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Review: DRAM Controller: Functions 

 Ensure correct operation of DRAM (refresh and timing) 

 

 Service DRAM requests while obeying timing constraints of 
DRAM chips 

 Constraints: resource conflicts (bank, bus, channel), minimum 
write-to-read delays 

 Translate requests to DRAM command sequences 

 

 Buffer and schedule requests to improve performance 

 Reordering, row-buffer, bank, rank, bus management 

 

 Manage power consumption and thermals in DRAM 

 Turn on/off DRAM chips, manage power modes 
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DRAM Power Management 

 DRAM chips have power modes 

 Idea: When not accessing a chip power it down 

 

 Power states 

 Active (highest power) 

 All banks idle 

 Power-down 

 Self-refresh (lowest power) 

 

 Tradeoff: State transitions incur latency during which the 
chip cannot be accessed 
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Review: Why are DRAM Controllers Difficult to Design? 

 Need to obey DRAM timing constraints for correctness 

 There are many (50+) timing constraints in DRAM 

 tWTR: Minimum number of cycles to wait before issuing a 
read command after a write command is issued 

 tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank 

 … 

 Need to keep track of many resources to prevent conflicts 

 Channels, banks, ranks, data bus, address bus, row buffers 

 Need to handle DRAM refresh 

 Need to optimize for performance (in the presence of constraints) 

 Reordering is not simple 

 Predicting the future? 
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Review: Many DRAM Timing Constraints 

 

 

 

 

 

 

 

 

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010. 

8 



Review: More on DRAM Operation 

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM,” ISCA 2012. 

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013. 
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Self-Optimizing DRAM Controllers 

 Problem: DRAM controllers difficult to design  It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions 

 

 Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning. 

 

 Observation: Reinforcement learning maps nicely to memory 
control. 

 

 Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy. 

10 Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008. 



Self-Optimizing DRAM Controllers 

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 
Caruana,  
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach" 
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008. 
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Self-Optimizing DRAM Controllers 

 Dynamically adapt the memory scheduling policy via 
interaction with the system at runtime  

 Associate system states and actions (commands) with long term 
reward values 

 Schedule command with highest estimated long-term value in each 
state 

 Continuously update state-action values based on feedback from 
system 
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Self-Optimizing DRAM Controllers 

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,  
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach" 
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008. 
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States, Actions, Rewards 
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❖ Reward function 

• +1 for scheduling 
Read and Write 
commands 

• 0 at all other 
times 

 

 

  

❖ State attributes 

• Number of reads, 
writes, and load 
misses in 
transaction queue 

• Number of pending 
writes and ROB 
heads waiting for 
referenced row 

• Request’s relative 

ROB order 

 

  

❖ Actions 

• Activate 

• Write 

• Read - load miss 

• Read - store miss 

• Precharge - pending 

• Precharge - preemptive 

• NOP 

 

 

  



Performance Results 

15 



Self Optimizing DRAM Controllers 

 Advantages 

+ Adapts the scheduling policy dynamically to changing workload 
behavior and to maximize a long-term target 

+ Reduces the designer’s burden in finding a good scheduling 
policy. Designer specifies: 

 1) What system variables might be useful 

 2) What target to optimize, but not how to optimize it 

 

 Disadvantages 

-- Black box: designer much less likely to implement what she  
cannot easily reason about 

-- How to specify different reward functions that can achieve 
different objectives? (e.g., fairness, QoS) 
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Trends Affecting Main Memory 
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Major Trends Affecting Main Memory (I) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 

 Main memory energy/power is a key system design concern 

 

 

 

 DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (II) 

 Need for main memory capacity, bandwidth, QoS increasing  

 Multi-core: increasing number of cores 

 Data-intensive applications: increasing demand/hunger for data 

 Consolidation: cloud computing, GPUs, mobile 

 

 

 Main memory energy/power is a key system design concern 

 

 

 

 DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (III) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 Main memory energy/power is a key system design concern 

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer 2003] 

 DRAM consumes power even when not used (periodic refresh) 

 

 DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 

 Need for main memory capacity, bandwidth, QoS increasing  

 

 

 

 

 Main memory energy/power is a key system design concern 

 

 

 DRAM technology scaling is ending  

 ITRS projects DRAM will not scale easily below X nm  

 Scaling has provided many benefits:  

 higher capacity (density), lower cost, lower energy 
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Agenda for Today 

 What Will You Learn in This Mini-Lecture Series 

 Main Memory Basics (with a Focus on DRAM) 

 Major Trends Affecting Main Memory 

 DRAM Scaling Problem and Solution Directions 

 Solution Direction 1: System-DRAM Co-Design 

 Ongoing Research 

 Summary 
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The DRAM Scaling Problem 

