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Readings 
 Required  

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2005. 

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012. 

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical Data 
Compression for On-Chip Caches,” PACT 2012.  

 Qureshi et al., “Utility-Based Cache Partitioning: A Low-Overhead, 
High-Performance, Runtime Mechanism to Partition Shared Caches,” 
MICRO 2006.  

 
 

 Recommended 

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory 
Compression Framework with Low Complexity and Low Latency,” 
MICRO 2013. 
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Related Videos 

 Cache basics: 

 http://www.youtube.com/watch?v=TpMdBrM1hVc&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=23  

 

 Advanced caches: 

 http://www.youtube.com/watch?v=TboaFbjTd-
E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24 
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Shared Resource Design for 

Multi-Core Systems 
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The Multi-Core System: A Shared Resource View 
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Resource Sharing Concept 

 Idea: Instead of dedicating a hardware resource to a 
hardware context, allow multiple contexts to use it 

 Example resources: functional units, pipeline, caches, buses, 
memory 

 Why? 

 

+ Resource sharing improves utilization/efficiency  throughput 

 When a resource is left idle by one thread, another thread can 
use it; no need to replicate shared data 

+ Reduces communication latency 

 For example, shared data kept in the same cache in SMT 
processors 

+ Compatible with the shared memory model 

 

 
6 



Resource Sharing Disadvantages 

 Resource sharing results in contention for resources 

 When the resource is not idle, another thread cannot use it 

 If space is occupied by one thread, another thread needs to re-
occupy it  
 

- Sometimes reduces each or some thread’s performance 

 - Thread performance can be worse than when it is run alone   

- Eliminates performance isolation  inconsistent performance 
across runs 

  - Thread performance depends on co-executing threads 

- Uncontrolled (free-for-all) sharing degrades QoS 

  - Causes unfairness, starvation 
 

Need to efficiently and fairly utilize shared resources 
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Need for QoS and Shared Resource Mgmt. 

 Why is unpredictable performance (or lack of QoS) bad? 

 

 Makes programmer’s life difficult 

 An optimized program can get low performance (and 
performance varies widely depending on co-runners) 

 

 Causes discomfort to user 

 An important program can starve 

 Examples from shared software resources 

 

 Makes system management difficult 

 How do we enforce a Service Level Agreement when 
hardware resources are sharing is uncontrollable? 

8 



Resource Sharing vs. Partitioning 

 Sharing improves throughput 

 Better utilization of space  

 

 Partitioning provides performance isolation (predictable 
performance) 

 Dedicated space 

 

 Can we get the benefits of both?  

 

 Idea: Design shared resources such that they are efficiently 
utilized, controllable and partitionable 

 No wasted resource + QoS mechanisms for threads 
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Shared Hardware Resources 

 Memory subsystem (in both MT and CMP) 

 Non-private caches 

 Interconnects 

 Memory controllers, buses, banks 

 

 I/O subsystem (in both MT and CMP) 

 I/O, DMA controllers 

 Ethernet controllers 

 

 Processor (in MT) 

 Pipeline resources 

 L1 caches 
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Multi-core Issues in Caching 

 How does the cache hierarchy change in a multi-core system? 

 Private cache: Cache belongs to one core (a shared block can be in 
multiple caches) 

 Shared cache: Cache is shared by multiple cores 
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CORE 0 CORE 1 CORE 2 CORE 3 

    L2  

CACHE 

    L2  

CACHE 

    L2  

CACHE 

DRAM MEMORY CONTROLLER 

 
    L2  

CACHE 

CORE 0 CORE 1 CORE 2 CORE 3 

DRAM MEMORY CONTROLLER 

     L2  

CACHE 



Shared Caches Between Cores 

 Advantages: 
 High effective capacity 

 Dynamic partitioning of available cache space 

 No fragmentation due to static partitioning 

 Easier to maintain coherence (a cache block is in a single location) 

 Shared data and locks do not ping pong between caches 

 

 Disadvantages 
 Slower access 

 Cores incur conflict misses due to other cores’ accesses 

 Misses due to inter-core interference 

 Some cores can destroy the hit rate of other cores 

 Guaranteeing a minimum level of service (or fairness) to each core is harder 
(how much space, how much bandwidth?) 
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Shared Caches: How to Share? 

 Free-for-all sharing 

 Placement/replacement policies are the same as a single core 
system (usually LRU or pseudo-LRU) 

 Not thread/application aware 

 An incoming block evicts a block regardless of which threads 
the blocks belong to 

 

 Problems 

 Inefficient utilization of cache: LRU is not the best policy 

 A cache-unfriendly application can destroy the performance of 
a cache friendly application 

 Not all applications benefit equally from the same amount of 
cache: free-for-all might prioritize those that do not benefit 

 Reduced performance, reduced fairness 
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Controlled Cache Sharing 

 Utility based cache partitioning 
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006. 

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware 
Scheduling and Partitioning,” HPCA 2002. 

 

 Fair cache partitioning 
 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 

Architecture,” PACT 2004. 

 

 Shared/private mixed cache mechanisms 
 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in 

CMPs,” HPCA 2009. 

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and 
Replication in Distributed Caches,” ISCA 2009. 
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Efficient Cache Utilization 

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 
2005. 

 

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to 
Address both Cache Pollution and Thrashing,” PACT 2012. 

 

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical 
Data Compression for On-Chip Caches,” PACT 2012.  

 

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory 
Compression Framework with Low Complexity and Low Latency,” 
SAFARI Technical Report 2013. 
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MLP-Aware Cache Replacement 

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,  
"A Case for MLP-Aware Cache Replacement" 

Proceedings of the 33rd International Symposium on Computer Architecture 
(ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt) 
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Memory Level Parallelism (MLP)  

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98] 

 

 Several techniques to improve MLP (e.g., out-of-order execution, 

runahead execution) 
 

 MLP varies. Some misses are isolated and some parallel  
 

 How does this affect cache replacement? 

time 

A 
B 

C 

isolated miss parallel miss 



Traditional Cache Replacement Policies 

 Traditional cache replacement policies try to reduce miss 
count 

 

 Implicit assumption: Reducing miss count reduces memory-
related stall time  

 

 Misses with varying cost/MLP breaks this assumption! 

 

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss 

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss 
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Misses to blocks P1, P2, P3, P4 can be parallel 
Misses to blocks S1, S2, and S3 are isolated 

Two replacement algorithms: 
1. Minimizes miss count (Belady’s OPT) 
2. Reduces isolated misses (MLP-Aware) 
 

For a fully associative cache containing 4 blocks 

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3 

An Example 



Fewest Misses = Best Performance 
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P3  P2  P1  P4  

H  H  H  H M           H  H  H  M Hit/Miss 

Misses=4 
Stalls=4 

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3 

  

Time stall 

Belady’s OPT replacement 

M           M           

MLP-Aware replacement 

Hit/Miss 

P3  P2  S1  P4  P3  P2  P1  P4  P3  P2  S2 P4  P3  P2  S3 P4  S1  S2  S3 P1  P3  P2  S3 P4  S1  S2  S3 P4  

H           H           H         

S1  S2  S3 P4  

H  M  M  M H  M  M  M 

Time stall Misses=6
Stalls=2 

Saved 
cycles 

Cache 
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Motivation 

 MLP varies. Some misses more costly than others 

 

 MLP-aware replacement can improve performance by 
reducing costly misses  
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Outline 

 Introduction 

 

