
Computer Architecture:

(Shared) Cache Management

Prof. Onur Mutlu

Carnegie Mellon University

Readings
 Required

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2005.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches,” PACT 2012.

 Qureshi et al., “Utility-Based Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to Partition Shared Caches,”
MICRO 2006.

 Recommended

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,”
MICRO 2013.

2

Related Videos

 Cache basics:

 http://www.youtube.com/watch?v=TpMdBrM1hVc&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=23

 Advanced caches:

 http://www.youtube.com/watch?v=TboaFbjTd-
E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24

3

http://www.youtube.com/watch?v=TpMdBrM1hVc&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=23
http://www.youtube.com/watch?v=TpMdBrM1hVc&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=23
http://www.youtube.com/watch?v=TboaFbjTd-E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24
http://www.youtube.com/watch?v=TboaFbjTd-E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24
http://www.youtube.com/watch?v=TboaFbjTd-E&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=24

Shared Resource Design for

Multi-Core Systems

4

The Multi-Core System: A Shared Resource View

5

Shared

Storage

Resource Sharing Concept

 Idea: Instead of dedicating a hardware resource to a
hardware context, allow multiple contexts to use it

 Example resources: functional units, pipeline, caches, buses,
memory

 Why?

+ Resource sharing improves utilization/efficiency  throughput

 When a resource is left idle by one thread, another thread can
use it; no need to replicate shared data

+ Reduces communication latency

 For example, shared data kept in the same cache in SMT
processors

+ Compatible with the shared memory model

6

Resource Sharing Disadvantages

 Resource sharing results in contention for resources

 When the resource is not idle, another thread cannot use it

 If space is occupied by one thread, another thread needs to re-
occupy it

- Sometimes reduces each or some thread’s performance

 - Thread performance can be worse than when it is run alone

- Eliminates performance isolation  inconsistent performance
across runs

 - Thread performance depends on co-executing threads

- Uncontrolled (free-for-all) sharing degrades QoS

 - Causes unfairness, starvation

Need to efficiently and fairly utilize shared resources
7

Need for QoS and Shared Resource Mgmt.

 Why is unpredictable performance (or lack of QoS) bad?

 Makes programmer’s life difficult

 An optimized program can get low performance (and
performance varies widely depending on co-runners)

 Causes discomfort to user

 An important program can starve

 Examples from shared software resources

 Makes system management difficult

 How do we enforce a Service Level Agreement when
hardware resources are sharing is uncontrollable?

8

Resource Sharing vs. Partitioning

 Sharing improves throughput

 Better utilization of space

 Partitioning provides performance isolation (predictable
performance)

 Dedicated space

 Can we get the benefits of both?

 Idea: Design shared resources such that they are efficiently
utilized, controllable and partitionable

 No wasted resource + QoS mechanisms for threads

 9

Shared Hardware Resources

 Memory subsystem (in both MT and CMP)

 Non-private caches

 Interconnects

 Memory controllers, buses, banks

 I/O subsystem (in both MT and CMP)

 I/O, DMA controllers

 Ethernet controllers

 Processor (in MT)

 Pipeline resources

 L1 caches

 10

Multi-core Issues in Caching

 How does the cache hierarchy change in a multi-core system?

 Private cache: Cache belongs to one core (a shared block can be in
multiple caches)

 Shared cache: Cache is shared by multiple cores

11

CORE 0 CORE 1 CORE 2 CORE 3

 L2

CACHE

 L2

CACHE

 L2

CACHE

DRAM MEMORY CONTROLLER

 L2

CACHE

CORE 0 CORE 1 CORE 2 CORE 3

DRAM MEMORY CONTROLLER

 L2

CACHE

Shared Caches Between Cores

 Advantages:
 High effective capacity

 Dynamic partitioning of available cache space

 No fragmentation due to static partitioning

 Easier to maintain coherence (a cache block is in a single location)

 Shared data and locks do not ping pong between caches

 Disadvantages
 Slower access

 Cores incur conflict misses due to other cores’ accesses

 Misses due to inter-core interference

 Some cores can destroy the hit rate of other cores

 Guaranteeing a minimum level of service (or fairness) to each core is harder
(how much space, how much bandwidth?)

12

Shared Caches: How to Share?

