Computer Architecture: Main Memory (Part II)

> Prof. Onur Mutlu Carnegie Mellon University

- These slides are from the Scalable Memory Systems course taught at ACACES 2013 (July 15-19, 2013)
- Course Website:
 - <u>http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html</u>
- This is the second lecture:
 - Lecture 2 (July 16, 2013): DRAM Basics and DRAM Scaling: New DRAM Architectures I (pptx) (pdf)

Scalable Many-Core Memory Systems Lecture 2, Topic 1: DRAM Basics and DRAM Scaling

Prof. Onur Mutlu http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013 July 16, 2013

Agenda for Topic 1 (DRAM Scaling)

- What Will You Learn in This Mini-Lecture Series
- Main Memory Basics (with a Focus on DRAM)
- Major Trends Affecting Main Memory
- DRAM Scaling Problem and Solution Directions
- Solution Direction 1: System-DRAM Co-Design
- Ongoing Research
- Summary

Review: DRAM Controller: Functions

- Ensure correct operation of DRAM (refresh and timing)
- Service DRAM requests while obeying timing constraints of DRAM chips
 - Constraints: resource conflicts (bank, bus, channel), minimum write-to-read delays
 - Translate requests to DRAM command sequences
- Buffer and schedule requests to improve performance
 Reordering, row-buffer, bank, rank, bus management
- Manage power consumption and thermals in DRAM
 Turn on/off DRAM chips, manage power modes

DRAM Power Management

- DRAM chips have power modes
- Idea: When not accessing a chip power it down
- Power states
 - Active (highest power)
 - All banks idle
 - Power-down
 - Self-refresh (lowest power)
- Tradeoff: State transitions incur latency during which the chip cannot be accessed

Review: Why are DRAM Controllers Difficult to Design?

- Need to obey DRAM timing constraints for correctness
 - There are many (50+) timing constraints in DRAM
 - tWTR: Minimum number of cycles to wait before issuing a read command after a write command is issued
 - tRC: Minimum number of cycles between the issuing of two consecutive activate commands to the same bank
 - ...
- Need to keep track of many resources to prevent conflicts
 - Channels, banks, ranks, data bus, address bus, row buffers
- Need to handle DRAM refresh
- Need to optimize for performance (in the presence of constraints)
 - Reordering is not simple
 - Predicting the future?

Review: Many DRAM Timing Constraints

Latency	Symbol	DRAM cycles	Latency	Symbol	DRAM cycles
Precharge	^{t}RP	11	Activate to read/write	^{t}RCD	11
Read column address strobe	CL	11	Write column address strobe	CWL	8
Additive	AL	0	Activate to activate	^{t}RC	39
Activate to precharge	^{t}RAS	28	Read to precharge	^{t}RTP	6
Burst length	^{t}BL	4	Column address strobe to column address strobe	^{t}CCD	4
Activate to activate (different bank)	^{t}RRD	6	Four activate windows	^{t}FAW	24
Write to read	^t WTR	6	Write recovery	^{t}WR	12

Table 4. DDR3 1600 DRAM timing specifications

 From Lee et al., "DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems," HPS Technical Report, April 2010.

Review: More on DRAM Operation

- Kim et al., "A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM," ISCA 2012.
- Lee et al., "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.

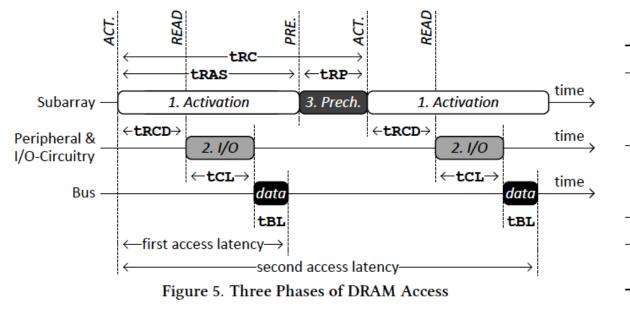


Table 2. Timing Constraints (DDR3-1066) [43]

Phase	Commands	Name	Value	
1	$\begin{array}{l} \text{ACT} \rightarrow \text{READ} \\ \text{ACT} \rightarrow \text{WRITE} \end{array}$	tRCD	15ns	
	$\mathrm{ACT} \to \mathrm{PRE}$	tRAS	37.5ns	
2	$\begin{array}{l} \text{READ} \rightarrow \textit{data} \\ \text{WRITE} \rightarrow \textit{data} \end{array}$	tCL tCWL	15ns 11.25ns	
	data burst	tBL	7.5ns	
3	$\text{PRE} \rightarrow \text{ACT}$	tRP	15ns	
1&3	$\mathrm{ACT} \to \mathrm{ACT}$	tRC (tRAS+tRP)	52.5ns	

- Problem: DRAM controllers difficult to design → It is difficult for human designers to design a policy that can adapt itself very well to different workloads and different system conditions
- Idea: Design a memory controller that adapts its scheduling policy decisions to workload behavior and system conditions using machine learning.
- Observation: Reinforcement learning maps nicely to memory control.
- Design: Memory controller is a reinforcement learning agent that dynamically and continuously learns and employs the best scheduling policy.

Ipek+, "Self Optimizing Memory Controllers: A Reinforcement Learning Approach," ISCA 2008.

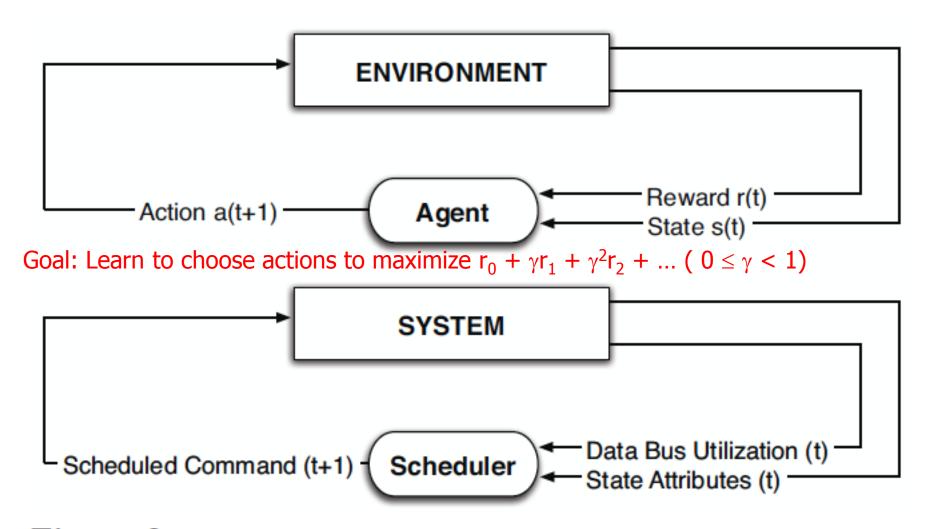
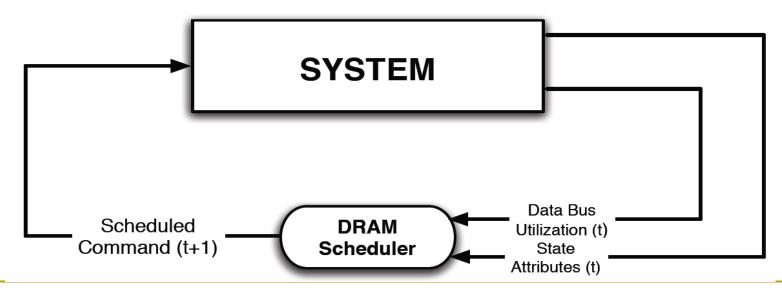


Figure 2: (a) Intelligent agent based on reinforcement learning principles; (b) DRAM scheduler as an RL-agent

- Dynamically adapt the memory scheduling policy via interaction with the system at runtime
 - Associate system states and actions (commands) with long term reward values
 - Schedule command with highest estimated long-term value in each state
 - Continuously update state-action values based on feedback from system



 Engin Ipek, <u>Onur Mutlu</u>, José F. Martínez, and Rich Caruana, <u>"Self Optimizing Memory Controllers: A Reinforcement Learning</u> <u>Approach</u>" *Proceedings of the <u>35th International Symposium on Computer Architecture</u>*

(ISCA), pages 39-50, Beijing, China, June 2008.

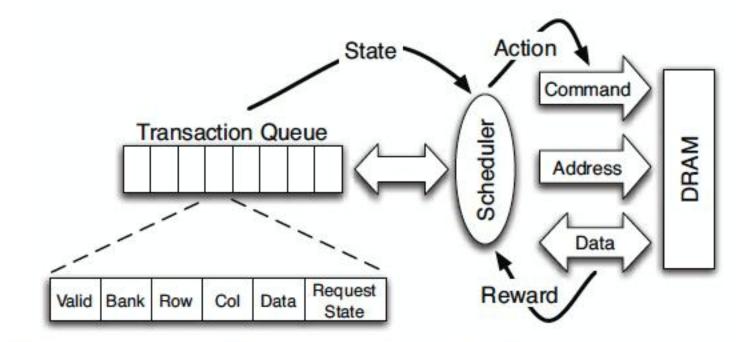


Figure 4: High-level overview of an RL-based scheduler.