 MLP-Aware Cache Replacement 
 Model for Computing Cost 

 Repeatability of Cost 

 A Cost-Sensitive Replacement Policy 

 

 Practical Hybrid Replacement 
 Tournament Selection 

 Dynamic Set Sampling 

 Sampling Based Adaptive Replacement 

 

 Summary 
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Computing MLP-Based Cost 

 Cost of miss is number of cycles the miss stalls the processor  

  

 Easy to compute for isolated miss 

 

 Divide each stall cycle equally among all parallel misses 

             

               

                       A 

B 

C 

t0 t1 t4 t5 time 

1 

½  

1 ½  

½  

t2 t3 

½  

1  
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 Miss Status Holding Register (MSHR) tracks all in flight 

misses  

 

 Add a field mlp-cost to each MSHR entry 

 

 Every cycle for each demand entry in MSHR 

 

         mlp-cost += (1/N)    

 

            N = Number of demand misses in MSHR 

 

            

A First-Order Model 
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Machine Configuration 

 Processor  

 aggressive, out-of-order, 128-entry instruction window 

 

 L2 Cache  

 1MB, 16-way, LRU replacement, 32 entry MSHR 

 

 Memory  

 400 cycle bank access, 32 banks  

 

 Bus  

 Roundtrip delay of 11 bus cycles (44 processor cycles) 
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Distribution of MLP-Based Cost  

Cost varies. Does it repeat for a given cache block? MLP-Based Cost 

%
 o

f 
A

ll 
L

2
 M

is
s
e

s
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Repeatability of Cost 

 An isolated miss can be parallel miss next time  

 

 Can current cost be used to estimate future cost ? 

 

 Let d = difference in cost for successive miss to a block 

 Small d  cost repeats 

 Large d  cost varies significantly 
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 In general d is small  repeatable cost 
When d is large (e.g. parser, mgrid)  performance loss  

Repeatability of Cost  
d < 60 

59 < d < 120 

d > 120 
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The Framework 

MSHR 

L2 CACHE 

MEMORY 

Quantization of Cost 
 
Computed mlp-based 
cost is quantized to a 
3-bit value 

CCL 
C 
A 
R 
E Cost-Aware 

Repl Engine 

Cost     
Calculation 
Logic 

 

PROCESSOR 

ICACHE DCACHE 
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 A Linear (LIN) function that considers recency and cost 
 

 Victim-LIN = min { Recency (i) +   S*cost (i) } 
 
S = significance of cost. Recency(i) = position in LRU stack 
cost(i) =  quantized cost 

Design of MLP-Aware Replacement policy  

 LRU considers only recency and no cost 

   Victim-LRU = min { Recency (i)  } 

  

 Decisions based only on cost and no recency hurt 
performance.  Cache stores useless high cost blocks 
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Results for the LIN policy  

Performance loss for parser and mgrid due to large d 

. 
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Effect of LIN policy on Cost 

Miss += 4%  

IPC += 4% 

Miss += 30%  

IPC -= 33% 

Miss -= 11%  

IPC += 22% 
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Outline 

 Introduction 

 

 MLP-Aware Cache Replacement 
 Model for Computing Cost 

 Repeatability of Cost 

 A Cost-Sensitive Replacement Policy 

 

 Practical Hybrid Replacement 
 Tournament Selection 

 Dynamic Set Sampling 

 Sampling Based Adaptive Replacement 

 

 Summary 
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Tournament Selection (TSEL) of 
Replacement Policies for a Single Set 

ATD-LIN ATD-LRU  Saturating Counter (SCTR) 

HIT HIT  Unchanged 

MISS MISS  Unchanged 

HIT MISS += Cost of Miss in ATD-LRU 

MISS HIT -= Cost of Miss in ATD-LIN 

SET A SET A + 
SCTR 

If MSB of SCTR is 1, MTD 
uses LIN else MTD use LRU 

ATD-LIN ATD-LRU 

SET A 

MTD 
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Extending TSEL to All Sets 

Implementing TSEL on a per-set basis is expensive 

Counter overhead can be reduced by using a global counter 

+ 

SCTR 

Policy for All  

Sets In MTD 

Set A 

ATD-LIN 

Set B 

Set C 

Set D 

Set E 

Set F 

Set G 

Set H 

Set A 

ATD-LRU 

Set B 

Set C 

Set D 

Set E 

Set F 

Set G 

Set H 
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Dynamic Set Sampling 

+ 

SCTR 

Policy for All  

Sets In MTD 

ATD-LIN 

Set B 

Set E 

Set G 

Set B 

Set E 

Set G 

ATD-LRU 
Set A Set A 

Set C 
Set D 

Set F 

Set H 

Set C 
Set D 

Set F 

Set H 

Not all sets are required to decide the best policy  
Have the ATD entries only for few sets. 

Sets that have ATD entries (B, E, G) are called leader sets 
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Dynamic Set Sampling 

 Bounds using analytical model and simulation (in paper) 

 DSS with 32 leader sets performs similar to having all sets 

 Last-level cache typically contains 1000s of sets, thus ATD 
entries are required for only 2%-3% of the sets 

How many sets are required to choose best performing policy? 

 

ATD overhead can further be reduced by using MTD to 
always simulate one of the policies (say LIN) 
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Decide policy only for 
follower sets  

+ 

Sampling Based Adaptive Replacement (SBAR) 

The storage overhead of SBAR is less than 2KB  

(0.2% of the baseline 1MB cache) 

SCTR 

MTD 

Set B 

Set E 

Set G 

Set G 

ATD-LRU 
Set A 

Set C 
Set D 

Set F 

Set H 

Set B 
Set E 

Leader sets 

Follower sets 
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Results for SBAR 
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SBAR adaptation to phases 

SBAR selects the best policy for each phase of ammp 

LIN is better LRU is better 
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Outline 

 Introduction 

 

 MLP-Aware Cache Replacement 
 Model for Computing Cost 

 Repeatability of Cost 

 A Cost-Sensitive Replacement Policy 

 

 Practical Hybrid Replacement 
 Tournament Selection 

 Dynamic Set Sampling 

 Sampling Based Adaptive Replacement 

 

 Summary 
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Summary 

 MLP varies. Some misses are more costly than others 
 

 MLP-aware cache replacement can reduce costly misses 
 

 Proposed a runtime mechanism to compute MLP-Based 
cost and the LIN policy for MLP-aware cache replacement  
 

 SBAR allows dynamic selection between LIN and LRU with 
low hardware overhead 
 

 Dynamic set sampling used in SBAR also enables other 
cache related optimizations 

 



The Evicted-Address Filter 

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry, 
"The Evicted-Address Filter: A Unified Mechanism to Address Both 

Cache Pollution and Thrashing" 
Proceedings of the 21st ACM International Conference on Parallel 

Architectures and Compilation Techniques (PACT), Minneapolis, MN, 
September 2012. Slides (pptx) 
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Executive Summary 

• Two problems degrade cache performance 

– Pollution and thrashing 

– Prior works don’t address both problems concurrently 

• Goal: A mechanism to address both problems 

• EAF-Cache 

– Keep track of recently evicted block addresses in EAF 

– Insert low reuse with low priority to mitigate pollution 

– Clear EAF periodically  to mitigate thrashing 

– Low complexity implementation using Bloom filter 

• EAF-Cache outperforms five prior approaches that 
address pollution or thrashing 44 



Cache Utilization is Important 

Core 
Last-Level 

Cache 
Memory 

Core Core 

Core Core 

Increasing contention 

Effective cache utilization is important 

Large latency 
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Reuse Behavior of Cache Blocks 

A B C A B C S T U V W X Y A B C 

Different blocks have different reuse behavior 

Access Sequence: 

High-reuse block Low-reuse block 

Z 

Ideal Cache A B C . . . . . 
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Cache Pollution 

H G F E D C B A S H G F E D C B T S H G F E D C U T S H G F E D 

MRU LRU 

LRU Policy 

Prior work: Predict reuse behavior of missed blocks. 
Insert low-reuse blocks at LRU position. 