 Free-for-all sharing

 Placement/replacement policies are the same as a single core
system (usually LRU or pseudo-LRU)

 Not thread/application aware

 An incoming block evicts a block regardless of which threads
the blocks belong to

 Problems

 Inefficient utilization of cache: LRU is not the best policy

 A cache-unfriendly application can destroy the performance of
a cache friendly application

 Not all applications benefit equally from the same amount of
cache: free-for-all might prioritize those that do not benefit

 Reduced performance, reduced fairness

13

Controlled Cache Sharing

 Utility based cache partitioning
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

 Fair cache partitioning
 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor

Architecture,” PACT 2004.

 Shared/private mixed cache mechanisms
 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in

CMPs,” HPCA 2009.

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 2009.

14

Efficient Cache Utilization

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA
2005.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical
Data Compression for On-Chip Caches,” PACT 2012.

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,”
SAFARI Technical Report 2013.

15

MLP-Aware Cache Replacement

Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt,
"A Case for MLP-Aware Cache Replacement"

Proceedings of the 33rd International Symposium on Computer Architecture
(ISCA), pages 167-177, Boston, MA, June 2006. Slides (ppt)

16

http://users.ece.cmu.edu/~omutlu/pub/qureshi_isca06.pdf
http://users.ece.cmu.edu/~omutlu/pub/qureshi_isca06.pdf
http://users.ece.cmu.edu/~omutlu/pub/qureshi_isca06.pdf
http://www.ece.neu.edu/conf/isca2006/
http://users.ece.cmu.edu/~omutlu/pub/qureshi_isca06_talk.ppt

17

Memory Level Parallelism (MLP)

 Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution,

runahead execution)

 MLP varies. Some misses are isolated and some parallel

 How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

18

19

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated misses (MLP-Aware)

For a fully associative cache containing 4 blocks

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

20

P3 P2 P1 P4

H H H H M H H H M Hit/Miss

Misses=4
Stalls=4

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2 P4 P3 P2 S3 P4 S1 S2 S3 P1 P3 P2 S3 P4 S1 S2 S3 P4

H H H

S1 S2 S3 P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

21

Motivation

 MLP varies. Some misses more costly than others

 MLP-aware replacement can improve performance by
reducing costly misses

22

Outline

 Introduction

 MLP-Aware Cache Replacement
 Model for Computing Cost

 Repeatability of Cost

 A Cost-Sensitive Replacement Policy

 Practical Hybrid Replacement
 Tournament Selection

 Dynamic Set Sampling

 Sampling Based Adaptive Replacement

 Summary

23

Computing MLP-Based Cost

 Cost of miss is number of cycles the miss stalls the processor

 Easy to compute for isolated miss

 Divide each stall cycle equally among all parallel misses

 A

B

C

t0 t1 t4 t5 time

1

½

1 ½

½

t2 t3

½

1

24

 Miss Status Holding Register (MSHR) tracks all in flight

misses

 Add a field mlp-cost to each MSHR entry

 Every cycle for each demand entry in MSHR

 mlp-cost += (1/N)

 N = Number of demand misses in MSHR

A First-Order Model

25

Machine Configuration

 Processor

 aggressive, out-of-order, 128-entry instruction window

 L2 Cache

 1MB, 16-way, LRU replacement, 32 entry MSHR

 Memory

 400 cycle bank access, 32 banks

 Bus

 Roundtrip delay of 11 bus cycles (44 processor cycles)

26

Distribution of MLP-Based Cost

Cost varies. Does it repeat for a given cache block? MLP-Based Cost

%
 o

f
A

ll
L

2
 M

is
s
e

s

27

Repeatability of Cost

 An isolated miss can be parallel miss next time

 Can current cost be used to estimate future cost ?

 Let d = difference in cost for successive miss to a block

 Small d  cost repeats

 Large d  cost varies significantly

28

 In general d is small  repeatable cost
When d is large (e.g. parser, mgrid)  performance loss

Repeatability of Cost
d < 60

59 < d < 120

d > 120

29

The Framework

MSHR

L2 CACHE

MEMORY

Quantization of Cost

Computed mlp-based
cost is quantized to a
3-bit value

CCL
C
A
R
E Cost-Aware

Repl Engine

Cost
Calculation
Logic

PROCESSOR

ICACHE DCACHE

30

 A Linear (LIN) function that considers recency and cost

 Victim-LIN = min { Recency (i) + S*cost (i) }

S = significance of cost. Recency(i) = position in LRU stack
cost(i) = quantized cost

Design of MLP-Aware Replacement policy

 LRU considers only recency and no cost

 Victim-LRU = min { Recency (i) }

 Decisions based only on cost and no recency hurt
performance. Cache stores useless high cost blocks

31

Results for the LIN policy

Performance loss for parser and mgrid due to large d

.