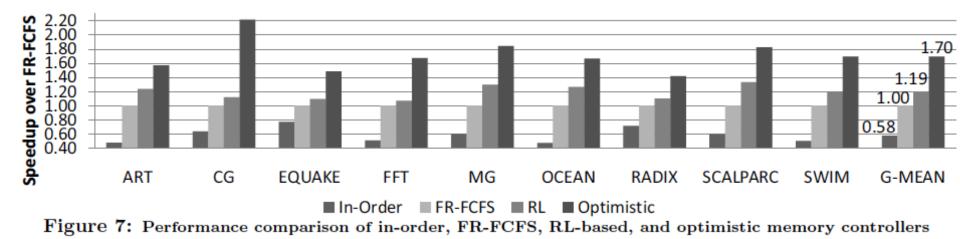
States, Actions, Rewards

- Reward function
 - +1 for scheduling Read and Write commands
 - 0 at all other times

- State attributes
 - Number of reads, writes, and load misses in transaction queue
 - Number of pending writes and ROB heads waiting for referenced row
 - Request's relative ROB order

- Actions
 - Activate
 - Write
 - Read load miss
 - Read store miss
 - Precharge pending
 - Precharge preemptive
 - NOP

Performance Results



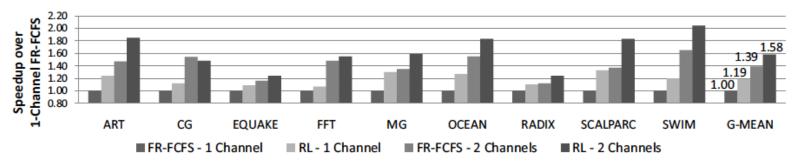


Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak DRAM bandwidth

Advantages

+ Adapts the scheduling policy dynamically to changing workload behavior and to maximize a long-term target

+ Reduces the designer's burden in finding a good scheduling policy. Designer specifies:

- 1) What system variables might be useful
- 2) What target to optimize, but not how to optimize it

Disadvantages

-- Black box: designer much less likely to implement what she cannot easily reason about

-- How to specify different reward functions that can achieve different objectives? (e.g., fairness, QoS)

Trends Affecting Main Memory

Agenda for Topic 1 (DRAM Scaling)

- What Will You Learn in This Mini-Lecture Series
- Main Memory Basics (with a Focus on DRAM)
- Major Trends Affecting Main Memory
- DRAM Scaling Problem and Solution Directions
- Solution Direction 1: System-DRAM Co-Design
- Ongoing Research
- Summary

Major Trends Affecting Main Memory (I)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Major Trends Affecting Main Memory (II)

- Need for main memory capacity, bandwidth, QoS increasing
 - Multi-core: increasing number of cores
 - Data-intensive applications: increasing demand/hunger for data
 - Consolidation: cloud computing, GPUs, mobile

• Main memory energy/power is a key system design concern

DRAM technology scaling is ending

Major Trends Affecting Main Memory (III)

Need for main memory capacity, bandwidth, QoS increasing

- Main memory energy/power is a key system design concern
 - ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, IEEE Computer 2003]
 - DRAM consumes power even when not used (periodic refresh)
- DRAM technology scaling is ending

Major Trends Affecting Main Memory (IV)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

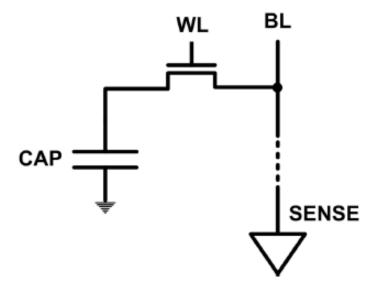
DRAM technology scaling is ending

- ITRS projects DRAM will not scale easily below X nm
- Scaling has provided many benefits:
 - higher capacity (density), lower cost, lower energy

- What Will You Learn in This Mini-Lecture Series
- Main Memory Basics (with a Focus on DRAM)
- Major Trends Affecting Main Memory
- DRAM Scaling Problem and Solution Directions
- Solution Direction 1: System-DRAM Co-Design
- Ongoing Research
- Summary

The DRAM Scaling Problem

- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - □ Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]



DRAM capacity, cost, and energy/power hard to scale

Solutions to the DRAM Scaling Problem

- Two potential solutions
 - Tolerate DRAM (by taking a fresh look at it)
 - Enable emerging memory technologies to eliminate/minimize DRAM
- Do both
 - Hybrid memory systems

Solution 1: Tolerate DRAM

- Overcome DRAM shortcomings with
 - System-DRAM co-design
 - Novel DRAM architectures, interface, functions
 - Better waste management (efficient utilization)
- Key issues to tackle
 - Reduce refresh energy
 - Improve bandwidth and latency
 - Reduce waste
 - Enable reliability at low cost
- Liu, Jaiyen, Veras, Mutlu, "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.
- Kim, Seshadri, Lee+, "A Case for Exploiting Subarray-Level Parallelism in DRAM," ISCA 2012.
- Lee+, "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013.
- Liu+, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices" ISCA'13.
- Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," 2013.

Tolerating DRAM: System-DRAM Co-Design

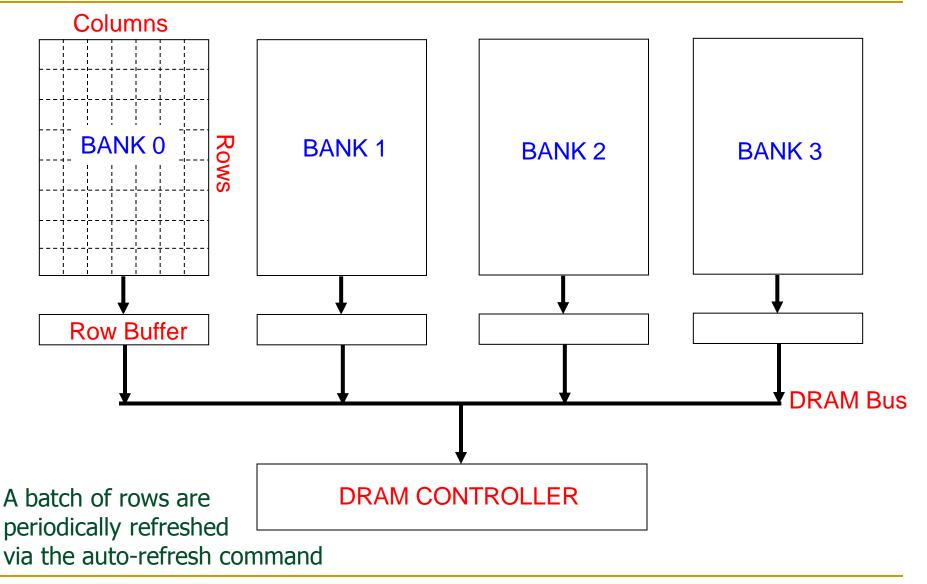
New DRAM Architectures

- RAIDR: Reducing Refresh Impact
- TL-DRAM: Reducing DRAM Latency
- SALP: Reducing Bank Conflict Impact
- RowClone: Fast Bulk Data Copy and Initialization

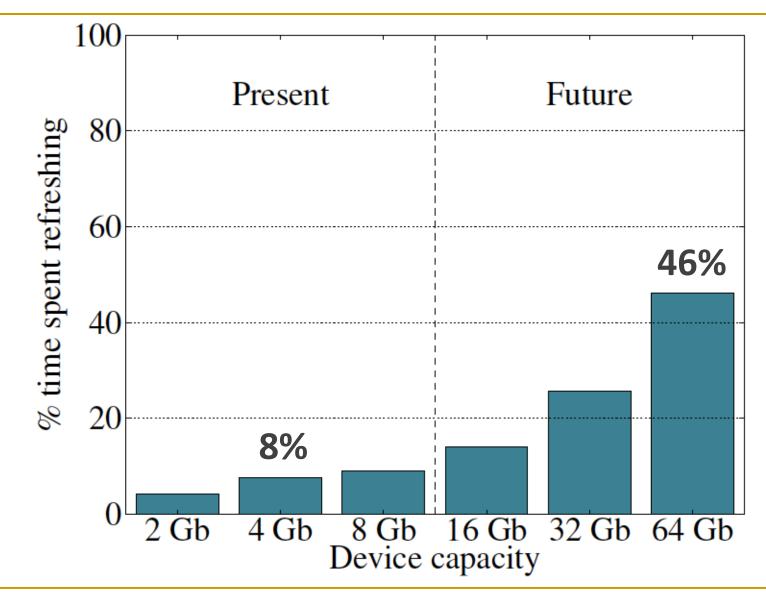
RAIDR: Reducing DRAM Refresh Impact

- DRAM capacitor charge leaks over time
- The memory controller needs to refresh each row periodically to restore charge
 - Activate + precharge each row every N ms
 - Typical N = 64 ms
- Downsides of refresh
 - -- Energy consumption: Each refresh consumes energy
 - -- Performance degradation: DRAM rank/bank unavailable while refreshed
 - -- QoS/predictability impact: (Long) pause times during refresh
 - -- Refresh rate limits DRAM density scaling

