh Overhead: Performance 
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8% 

46% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Refresh Overhead: Energy 
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15% 

47% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Previous Work on Reducing Refreshes 

 Observed significant variation in data retention times of 
DRAM cells (due to manufacturing process variation) 

 Retention time: maximum time a cell can go without being 
refreshed while maintaining its stored data 

 

 Proposed methods to take advantage of widely varying 
retention times among DRAM rows 

 Reduce refresh rate for rows that can retain data for longer 
than 64 ms, e.g., [Liu+ ISCA 2012] 

 Disable rows that have low retention times, e.g., [Venkatesan+ 

HPCA 2006] 

 

 Showed large benefits in energy and performance 
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1. Profiling: Profile the retention time of all DRAM rows 

 

 

 

2. Binning: Store rows into bins by retention time 

    use Bloom Filters for efficient and scalable storage 

 

 

 

3. Refreshing: Memory controller refreshes rows in different 
bins at different rates 

    probe Bloom Filters to determine refresh rate of a row 

An Example: RAIDR [Liu+, ISCA 2012] 
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1.25KB storage in controller for 32GB DRAM memory 

Can reduce refreshes by ~75%  
 reduces energy consumption and improves performance 

Problem: Requires accurate profiling of DRAM row retention times 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Motivation 

 Past works require accurate and reliable measurement of 
retention time of each DRAM row 

 To maintain data integrity while reducing refreshes 

 

 Assumption: worst-case retention time of each row can be 
determined and stays the same at a given temperature 

 Some works propose writing all 1’s and 0’s to a row, and 
measuring the time before data corruption 

 

 Question: 

 Can we reliably and accurately determine retention times of all 
DRAM rows? 
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Two Challenges to Retention Time Profiling 

 Data Pattern Dependence (DPD) of retention time 

 

 

 

 

 Variable Retention Time (VRT) phenomenon 
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Two Challenges to Retention Time Profiling 

 Challenge 1: Data Pattern Dependence (DPD) 

 Retention time of a DRAM cell depends on its value and the 
values of cells nearby it 

 

 When a row is activated, all bitlines are perturbed simultaneously 
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 Electrical noise on the bitline affects reliable sensing of a DRAM cell 

 The magnitude of this noise is affected by values of nearby cells via 

 Bitline-bitline coupling  electrical coupling between adjacent bitlines 

 Bitline-wordline coupling  electrical coupling between each bitline and 

the activated wordline 

 

 

 

 

 Retention time of a cell depends on data patterns stored in 
nearby cells  

     need to find the worst data pattern to find worst-case retention time 

 

Data Pattern Dependence 
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Two Challenges to Retention Time Profiling 

 Challenge 2: Variable Retention Time (VRT) 

 Retention time of a DRAM cell changes randomly over time        

 a cell alternates between multiple retention time states 

 

 Leakage current of a cell changes sporadically due to a charge 
trap in the gate oxide of the DRAM cell access transistor 

 When the trap becomes occupied, charge leaks more readily 
from the transistor’s drain, leading to a short retention time 

 Called Trap-Assisted Gate-Induced Drain Leakage 

 This process appears to be a random process [Kim+ IEEE TED’11] 

 

 Worst-case retention time depends on a random process  

 need to find the worst case despite this 
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Our Goal 

 Analyze the retention time behavior of DRAM cells in 
modern commodity DRAM devices  

 to aid the collection of accurate profile information 

 

 Provide a comprehensive empirical investigation of two key 
challenges to retention time profiling 

 Data Pattern Dependence (DPD) 

 Variable Retention Time (VRT) 
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DRAM Testing Platform and Method 

 Test platform: Developed a DDR3 DRAM testing platform 
using the Xilinx ML605 FPGA development board 

 Temperature controlled 

 

 Tested DRAM chips: 248 commodity DRAM chips from five 
manufacturers (A,B,C,D,E) 

 Seven families based on equal capacity per device: 

 A 1Gb, A 2Gb 

 B 2Gb 

 C 2Gb 

 D 1Gb, D 2Gb 

 E 2Gb 
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Experiment Design 

 Each module tested for multiple rounds of tests. 