32

Effect of LIN policy on Cost

Miss += 4%

IPC += 4%

Miss += 30%

IPC -= 33%

Miss -= 11%

IPC += 22%

33

Outline

 Introduction

 MLP-Aware Cache Replacement
 Model for Computing Cost

 Repeatability of Cost

 A Cost-Sensitive Replacement Policy

 Practical Hybrid Replacement
 Tournament Selection

 Dynamic Set Sampling

 Sampling Based Adaptive Replacement

 Summary

34

Tournament Selection (TSEL) of
Replacement Policies for a Single Set

ATD-LIN ATD-LRU Saturating Counter (SCTR)

HIT HIT Unchanged

MISS MISS Unchanged

HIT MISS += Cost of Miss in ATD-LRU

MISS HIT -= Cost of Miss in ATD-LIN

SET A SET A +
SCTR

If MSB of SCTR is 1, MTD
uses LIN else MTD use LRU

ATD-LIN ATD-LRU

SET A

MTD

35

Extending TSEL to All Sets

Implementing TSEL on a per-set basis is expensive

Counter overhead can be reduced by using a global counter

+

SCTR

Policy for All

Sets In MTD

Set A

ATD-LIN

Set B

Set C

Set D

Set E

Set F

Set G

Set H

Set A

ATD-LRU

Set B

Set C

Set D

Set E

Set F

Set G

Set H

36

Dynamic Set Sampling

+

SCTR

Policy for All

Sets In MTD

ATD-LIN

Set B

Set E

Set G

Set B

Set E

Set G

ATD-LRU
Set A Set A

Set C
Set D

Set F

Set H

Set C
Set D

Set F

Set H

Not all sets are required to decide the best policy
Have the ATD entries only for few sets.

Sets that have ATD entries (B, E, G) are called leader sets

37

Dynamic Set Sampling

 Bounds using analytical model and simulation (in paper)

 DSS with 32 leader sets performs similar to having all sets

 Last-level cache typically contains 1000s of sets, thus ATD
entries are required for only 2%-3% of the sets

How many sets are required to choose best performing policy?

ATD overhead can further be reduced by using MTD to
always simulate one of the policies (say LIN)

38

Decide policy only for
follower sets

+

Sampling Based Adaptive Replacement (SBAR)

The storage overhead of SBAR is less than 2KB

(0.2% of the baseline 1MB cache)

SCTR

MTD

Set B

Set E

Set G

Set G

ATD-LRU
Set A

Set C
Set D

Set F

Set H

Set B
Set E

Leader sets

Follower sets

39

Results for SBAR

40

SBAR adaptation to phases

SBAR selects the best policy for each phase of ammp

LIN is better LRU is better

41

Outline

 Introduction

 MLP-Aware Cache Replacement
 Model for Computing Cost

 Repeatability of Cost

 A Cost-Sensitive Replacement Policy

 Practical Hybrid Replacement
 Tournament Selection

 Dynamic Set Sampling

 Sampling Based Adaptive Replacement

 Summary

42

Summary

 MLP varies. Some misses are more costly than others

 MLP-aware cache replacement can reduce costly misses

 Proposed a runtime mechanism to compute MLP-Based
cost and the LIN policy for MLP-aware cache replacement

 SBAR allows dynamic selection between LIN and LRU with
low hardware overhead

 Dynamic set sampling used in SBAR also enables other
cache related optimizations

The Evicted-Address Filter

Vivek Seshadri, Onur Mutlu, Michael A. Kozuch, and Todd C. Mowry,
"The Evicted-Address Filter: A Unified Mechanism to Address Both

Cache Pollution and Thrashing"
Proceedings of the 21st ACM International Conference on Parallel

Architectures and Compilation Techniques (PACT), Minneapolis, MN,
September 2012. Slides (pptx)

43

http://users.ece.cmu.edu/~omutlu/pub/eaf-cache_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/eaf-cache_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/eaf-cache_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/eaf-cache_pact12.pdf
http://www.pactconf.org
http://www.pactconf.org
http://users.ece.cmu.edu/~omutlu/pub/seshadri_pact12_talk.pptx

Executive Summary

• Two problems degrade cache performance

– Pollution and thrashing

– Prior works don’t address both problems concurrently

• Goal: A mechanism to address both problems

• EAF-Cache

– Keep track of recently evicted block addresses in EAF

– Insert low reuse with low priority to mitigate pollution

– Clear EAF periodically to mitigate thrashing

– Low complexity implementation using Bloom filter

• EAF-Cache outperforms five prior approaches that
address pollution or thrashing 44

Cache Utilization is Important

Core
Last-Level

Cache
Memory

Core Core

Core Core

Increasing contention

Effective cache utilization is important

Large latency

45

Reuse Behavior of Cache Blocks

A B C A B C S T U V W X Y A B C

Different blocks have different reuse behavior

Access Sequence:

High-reuse block Low-reuse block

Z

Ideal Cache A B C

46

Cache Pollution

H G F E D C B A S H G F E D C B T S H G F E D C U T S H G F E D

MRU LRU

LRU Policy

Prior work: Predict reuse behavior of missed blocks.
Insert low-reuse blocks at LRU position.