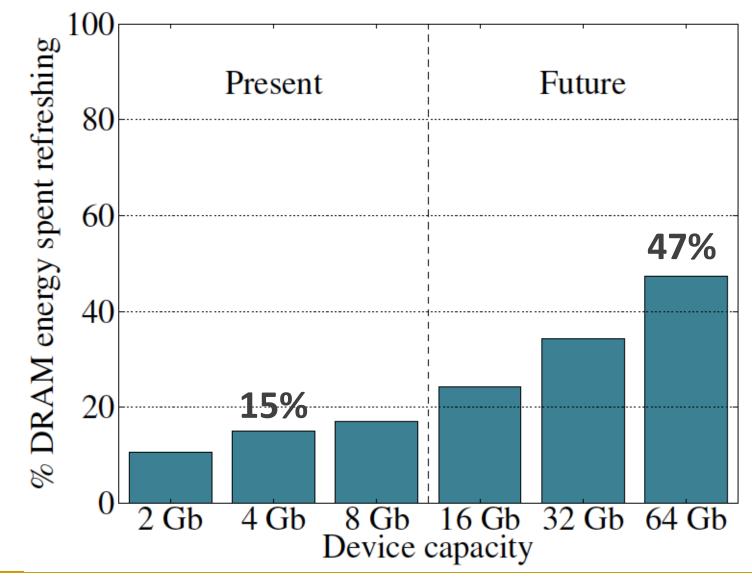
Refresh Today: Auto Refresh



Refresh Overhead: Performance

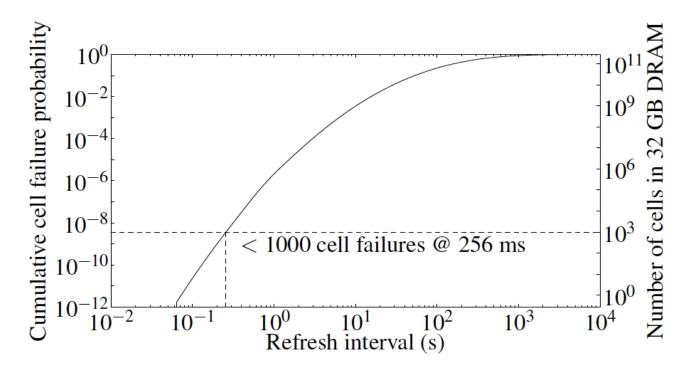


Refresh Overhead: Energy



Problem with Conventional Refresh

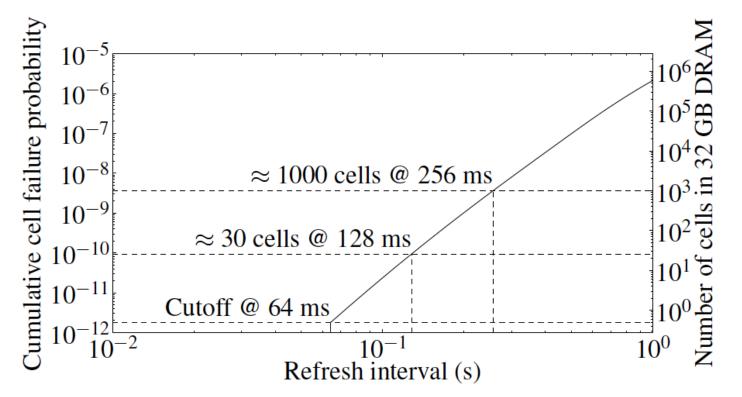
• Today: Every row is refreshed at the same rate



- Observation: Most rows can be refreshed much less often without losing data [Kim+, EDL'09]
- Problem: No support in DRAM for different refresh rates per row

Retention Time of DRAM Rows

 Observation: Only very few rows need to be refreshed at the worst-case rate



Can we exploit this to reduce refresh operations at low cost?

Reducing DRAM Refresh Operations

- Idea: Identify the retention time of different rows and refresh each row at the frequency it needs to be refreshed
- (Cost-conscious) Idea: Bin the rows according to their minimum retention times and refresh rows in each bin at the refresh rate specified for the bin
 - □ e.g., a bin for 64-128ms, another for 128-256ms, ...
- Observation: Only very few rows need to be refreshed very frequently [64-128ms] → Have only a few bins → Low HW overhead to achieve large reductions in refresh operations
- Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

RAIDR: Mechanism

64-128ms

>256ms

1.25KB storage in controller for 32GB DRAM memory

128-256ms bins at different rates

 \rightarrow probe Bloom Filters to determine refresh rate of a row

1. Profiling

To profile a row:

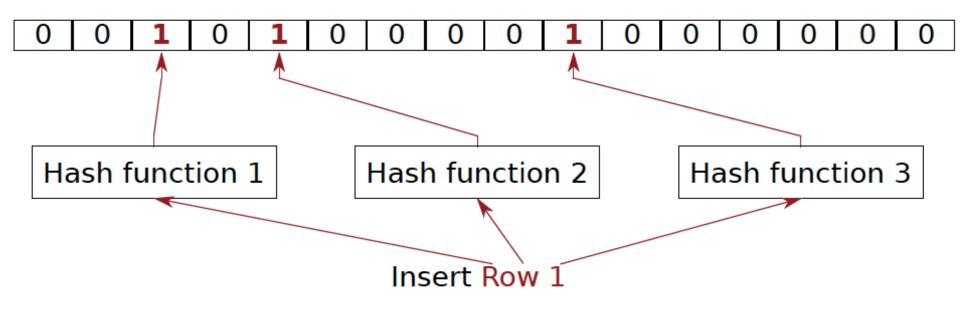
- 1. Write data to the row
- 2. Prevent it from being refreshed
- 3. Measure time before data corruption

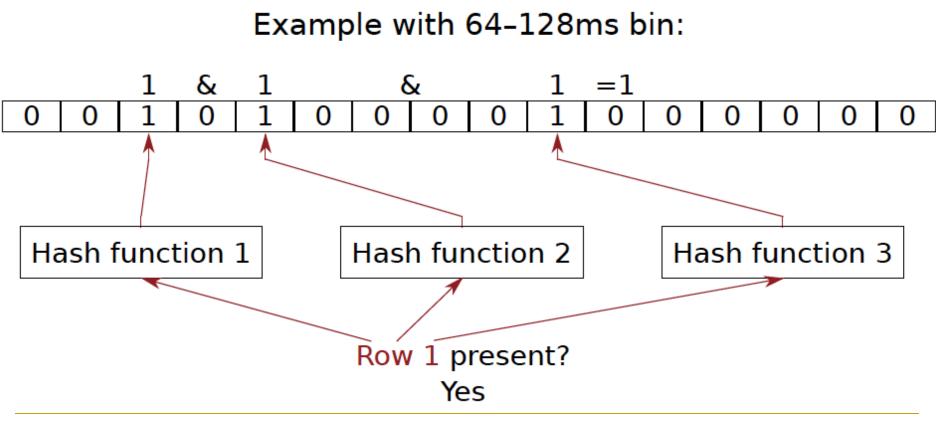
	Row 1	Row 2	Row 3
Initially	11111111	11111111	11111111
After 64 ms	11111111	11111111	11111111
After 128 ms	11 <mark>0</mark> 11111	11111111	11111111
	(64–128ms)		
After 256 ms		11111 <mark>0</mark> 11	11111111
		(128-256ms)	(>256ms)

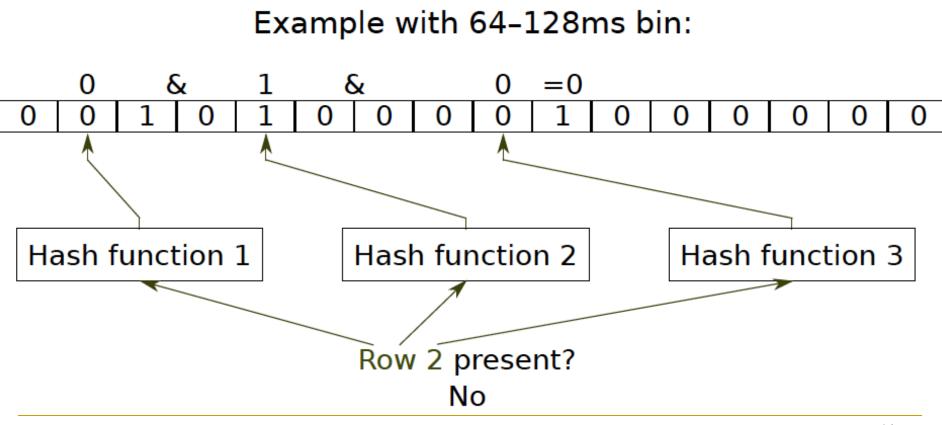
2. Binning

- How to efficiently and scalably store rows into retention time bins?
- Use Hardware Bloom Filters [Bloom, CACM 1970]

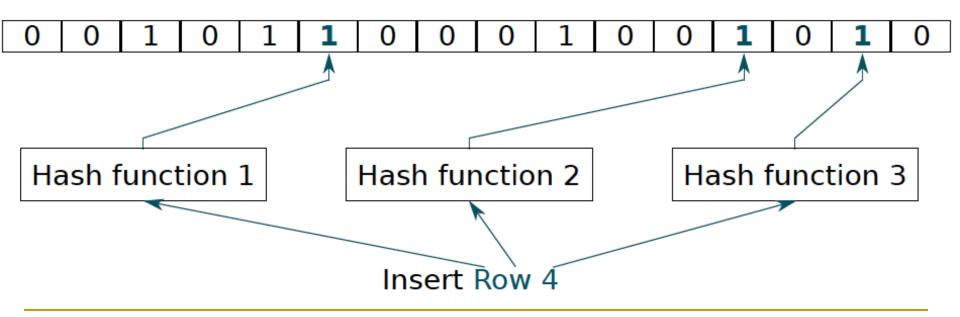
Example with 64-128ms bin:

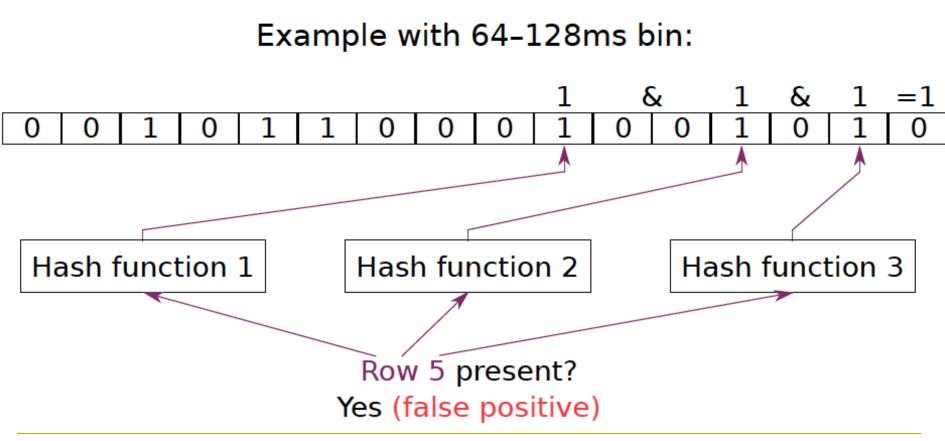






Example with 64-128ms bin:

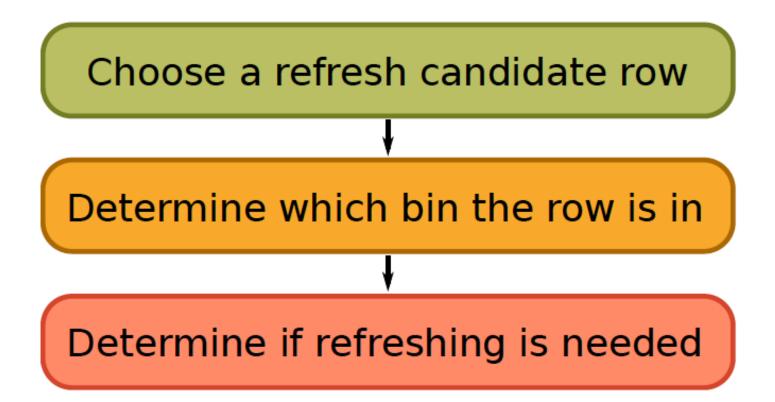




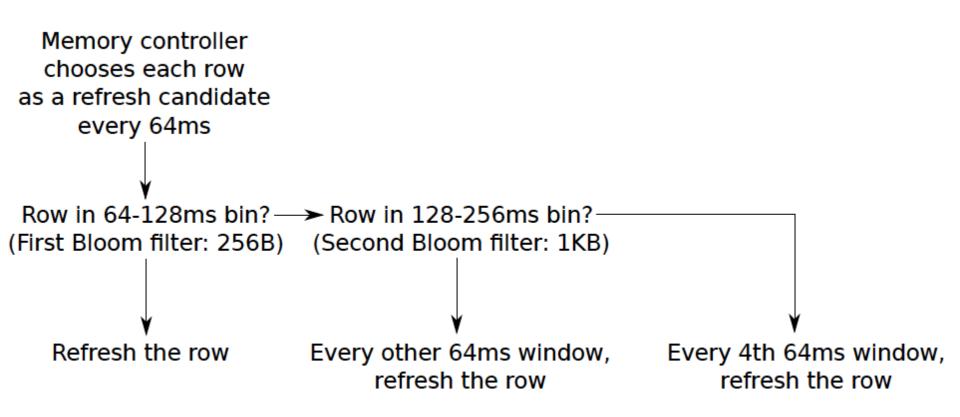
Benefits of Bloom Filters as Bins

- False positives: a row may be declared present in the Bloom filter even if it was never inserted
 - Not a problem: Refresh some rows more frequently than needed
- No false negatives: rows are never refreshed less frequently than needed (no correctness problems)
- Scalable: a Bloom filter never overflows (unlike a fixed-size table)
- Efficient: No need to store info on a per-row basis; simple hardware → 1.25 KB for 2 filters for 32 GB DRAM system

3. Refreshing (RAIDR Refresh Controller)



3. Refreshing (RAIDR Refresh Controller)

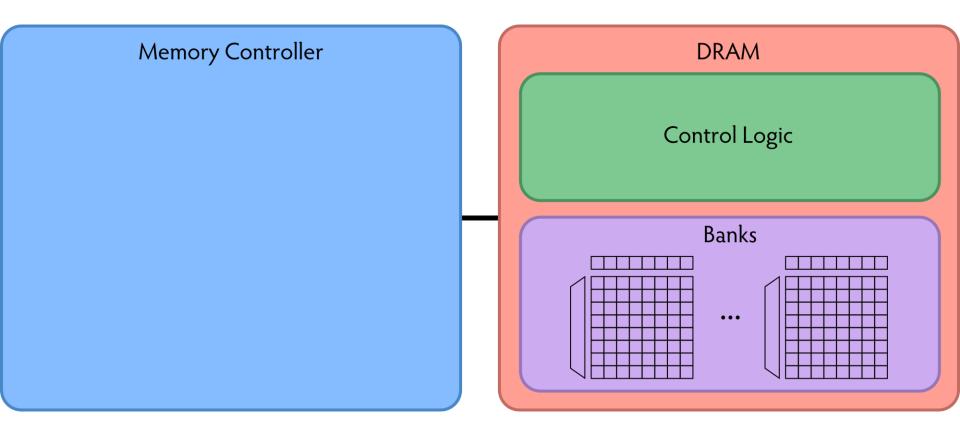


Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

Tolerating Temperature Changes

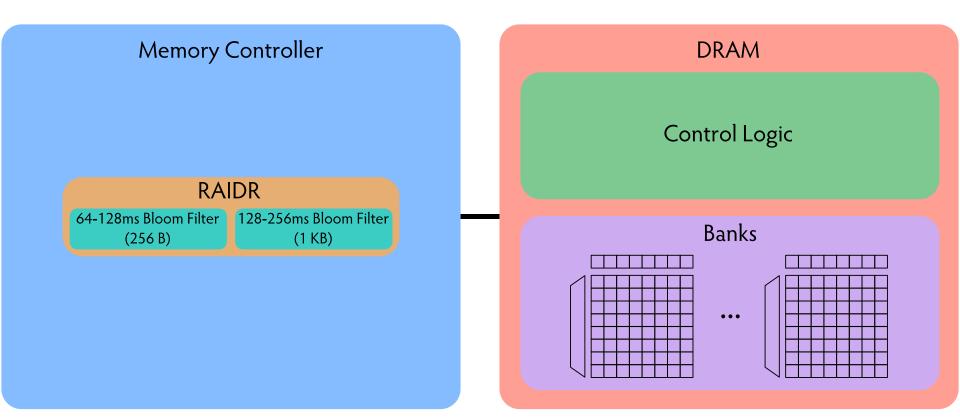
- Change in temperature causes retention time of all cells to change by a uniform and predictable factor
- Refresh rate scaling: increase the refresh rate for all rows uniformly, depending on the temperature
- Implementation: counter with programmable period
 - Lower temperature \Rightarrow longer period \Rightarrow less frequent refreshes
 - ► Higher temperature ⇒ shorter period ⇒ more frequent refreshes

RAIDR: Baseline Design



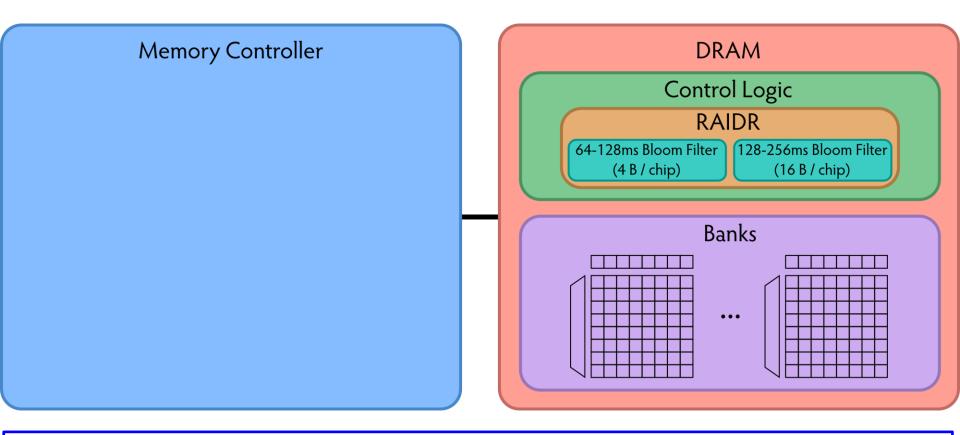
Refresh control is in DRAM in today's auto-refresh systems RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1



Overhead of RAIDR in DRAM controller: 1.25 KB Bloom Filters, 3 counters, additional commands issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2



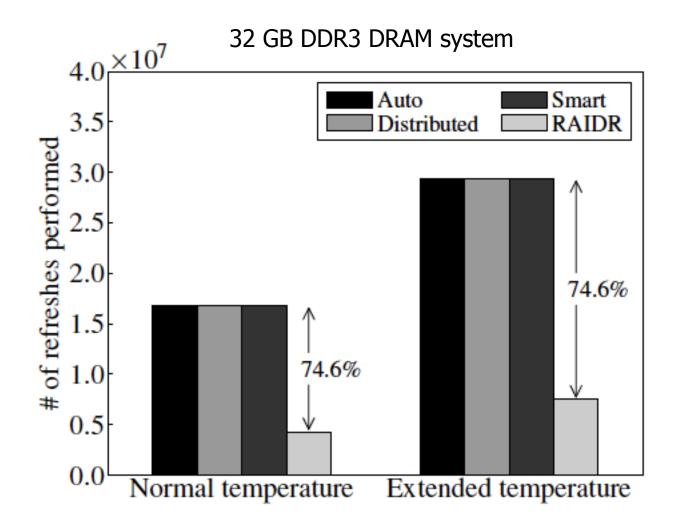
Overhead of RAIDR in DRAM chip:

Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip) Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