 

 Each test searches for the set of cells with a retention time 
less than a threshold value for a particular data pattern 

 

 High-level structure of a test: 

 Write data pattern to rows in a DRAM bank 

 Prevent refresh for a period of time tWAIT, leave DRAM idle 

 Read stored data pattern, compare to written pattern and 
record corrupt cells as those with retention time < tWAIT 

 

 Test details and important issues to pay attention to are 
discussed in paper 
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Experiment Structure 

101 

Test Round Tests both the data pattern 

and its complement 



Experiment Parameters 

 Most tests conducted at 45 degrees Celsius 

 

 No cells observed to have a retention time less than 1.5 
second at 45

o
C 

 

 Tested tWAIT in increments of 128ms from 1.5 to 6.1 
seconds 
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Tested Data Patterns 

 All 0s/1s: Value 0/1 is written to all bits  

 Previous work suggested this is sufficient 
 

 Checkerboard: Consecutive bits alternate between 0 and 1  

 Coupling noise increases with voltage difference between the 
neighboring bitlines  May induce worst case data pattern (if 

adjacent bits mapped to adjacent cells) 
 

 Walk: Attempts to ensure a single cell storing 1 is 
surrounded by cells storing 0  

 This may lead to even worse coupling noise and retention time due to 
coupling between nearby bitlines [Li+ IEEE TCSI 2011] 

 Walk pattern is permuted in each round to exercise different cells 
 

 Random: Randomly generated data is written to each row 

 A new set of random data is generated for each round 
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Temperature Stability 

105 Tested chips at five different stable temperatures 



Dependence of Retention Time on Temperature 
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Dependence of Retention Time on Temperature 
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Relationship between retention time and temperature is 
consistently bounded (predictable) within a device 

Every 10oC temperature increase  
46.5% reduction in retention time in the worst case 



Retention Time Distribution 
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Minimum tested retention time ~1.5s at 45C  ~126ms at 85C  Very few cells exhibit the lowest retention times Shape of the curve consistent with previous works Newer device families have more weak cells than older ones 
Likely a result of technology scaling 
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Some Terminology 

 Failure population of cells with Retention Time X: The set of 
all cells that exhibit retention failure in any test with any 
data pattern at that retention time (tWAIT) 

 

 Retention Failure Coverage of a Data Pattern DP: Fraction 
of cells with retention time X that exhibit retention failure 
with that particular data pattern DP 

 

 If retention times are not dependent on data pattern stored 
in cells, we would expect 

 Coverage of any data pattern to be 100% 

 In other words, if one data pattern causes a retention failure, 
any other data pattern also would 
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Recall the Tested Data Patterns 

 All 0s/1s: Value 0/1 is written to all bits 

 

 

 Checkerboard: Consecutive bits alternate between 0 and 1  

 

 

 Walk: Attempts to ensure a single cell storing 1 is 
surrounded by cells storing 0  

 

 

 Random: Randomly generated data is written to each row 
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Retention Failure Coverage of Data Patterns 
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A 2Gb chip family 

6.1s retention time 

Walk is the most effective data pattern for this device 

Coverage of fixed patterns is low: ~30% for All 0s/1s 

No data pattern achieves 100% coverage 

Different data patterns have widely different coverage: 
Data pattern dependence exists and is severe 



Retention Failure Coverage of Data Patterns 

113 

B 2Gb chip family 

6.1s retention time 

Random is the most effective data pattern for this device 

No data pattern achieves 100% coverage 



Retention Failure Coverage of Data Patterns 
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Random is the most effective data pattern for this device 

No data pattern achieves 100% coverage 

C 2Gb chip family 

6.1s retention time 



Data Pattern Dependence: Observations (I) 

 A cell’s retention time is heavily influenced by data pattern 
stored in other cells  

 Pattern affects the coupling noise, which affects cell leakage  

 

 No tested data pattern exercises the worst case retention 
time for all cells (no pattern has 100% coverage)  

 No pattern is able to induce the worst-case coupling noise for 
every cell 

 Problem: Underlying DRAM circuit organization is not known to 
the memory controller  very hard to construct a pattern that 

exercises the worst-case cell leakage 

  Opaque mapping of addresses to physical DRAM geometry 

  Internal remapping of addresses within DRAM to tolerate faults 

  Second order coupling effects are very hard to determine 
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Data Pattern Dependence: Observations (II) 

 Fixed, simple data patterns have low coverage 

 They do not exercise the worst-case coupling noise 

 