 DRAM stores charge in a capacitor (charge-based memory) 

 Capacitor must be large enough for reliable sensing 

 Access transistor should be large enough for low leakage and high 
retention time 

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

 

 

 

 

 

 

 

 

 DRAM capacity, cost, and energy/power hard to scale 
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Solutions to the DRAM Scaling Problem 

 Two potential solutions 

 Tolerate DRAM (by taking a fresh look at it) 

 Enable emerging memory technologies to eliminate/minimize 
DRAM 

 

 Do both 

 Hybrid memory systems 
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Solution 1: Tolerate DRAM 
 Overcome DRAM shortcomings with 

 System-DRAM co-design 

 Novel DRAM architectures, interface, functions 

 Better waste management (efficient utilization) 
 

 Key issues to tackle 

 Reduce refresh energy 

 Improve bandwidth and latency 

 Reduce waste 

 Enable reliability at low cost 
 

 Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 

 Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA’13. 

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013. 
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Tolerating DRAM: 

System-DRAM Co-Design 

 

 

 

 



New DRAM Architectures 

 RAIDR: Reducing Refresh Impact 

 TL-DRAM: Reducing DRAM Latency 

 SALP: Reducing Bank Conflict Impact 

 RowClone: Fast Bulk Data Copy and Initialization 
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RAIDR: Reducing  

DRAM Refresh Impact 

 

 

 

 



DRAM Refresh 

 DRAM capacitor charge leaks over time 

 

 The memory controller needs to refresh each row 
periodically to restore charge 

 Activate + precharge each row every N ms 

 Typical N = 64 ms 

 

 Downsides of refresh 

    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 

-- Refresh rate limits DRAM density scaling  
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Refresh Today: Auto Refresh 

31 

Columns 

R
o
w

s
 

Row Buffer 

DRAM CONTROLLER 

DRAM Bus 

BANK 0 BANK 1 BANK 2 BANK 3 

A batch of rows are  
periodically refreshed 
via the auto-refresh command 



Refresh Overhead: Performance 
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8% 

46% 



Refresh Overhead: Energy 
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15% 

47% 



Problem with Conventional Refresh 

 Today: Every row is refreshed at the same rate 

 

 

 

 

 

 

 

 

 

 Observation: Most rows can be refreshed much less often 
without losing data [Kim+, EDL’09] 

 Problem: No support in DRAM for different refresh rates per row 
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Retention Time of DRAM Rows 

 Observation: Only very few rows need to be refreshed at the 
worst-case rate 

 

 

 

 

 

 

 

 

 

 Can we exploit this to reduce refresh operations at low cost? 
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Reducing DRAM Refresh Operations 

 Idea: Identify the retention time of different rows and 
refresh each row at the frequency it needs to be refreshed 
 

 (Cost-conscious) Idea: Bin the rows according to their 
minimum retention times and refresh rows in each bin at 
the refresh rate specified for the bin 

 e.g., a bin for 64-128ms, another for 128-256ms, … 
 

 Observation: Only very few rows need to be refreshed very 
frequently [64-128ms]  Have only a few bins  Low HW 
overhead to achieve large reductions in refresh operations 
 

 

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
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1. Profiling: Profile the retention time of all DRAM rows 

     can be done at DRAM design time or dynamically  

 

 

2. Binning: Store rows into bins by retention time 

    use Bloom Filters for efficient and scalable storage 

 

 

 

3. Refreshing: Memory controller refreshes rows in different 
bins at different rates 

    probe Bloom Filters to determine refresh rate of a row 

RAIDR: Mechanism 
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1.25KB storage in controller for 32GB DRAM memory 



1. Profiling 
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2. Binning 

 How to efficiently and scalably store rows into retention 
time bins? 

 Use Hardware Bloom Filters [Bloom, CACM 1970] 
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Bloom Filter Operation Example 
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Bloom Filter Operation Example 

41 



Bloom Filter Operation Example 
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Bloom Filter Operation Example 
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Benefits of Bloom Filters as Bins 

 False positives: a row may be declared present in the 
Bloom filter even if it was never inserted 

 Not a problem: Refresh some rows more frequently than 
needed 

 

 No false negatives: rows are never refreshed less 
frequently than needed (no correctness problems) 

 

 Scalable: a Bloom filter never overflows (unlike a fixed-size 
table) 

 