H G F E D C B A S T U 

MRU LRU 

A B A C B A 

A S A T S A 

Cache 

Problem: Low-reuse blocks evict high-reuse blocks 
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Cache Thrashing 

H G F E D C B A I H G F E D C B J I H G F E D C K J I H G F E D 

MRU LRU 

LRU Policy A B C D E F G H I J K A B A C B A 

Prior work: Insert at MRU position with a very low 
probability (Bimodal insertion policy) 

Cache 

H G F E D C B A I J K 

MRU LRU 

A I A J I A 
A fraction of 
working set 
stays in cache 

Cache 

Problem: High-reuse blocks evict each other 
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Shortcomings of Prior Works 

Prior works do not address both pollution and 
thrashing concurrently 

Prior Work on Cache Pollution 

No control on the number of blocks inserted with high 
priority into the cache 

Prior Work on Cache Thrashing 

No mechanism to distinguish high-reuse blocks 
from low-reuse blocks 

Our goal: Design a mechanism to address both 
pollution and thrashing concurrently 
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Outline 

• Evicted-Address Filter 
– Reuse Prediction 

– Thrash Resistance 

  
• Final Design 

• Evaluation 

• Conclusion 

• Background and Motivation 

• Advantages and Disadvantages 
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Reuse Prediction 

Miss Missed-block 

High reuse 

Low reuse 

? 

Keep track of the reuse behavior of every cache 
block in the system 

Impractical 
1. High storage overhead 
2. Look-up latency 
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Prior Work on Reuse Prediction 

Use program counter or memory region information. 

B A T S 

PC 1 PC 2 

B A T S 

PC 1 PC 2 PC 1 

PC 2 

C C 

U U 

1. Group Blocks 
2. Learn group 

behavior 
3. Predict reuse 

1. Same group → same reuse behavior 
2. No control over number of high-reuse blocks 
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Our Approach: Per-block Prediction 

Use recency of eviction to predict reuse 

A 

Time 

Time of eviction 

A 

Accessed soon 
after eviction 

S 

Time 

S 

Accessed long time 
after eviction 
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Evicted-Address Filter (EAF) 

Cache 

EAF 
(Addresses of recently evicted blocks) 

Evicted-block address 

Miss Missed-block address 

In EAF? 
Yes No 

MRU LRU 

High Reuse  Low Reuse  
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Naïve Implementation: Full Address Tags 

EAF 

1. Large storage overhead 

2. Associative lookups – High energy  

Recently 
evicted address 

Need not be 
100% accurate 

? 
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Low-Cost Implementation: Bloom Filter 

EAF 

Implement EAF using a Bloom Filter 
Low storage overhead + energy 

Need not be 
100% accurate 

? 
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Y 

Bloom Filter 

Compact representation of a set 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1. Bit vector 

2. Set of hash functions 

H1 H2 

H1 H2 

X 

1 1 1 

Insert Test 

Z W 

Remove 

X Y 

May remove 
multiple addresses Clear   False positive 
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EAF using a Bloom Filter 

EAF 

Insert 

Test 

Evicted-block 
address 

Remove 
FIFO address  

Missed-block address 

Bloom Filter 

Remove 
If present 

 when full 

Clear 

  

 

 1 

2 
 when full 

Bloom-filter EAF: 4x reduction in storage overhead, 
1.47% compared to cache size 58 



Outline 

• Evicted-Address Filter 
– Reuse Prediction 

– Thrash Resistance 

  
• Final Design 

• Evaluation 

• Conclusion 

• Background and Motivation 

• Advantages and Disadvantages 
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Large Working Set: 2 Cases 

Cache EAF 

A E K J I H G F L C B D 

Cache EAF 

R Q P O N M L S J I H G F E D K C B A 

1 

2 

Cache < Working set < Cache + EAF 

Cache + EAF < Working Set 
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Large Working Set: Case 1 

Cache EAF 

A E K J I H G F L C B D 

  

B F L K J I H G A D C E C G A L K J I H B E D F 

 

A L K J I H G B E D F C 

            

A Sequence: B C D E F G H I J K L A B C 

EAF Naive: 

D 

 

A B C 

Cache < Working set < Cache + EAF 
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Large Working Set: Case 1 

Cache EAF 

E A K J I H G F L C B D 

A Sequence: B C D E F G H I J K L A B C A B 

EAF BF:         

A 

      

EAF Naive:                

A L K J I H G B E D C A B F A L K J I H G B E D F C A B 

D 

H G B E D F C A A L K J I B C D 

D 

 
 

Not removed 

Not  present in the EAF 

Bloom-filter based EAF mitigates thrashing 

H 

 

G F E I 

Cache < Working set < Cache + EAF 
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Large Working Set: Case 2 

Cache EAF 

R Q P O N M L S J I H G F E D K C B A 

Problem:  All blocks are predicted to have low reuse 

Use Bimodal Insertion Policy for low reuse 
blocks. Insert few of them at the MRU position 

 Allow a fraction of the working set to stay in the 
cache 

Cache + EAF < Working Set 
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Outline 

• Evicted-Address Filter 
– Reuse Prediction 

– Thrash Resistance 

  
• Final Design 

• Evaluation 

• Conclusion 

• Background and Motivation 

• Advantages and Disadvantages 
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EAF-Cache: Final Design 

Cache 
Bloom Filter 

Counter 

1 

2 

3 

Cache eviction 

Cache miss 

Counter reaches max 

Insert address into filter 
Increment counter 

Test if address is present in filter 
Yes, insert at MRU. No, insert with BIP 

Clear filter and counter 
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Outline 

• Evicted-Address Filter 
– Reuse Prediction 

– Thrash Resistance 

  
• Final Design 

• Evaluation 

• Conclusion 

• Background and Motivation 

• Advantages and Disadvantages 
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EAF: Advantages 

Cache 
Bloom Filter 

Counter 

1. Simple to implement 

2. Easy to design and verify 

3. Works with other techniques (replacement policy) 

Cache eviction 

Cache miss 
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EAF: Disadvantage 

Cache 

A First access 

A A 

A Second access Miss 

Problem: For an LRU-friendly application, EAF 
incurs one additional miss for most blocks 

Dueling-EAF: set dueling between EAF and LRU 

In EAF? 
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Outline 

• Evicted-Address Filter 
– Reuse Prediction 

– Thrash Resistance 

  
• Final Design 

• Evaluation 

• Conclusion 

• Background and Motivation 

• Advantages and Disadvantages 
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Methodology 
• Simulated System 

– In-order cores, single issue, 4 GHz 

– 32 KB L1 cache, 256 KB L2 cache (private) 

– Shared L3 cache (1MB to 16MB) 

