
Computer Architecture:

Main Memory (Part II)

Prof. Onur Mutlu

Carnegie Mellon University

Main Memory Lectures

 These slides are from the Scalable Memory Systems course
taught at ACACES 2013 (July 15-19, 2013)

 Course Website:

 http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html

 This is the second lecture:

 Lecture 2 (July 16, 2013): DRAM Basics and DRAM Scaling:
New DRAM Architectures I (pptx) (pdf)

2

http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Lecture2-dram-basics-and-scaling-afterlecture.pptx
http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Lecture2-dram-basics-and-scaling-afterlecture.pdf

Scalable Many-Core Memory Systems

Lecture 2, Topic 1: DRAM Basics and

DRAM Scaling

Prof. Onur Mutlu

http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013

July 16, 2013

http://www.ece.cmu.edu/~omutlu
mailto:onur@cmu.edu
mailto:onur@cmu.edu

Agenda for Topic 1 (DRAM Scaling)

 What Will You Learn in This Mini-Lecture Series

 Main Memory Basics (with a Focus on DRAM)

 Major Trends Affecting Main Memory

 DRAM Scaling Problem and Solution Directions

 Solution Direction 1: System-DRAM Co-Design

 Ongoing Research

 Summary

4

Review: DRAM Controller: Functions

 Ensure correct operation of DRAM (refresh and timing)

 Service DRAM requests while obeying timing constraints of
DRAM chips

 Constraints: resource conflicts (bank, bus, channel), minimum
write-to-read delays

 Translate requests to DRAM command sequences

 Buffer and schedule requests to improve performance

 Reordering, row-buffer, bank, rank, bus management

 Manage power consumption and thermals in DRAM

 Turn on/off DRAM chips, manage power modes

 5

DRAM Power Management

 DRAM chips have power modes

 Idea: When not accessing a chip power it down

 Power states

 Active (highest power)

 All banks idle

 Power-down

 Self-refresh (lowest power)

 Tradeoff: State transitions incur latency during which the
chip cannot be accessed

6

Review: Why are DRAM Controllers Difficult to Design?

 Need to obey DRAM timing constraints for correctness

 There are many (50+) timing constraints in DRAM

 tWTR: Minimum number of cycles to wait before issuing a
read command after a write command is issued

 tRC: Minimum number of cycles between the issuing of two
consecutive activate commands to the same bank

 …

 Need to keep track of many resources to prevent conflicts

 Channels, banks, ranks, data bus, address bus, row buffers

 Need to handle DRAM refresh

 Need to optimize for performance (in the presence of constraints)

 Reordering is not simple

 Predicting the future?

7

Review: Many DRAM Timing Constraints

 From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

8

Review: More on DRAM Operation

 Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

 Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

9

Self-Optimizing DRAM Controllers

 Problem: DRAM controllers difficult to design It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

 Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

 Observation: Reinforcement learning maps nicely to memory
control.

 Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

10 Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich
Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

11

Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … (0 < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers

 Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

 Associate system states and actions (commands) with long term
reward values

 Schedule command with highest estimated long-term value in each
state

 Continuously update state-action values based on feedback from
system

12

Self-Optimizing DRAM Controllers

 Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

13

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

14

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

15

Self Optimizing DRAM Controllers

 Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

 1) What system variables might be useful

 2) What target to optimize, but not how to optimize it

 Disadvantages

-- Black box: designer much less likely to implement what she
cannot easily reason about

-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

16

Trends Affecting Main Memory

Agenda for Topic 1 (DRAM Scaling)

 What Will You Learn in This Mini-Lecture Series

 Main Memory Basics (with a Focus on DRAM)

 Major Trends Affecting Main Memory

 DRAM Scaling Problem and Solution Directions

 Solution Direction 1: System-DRAM Co-Design

 Ongoing Research

 Summary

18

Major Trends Affecting Main Memory (I)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

19

Major Trends Affecting Main Memory (II)