 The effectiveness of each data pattern varies significantly 
between DRAM devices (of the same or different vendors) 

 Underlying DRAM circuit organization likely differs between 
different devices  patterns leading to worst coupling are 

different in different devices 

 

 Technology scaling appears to increase the impact of data 
pattern dependence 

 Scaling reduces the physical distance between circuit elements, 
increasing the magnitude of coupling effects 
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Effect of Technology Scaling on DPD 
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A 1Gb chip family A 2Gb chip family 

The lowest-coverage data pattern achieves much lower coverage 
for the smaller technology node 



DPD: Implications on Profiling Mechanisms 

 Any retention time profiling mechanism must handle data pattern 
dependence of retention time 

 Intuitive approach: Identify the data pattern that induces the 
worst-case retention time for a particular cell or device 
 

 Problem 1: Very hard to know at the memory controller which 
bits actually interfere with each other due to 

 Opaque mapping of addresses to physical DRAM geometry  

logically consecutive bits may not be physically consecutive 

 Remapping of faulty bitlines/wordlines to redundant ones internally 
within DRAM 
 

 Problem 2: Worst-case coupling noise is affected by non-obvious 
second order bitline coupling effects 
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DPD: Suggestions (for Future Work) 

 A mechanism for identifying worst-case data pattern(s) 
likely requires support from DRAM device 

 DRAM manufacturers might be in a better position to do this 

 But, the ability of the manufacturer to identify and expose the 
entire retention time profile is limited due to VRT 

 

 An alternative approach: Use random data patterns to 
increase coverage as much as possible; handle incorrect 
retention time estimates with ECC 

 Need to keep profiling time in check 

 Need to keep ECC overhead in check 
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Variable Retention Time 

 Retention time of a cell can vary over time 

 

 A cell can randomly switch between multiple leakage 
current states due to Trap-Assisted Gate-Induced Drain 
Leakage, which appears to be a random process  

    [Yaney+ IEDM 1987, Restle+ IEDM 1992] 
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An Example VRT Cell 
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A cell from E 2Gb chip family 



VRT: Questions and Methodology 

 Key Questions 

 How prevalent is VRT in modern DRAM devices? 

 What is the timescale of observation of the lowest retention 
time state? 

 What are the implications on retention time profiling? 

 

 Test Methodology 

 Each device was tested for at least 1024 rounds over 24 hours 

 Temperature fixed at 45
o
C 

 Data pattern used is the most effective data pattern for each 
device  

 For each cell that fails at any retention time, we record the 
minimum and the maximum retention time observed 
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Variable Retention Time 
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A 2Gb chip family 

Min ret time = Max ret time 

Expected if no VRT 

Most failing cells  

exhibit VRT 

Many failing cells jump from  

very high retention time to very low 



Variable Retention Time 
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B 2Gb chip family 



Variable Retention Time 
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C 2Gb chip family 



VRT: Observations So Far 

 VRT is common among weak cells (i.e., those cells that 
experience low retention times) 

 

 VRT can result in significant retention time changes 

 Difference between minimum and maximum retention times of 
a cell can be more than 4x, and may not be bounded 

 Implication: Finding a retention time for a cell and using a 
guardband to ensure minimum retention time is “covered” 
requires a large guardband or may not work 

 

 Retention time profiling mechanisms must identify lowest 
retention time in the presence of VRT 

 Question: How long to profile a cell to find its lowest retention 
time state? 
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Time Between Retention Time State Changes 

 How much time does a cell spend in a high retention state 
before switching to the minimum observed retention time 
state? 
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Time Spent in High Retention Time State 
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A 2Gb chip family 

~4 hours 
~1 day 

Time scale at which a cell switches to the low retention time state 
can be very long (~ 1 day or longer) 

Need to profile for a long time to  
get to the minimum retention time state 



Time Spent in High Retention Time State 
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B 2Gb chip family 



Time Spent in High Retention Time State 
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C 2Gb chip family 



VRT: Implications on Profiling Mechanisms 

 Problem 1: There does not seem to be a way of 
determining if a cell exhibits VRT without actually observing 
a cell exhibiting VRT 

 VRT is a memoryless random process [Kim+ JJAP 2010] 

 