– Memory: 150 cycle row hit, 400 cycle row conflict 

• Benchmarks 
– SPEC 2000, SPEC 2006, TPC-C, 3 TPC-H, Apache  

• Multi-programmed workloads 
– Varying memory intensity and cache sensitivity 

• Metrics 
– 4 different metrics for performance and fairness 

– Present weighted speedup 
70 



Comparison with Prior Works 
Addressing Cache Pollution 

- No control on number of blocks inserted with high 
priority ⟹ Thrashing  

Run-time Bypassing (RTB) – Johnson+ ISCA’97 

- Memory region based reuse prediction 

Single-usage Block Prediction (SU) – Piquet+ ACSAC’07 
Signature-based Hit Prediction (SHIP) – Wu+ MICRO’11 

- Program counter based reuse prediction 

Miss Classification Table (MCT) – Collins+ MICRO’99 

- One most recently evicted block 
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Comparison with Prior Works 

Addressing Cache Thrashing 

- No mechanism to filter low-reuse blocks ⟹ Pollution 

TA-DIP – Qureshi+ ISCA’07, Jaleel+ PACT’08 
TA-DRRIP – Jaleel+ ISCA’10 

- Use set dueling to determine thrashing applications 
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Results – Summary 
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Effect of Cache Size 
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Effect of EAF Size 
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Other Results in Paper 

• EAF orthogonal to replacement policies 

– LRU, RRIP – Jaleel+ ISCA’10 

• Performance improvement of EAF increases with 
increasing memory latency 

• EAF performs well on four different metrics 

– Performance and fairness 

• Alternative EAF-based designs perform comparably  

– Segmented EAF 

– Decoupled-clear EAF 
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Conclusion 
• Cache utilization is critical for system performance 

– Pollution and thrashing degrade cache performance 

– Prior works don’t address both problems concurrently 
 

• EAF-Cache 
– Keep track of recently evicted block addresses in EAF 

– Insert low reuse with low priority to mitigate pollution 

– Clear EAF periodically and use BIP to mitigate thrashing 

– Low complexity implementation using Bloom filter 
 

• EAF-Cache outperforms five prior approaches that address 
pollution or thrashing 
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Base-Delta-Immediate  

Cache Compression 

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, Michael 
A. Kozuch, and Todd C. Mowry, 

"Base-Delta-Immediate Compression: Practical Data Compression 
for On-Chip Caches" 

Proceedings of the 21st ACM International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Minneapolis, MN, 

September 2012. Slides (pptx)  
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Executive Summary 
• Off-chip memory latency is high 

– Large caches can help, but at significant cost  

• Compressing data in cache enables larger cache at low 
cost 

• Problem: Decompression is on the execution critical path  
• Goal: Design a new compression scheme that has  
  1. low decompression latency,  2. low cost, 3. high compression ratio   

• Observation: Many cache lines have low dynamic range 
data 

• Key Idea: Encode cachelines as a base + multiple differences 
• Solution: Base-Delta-Immediate compression with low 

decompression latency and high compression ratio  
– Outperforms three state-of-the-art compression mechanisms  
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Motivation for Cache Compression 
Significant redundancy in data: 

81 

0x00000000 

How can we exploit this redundancy? 

– Cache compression  helps 

– Provides effect of a larger cache without 
making it physically larger 

 

0x0000000B 0x00000003 0x00000004 … 



Background on Cache Compression 

• Key requirements: 
– Fast (low decompression latency) 

– Simple (avoid complex hardware changes) 

– Effective (good compression ratio) 
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Shortcomings of Prior Work 
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Compression 
Mechanisms 

Decompression 
Latency 

Complexity Compression 
Ratio 

Zero 
   



Shortcomings of Prior Work 
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Compression 
Mechanisms 

Decompression 
Latency 

Complexity Compression 
Ratio 

Zero 
   

Frequent Value 
   



Shortcomings of Prior Work 
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Compression 
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Decompression 
Latency 

Complexity Compression 
Ratio 

Zero 
   

Frequent Value 
   

Frequent Pattern 
 /  



Shortcomings of Prior Work 
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Compression 
Mechanisms 

Decompression 
Latency 

Complexity Compression 
Ratio 

Zero 
   

Frequent Value 
   

Frequent Pattern 
 /  

Our proposal: 
BΔI 

   



Outline 

• Motivation & Background 

• Key Idea & Our Mechanism 

• Evaluation 

• Conclusion  
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Key Data Patterns in Real Applications 

88 

0x00000000 0x00000000 0x00000000 0x00000000 … 

0x000000FF 0x000000FF 0x000000FF 0x000000FF … 

0x00000000 0x0000000B 0x00000003 0x00000004 … 

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 … 

Zero Values: initialization,  sparse matrices, NULL pointers 

Repeated Values: common initial values, adjacent pixels 

Narrow Values: small values stored in a big data type 

Other Patterns: pointers to the same memory region 



How Common Are These Patterns? 
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SPEC2006, databases, web workloads, 2MB L2 cache 
“Other Patterns” include Narrow Values 

 

 
 

 

43% of the cache lines belong to key patterns 

 



Key Data Patterns in Real Applications 
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0x00000000 0x00000000 0x00000000 0x00000000 … 

0x000000FF 0x000000FF 0x000000FF 0x000000FF … 

0x00000000 0x0000000B 0x00000003 0x00000004 … 

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 … 

Zero Values: initialization,  sparse matrices, NULL pointers 

Repeated Values: common initial values, adjacent pixels 

Narrow Values: small values stored in a big data type 

Other Patterns: pointers to the same memory region 

Low Dynamic Range: 
  

Differences between values are significantly 
smaller than the values themselves 

 



32-byte Uncompressed Cache Line 

 

 

 

Key Idea: Base+Delta (B+Δ) Encoding 
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0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8 

4 bytes 

0xC04039C0 

Base 
 

 
 

 

0x00 

1 byte 

0x08 

1 byte 

0x10 

1 byte 

… 0x38 12-byte  
Compressed Cache Line 

20 bytes saved 
 Fast Decompression: 

vector addition 

 Simple Hardware:  
    arithmetic and comparison 

 Effective: good compression ratio 



Can We Do Better? 
 

• Uncompressible cache line (with a single base):  
     

 

• Key idea:  
    Use more bases, e.g., two instead of one 
• Pro:  

– More cache lines can be compressed 
• Cons: 

– Unclear how to find these bases efficiently 
– Higher overhead (due to additional bases) 
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B+Δ with Multiple Arbitrary Bases 
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How to Find Two Bases Efficiently? 
1. First base - first element in the cache line 

 

 

2. Second base - implicit base of 0  

 

 

Advantages over 2 arbitrary bases: 

– Better compression ratio 

– Simpler compression logic 
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 Base+Delta part 

 Immediate part 

Base-Delta-Immediate (BΔI) Compression 



B+Δ (with two arbitrary bases) vs. BΔI 
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Average compression ratio is close, but BΔI is simpler 



BΔI Implementation 

• Decompressor Design 

– Low latency 

 

• Compressor Design 

– Low cost and complexity 

 

• BΔI Cache Organization 

– Modest complexity 
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Δ0 B0 

BΔI Decompressor Design 
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Δ1 Δ2 Δ3 

Compressed Cache Line 

V0 V1 V2 V3 

+ + 

Uncompressed Cache Line 

+ + 

B0 Δ0 

B0 B0 B0 B0 

Δ1 Δ2 Δ3 

V0 
V1 V2 V3 

Vector addition 



BΔI Compressor Design 
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32-byte Uncompressed Cache Line 

8-byte B0 

1-byte Δ 
CU 

8-byte B0 

2-byte Δ 
CU 

8-byte B0 

4-byte Δ 
CU 

4-byte B0 

1-byte Δ 
CU 

4-byte B0 

2-byte Δ 
CU 

2-byte B0 

1-byte Δ 
CU 

Zero 
CU 

Rep. 
Values 

CU 

Compression Selection Logic (based on compr. size) 

CFlag & 
CCL 

CFlag & 
CCL 

CFlag & 
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CFlag & 
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CFlag & 
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CFlag & 
CCL 

CFlag & 
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CFlag & 
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Compression Flag 
& Compressed 

Cache Line 
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BΔI Compression Unit: 8-byte B0 1-byte Δ  
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32-byte Uncompressed Cache Line 
 

V0 V1 V2 V3 

8 bytes 

- - - - 

B0=    

V0     

V0     B0     B0     B0     B0     

V0     V1     V2     V3     

Δ0 Δ1 Δ2 Δ3 

Within 1-byte 
range? 