 Need for main memory capacity, bandwidth, QoS increasing

 Multi-core: increasing number of cores

 Data-intensive applications: increasing demand/hunger for data

 Consolidation: cloud computing, GPUs, mobile

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

20

Major Trends Affecting Main Memory (III)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer 2003]

 DRAM consumes power even when not used (periodic refresh)

 DRAM technology scaling is ending

21

Major Trends Affecting Main Memory (IV)

 Need for main memory capacity, bandwidth, QoS increasing

 Main memory energy/power is a key system design concern

 DRAM technology scaling is ending

 ITRS projects DRAM will not scale easily below X nm

 Scaling has provided many benefits:

 higher capacity (density), lower cost, lower energy

22

Agenda for Today

 What Will You Learn in This Mini-Lecture Series

 Main Memory Basics (with a Focus on DRAM)

 Major Trends Affecting Main Memory

 DRAM Scaling Problem and Solution Directions

 Solution Direction 1: System-DRAM Co-Design

 Ongoing Research

 Summary

23

The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

24

Solutions to the DRAM Scaling Problem

 Two potential solutions

 Tolerate DRAM (by taking a fresh look at it)

 Enable emerging memory technologies to eliminate/minimize
DRAM

 Do both

 Hybrid memory systems

25

Solution 1: Tolerate DRAM
 Overcome DRAM shortcomings with

 System-DRAM co-design

 Novel DRAM architectures, interface, functions

 Better waste management (efficient utilization)

 Key issues to tackle

 Reduce refresh energy

 Improve bandwidth and latency

 Reduce waste

 Enable reliability at low cost

 Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

 Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

 Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

 Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA’13.

 Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013.

26

Tolerating DRAM:

System-DRAM Co-Design

New DRAM Architectures

 RAIDR: Reducing Refresh Impact

 TL-DRAM: Reducing DRAM Latency

 SALP: Reducing Bank Conflict Impact

 RowClone: Fast Bulk Data Copy and Initialization

28

RAIDR: Reducing

DRAM Refresh Impact

DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge

 Activate + precharge each row every N ms

 Typical N = 64 ms

 Downsides of refresh

 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling

30

Refresh Today: Auto Refresh

31

Columns

R
o
w

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

A batch of rows are
periodically refreshed
via the auto-refresh command

Refresh Overhead: Performance

32

8%

46%

Refresh Overhead: Energy

33

15%

47%

Problem with Conventional Refresh

 Today: Every row is refreshed at the same rate

 Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

 Problem: No support in DRAM for different refresh rates per row

34

Retention Time of DRAM Rows

 Observation: Only very few rows need to be refreshed at the
worst-case rate

 Can we exploit this to reduce refresh operations at low cost?

35

Reducing DRAM Refresh Operations

 Idea: Identify the retention time of different rows and
refresh each row at the frequency it needs to be refreshed

 (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin

 e.g., a bin for 64-128ms, another for 128-256ms, …

 Observation: Only very few rows need to be refreshed very
frequently [64-128ms] Have only a few bins Low HW
overhead to achieve large reductions in refresh operations

 Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

36

1. Profiling: Profile the retention time of all DRAM rows

 can be done at DRAM design time or dynamically

2. Binning: Store rows into bins by retention time

 use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates

 probe Bloom Filters to determine refresh rate of a row

RAIDR: Mechanism

37

1.25KB storage in controller for 32GB DRAM memory

1. Profiling

38

2. Binning

 How to efficiently and scalably store rows into retention
time bins?