 Problem 2: VRT complicates retention time profiling by 
DRAM manufacturers 

 Exposure to very high temperatures can induce VRT in cells that 
were not previously susceptible  

     can happen during soldering of DRAM chips 

     manufacturer’s retention time profile may not be accurate 
 

 One option for future work: Use ECC to continuously profile 
DRAM online while aggressively reducing refresh rate 

 Need to keep ECC overhead in check 
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Summary and Conclusions 
 DRAM refresh is a critical challenge in scaling DRAM technology 

efficiently to higher capacities and smaller feature sizes 

 Understanding the retention time of modern DRAM devices can 
enable old or new methods to reduce the impact of refresh 

 Many mechanisms require accurate and reliable retention time profiles 
 

 We presented the first work that comprehensively examines data 
retention behavior in modern commodity DRAM devices 

 Characterized 248 devices from five manufacturers 
 

 Key findings: Retention time of a cell significantly depends on data 
pattern stored in other cells (data pattern dependence) and 
changes over time via a random process (variable retention time) 

 Discussed the underlying reasons and provided suggestions 

 Future research on retention time profiling should solve the 
challenges posed by the DPD and VRT phenomena 
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Flash Memory Scaling 

 

 

 

 



Aside: Scaling Flash Memory [Cai+, ICCD’12] 
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 NAND flash memory has low endurance: a flash cell dies after 3k P/E 
cycles vs. 50k desired  Major scaling challenge for flash memory 

 Flash error rate increases exponentially over flash lifetime 

 Problem: Stronger error correction codes (ECC) are ineffective and 
undesirable for improving flash lifetime due to 

 diminishing returns on lifetime with increased correction strength 

 prohibitively high power, area, latency overheads 

 Our Goal: Develop techniques to tolerate high error rates w/o strong ECC 

 Observation: Retention errors are the dominant errors in MLC NAND flash 

 flash cell loses charge over time; retention errors increase as cell gets worn out 

 Solution: Flash Correct-and-Refresh (FCR) 

 Periodically read, correct, and reprogram (in place) or remap each flash page 
before it accumulates more errors than can be corrected by simple ECC 

 Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles) 

 Results: FCR improves flash memory lifetime by 46X with no hardware 
changes and low energy overhead; outperforms strong ECCs 
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 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, 
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France, March 2013. Slides (ppt) 
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Proceedings of the 30th IEEE International Conference on Computer Design (ICCD), 
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Germany, March 2012. Slides (ppt) 
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Evolution of NAND Flash Memory 

 Flash memory widening its range of applications 

 Portable consumer devices, laptop PCs and enterprise servers 

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix) 

CMOS scaling 

More bits per Cell 



UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

 Endurance of flash memory decreasing with scaling and multi-level cells 

 Error correction capability required to guarantee storage-class reliability  
(UBER < 10-15) is increasing exponentially to reach less endurance 
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Future NAND Flash Storage Architecture 

Memory 
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Processing 

Error 

Correction 

Raw Bit  
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• Hamming codes 

• BCH codes  

• Reed-Solomon codes 

• LDPC codes 

• Other Flash friendly codes 

BER < 10-15 

Need to understand NAND flash error patterns 

• Read voltage adjusting 

• Data scrambler 

• Data recovery 

• Soft-information estimation 

Noisy 



Test System Infrastructure 
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NAND Flash Testing Platform 
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NAND Flash Usage and Error Model 
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Error Types and Testing Methodology 

 Erase errors 

  Count the number of cells that fail to be erased to “11” state 
 

 Program interference errors 

 Compare the data immediately after page programming and the data 
after the whole block being programmed 
 

 Read errors 

 Continuously read a given block and compare the data between 
consecutive read sequences 
 

 Retention errors 

 Compare the data read after an amount of time to data written 

 Characterize short term retention errors under room temperature 

 Characterize long term retention errors by baking in the oven 
under 125℃ 



retention errors 

 Raw bit error rate increases exponentially with P/E cycles 

 Retention errors are dominant (>99% for 1-year ret. time) 

 Retention errors increase with retention time requirement 

 

Observations: Flash Error Analysis 
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P/E Cycles 



Retention Error Mechanism 
LSB/MSB 

 Electron loss from the floating gate causes retention errors 

  Cells with more programmed electrons suffer more from 

retention errors 

  Threshold voltage is more likely to shift  by one window than by 

multiple 
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Retention Error Value Dependency  

00 01 
01 10 

 Cells with more programmed electrons tend to suffer more 

from retention noise (i.e. 00 and 01) 



More Details on Flash Error Analysis 

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"  
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Dresden, Germany, March 2012. Slides 
(ppt) 

 

 

149 

http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://www.date-conference.com/
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt


Threshold Voltage Distribution Shifts 

As P/E cycles increase ... 