Within 1-byte 
range? 

Within 1-byte 
range? 

Within 1-byte 
range? 

Is every element within 1-byte range? 

Δ0 B0 Δ1 Δ2 Δ3 B0 Δ0 Δ1 Δ2 Δ3 

Yes No 



BΔI Cache Organization 
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Tag0 Tag1 

… … 

… … 

Tag Storage: 

Set0 

Set1 

Way0 Way1 

Data0 

… 

… 

Set0 

Set1 

Way0 Way1 

… 

Data1 

… 

32 bytes Data Storage: 
Conventional 2-way cache with 32-byte cache lines 

BΔI: 4-way cache with 8-byte segmented data 

Tag0 Tag1 

… … 

… … 

Tag Storage: 

Way0 Way1 Way2 Way3 

… … 

Tag2 Tag3 

… … 

Set0 

Set1 

Twice as many tags  

C - Compr. encoding bits C 

Set0 

Set1 

… … … … … … … … 

S0 S0 S1 S2 S3 S4 S5 S6 S7 

… … … … … … … … 

8 bytes 

Tags map to multiple adjacent segments 2.3% overhead for 2 MB cache 



Qualitative Comparison with Prior Work 

• Zero-based designs 
– ZCA [Dusser+, ICS’09]: zero-content augmented cache 

– ZVC [Islam+, PACT’09]: zero-value cancelling 

– Limited applicability (only zero values) 

• FVC [Yang+, MICRO’00]: frequent value compression 
– High decompression latency and complexity 

• Pattern-based compression designs 
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression 

• High decompression latency (5 cycles) and complexity 

– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of 
FPC-like algorithm 

• High decompression latency (8 cycles) 
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Outline 

• Motivation & Background 

• Key Idea & Our Mechanism 

• Evaluation 

• Conclusion  
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Methodology 
• Simulator 

–  x86 event-driven simulator based on Simics 
[Magnusson+, Computer’02] 

• Workloads 
– SPEC2006 benchmarks, TPC, Apache web server 

– 1 – 4 core simulations for 1 billion representative 
instructions 

• System Parameters 
– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08] 

– 4GHz, x86 in-order core, 512kB - 16MB L2, simple 
memory model (300-cycle latency for row-misses) 
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Compression Ratio: BΔI vs. Prior Work  

BΔI achieves the highest compression ratio 
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1.53 

SPEC2006, databases, web workloads, 2MB L2 

 

 



Single-Core: IPC and MPKI 
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Performance improves due to the decrease in MPKI 



Multi-Core Workloads 
• Application classification based on  

Compressibility: effective cache size increase 

(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40) 

Sensitivity: performance gain with more cache  

(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB) 

  

• Three classes of applications: 

– LCLS, HCLS, HCHS,  no LCHS applications 

 

• For 2-core - random mixes of each possible class pairs  
(20 each, 120 total workloads) 
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Multi-Core: Weighted Speedup 

BΔI performance improvement is the highest (9.5%) 
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Other Results in Paper 

• IPC comparison against upper bounds 

– BΔI almost achieves performance of the 2X-size cache 

• Sensitivity study of having more than 2X tags 

– Up to 1.98 average compression ratio 

• Effect on bandwidth consumption 

– 2.31X decrease on average 

• Detailed quantitative comparison with prior work 

• Cost analysis of the proposed changes 

– 2.3% L2 cache area increase 
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Conclusion 
• A new Base-Delta-Immediate compression mechanism  

• Key insight: many cache lines can be efficiently 
represented using base + delta encoding 

• Key properties: 

– Low latency decompression  

– Simple hardware implementation 

– High compression ratio with high coverage  

• Improves cache hit ratio and performance of both single-
core and multi-core workloads 

– Outperforms state-of-the-art cache compression techniques: 
FVC and FPC 
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Linearly Compressed Pages 

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu, 
Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry, 

"Linearly Compressed Pages: A Main Memory Compression 
Framework with Low Complexity and Low Latency" 

SAFARI Technical Report, TR-SAFARI-2012-005, Carnegie Mellon University, 
September 2012.  
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Executive Summary 

111 

 Main memory is a limited shared resource 

  Observation: Significant data redundancy 

  Idea: Compress data in main memory 

  Problem: How to avoid latency increase? 

  Solution: Linearly Compressed Pages (LCP): 

     fixed-size cache line granularity compression 

   1. Increases capacity (69% on average) 

   2. Decreases bandwidth consumption (46%) 

   3. Improves overall performance (9.5%) 

 



Challenges in Main Memory Compression 
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1. Address Computation 

 

2. Mapping and Fragmentation 

 

3. Physically Tagged Caches 

 



L0 L1 L2 . . . LN-1 

Cache Line (64B)  

Address Offset 0 64 128 (N-1)*64 

L0 L1 L2 . . . LN-1 
Compressed 
Page  

0 ? ? ? Address Offset 

Uncompressed 
Page  

Address Computation 
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Mapping and Fragmentation 
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Virtual Page  
(4kB)  

Physical Page  
(? kB)  Fragmentation 

Virtual  
Address 

Physical  
Address 



Physically Tagged Caches 
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Core 

TLB 

tag 

tag 

tag 

Physical 
Address 

data 

data 

data 

Virtual 
Address 

Critical Path 
Address Translation 

L2 Cache 
Lines 



Shortcomings of Prior Work 
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Shortcomings of Prior Work 
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Linearly Compressed Pages (LCP): Key Idea 
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64B 64B 64B 64B . . . 

. . . M E 

Metadata (64B):  
? (compressible) 

Exception 
Storage 

4:1 Compression 

64B 

Uncompressed Page (4kB: 64*64B)  

Compressed Data  
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LCP Overview 
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• Page Table entry extension 

– compression type and size  

– extended  physical base address 

• Operating System management support 

– 4 memory pools (512B, 1kB, 2kB, 4kB) 

• Changes to cache tagging logic 

– physical page base address + cache line index  

    (within a page)  

• Handling page overflows 

• Compression algorithms: BDI [PACT’12] , FPC [ISCA’04] 

 



LCP Optimizations 
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• Metadata cache 

– Avoids additional requests to metadata 

• Memory bandwidth reduction: 

 

 

• Zero pages and zero cache lines 

– Handled separately in TLB (1-bit) and in metadata  

    (1-bit per cache line) 

• Integration with cache compression 

– BDI and FPC 

64B 64B 64B 64B 
 1 transfer  

instead of 4 



Methodology 
• Simulator 

–  x86 event-driven simulators  

• Simics-based [Magnusson+, Computer’02]  for CPU 

• Multi2Sim  [Ubal+, PACT’12] for GPU  

• Workloads 

– SPEC2006 benchmarks, TPC, Apache web server, 
GPGPU applications 

• System Parameters 

– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08] 