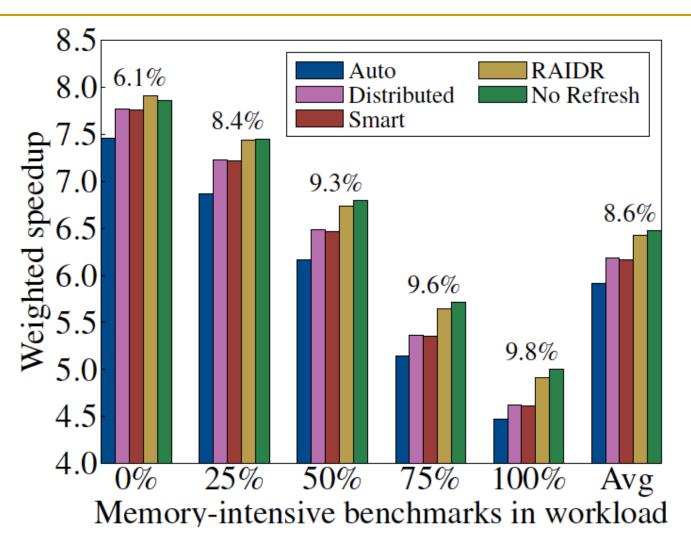
RAIDR Results

- Baseline:
 - 32 GB DDR3 DRAM system (8 cores, 512KB cache/core)
 - 64ms refresh interval for all rows
- RAIDR:
 - 64–128ms retention range: 256 B Bloom filter, 10 hash functions
 - □ 128–256ms retention range: 1 KB Bloom filter, 6 hash functions
 - Default refresh interval: 256 ms
- Results on SPEC CPU2006, TPC-C, TPC-H benchmarks
 - o 74.6% refresh reduction
 - □ ~16%/20% DRAM dynamic/idle power reduction
 - □ ~9% performance improvement

RAIDR Refresh Reduction

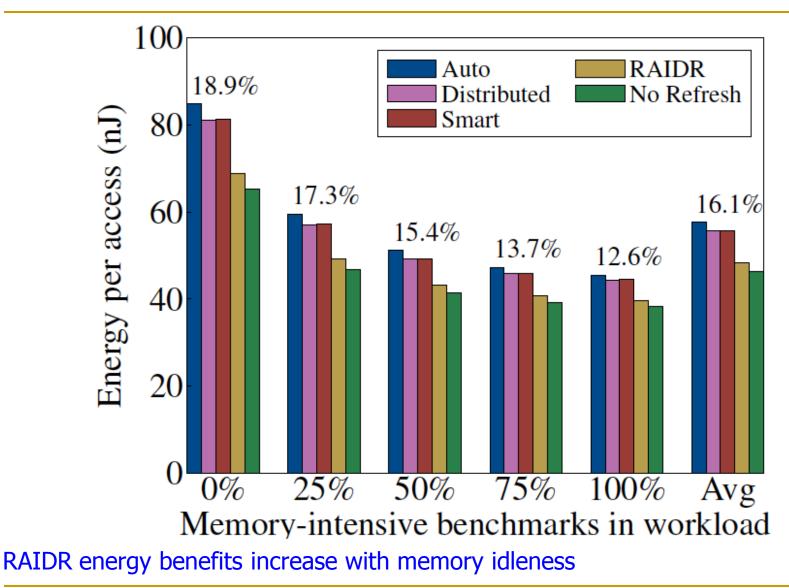


RAIDR: Performance

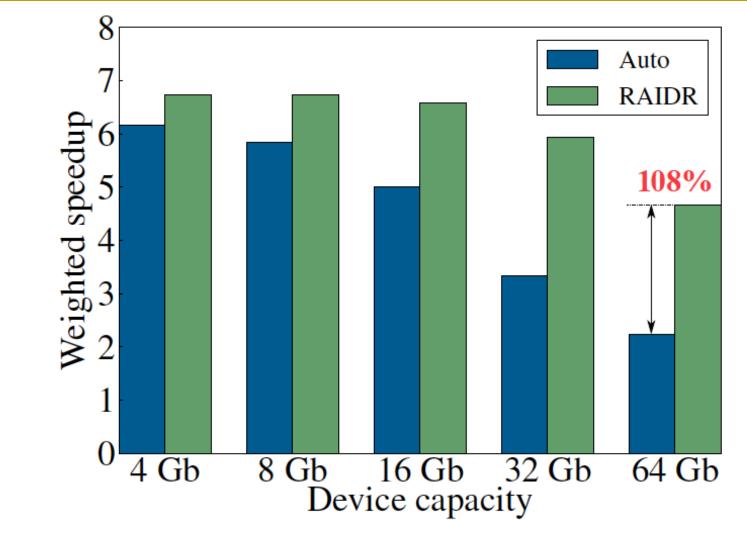


RAIDR performance benefits increase with workload's memory intensity

RAIDR: DRAM Energy Efficiency

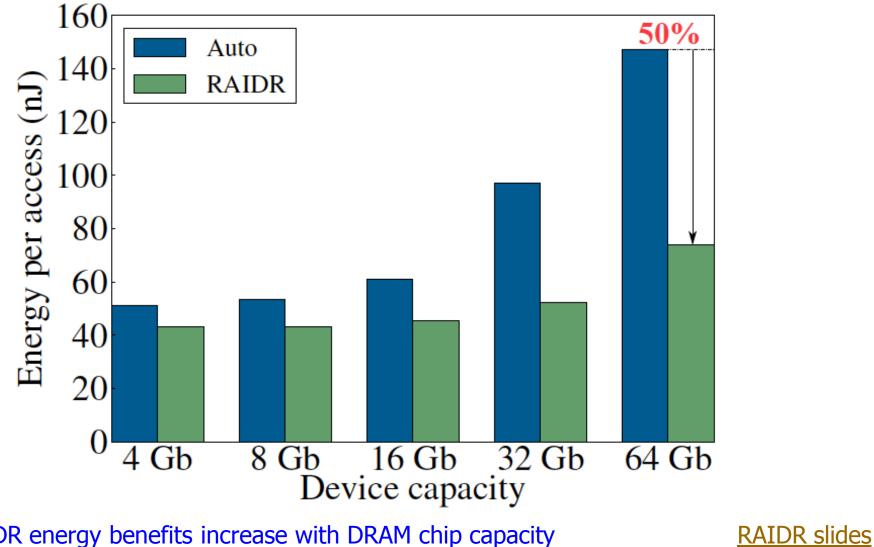


DRAM Device Capacity Scaling: Performance



RAIDR performance benefits increase with DRAM chip capacity

DRAM Device Capacity Scaling: Energy



RAIDR energy benefits increase with DRAM chip capacity

More Readings Related to RAIDR

 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and <u>Onur Mutlu</u>, <u>"An Experimental Study of Data Retention Behavior in Modern</u> <u>DRAM Devices: Implications for Retention Time Profiling</u> <u>Mechanisms"</u>

Proceedings of the <u>40th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Tel-Aviv, Israel, June 2013. <u>Slides (pptx)</u> <u>Slides</u> (pdf)

New DRAM Architectures

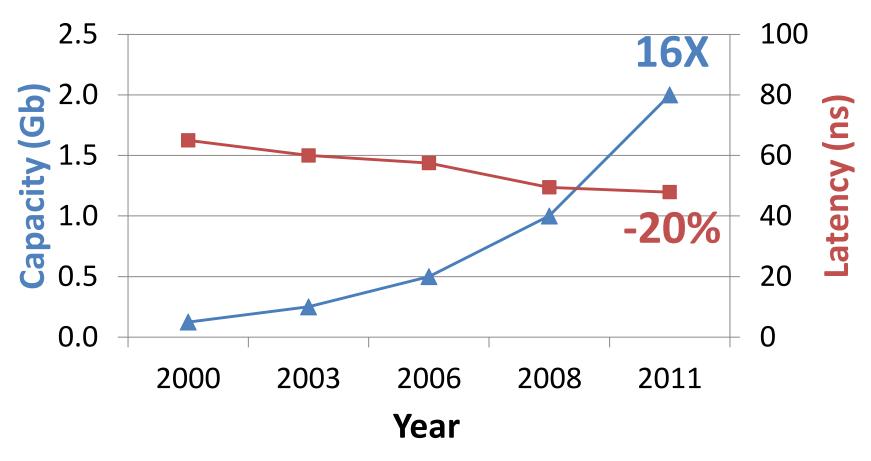
- RAIDR: Reducing Refresh Impact
- TL-DRAM: Reducing DRAM Latency
- SALP: Reducing Bank Conflict Impact
- RowClone: Fast Bulk Data Copy and Initialization

Tiered-Latency DRAM: Reducing DRAM Latency

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and <u>Onur Mutlu</u>, <u>"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture"</u> <u>19th International Symposium on High-Performance Computer Architecture</u> (HPCA), Shenzhen, China, February 2013. <u>Slides (pptx)</u>