Distribution shifts to the right  

Distribution becomes wider 

 

P1 State P2 State P3 State



More Detail 

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling"  
Proceedings of the Design, Automation, and Test in Europe 
Conference (DATE), Grenoble, France, March 2013. Slides 
(ppt) 
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Flash Correct-and-Refresh 
  

Retention-Aware Error Management  

for Increased Flash Memory Lifetime 
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Executive Summary 
 NAND flash memory has low endurance: a flash cell dies after 3k P/E 

cycles vs. 50k desired  Major scaling challenge for flash memory 

 Flash error rate increases exponentially over flash lifetime 

 Problem: Stronger error correction codes (ECC) are ineffective and 
undesirable for improving flash lifetime due to 

 diminishing returns on lifetime with increased correction strength 

 prohibitively high power, area, latency overheads 

 Our Goal: Develop techniques to tolerate high error rates w/o strong ECC 

 Observation: Retention errors are the dominant errors in MLC NAND flash 

 flash cell loses charge over time; retention errors increase as cell gets worn out 

 Solution: Flash Correct-and-Refresh (FCR) 

 Periodically read, correct, and reprogram (in place) or remap each flash page 
before it accumulates more errors than can be corrected by simple ECC 

 Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles) 

 Results: FCR improves flash memory lifetime by 46X with no hardware 
changes and low energy overhead; outperforms strong ECCs 
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Problem: Limited Endurance of Flash Memory 

 NAND flash has limited endurance 

 A cell can tolerate a small number of Program/Erase (P/E) cycles 

 3x-nm flash with 2 bits/cell  3K P/E cycles 

 

 Enterprise data storage requirements demand very high 
endurance 

 >50K P/E cycles (10 full disk writes per day for 3-5 years) 

 

 Continued process scaling and more bits per cell will reduce 
flash endurance 

 

 One potential solution: stronger error correction codes (ECC) 

 Stronger ECC not effective enough and inefficient 
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UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

 Endurance of flash memory decreasing with scaling and multi-level cells 

 Error correction capability required to guarantee storage-class reliability  
(UBER < 10-15) is increasing exponentially to reach less endurance 
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The Problem with Stronger Error Correction 

 Stronger ECC detects and corrects more raw bit errors  
increases P/E cycles endured 

 

 Two shortcomings of stronger ECC: 

 

1. High implementation complexity 

     Power and area overheads increase super-linearly, but    

   correction capability increases sub-linearly with ECC strength 

  

2. Diminishing returns on flash lifetime improvement 

     Raw bit error rate increases exponentially with P/E cycles, but 

   correction capability increases sub-linearly with ECC strength 
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Methodology: Error and ECC Analysis 

 Characterized errors and error rates of 3x-nm MLC NAND 
flash using an experimental FPGA-based flash platform 

 Cai et al., “Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis,” DATE 2012. 

 

 Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 

 Raw Bit Error Rate: Fraction of erroneous bits without any correction 
 

 

 Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 

 Identified how much RBER each code can tolerate  

     how many P/E cycles (flash lifetime) each code can sustain  
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NAND Flash Error Types 

 Four types of errors [Cai+, DATE 2012] 

 

 Caused by common flash operations 

 Read errors 

 Erase errors 

 Program (interference) errors 

 

 Caused by flash cell losing charge over time 

 Retention errors 

 Whether an error happens depends on required retention time 

 Especially problematic in MLC flash because voltage threshold 
window to determine stored value is smaller 
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retention errors 

 Raw bit error rate increases exponentially with P/E cycles 

 Retention errors are dominant (>99% for 1-year ret. time) 

 Retention errors increase with retention time requirement 

 

Observations: Flash Error Analysis 
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Methodology: Error and ECC Analysis 

 Characterized errors and error rates of 3x-nm MLC NAND 
flash using an experimental FPGA-based flash platform 

 Cai et al., “Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis,” DATE 2012. 