 Use Hardware Bloom Filters [Bloom, CACM 1970]

39

Bloom Filter Operation Example

40

Bloom Filter Operation Example

41

Bloom Filter Operation Example

42

Bloom Filter Operation Example

43

Benefits of Bloom Filters as Bins

 False positives: a row may be declared present in the
Bloom filter even if it was never inserted

 Not a problem: Refresh some rows more frequently than
needed

 No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

 Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

 Efficient: No need to store info on a per-row basis; simple
hardware 1.25 KB for 2 filters for 32 GB DRAM system

44

3. Refreshing (RAIDR Refresh Controller)

45

3. Refreshing (RAIDR Refresh Controller)

46

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Tolerating Temperature Changes

47

RAIDR: Baseline Design

48

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

49

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

50

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR Results

 Baseline:

 32 GB DDR3 DRAM system (8 cores, 512KB cache/core)

 64ms refresh interval for all rows

 RAIDR:

 64–128ms retention range: 256 B Bloom filter, 10 hash functions

 128–256ms retention range: 1 KB Bloom filter, 6 hash functions

 Default refresh interval: 256 ms

 Results on SPEC CPU2006, TPC-C, TPC-H benchmarks

 74.6% refresh reduction

 ~16%/20% DRAM dynamic/idle power reduction

 ~9% performance improvement

51

RAIDR Refresh Reduction

52

32 GB DDR3 DRAM system

RAIDR: Performance

53

RAIDR performance benefits increase with workload’s memory intensity

RAIDR: DRAM Energy Efficiency

54

RAIDR energy benefits increase with memory idleness

DRAM Device Capacity Scaling: Performance

55

RAIDR performance benefits increase with DRAM chip capacity

DRAM Device Capacity Scaling: Energy

56

RAIDR energy benefits increase with DRAM chip capacity RAIDR slides

//localhost/Users/omutlu/Documents/presentations/CMU/students/Jamie Liu/jamie_isca12_talk-backup.pdf

More Readings Related to RAIDR

 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern
DRAM Devices: Implications for Retention Time Profiling
Mechanisms"
Proceedings of the 40th International Symposium on Computer
Architecture (ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides
(pdf)

57

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

New DRAM Architectures

 RAIDR: Reducing Refresh Impact

 TL-DRAM: Reducing DRAM Latency

 SALP: Reducing Bank Conflict Impact

 RowClone: Fast Bulk Data Copy and Initialization

58

Tiered-Latency DRAM:

Reducing DRAM Latency

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture"
19th International Symposium on High-Performance Computer Architecture (HPCA),

Shenzhen, China, February 2013. Slides (pptx)

http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx

60

 Historical DRAM Latency-Capacity Trend

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

2000 2003 2006 2008 2011

La
te

n
cy

 (
n

s)

C
ap

ac
it

y
(G

b
)

Year

Capacity Latency (tRC)

16X

-20%

DRAM latency continues to be a critical bottleneck

61

 What Causes the Long Latency?
DRAM Chip

channel

I/O

channel

I/O

cell array
cell array

banks subarray

subarray

ro
w

 d
ec

o
d

er

sense amplifier

ca
p

ac
it

o
r

access
transistor

wordline

b
it

lin
e

cell

62

DRAM Chip

channel

I/O

channel

I/O

cell array
cell array

banks subarray

subarray

 What Causes the Long Latency?

DRAM Latency = Subarray Latency + I/O Latency DRAM Latency = Subarray Latency + I/O Latency

Dominant

Su
b

ar
ra

y
I/

O

ro
w

 a
d

d
r.

row decoder

se
n

se
 a

m
p

lif
ie

r

mux
column
addr.

63

 Why is the Subarray So Slow?

Subarray

ro
w

 d
ec

o
d

er

sense amplifier

ca
p

ac
it

o
r

access
transistor

wordline

b
it

lin
e

Cell

large sense amplifier

b
it

li
n

e:
 5

1
2

 c
el

ls

cell

• Long bitline
– Amortizes sense amplifier cost Small area

– Large bitline capacitance High latency & power

se
n

se
 a

m
p

lif
ie

r

ro
w

 d
ec

o
d

er

64

 Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short Bitline

Long Bitline

Trade-Off: Area vs. Latency

65

 Trade-Off: Area (Die Size) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
e