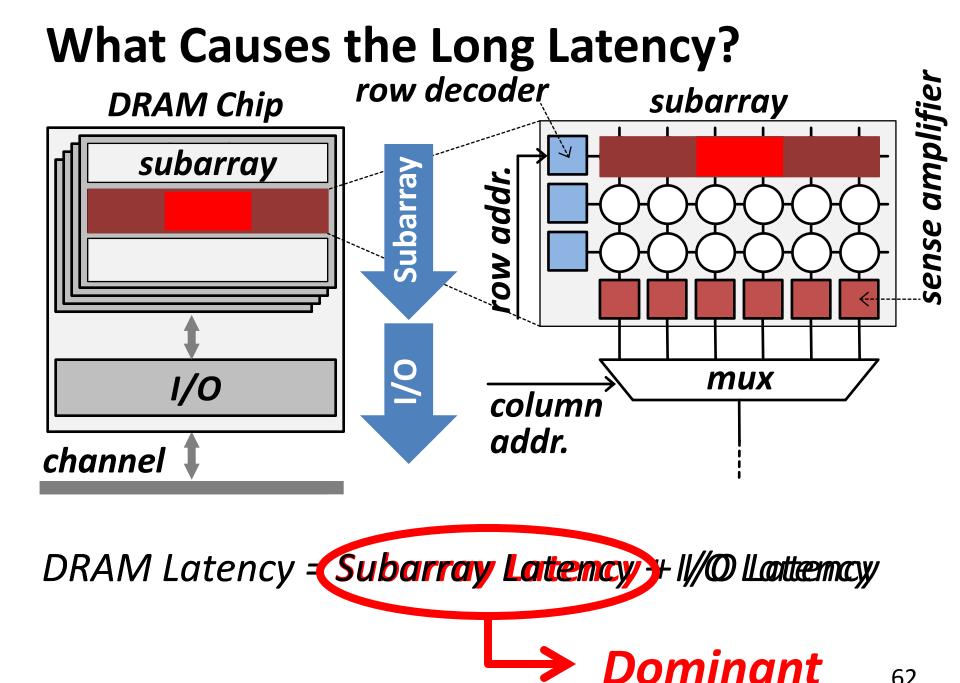
Historical DRAM Latency-Capacity Trend

Capacity – Latency (tRC)

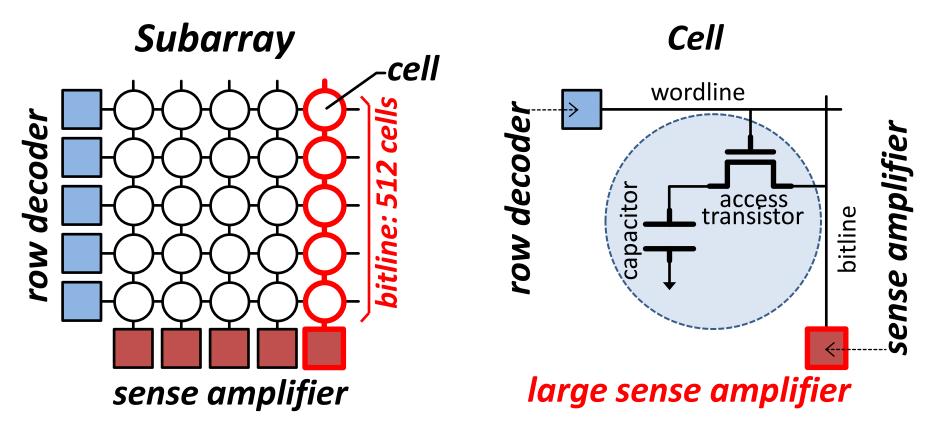


DRAM latency continues to be a critical bottleneck

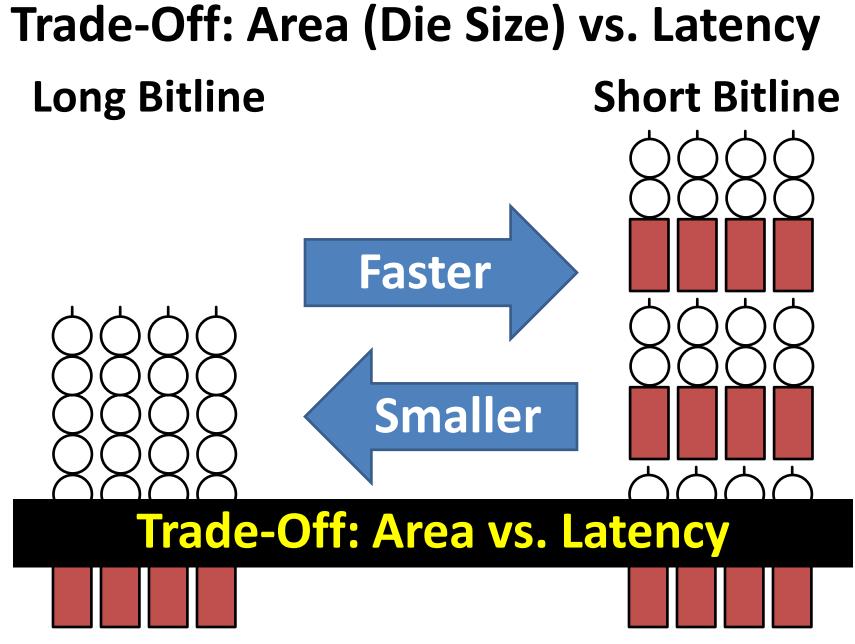
What Causes the Long Latency? subarray **DRAM** Chip subarray cell 1/0 wordline row decodei channel capacito access bitline transistor



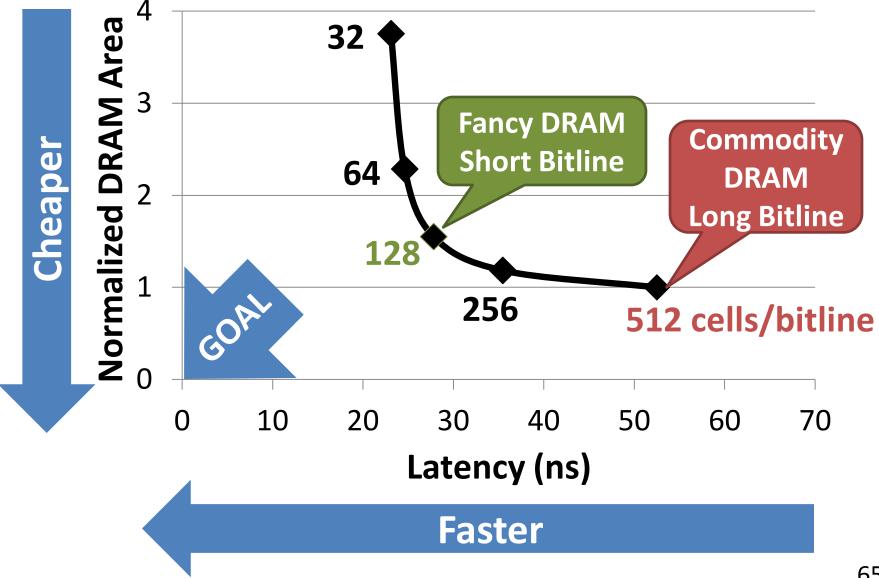
Why is the Subarray So Slow?



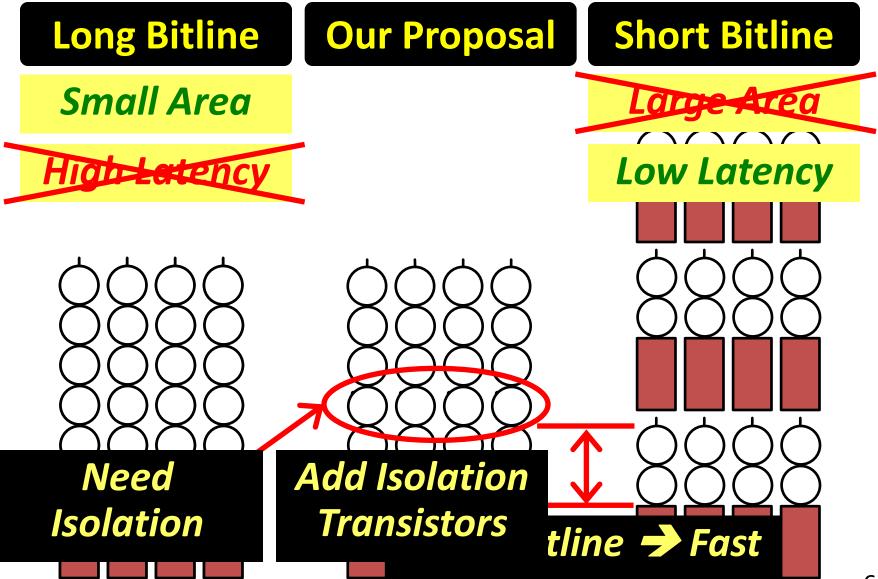
- Long bitline
 - Amortizes sense amplifier cost \rightarrow Small area
 - Large bitline capacitance → High latency & power



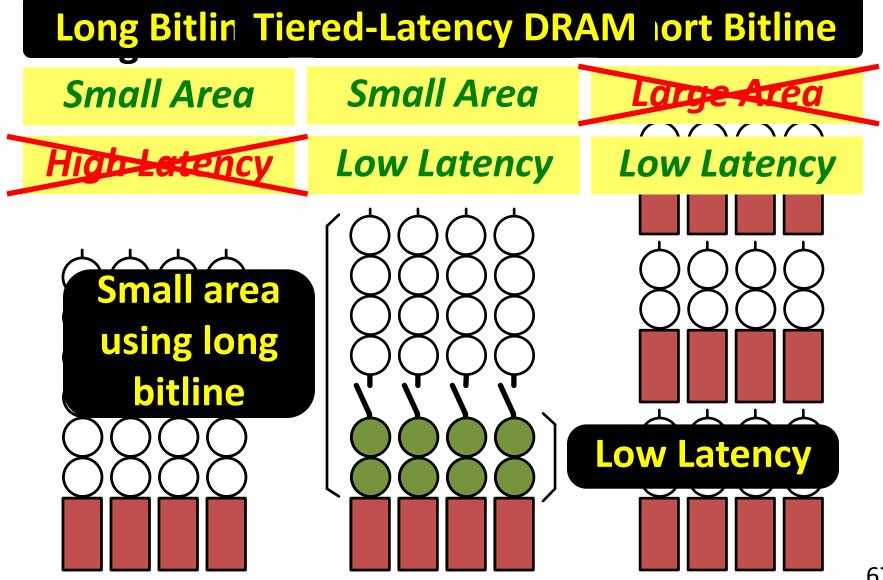
Trade-Off: Area (Die Size) vs. Latency



Approximating the Best of Both Worlds

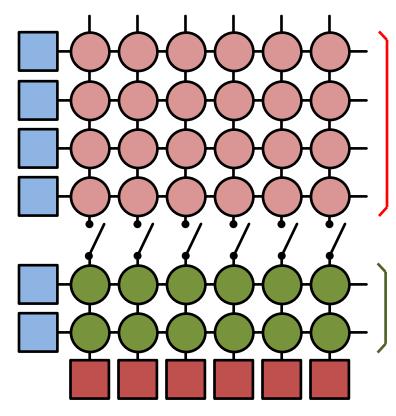


Approximating the Best of Both Worlds



Tiered-Latency DRAM

• Divide a bitline into two segments with an **isolation transistor**



Far Segment

Isolation Transistor

Near Segment

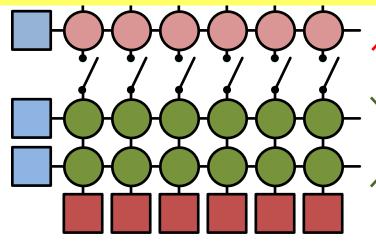
Sense Amplifier

Near Segment Access

• Turn off the isolation transistor

Reduced bitline length Reduced bitline capacitance

Low latency & low power



Isolation Transistor (**off**)