 

 Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 

 Raw Bit Error Rate: Fraction of erroneous bits without any correction 
 

 

 Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 

 Identified how much RBER each code can tolerate  

     how many P/E cycles (flash lifetime) each code can sustain  
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ECC Strength Analysis 

 Examined characteristics of various-strength BCH codes 
with the following criteria 

 Storage efficiency: >89% coding rate (user data/total storage) 

 Reliability: <10-15 uncorrectable bit error rate 

 Code length: segment of one flash page (e.g., 4kB) 
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Code length 

(n)

Correctable 

Errors (t)

Acceptable 

Raw BER

Norm. 

Power

Norm. Area

512 7 1.0x10-4 (1x) 1 1

1024 12 4.0x10-4 (4x) 2 2.1

2048 22 1.0x10-3 (10x) 4.1 3.9

4096 40 1.7x10-3 (17x) 8.6 10.3

8192 74 2.2x10-3 (22x) 17.8 21.3

32768 259 2.6x10-3 (26x) 71 85

Error correction capability increases sub-linearly 

Power and area overheads increase super-linearly 



 

 Lifetime improvement comparison of various BCH codes 

 

 

 

 

 
 

 

 

Resulting Flash Lifetime with Strong ECC 
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Strong ECC is very inefficient at improving lifetime 



Our Goal 

     

 

    Develop new techniques  

    to improve flash lifetime   

    without relying on stronger ECC 
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Flash Correct-and-Refresh (FCR) 

 Key Observations: 

 Retention errors are the dominant source of errors in flash 
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011] 

     limit flash lifetime as they increase over time 

 Retention errors can be corrected by “refreshing” each flash 
page periodically  

 

 Key Idea: 

 Periodically read each flash page, 

 Correct its errors using “weak” ECC, and  

 Either remap it to a new physical page or reprogram it in-place, 

 Before the page accumulates more errors than ECC-correctable 

 Optimization: Adapt refresh rate to endured P/E cycles 
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FCR Intuition 
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FCR: Two Key Questions 

 How to refresh?  

 Remap a page to another one 

 Reprogram a page (in-place) 

 Hybrid of remap and reprogram 

 

 When to refresh?  

 Fixed period 

 Adapt the period to retention error severity 
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Remapping Based FCR 

 Idea: Periodically remap each page to a different physical 
page (after correcting errors) 

 

 Also [Pan et al., HPCA 2012] 

 FTL already has support for 

    changing logical  physical 

    flash block/page mappings 

 Deallocated block is 

    erased by garbage collector 

 

 Problem: Causes additional erase operations  more wearout 

 Bad for read-intensive workloads (few erases really needed) 

 Lifetime degrades for such workloads (see paper) 
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In-Place Reprogramming Based FCR 

 Idea: Periodically reprogram (in-place) each physical page 
(after correcting errors) 

 

 Flash programming techniques 

    (ISPP) can correct retention  

    errors in-place by recharging 

    flash cells 

 

 

 

 Problem: Program errors accumulate on the same page  
may not be correctable by ECC after some time 
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Reprogram corrected data 



 

 

 

 

 

 

 

 

 

 Pro: No remapping needed  no additional erase operations 

 Con: Increases the occurrence of program errors 

In-Place Reprogramming of Flash Cells 
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Program Errors in Flash Memory 

 When a cell is being programmed, voltage level of a 
neighboring cell changes (unintentionally) due to parasitic 
capacitance coupling  

    can change the data value stored 

 

 Also called program interference error 

 

 Program interference causes neighboring cell voltage to 
shift to the right 
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Problem with In-Place Reprogramming 
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Hybrid Reprogramming/Remapping Based FCR 

 Idea: 

 Monitor the count of right-shift errors (after error correction) 

 If count < threshold, in-place reprogram the page 

 Else, remap the page to a new page 

 

 Observation: 

 Program errors much less frequent than retention errors  

Remapping happens only infrequently  

 

 Benefit:  

 Hybrid FCR greatly reduces erase operations due to remapping 

178 



Outline 

 Executive Summary 

 The Problem: Limited Flash Memory Endurance/Lifetime 

 Error and ECC Analysis for Flash Memory 

 Flash Correct and Refresh Techniques (FCR) 

1. Remapping based FCR 

2. Hybrid Reprogramming and Remapping based FCR 

3. Adaptive-Rate FCR 

 Evaluation 

 Conclusions 

 

179 



Adaptive-Rate FCR 

 Observation: 