 Efficient: No need to store info on a per-row basis; simple 
hardware  1.25 KB for 2 filters for 32 GB DRAM system 
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3. Refreshing (RAIDR Refresh Controller) 
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3. Refreshing (RAIDR Refresh Controller) 
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Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Tolerating Temperature Changes 
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RAIDR: Baseline Design 
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Refresh control is in DRAM in today’s auto-refresh systems 

RAIDR can be implemented in either the controller or DRAM 



RAIDR in Memory Controller: Option 1 

49 

Overhead of RAIDR in DRAM controller: 
1.25 KB Bloom Filters, 3 counters, additional commands    
issued for per-row refresh (all accounted for in evaluations) 



RAIDR in DRAM Chip: Option 2 
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Overhead of RAIDR in DRAM chip: 
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip) 

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM) 



RAIDR Results 

 Baseline: 

 32 GB DDR3 DRAM system (8 cores, 512KB cache/core) 

 64ms refresh interval for all rows 
 

 RAIDR:  

 64–128ms retention range: 256 B Bloom filter, 10 hash functions 

 128–256ms retention range: 1 KB Bloom filter, 6 hash functions 

 Default refresh interval: 256 ms 
 

 Results on SPEC CPU2006, TPC-C, TPC-H benchmarks 

 74.6% refresh reduction 

 ~16%/20% DRAM dynamic/idle power reduction 

 ~9% performance improvement  
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RAIDR Refresh Reduction 
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32 GB DDR3 DRAM system  



RAIDR: Performance 
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RAIDR performance benefits increase with workload’s memory intensity 



RAIDR: DRAM Energy Efficiency 
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RAIDR energy benefits increase with memory idleness 



DRAM Device Capacity Scaling: Performance 
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RAIDR performance benefits increase with DRAM chip capacity 



DRAM Device Capacity Scaling: Energy 
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RAIDR energy benefits increase with DRAM chip capacity RAIDR slides 

//localhost/Users/omutlu/Documents/presentations/CMU/students/Jamie Liu/jamie_isca12_talk-backup.pdf


More Readings Related to RAIDR 

 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 
"An Experimental Study of Data Retention Behavior in Modern 
DRAM Devices: Implications for Retention Time Profiling 
Mechanisms" 
Proceedings of the 40th International Symposium on Computer 
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides 
(pdf)  
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New DRAM Architectures 

 RAIDR: Reducing Refresh Impact 

 TL-DRAM: Reducing DRAM Latency 

 SALP: Reducing Bank Conflict Impact 

 RowClone: Fast Bulk Data Copy and Initialization 
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Tiered-Latency DRAM:  

Reducing DRAM Latency 

 

 

 

 

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu, 
"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture"  
19th International Symposium on High-Performance Computer Architecture (HPCA),  

Shenzhen, China, February 2013. Slides (pptx) 

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
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   Historical DRAM Latency-Capacity Trend 
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   What Causes the Long Latency? 
DRAM Chip 
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DRAM Chip 

channel 

I/O 

channel 

I/O 
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cell array 
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   What Causes the Long Latency? 

DRAM Latency = Subarray Latency + I/O Latency DRAM Latency = Subarray Latency + I/O Latency 
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   Why is the Subarray So Slow? 
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   Trade-Off: Area (Die Size) vs. Latency 
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Trade-Off: Area vs. Latency 
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   Trade-Off: Area (Die Size) vs. Latency 
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Short Bitline 

Low Latency  

   Approximating the Best of Both Worlds 
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   Approximating the Best of Both Worlds 

Low Latency  

Our Proposal 

Small Area  
Long Bitline 
Small Area  

Long Bitline 
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Tiered-Latency DRAM 
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   Tiered-Latency DRAM 

Near Segment 

Far Segment 

Isolation Transistor 

• Divide a bitline into two segments with an 
isolation transistor 

Sense Amplifier 
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Far Segment Far Segment 

   Near Segment Access 

Near Segment 

Isolation Transistor 

• Turn off the isolation transistor 

Isolation Transistor (off) 

Sense Amplifier 

Reduced bitline capacitance 

      Low latency & low power 

Reduced bitline length 



70 

Near Segment Near Segment 

   Far Segment Access 

• Turn on the isolation transistor 

Far Segment 

Isolation Transistor Isolation Transistor (on) 

Sense Amplifier 

Large bitline capacitance 

Additional resistance of isolation transistor 

Long bitline length 

      High latency & high power 
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   Latency, Power, and Area Evaluation 
• Commodity DRAM: 512 cells/bitline 