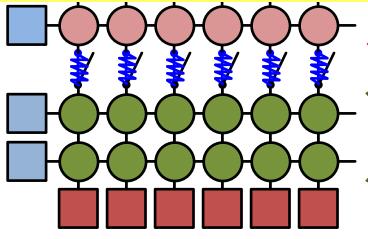
Near Segment

Sense Amplifier

Far Segment Access

• Turn on the isolation transistor

Long bitline length Large bitline capacitance Additional resistance of isolation transistor → High latency & high power



Isolation Transistor (On)

Near Segment

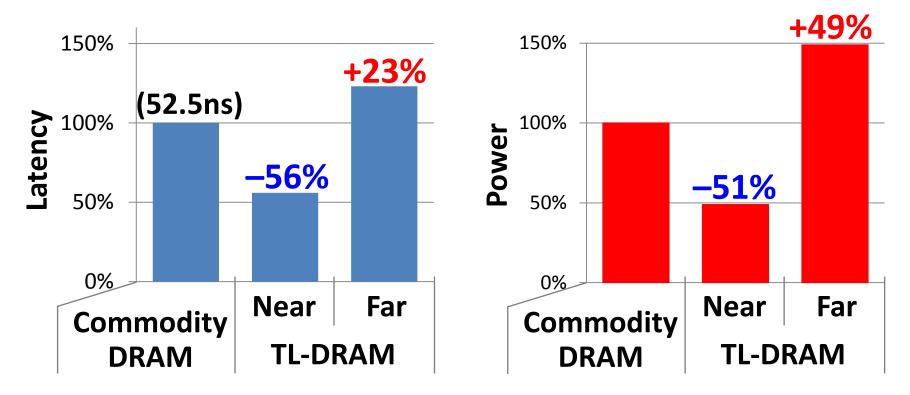
Sense Amplifier

Latency, Power, and Area Evaluation

- Commodity DRAM: 512 cells/bitline
- TL-DRAM: 512 cells/bitline
 - Near segment: 32 cells
 - Far segment: 480 cells
- Latency Evaluation
 - SPICE simulation using circuit-level DRAM model
- Power and Area Evaluation
 - DRAM area/power simulator from Rambus
 - DDR3 energy calculator from Micron

Commodity DRAM vs. TL-DRAM

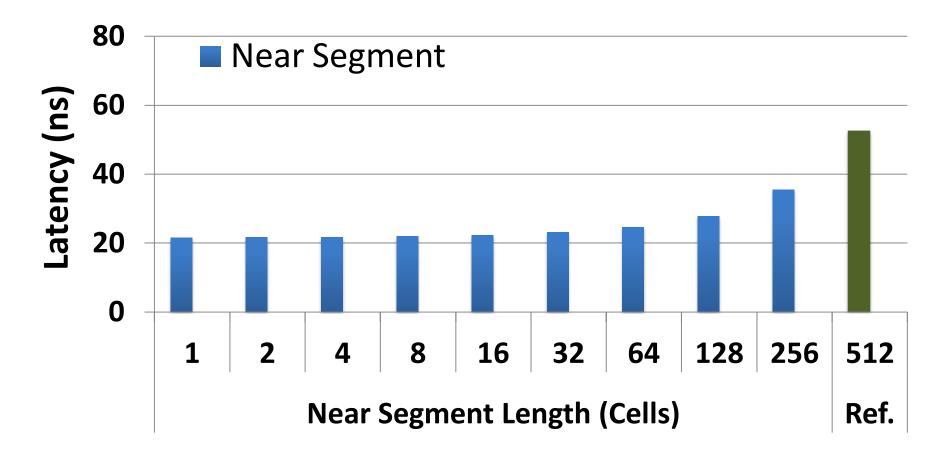
• DRAM Latency (tRC) • DRAM Power



DRAM Area Overhead

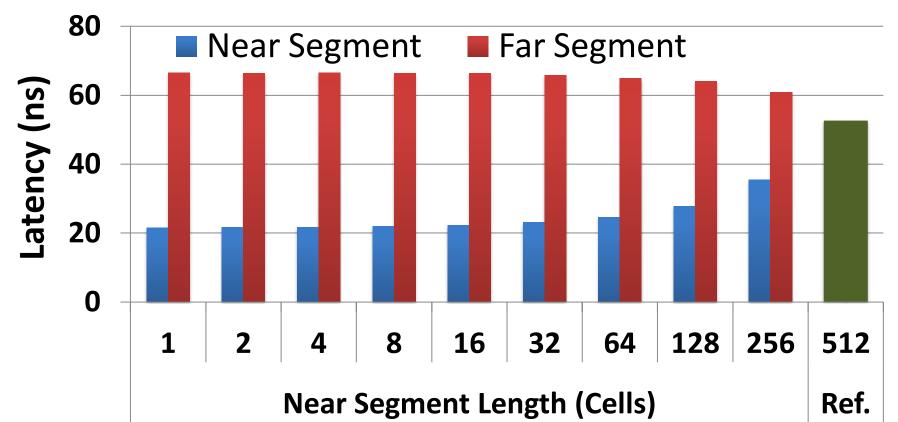
~3%: mainly due to the isolation transistors

Latency vs. Near Segment Length



Longer near segment length leads to higher near segment latency

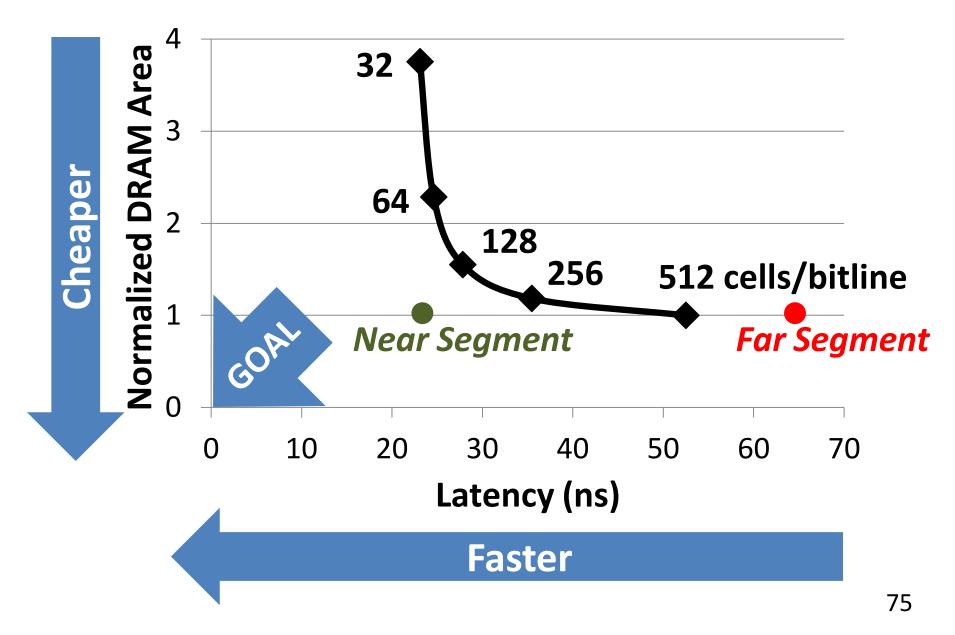
Latency vs. Near Segment Length



Far Segment Length = 512 – Near Segment Length

Far segment latency is higher than commodity DRAM latency

Trade-Off: Area (Die-Area) vs. Latency



Leveraging Tiered-Latency DRAM

- TL-DRAM is a *substrate* that can be leveraged by the hardware and/or software
- Many potential uses

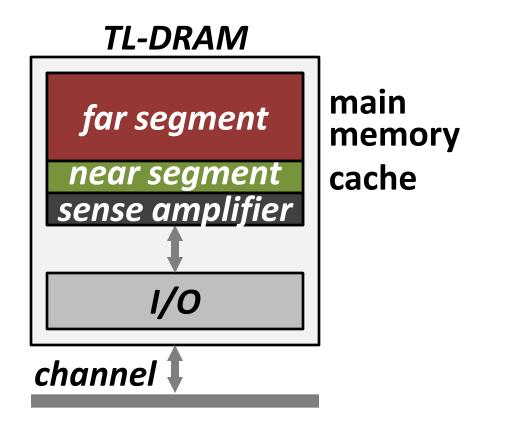
 Use near segment as hardware-managed *inclusive* cache to far segment