 Retention error rate strongly depends on the P/E cycles a flash 
page endured so far 

 No need to refresh frequently (at all) early in flash lifetime 

 

 Idea: 

 Adapt the refresh rate to the P/E cycles endured by each page 

 Increase refresh rate gradually with increasing P/E cycles 

 

 Benefits: 

 Reduces overhead of refresh operations 

 Can use existing FTL mechanisms that keep track of P/E 
cycles 
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Adaptive-Rate FCR (Example) 

181 

Acceptable raw BER for 512b-BCH  

3-year 

FCR 

3-month  

FCR 

3-week  

FCR 

3-day  

FCR 

P/E Cycles 

Select refresh frequency such that error rate is below acceptable rate 



Outline 

 Executive Summary 

 The Problem: Limited Flash Memory Endurance/Lifetime 

 Error and ECC Analysis for Flash Memory 

 Flash Correct and Refresh Techniques (FCR) 

1. Remapping based FCR 

2. Hybrid Reprogramming and Remapping based FCR 

3. Adaptive-Rate FCR 

 Evaluation 

 Conclusions 

 

182 



FCR: Other Considerations 

 Implementation cost 

 No hardware changes 

 FTL software/firmware needs modification 

 

 Response time impact 

 FCR not as frequent as DRAM refresh; low impact 

 

 Adaptation to variations in retention error rate 

 Adapt refresh rate based on, e.g., temperature [Liu+ ISCA 2012] 

 

 FCR requires power 

 Enterprise storage systems typically powered on 
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Evaluation Methodology 

 Experimental flash platform to obtain error rates at 
different P/E cycles [Cai+ DATE 2012] 
 

 Simulation framework to obtain P/E cycles of real 
workloads: DiskSim with SSD extensions 
 

 Simulated system: 256GB flash, 4 channels, 8 
chips/channel, 8K blocks/chip, 128 pages/block, 8KB pages 
 

 Workloads  

 File system applications, databases, web search 

 Categories: Write-heavy, read-heavy, balanced 
 

 Evaluation metrics 

 Lifetime (extrapolated) 

 Energy overhead, P/E cycle overhead 
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Extrapolated Lifetime 
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Maximum full disk P/E Cycles for a Technique 

Total full disk P/E Cycles for a Workload 
× # of Days of Given Application 

Obtained from Experimental Platform Data 

Obtained from Workload Simulation 
Real length (in time) of  

each workload trace 



Normalized Flash Memory Lifetime  
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Lifetime Evaluation Takeaways 

 Significant average lifetime improvement over no refresh 

 Adaptive-rate FCR: 46X 

 Hybrid reprogramming/remapping based FCR: 31X 

 Remapping based FCR: 9X 

 

 FCR lifetime improvement larger than that of stronger ECC 

 46X vs. 4X with 32-kbit ECC (over 512-bit ECC) 

 FCR is less complex and less costly than stronger ECC 

 

 Lifetime on all workloads improves with Hybrid FCR 

 Remapping based FCR can degrade lifetime on read-heavy WL 

 Lifetime improvement highest in write-heavy workloads 
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Energy Overhead 

 

 

 

 

 

 

 

 

 

 Adaptive-rate refresh: <1.8% energy increase until daily 
refresh is triggered 
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Overhead of Additional Erases 

 Additional erases happen due to remapping of pages 

 

 Low (2%-20%) for write intensive workloads 

 High (up to 10X) for read-intensive workloads 

 

 Improved P/E cycle lifetime of all workloads largely 
outweighs the additional P/E cycles due to remapping 
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More Results in the Paper 

 Detailed workload analysis 

 

 Effect of refresh rate 
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Conclusion 

 NAND flash memory lifetime is limited due to uncorrectable 
errors, which increase over lifetime (P/E cycles) 
 

 Observation: Dominant source of errors in flash memory is 
retention errors  retention error rate limits lifetime 
 

 Flash Correct-and-Refresh (FCR) techniques reduce 
retention error rate to improve flash lifetime 

 Periodically read, correct, and remap or reprogram each page 
before it accumulates more errors than can be corrected 

 Adapt refresh period to the severity of errors 
 

 FCR improves flash lifetime by 46X at no hardware cost 

 More effective and efficient than stronger ECC  

 Can enable better flash memory scaling 
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