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128

256 512 cells/bitline

Commodity
DRAM

Long Bitline

C
h

e
ap

e
r

Faster

Fancy DRAM
Short Bitline

66

Short Bitline

Low Latency

 Approximating the Best of Both Worlds

Long Bitline

Small Area

Long Bitline

Low Latency

Short Bitline Our Proposal

Small Area

Short Bitline Fast

Need
Isolation

Add Isolation
Transistors

High Latency

Large Area

67

 Approximating the Best of Both Worlds

Low Latency

Our Proposal

Small Area
Long Bitline
Small Area

Long Bitline

High Latency

Short Bitline

Low Latency

Short Bitline

Large Area

Tiered-Latency DRAM

Low Latency

Small area
using long

bitline

68

 Tiered-Latency DRAM

Near Segment

Far Segment

Isolation Transistor

• Divide a bitline into two segments with an
isolation transistor

Sense Amplifier

69

Far Segment Far Segment

 Near Segment Access

Near Segment

Isolation Transistor

• Turn off the isolation transistor

Isolation Transistor (off)

Sense Amplifier

Reduced bitline capacitance

 Low latency & low power

Reduced bitline length

70

Near Segment Near Segment

 Far Segment Access

• Turn on the isolation transistor

Far Segment

Isolation Transistor Isolation Transistor (on)

Sense Amplifier

Large bitline capacitance

Additional resistance of isolation transistor

Long bitline length

 High latency & high power

71

 Latency, Power, and Area Evaluation
• Commodity DRAM: 512 cells/bitline

• TL-DRAM: 512 cells/bitline
– Near segment: 32 cells

– Far segment: 480 cells

• Latency Evaluation
– SPICE simulation using circuit-level DRAM model

• Power and Area Evaluation
– DRAM area/power simulator from Rambus

– DDR3 energy calculator from Micron

72

0%

50%

100%

150%

0%

50%

100%

150%

 Commodity DRAM vs. TL-DRAM
La

te
n

cy

P
o

w
er

–56%

+23%

–51%

+49%

• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
Commodity

DRAM

Near Far Commodity
DRAM

Near Far

TL-DRAM

 (52.5ns)

73

 Latency vs. Near Segment Length

0

20

40

60

80

1 2 4 8 16 32 64 128 256 512

Near Segment Length (Cells) Ref.

Near Segment Far Segment

La
te

n
cy

 (
n

s)

Longer near segment length leads to
higher near segment latency

74

 Latency vs. Near Segment Length

0

20

40

60

80

1 2 4 8 16 32 64 128 256 512

Near Segment Length (Cells) Ref.

Near Segment Far Segment

La
te

n
cy

 (
n

s)

Far segment latency is higher than
commodity DRAM latency

Far Segment Length = 512 – Near Segment Length

75

 Trade-Off: Area (Die-Area) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
o

rm
al

iz
e

d
 D

R
A

M
 A

re
a

Latency (ns)

64

32

128
256 512 cells/bitline

C
h

e
ap

e
r

Faster

Near Segment Far Segment

76

 Leveraging Tiered-Latency DRAM

• TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM

77

subarray

 Near Segment as Hardware-Managed Cache

TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between
segments?

• Challenge 2: How to efficiently manage the cache?

far segment

near segment
sense amplifier

channel

78

 Inter-Segment Migration

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

Source

Destination

• Goal: Migrate source row into destination row

• Naïve way: Memory controller reads the source row
byte by byte and writes to destination row byte by byte

→ High latency

79

 Inter-Segment Migration
• Our way:

– Source and destination cells share bitlines

– Transfer data from source to destination across
shared bitlines concurrently

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

Source

Destination

80

 Inter-Segment Migration

Near Segment

Far Segment

Isolation Transistor

Sense Amplifier

• Our way:
– Source and destination cells share bitlines

– Transfer data from source to destination across
shared bitlines concurrently

Step 2: Activate destination
row to connect cell and bitline

Step 1: Activate source row

Additional ~4ns over row access latency

Migration is overlapped with source row access

81

subarray

 Near Segment as Hardware-Managed Cache

TL-DRAM

I/O

cache

main
memory

• Challenge 1: How to efficiently migrate a row between
segments?