– 512kB - 16MB L2, simple memory model 
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Compression Ratio Comparison 
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LCP-based frameworks achieve competitive 
average compression ratios with prior work  



Bandwidth Consumption Decrease 
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SPEC2006, databases, web workloads, 2MB L2 cache 
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Performance Improvement 
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Cores LCP-BDI (BDI, LCP-BDI) (BDI, LCP-BDI+FPC-fixed) 

1 6.1% 9.5% 9.3% 

2 13.9% 23.7% 23.6% 

4 10.7% 22.6% 22.5% 

LCP frameworks significantly improve performance 



Conclusion 

• A new main memory compression framework 
called LCP (Linearly Compressed Pages) 
– Key idea: fixed size for compressed cache lines within 

a page and fixed compression algorithm per page 

 

• LCP evaluation: 
–  Increases capacity (69% on average) 

–  Decreases bandwidth consumption (46%) 

–  Improves overall performance (9.5%) 

–  Decreases energy of the off-chip bus (37%)  
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Controlled Shared Caching 
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Controlled Cache Sharing 

 Utility based cache partitioning 
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO 
2006. 

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware 
Scheduling and Partitioning,” HPCA 2002. 

 

 Fair cache partitioning 
 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor 

Architecture,” PACT 2004. 

 

 Shared/private mixed cache mechanisms 
 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in 

CMPs,” HPCA 2009. 

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and 
Replication in Distributed Caches,” ISCA 2009. 

 

 

128 



Utility Based Shared Cache Partitioning 
 Goal: Maximize system throughput 

 Observation: Not all threads/applications benefit equally from 
caching  simple LRU replacement not good for system 

throughput 

 Idea: Allocate more cache space to applications that obtain the 
most benefit from more space 

 

 The high-level idea can be applied to other shared resources as 
well. 

 

 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition 
Shared Caches,” MICRO 2006. 

 Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002. 
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Marginal Utility of a Cache Way 
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 Utility Ua
b = Misses with a ways – Misses with b ways 

 

Low Utility 
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Saturating Utility 
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Utility Based Shared Cache Partitioning Motivation 

 

131 

Num ways from 16-way 1MB L2 
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LRU 

UTIL 
Improve performance by giving more cache to 

the application that benefits more from cache 



Utility Based Cache Partitioning (III) 
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Three components: 

 Utility Monitors (UMON) per core 

 Partitioning Algorithm (PA) 

 Replacement support to enforce partitions 

I$ 

D$ 
Core1 

I$ 

D$ 
Core2 

Shared 

L2 cache 

Main Memory 

UMON1 UMON2 PA 



Utility Monitors 

  For each core, simulate LRU policy using ATD  

  Hit counters in ATD to count hits per recency position 

  LRU is a stack algorithm: hit counts  utility  
    E.g. hits(2 ways) = H0+H1 

 

133 

MTD 

Set B 

Set E 

Set G 

Set A 

Set C 
Set D 

Set F 

Set H 

ATD 

Set B 

Set E 

Set G 

Set A 

Set C 
Set D 

Set F 

Set H 

+ + + + 
(MRU)H0 H1 H2…H15(LRU) 



Utility Monitors 
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Dynamic Set Sampling 

  Extra tags incur hardware and power overhead 

  Dynamic Set Sampling reduces overhead [Qureshi, ISCA’06]    

  32 sets sufficient (analytical bounds) 

  Storage < 2kB/UMON 
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MTD 

ATD Set B 
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Set B 

Set E 

Set G 

Set A 

Set C 
Set D 

Set F 

Set H 

Set B 

Set E 

Set G 

Set A 

Set C 
Set D 

Set F 
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Partitioning Algorithm 

  Evaluate all possible partitions and select the best 

 

  With a ways to core1 and (16-a) ways to core2:   

       Hitscore1 = (H0 + H1 + … + Ha-1)     ---- from UMON1                
 Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2            
  

  Select a that maximizes (Hitscore1 + Hitscore2)  

 

  Partitioning done once every 5 million cycles   
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Way Partitioning 
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Way partitioning support: [Suh+ HPCA’02, Iyer ICS’04]  

1. Each line has core-id bits 

2. On a miss, count ways_occupied in set by miss-causing app 

ways_occupied < ways_given 

Yes No 

Victim is the LRU line 

from other app  

Victim is the LRU line 

from miss-causing app 



Performance Metrics 

 Three metrics for performance: 

1. Weighted Speedup (default metric) 
  perf =  IPC1/SingleIPC1 + IPC2/SingleIPC2 
       correlates with reduction in execution time  
 

2. Throughput       
  perf = IPC1 + IPC2    

  can be unfair to low-IPC application 
 

3. Hmean-fairness      
  perf =  hmean(IPC1/SingleIPC1, IPC2/SingleIPC2)   

  balances fairness and performance 
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Weighted Speedup Results for UCP 
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IPC Results for UCP 
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UCP improves average throughput by 17%  



Any Problems with UCP So Far? 

- Scalability 

- Non-convex curves? 

 

  Time complexity of partitioning low for two cores 
(number of possible partitions ≈ number of ways) 

 

  Possible partitions increase exponentially with cores    

 

  For a 32-way cache, possible partitions: 

 4 cores  6545    

 8 cores  15.4 million  

 

  Problem NP hard  need scalable partitioning algorithm  
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Greedy Algorithm  [Stone+ ToC ’92] 

 GA allocates 1 block to the app that has the max utility for 
one block. Repeat till all blocks allocated 

 

 Optimal partitioning when utility curves are convex 

 

 Pathological behavior                                                     
for non-convex curves  
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Problem with Greedy Algorithm 

 

 

 

 

 

 

 

 

 

 

 Problem:  GA considers benefit only from the immediate 
block. Hence, it fails to exploit large gains from looking ahead 
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Lookahead Algorithm 

 Marginal Utility (MU) = Utility per cache resource  
 MUa

b  =  Ua
b/(b-a) 

 

 GA considers MU for 1 block.  LA considers MU for all 
possible allocations 

 

 Select the app that has the max value for MU.   
Allocate it as many blocks required to get max MU 

 

 Repeat till all blocks assigned 
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Lookahead Algorithm Example 
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Time complexity ≈ ways2/2 (512 ops for 32-ways)  
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Iteration 1: 

 MU(A) = 10/1 block       
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Result: A gets 5 blocks and B gets 3 blocks (Optimal) 

Next five iterations: 

     MU(A) = 10/1 block                  
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UCP Results 
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Four cores sharing a 2MB 32-way L2 

Mix2 
(swm-glg-mesa-prl) 

Mix3 
(mcf-applu-art-vrtx)  

Mix4 
(mcf-art-eqk-wupw)  

Mix1 
(gap-applu-apsi-gzp) 

LA performs similar to EvalAll, with low time-complexity   

LRU 
UCP(Greedy) 
UCP(Lookahead) 

UCP(EvalAll) 



Utility Based Cache Partitioning 

 Advantages over LRU 

+ Improves system throughput  

+ Better utilizes the shared cache 

 

 Disadvantages 

- Fairness, QoS? 

 

 Limitations 

- Scalability: Partitioning limited to ways. What if you have 
numWays < numApps? 

- Scalability: How is utility computed in a distributed cache? 