H G F E D C B A S T U

MRU LRU

A B A C B A

A S A T S A

Cache

Problem: Low-reuse blocks evict high-reuse blocks

47

Cache Thrashing

H G F E D C B A I H G F E D C B J I H G F E D C K J I H G F E D

MRU LRU

LRU Policy A B C D E F G H I J K A B A C B A

Prior work: Insert at MRU position with a very low
probability (Bimodal insertion policy)

Cache

H G F E D C B A I J K

MRU LRU

A I A J I A
A fraction of
working set
stays in cache

Cache

Problem: High-reuse blocks evict each other

48

Shortcomings of Prior Works

Prior works do not address both pollution and
thrashing concurrently

Prior Work on Cache Pollution

No control on the number of blocks inserted with high
priority into the cache

Prior Work on Cache Thrashing

No mechanism to distinguish high-reuse blocks
from low-reuse blocks

Our goal: Design a mechanism to address both
pollution and thrashing concurrently

49

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

50

Reuse Prediction

Miss Missed-block

High reuse

Low reuse

?

Keep track of the reuse behavior of every cache
block in the system

Impractical
1. High storage overhead
2. Look-up latency

51

Prior Work on Reuse Prediction

Use program counter or memory region information.

B A T S

PC 1 PC 2

B A T S

PC 1 PC 2 PC 1

PC 2

C C

U U

1. Group Blocks
2. Learn group

behavior
3. Predict reuse

1. Same group → same reuse behavior
2. No control over number of high-reuse blocks

52

Our Approach: Per-block Prediction

Use recency of eviction to predict reuse

A

Time

Time of eviction

A

Accessed soon
after eviction

S

Time

S

Accessed long time
after eviction

53

Evicted-Address Filter (EAF)

Cache

EAF
(Addresses of recently evicted blocks)

Evicted-block address

Miss Missed-block address

In EAF?
Yes No

MRU LRU

High Reuse Low Reuse

54

Naïve Implementation: Full Address Tags

EAF

1. Large storage overhead

2. Associative lookups – High energy

Recently
evicted address

Need not be
100% accurate

?

55

Low-Cost Implementation: Bloom Filter

EAF

Implement EAF using a Bloom Filter
Low storage overhead + energy

Need not be
100% accurate

?

56

Y

Bloom Filter

Compact representation of a set

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1. Bit vector

2. Set of hash functions

H1 H2

H1 H2

X

1 1 1

Insert Test

Z W

Remove

X Y

May remove
multiple addresses Clear   False positive

57

Inserted Elements: X Y

EAF using a Bloom Filter

EAF

Insert

Test

Evicted-block
address

Remove
FIFO address

Missed-block address

Bloom Filter

Remove
If present

 when full

Clear

 



 1

2
 when full

Bloom-filter EAF: 4x reduction in storage overhead,
1.47% compared to cache size 58

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

59

Large Working Set: 2 Cases

Cache EAF

A E K J I H G F L C B D

Cache EAF

R Q P O N M L S J I H G F E D K C B A

1

2

Cache < Working set < Cache + EAF

Cache + EAF < Working Set

60

Large Working Set: Case 1

Cache EAF

A E K J I H G F L C B D

 

B F L K J I H G A D C E C G A L K J I H B E D F



A L K J I H G B E D F C

           

A Sequence: B C D E F G H I J K L A B C

EAF Naive:

D



A B C

Cache < Working set < Cache + EAF

61

Large Working Set: Case 1

Cache EAF

E A K J I H G F L C B D

A Sequence: B C D E F G H I J K L A B C A B

EAF BF:        

A

     

EAF Naive:               