• Challenge 2: How to efficiently manage the cache?

far segment

near segment
sense amplifier

channel

82

 Evaluation Methodology
• System simulator

– CPU: Instruction-trace-based x86 simulator

– Memory: Cycle-accurate DDR3 DRAM simulator

• Workloads
– 32 Benchmarks from TPC, STREAM, SPEC CPU2006

• Performance Metrics
– Single-core: Instructions-Per-Cycle

– Multi-core: Weighted speedup

83

 Configurations
• System configuration

– CPU: 5.3GHz

– LLC: 512kB private per core

– Memory: DDR3-1066
• 1-2 channel, 1 rank/channel

• 8 banks, 32 subarrays/bank, 512 cells/bitline

• Row-interleaved mapping & closed-row policy

• TL-DRAM configuration
– Total bitline length: 512 cells/bitline

– Near segment length: 1-256 cells

– Hardware-managed inclusive cache: near segment

84

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

 Performance & Power Consumption

11.5%

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

a
n

ce

Core-Count (Channel)
N

o
rm

al
iz

ed
 P

o
w

er

Core-Count (Channel)

10.7%

12.4%
 –23%

–24%

–26%

Using near segment as a cache improves
performance and reduces power consumption

85

0%

2%

4%

6%

8%

10%

12%

14%

1 2 4 8 16 32 64 128 256

 Single-Core: Varying Near Segment Length

By adjusting the near segment length, we can
trade off cache capacity for cache latency

Larger cache capacity

Higher cache access latency

Maximum IPC
Improvement

 P
er

fo
rm

an
ce

 I
m

p
ro

ve
m

en
t

Near Segment Length (cells)

86

 Other Mechanisms & Results

• More mechanisms for leveraging TL-DRAM
– Hardware-managed exclusive caching mechanism

– Profile-based page mapping to near segment

– TL-DRAM improves performance and reduces power
consumption with other mechanisms

• More than two tiers
– Latency evaluation for three-tier TL-DRAM

• Detailed circuit evaluation
for DRAM latency and power consumption
– Examination of tRC and tRCD

• Implementation details and storage cost analysis in
memory controller

87

 Summary of TL-DRAM

• Problem: DRAM latency is a critical performance bottleneck

• Our Goal: Reduce DRAM latency with low area cost

• Observation: Long bitlines in DRAM are the dominant source
of DRAM latency

• Key Idea: Divide long bitlines into two shorter segments

– Fast and slow segments

• Tiered-latency DRAM: Enables latency heterogeneity in DRAM

–Can leverage this in many ways to improve performance
and reduce power consumption

• Results: When the fast segment is used as a cache to the slow
segment Significant performance improvement (>12%) and
power reduction (>23%) at low area cost (3%)

New DRAM Architectures

 RAIDR: Reducing Refresh Impact

 TL-DRAM: Reducing DRAM Latency

 SALP: Reducing Bank Conflict Impact

 RowClone: Fast Bulk Data Copy and Initialization

88

To Be Covered in Lecture 3

 Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

 Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B.
Gibbons, Michael A. Kozuch, Todd C. Mowry,
"RowClone: Fast and Efficient In-DRAM Copy and Initialization
of Bulk Data"
CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie
Mellon University, April 2013.

89

http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://users.ece.cmu.edu/~omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/kim_isca12_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_CMU-CS-TR-13-108.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_CMU-CS-TR-13-108.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_CMU-CS-TR-13-108.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_CMU-CS-TR-13-108.pdf

Scalable Many-Core Memory Systems

Lecture 2, Topic 1: DRAM Basics and

DRAM Scaling

Prof. Onur Mutlu

http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013

July 16, 2013

http://www.ece.cmu.edu/~omutlu
mailto:onur@cmu.edu
mailto:onur@cmu.edu

Computer Architecture:

Main Memory (Part II)

Prof. Onur Mutlu

Carnegie Mellon University