- What if past behavior is not a good predictor of utility? 
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Fair Shared Cache Partitioning 

 Goal: Equalize the slowdowns of multiple threads sharing 
the cache 

 Idea: Dynamically estimate slowdowns due to sharing and 
assign cache blocks to balance slowdowns 

 

 Approximate slowdown with change in miss rate  

 + Simple 

 - Not accurate. Why? 

 

 Kim et al., “Fair Cache Sharing and Partitioning in a Chip 
Multiprocessor Architecture,” PACT 2004. 

 

148 



Problem with Shared Caches 
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L2 $ 

L1 $ 

…… 

Processor Core 1 

L1 $ 

Processor Core 2 ←t1 



Problem with Shared Caches 
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L1 $ 

Processor Core 1 

L1 $ 

Processor Core 2 

L2 $ 

…… 
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Problem with Shared Caches 
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L1 $ 

L2 $ 

…… 

Processor Core 1 Processor Core 2 ←t1 

L1 $ 

t2→ 

t2’s throughput is significantly reduced due to unfair cache sharing. 



Problem with Shared Caches 
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Fairness Metrics 
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• Uniform slowdown 

 

 

• Minimize: 

– Ideally: 
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Block-Granularity Partitioning  
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LRU 
LRU 

LRU 
LRU 

P1: 448B 

P2 Miss 

P2: 576B 

Current Partition 

P1: 384B 

P2: 640B 

Target Partition 

• Modified LRU cache replacement policy 

– G. Suh, et. al., HPCA 2002 



Block-Granularity Partitioning  
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LRU 
LRU 

LRU 
* LRU 

P1: 448B 

P2 Miss 

P2: 576B 

Current Partition 

P1: 384B 

P2: 640B 

Target Partition 

• Modified LRU cache replacement policy 

– G. Suh, et. al., HPCA 2002 
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Dynamic Fair Caching Algorithm 
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P1: 

P2: 

Ex) Optimizing 

M3 metric 

P1: 

P2: 

Target Partition 

MissRate alone 

P1: 

P2: 

MissRate shared 

Repartitioning 

interval 
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Dynamic Fair Caching Algorithm 

1st Interval 
P1:20% 

P2: 5% 

MissRate alone 

Repartitioning 

interval 

P1: 

P2: 

MissRate shared 

P1:20% 

P2:15% 

MissRate shared 

P1:256KB 

P2:256KB 

Target Partition 
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Dynamic Fair Caching Algorithm 

Repartition! 

Evaluate M3 

P1: 20% / 20% 

P2: 15% / 5% 

P1:20% 

P2: 5% 

MissRate alone 

Repartitioning 

interval 

P1:20% 

P2:15% 

MissRate shared 

P1:256KB 

P2:256KB 

Target Partition 

P1:192KB 

P2:320KB 

Target Partition 

Partition 

granularity: 

64KB 
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Dynamic Fair Caching Algorithm 

2nd Interval 
P1:20% 

P2: 5% 

MissRate alone 

Repartitioning 

interval 

P1:20% 

P2:15% 

MissRate shared 

P1:20% 

P2:15% 

MissRate shared 
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Target Partition 
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Dynamic Fair Caching Algorithm 

Repartition! 

Evaluate M3 

P1: 20% / 20% 

P2: 10% / 5% 

P1:20% 
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Repartitioning 

interval 
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Dynamic Fair Caching Algorithm 

3rd Interval 
P1:20% 

P2: 5% 

MissRate alone 

Repartitioning 

interval 

P1:20% 

P2:10% 

MissRate shared 

P1:128KB 

P2:384KB 

Target Partition 

P1:20% 

P2:10% 

MissRate shared 

P1:25% 

P2: 9% 

MissRate shared 
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Dynamic Fair Caching Algorithm 

Repartition! Do Rollback if: 

P2: Δ<Trollback 

Δ=MRold-MRnew 

P1:20% 

P2: 5% 

MissRate alone 

Repartitioning 

interval 

P1:20% 

P2:10% 

MissRate shared 

P1:25% 

P2: 9% 

MissRate shared 

P1:128KB 

P2:384KB 

Target Partition 

P1:192KB 

P2:320KB 

Target Partition 



Dynamic Fair Caching Results 

 

 

 

 

 

 

 

 

 

 

 

 Improves both fairness and throughput 
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Effect of Partitioning Interval 

 

 

 

 

 

 

 

 

 

 

 Fine-grained partitioning is important for both fairness and 
throughput 
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Benefits of Fair Caching 

 Problems of unfair cache sharing 

 Sub-optimal throughput 

 Thread starvation 

 Priority inversion 

 Thread-mix dependent performance 
 

 

 Benefits of fair caching 

 Better fairness 

 Better throughput 

 Fair caching likely simplifies OS scheduler design 
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Advantages/Disadvantages of the Approach 

 Advantages 

+ No (reduced) starvation 

+ Better average throughput 

 

 Disadvantages 

- Scalable to many cores? 

- Is this the best (or a good) fairness metric? 

- Does this provide performance isolation in cache? 

- Alone miss rate estimation can be incorrect (estimation interval 
different from enforcement interval) 
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Software-Based Shared Cache Management 

 Assume no hardware support (demand based cache sharing, i.e. 
LRU replacement) 

 How can the OS best utilize the cache? 

 

 Cache sharing aware thread scheduling 

 Schedule workloads that “play nicely” together in the cache 

 E.g., working sets together fit in the cache 

 Requires static/dynamic profiling of application behavior 

 Fedorova et al., “Improving Performance Isolation on Chip 
Multiprocessors via an Operating System Scheduler,” PACT 2007. 

 

 Cache sharing aware page coloring 

 Dynamically monitor miss rate over an interval and change 
virtual to physical mapping to minimize miss rate 

 Try out different partitions 
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OS Based Cache Partitioning 

 Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging 
the Gap between Simulation and Real Systems,” HPCA 2008. 

 Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-
Level Page Allocation,” MICRO 2006. 
 

 Static cache partitioning 

 Predetermines the amount of cache blocks allocated to each 
program at the beginning of its execution 

 Divides shared cache to multiple regions and partitions cache 
regions through OS page address mapping 

 Dynamic cache partitioning 

 Adjusts cache quota among processes dynamically  

 Page re-coloring 

 Dynamically changes processes’ cache usage through OS page 
address re-mapping 
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Page Coloring 

 Physical memory divided into colors 

 Colors map to different cache sets 

 Cache partitioning 

 Ensure two threads are allocated  

    pages of different colors 
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Thread A 

Thread B 

Cache 

Way-1 Way-n ………… 

Memory page 



Page Coloring 

virtual page number Virtual address page offset 

physical page number Physical address Page offset 

Address translation 

Cache tag Block offset Set index Cache address 

Physically indexed cache 

page color bits 

… … 

OS control 

=
 

•Physically indexed caches are divided into multiple regions (colors). 

•All cache lines in a physical page are cached in one of those regions (colors). 

OS can control the page color of a virtual page through address mapping  

(by selecting a physical page with a specific value in its page color bits). 



Static Cache Partitioning using Page Coloring 

… … 
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Shared cache is partitioned between two processes through address mapping. 

Cost: Main memory space needs to be partitioned, too. 
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Dynamic Cache Partitioning via Page Re-Coloring 

page color table  

 

…… 

N - 1 
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3 

 Page re-coloring: 

 Allocate page in new color 

 Copy memory contents 

 Free old page 

A
llo

c
a

te
d

 c
o

lo
rs

 

 Pages of a process are organized into linked lists 

by their colors. 

 Memory allocation guarantees that pages are 

evenly distributed into all the lists (colors) to 

avoid hot points. 