• TL-DRAM: 512 cells/bitline 
– Near segment: 32 cells 

– Far segment: 480 cells 

• Latency Evaluation 
– SPICE simulation using circuit-level DRAM model 

• Power and Area Evaluation 
– DRAM area/power simulator from Rambus 

– DDR3 energy calculator from Micron 
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   Latency vs. Near Segment Length 
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   Latency vs. Near Segment Length 
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   Trade-Off: Area (Die-Area) vs. Latency 
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   Leveraging Tiered-Latency DRAM 

• TL-DRAM is a substrate that can be leveraged by 
the hardware and/or software 
 

• Many potential uses 
1. Use near segment as hardware-managed inclusive 

cache to far segment 

2. Use near segment as hardware-managed exclusive 
cache to far segment 

3. Profile-based page mapping by operating system 

4. Simply replace DRAM with TL-DRAM   

 

 



77 

subarray 

   Near Segment as Hardware-Managed Cache 

TL-DRAM 

I/O 

cache 

main 
memory 

 

• Challenge 1: How to efficiently migrate a row between 
segments? 

• Challenge 2: How to efficiently manage the cache? 
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   Inter-Segment Migration 

Near Segment 

Far Segment 

Isolation Transistor 

Sense Amplifier 

Source 

Destination 

• Goal: Migrate source row into destination row 

• Naïve way: Memory controller reads the source row 
byte by byte and writes to destination row byte by byte  

→ High latency 
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   Inter-Segment Migration 
• Our way:  

– Source and destination cells share bitlines 

– Transfer data from source to destination across 
shared bitlines concurrently 
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   Inter-Segment Migration 

Near Segment 

Far Segment 

Isolation Transistor 

Sense Amplifier 

• Our way:  
– Source and destination cells share bitlines 

– Transfer data from source to destination across 
shared bitlines concurrently 

Step 2: Activate destination 
row to connect cell and bitline 

Step 1: Activate source row 

Additional ~4ns over row access latency 

Migration is overlapped with source row access 
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   Near Segment as Hardware-Managed Cache 
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• Challenge 1: How to efficiently migrate a row between 
segments? 

• Challenge 2: How to efficiently manage the cache? 
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   Evaluation Methodology 
• System simulator 

– CPU: Instruction-trace-based x86 simulator 

– Memory: Cycle-accurate DDR3 DRAM simulator 

 

• Workloads 
– 32 Benchmarks from TPC, STREAM, SPEC CPU2006 

 

• Performance Metrics 
– Single-core: Instructions-Per-Cycle 

– Multi-core: Weighted speedup 
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  Configurations 
• System configuration 

– CPU: 5.3GHz 

– LLC: 512kB private per core 

– Memory: DDR3-1066 
• 1-2 channel, 1 rank/channel 

• 8 banks, 32 subarrays/bank, 512 cells/bitline 

• Row-interleaved mapping & closed-row policy 

 

• TL-DRAM configuration 
– Total bitline length: 512 cells/bitline 

– Near segment length: 1-256 cells 

– Hardware-managed inclusive cache: near segment 
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   Other Mechanisms & Results 

• More mechanisms for leveraging TL-DRAM 
– Hardware-managed exclusive caching mechanism 

– Profile-based page mapping to near segment 

– TL-DRAM improves performance and reduces power 
consumption with other mechanisms 

• More than two tiers 
– Latency evaluation for three-tier TL-DRAM 

• Detailed circuit evaluation                                               
for DRAM latency and power consumption 
– Examination of tRC and tRCD 

• Implementation details and storage cost analysis       in 
memory controller 
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   Summary of TL-DRAM 

• Problem: DRAM latency is a critical performance bottleneck  

• Our Goal: Reduce DRAM latency with low area cost 

• Observation: Long bitlines in DRAM are the dominant source   
of DRAM latency 

• Key Idea: Divide long bitlines into two shorter segments 

– Fast and slow segments 

• Tiered-latency DRAM: Enables latency heterogeneity in DRAM 

–Can leverage this in many ways to improve performance 
and reduce power consumption 

• Results: When the fast segment is used as a cache to the slow 
segment  Significant performance improvement (>12%) and 
power reduction (>23%) at low area cost (3%) 



New DRAM Architectures 

 RAIDR: Reducing Refresh Impact 

 TL-DRAM: Reducing DRAM Latency 

 SALP: Reducing Bank Conflict Impact 

 RowClone: Fast Bulk Data Copy and Initialization 
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To Be Covered in Lecture 3 

 Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu, 
"A Case for Exploiting Subarray-Level Parallelism (SALP) in 
DRAM" 
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)  

 

 Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata 
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. 
Gibbons, Michael A. Kozuch, Todd C. Mowry, 
"RowClone: Fast and Efficient In-DRAM Copy and Initialization 
of Bulk Data" 
CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie 
Mellon University, April 2013.  
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