2. Use near segment as hardware-managed *exclusive* cache to far segment

3. Profile-based page mapping by operating system

4. Simply replace DRAM with TL-DRAM

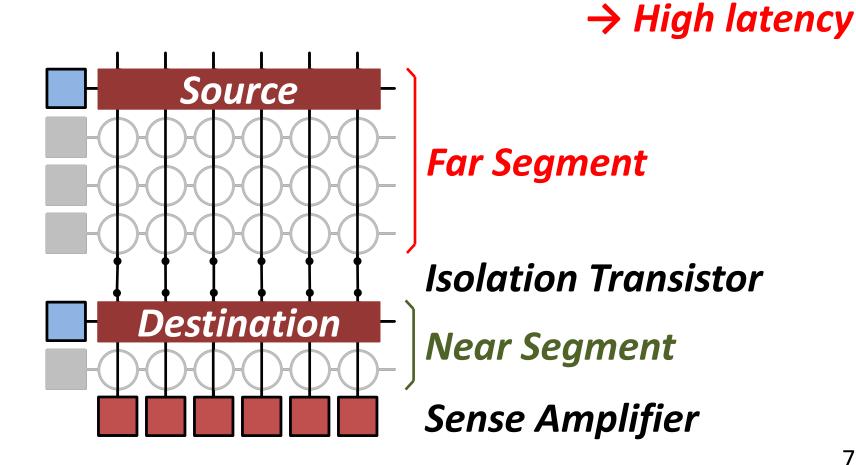
Near Segment as Hardware-Managed Cache



- Challenge 1: How to efficiently migrate a row between segments?
- **Challenge 2:** How to efficiently manage the cache?

Inter-Segment Migration

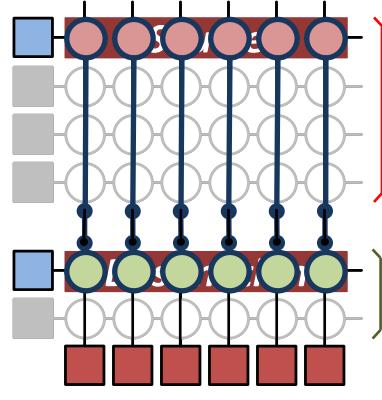
- **Goal:** Migrate source row into destination row
- Naïve way: Memory controller reads the source row byte by byte and writes to destination row byte by byte



Inter-Segment Migration

• Our way:

- Source and destination cells share bitlines
- Transfer data from source to destination across shared bitlines concurrently



Far Segment

Isolation Transistor

Near Segment

Sense Amplifier

Inter-Segment Migration

• Our way:

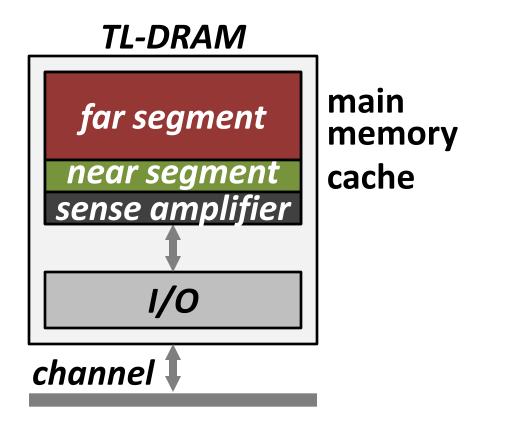
- Source and destination cells *share bitlines*
- Transfer data from sou shared bitlines concur Step 1: Activate source row
- **Migration is overlapped with source row access**
- Additional ~4ns over row access latency

Step 2: Activate destination row to connect cell and bitline

Near Segment

Sense Amplifier

Near Segment as Hardware-Managed Cache



- **Challenge 1:** How to efficiently migrate a row between segments?
- **Challenge 2:** How to efficiently manage the cache?

Evaluation Methodology

System simulator

- CPU: Instruction-trace-based x86 simulator
- Memory: Cycle-accurate DDR3 DRAM simulator

Workloads

- 32 Benchmarks from TPC, STREAM, SPEC CPU2006

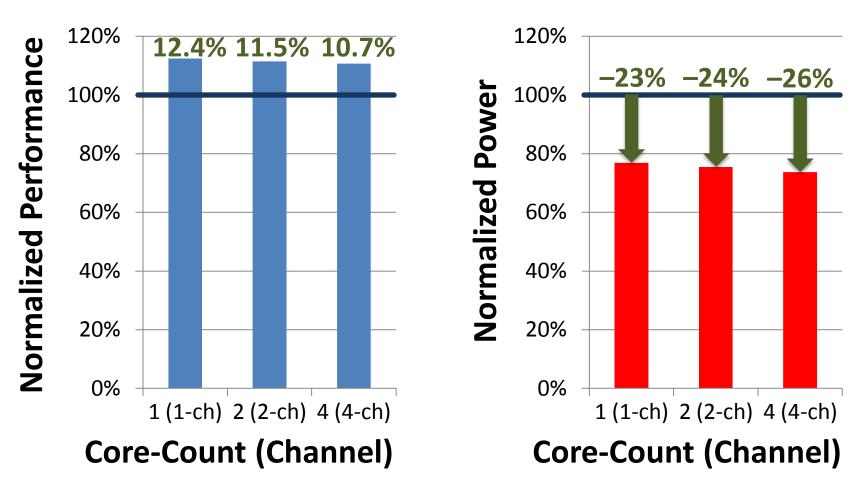
• Performance Metrics

- Single-core: Instructions-Per-Cycle
- Multi-core: Weighted speedup

Configurations

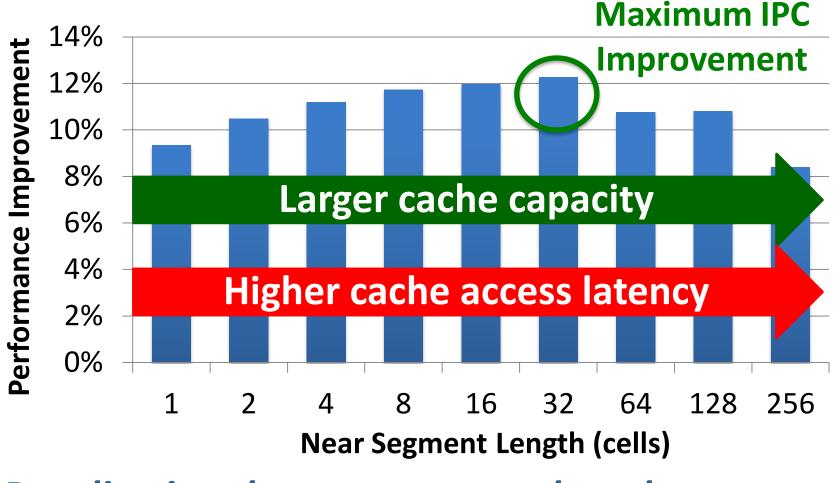
- System configuration
 - CPU: 5.3GHz
 - LLC: 512kB private per core
 - Memory: DDR3-1066
 - 1-2 channel, 1 rank/channel
 - 8 banks, 32 subarrays/bank, 512 cells/bitline
 - Row-interleaved mapping & closed-row policy
- TL-DRAM configuration
 - Total bitline length: 512 cells/bitline
 - Near segment length: 1-256 cells
 - Hardware-managed inclusive cache: near segment

Performance & Power Consumption



Using near segment as a cache improves performance and reduces power consumption

Single-Core: Varying Near Segment Length



By adjusting the near segment length, we can trade off cache capacity for cache latency

Other Mechanisms & Results

- More mechanisms for leveraging TL-DRAM
 - Hardware-managed *exclusive* caching mechanism
 - Profile-based page mapping to near segment
 - TL-DRAM improves performance and reduces power consumption with other mechanisms
- More than two tiers
 - Latency evaluation for three-tier TL-DRAM
- Detailed circuit evaluation

for DRAM latency and power consumption

Examination of tRC and tRCD

 Implementation details and storage cost analysis in memory controller

Summary of TL-DRAM

- **<u>Problem</u>**: DRAM latency is a critical performance bottleneck
- **Our Goal**: Reduce DRAM latency with low area cost
- **Observation**: Long bitlines in DRAM are the dominant source of DRAM latency
- <u>Key Idea</u>: Divide long bitlines into two shorter segments
 - Fast and slow segments
- <u>Tiered-latency DRAM</u>: Enables latency heterogeneity in DRAM
 - Can leverage this in many ways to improve performance and reduce power consumption
- <u>Results</u>: When the fast segment is used as a cache to the slow segment → Significant performance improvement (>12%) and power reduction (>23%) at low area cost (3%)

New DRAM Architectures

- RAIDR: Reducing Refresh Impact
- TL-DRAM: Reducing DRAM Latency
- SALP: Reducing Bank Conflict Impact
- RowClone: Fast Bulk Data Copy and Initialization

To Be Covered in Lecture 3

 Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and <u>Onur Mutlu</u>, "A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM" Proceedings of the <u>39th International Symposium on Computer</u>

Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

 Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, <u>Onur Mutlu</u>, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry, <u>"RowClone: Fast and Efficient In-DRAM Copy and Initialization</u> <u>of Bulk Data"</u> *CMU Computer Science Technical Report*, CMU-CS-13-108, Carnegie

Mellon University, April 2013.

Scalable Many-Core Memory Systems Lecture 2, Topic 1: DRAM Basics and DRAM Scaling

Prof. Onur Mutlu http://www.ece.cmu.edu/~omutlu

onur@cmu.edu

HiPEAC ACACES Summer School 2013 July 16, 2013

SAFARI

Computer Architecture: Main Memory (Part II)

> Prof. Onur Mutlu Carnegie Mellon University