 



Dynamic Partitioning in Dual Core 

Init: Partition the cache as (8:8) 

Run current partition (P0:P1) for one epoch 

finished 

Try one epoch for each of the two neighboring 

partitions: (P0 – 1: P1+1) and (P0 + 1: P1-1) 

Choose next partitioning with best policy  

metrics measurement (e.g., cache miss rate) 

No 

Yes 
Exit 



Experimental Environment 

 

 Dell PowerEdge1950 

 Two-way SMP, Intel dual-core Xeon 5160 

 Shared 4MB L2 cache, 16-way 

 8GB Fully Buffered DIMM 

 

 Red Hat Enterprise Linux 4.0 

 2.6.20.3 kernel 

 Performance counter tools from HP (Pfmon) 

 Divide L2 cache into 16 colors 

 



Performance – Static & Dynamic 

 Aim to minimize combined miss rate 

 For RG-type, and some RY-type: 

 Static partitioning outperforms dynamic partitioning 

 For RR- and RY-type, and some RY-type 

 Dynamic partitioning outperforms static partitioning 



Software vs. Hardware Cache Management 

 Software advantages 

+ No need to change hardware 

+ Easier to upgrade/change algorithm (not burned into hardware) 

 

 Disadvantages 

- Less flexible: large granularity (page-based instead of way/block) 

- Limited page colors  reduced performance per application 

(limited physical memory space!), reduced flexibility 

- Changing partition size has high overhead  page mapping 

changes 

- Adaptivity is slow: hardware can adapt every cycle (possibly) 

- Not enough information exposed to software (e.g., number of 
misses due to inter-thread conflict) 
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Computer Architecture: 

(Shared) Cache Management 

 

 

Prof. Onur Mutlu 

Carnegie Mellon University 

 



Backup slides 
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Private/Shared Caching 
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Private/Shared Caching 

 Example: Adaptive spill/receive caching 

 

 Goal: Achieve the benefits of private caches (low latency, 
performance isolation) while sharing cache capacity across 
cores 

 

 Idea: Start with a private cache design (for performance 
isolation), but dynamically steal space from other cores that 
do not need all their private caches 

 Some caches can spill their data to other cores’ caches 
dynamically 

 

 Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 2009. 
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Revisiting Private Caches on CMP 

Private caches avoid the need for shared interconnect 

    ++ fast latency, tiled design, performance isolation 

 

Core A 
I$ D$ 

CACHE A 

 

Core B 
I$ D$ 

CACHE B 

 

Core C 
I$ D$ 

CACHE C 

 

Core D 
I$ D$ 

CACHE D 

Memory 

Problem: When one core needs more cache and other core  

has spare cache, private-cache CMPs cannot share capacity  
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 Cache Line Spilling  

Spill evicted line from one cache to neighbor cache 

 - Co-operative caching (CC)  [ Chang+ ISCA’06] 

Problem with CC:  

1. Performance depends on the parameter (spill probability) 

2. All caches spill as well as receive  Limited improvement   

Cache A Cache B Cache C Cache D 

Spill 

Goal:  Robust High-Performance Capacity Sharing with Negligible Overhead 
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Spill-Receive Architecture 

Each Cache is either a Spiller or Receiver but not both 

 - Lines from spiller cache are spilled to one of the receivers 

 -  Evicted lines from receiver cache are discarded   

What is the best N-bit binary string that maximizes the performance of Spill 

Receive Architecture  Dynamic Spill Receive (DSR) 

Cache A Cache B Cache C Cache D 

Spill 

S/R =1  

(Spiller cache) 
S/R =0  

(Receiver cache) 

S/R =1 

(Spiller cache)  
S/R =0  

(Receiver cache) 
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Spiller-sets 

Follower Sets 

Receiver-sets 

Dynamic Spill-Receive via “Set Dueling” 

Divide the cache in three: 

– Spiller sets 

– Receiver sets  

– Follower sets (winner of spiller, 
receiver)  

 

n-bit PSEL counter  

misses to spiller-sets: PSEL-- 

misses to receiver-set: PSEL++  

 

MSB of PSEL decides policy for 
Follower sets: 

– MSB = 0, Use spill 

– MSB = 1, Use receive 

PSEL 
- 

miss 

+ 
miss 

MSB = 0? 

YES No 

Use Recv    Use spill 

monitor  choose  apply 
 (using a single counter) 
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Dynamic Spill-Receive Architecture  

Cache A Cache B Cache C Cache D 

Set X 

Set Y 

AlwaysSpill 

AlwaysRecv 

- 

+ 

Miss in Set X  

in any cache 

Miss in Set Y  

in any cache 

PSEL B PSEL C PSEL D PSEL A 

Decides policy for all sets of Cache A (except X and Y) 

Each cache learns whether it should act as a spiller or receiver 
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Experimental Setup 

 Baseline Study: 

 4-core CMP with in-order cores 

 Private Cache Hierarchy: 16KB L1, 1MB L2 

 10 cycle latency for local hits, 40 cycles for remote hits  

 

 Benchmarks:   

 6 benchmarks that have extra cache: “Givers” (G)  

 6 benchmarks that benefit from more cache: “Takers” (T) 

 All 4-thread combinations of 12 benchmarks: 495 total   

 

Five types of workloads: G4T0 G3T1 G2T2 G1T3 G0T4 
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Results for Throughput  

On average, DSR improves throughput by 18%, co-operative caching by 7% 

DSR provides 90% of the benefit of knowing the best decisions a priori  

* DSR implemented with 32 dedicated sets and 10 bit PSEL counters 
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Results for Weighted Speedup 
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On average, DSR improves weighted speedup by 13%  
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Results for Hmean Speedup 

On average, DSR improves Hmean Fairness from 0.58 to 0.78  
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DSR vs. Faster Shared Cache 

DSR (with 40 cycle extra for remote hits) performs similar to  

shared cache with zero latency overhead and crossbar interconnect  
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Scalability of DSR 

DSR improves average throughput by 19% for both systems 

 (No performance degradation for any of the workloads)  
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Over time, ΔMiss      0, if DSR is causing more misses.  

Quality of Service with DSR 

For 1 % of the 495x4 =1980 apps, DSR causes IPC loss of > 5% 

 

In some cases, important to ensure that performance does not  

degrade compared to dedicated private cache  QoS 

 

DSR can ensure QoS: change PSEL counters by weight of miss: 

 

       ΔMiss = MissesWithDSR – MissesWithNoSpill 

 

 

 

                Weight of Miss = 1 + Max(0, f(ΔMiss)) 

 

Calculate weight every 4M cycles. Needs 3 counters per core 

Estimated by Spiller Sets 
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IPC of QoS-Aware DSR 

IPC curves for other categories almost overlap for the two schemes. 

Avg. throughput improvement across all 495 workloads similar (17.5% vs. 18%)  
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Distributed Caches 
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Caching for Parallel Applications 
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Data placement determines performance 

Goal: place data on chip close to where they are used 

cache 

slice 



Research Topics 
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Shared Cache Management: Research Topics 

 Scalable partitioning algorithms 

 Distributed caches have different tradeoffs 

 Configurable partitioning algorithms 

 Many metrics may need to be optimized at different times or 
at the same time 

 It is not only about overall performance 

 Ability to have high capacity AND high locality (fast access) 

 Within vs. across-application prioritization 

 Holistic design 

 How to manage caches, NoC, and memory controllers 
together? 

 Cache coherence in shared/private distributed caches  
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