A L K J I H G B E D C A B F A L K J I H G B E D F C A B

D

H G B E D F C A A L K J I B C D

D




Not removed

Not present in the EAF

Bloom-filter based EAF mitigates thrashing

H



G F E I

Cache < Working set < Cache + EAF

62

Large Working Set: Case 2

Cache EAF

R Q P O N M L S J I H G F E D K C B A

Problem: All blocks are predicted to have low reuse

Use Bimodal Insertion Policy for low reuse
blocks. Insert few of them at the MRU position

 Allow a fraction of the working set to stay in the
cache

Cache + EAF < Working Set

63

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

64

EAF-Cache: Final Design

Cache
Bloom Filter

Counter

1

2

3

Cache eviction

Cache miss

Counter reaches max

Insert address into filter
Increment counter

Test if address is present in filter
Yes, insert at MRU. No, insert with BIP

Clear filter and counter

65

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

66

EAF: Advantages

Cache
Bloom Filter

Counter

1. Simple to implement

2. Easy to design and verify

3. Works with other techniques (replacement policy)

Cache eviction

Cache miss

67

EAF: Disadvantage

Cache

A First access

A A

A Second access Miss

Problem: For an LRU-friendly application, EAF
incurs one additional miss for most blocks

Dueling-EAF: set dueling between EAF and LRU

In EAF?

68

Outline

• Evicted-Address Filter
– Reuse Prediction

– Thrash Resistance

• Final Design

• Evaluation

• Conclusion

• Background and Motivation

• Advantages and Disadvantages

69

Methodology
• Simulated System

– In-order cores, single issue, 4 GHz

– 32 KB L1 cache, 256 KB L2 cache (private)

– Shared L3 cache (1MB to 16MB)

– Memory: 150 cycle row hit, 400 cycle row conflict

• Benchmarks
– SPEC 2000, SPEC 2006, TPC-C, 3 TPC-H, Apache

• Multi-programmed workloads
– Varying memory intensity and cache sensitivity

• Metrics
– 4 different metrics for performance and fairness

– Present weighted speedup
70

Comparison with Prior Works
Addressing Cache Pollution

- No control on number of blocks inserted with high
priority ⟹ Thrashing

Run-time Bypassing (RTB) – Johnson+ ISCA’97

- Memory region based reuse prediction

Single-usage Block Prediction (SU) – Piquet+ ACSAC’07
Signature-based Hit Prediction (SHIP) – Wu+ MICRO’11

- Program counter based reuse prediction

Miss Classification Table (MCT) – Collins+ MICRO’99

- One most recently evicted block

71

Comparison with Prior Works

Addressing Cache Thrashing

- No mechanism to filter low-reuse blocks ⟹ Pollution

TA-DIP – Qureshi+ ISCA’07, Jaleel+ PACT’08
TA-DRRIP – Jaleel+ ISCA’10

- Use set dueling to determine thrashing applications

72

Results – Summary

0%

5%

10%

15%

20%

25%

1-Core 2-Core 4-Core

P
e

rf
o

rm
an

ce
 Im

p
ro

ve
m

e
n

t
o

ve
r

LR
U

TA-DIP TA-DRRIP RTB MCT

SHIP EAF D-EAF

73

-10%

0%

10%

20%

30%

40%

50%

60%

W
e

ig
h

te
d

 S
p

e
e

d
u

p
 Im

p
ro

ve
m

e
n

t
o

ve
r

LR
U

Workload Number (135 workloads)

LRU

EAF

SHIP

D-EAF

4-Core: Performance

74

Effect of Cache Size

0%

5%

10%

15%

20%

25%

1MB 2MB 4MB 8MB 2MB 4MB 8MB 16MB

2-Core 4-Core

W
e

ig
h

te
d

 S
p

e
e

d
u

p
 Im

p
ro

ve
m

e
n

t
o

ve
r

LR
U

SHIP EAF D-EAF

75

Effect of EAF Size

0%

5%

10%

15%

20%

25%

30%

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 W
e

ig
h

te
d

 S
p

e
e

d
u

p
 I

m
p

ro
ve

m
e

n
t

O
ve

r
LR

U

Addresses in EAF / # Blocks in Cache

1 Core 2 Core 4 Core

76

Other Results in Paper

• EAF orthogonal to replacement policies

– LRU, RRIP – Jaleel+ ISCA’10

• Performance improvement of EAF increases with
increasing memory latency

• EAF performs well on four different metrics

– Performance and fairness

• Alternative EAF-based designs perform comparably

– Segmented EAF

– Decoupled-clear EAF

77

Conclusion
• Cache utilization is critical for system performance

– Pollution and thrashing degrade cache performance

– Prior works don’t address both problems concurrently

• EAF-Cache
– Keep track of recently evicted block addresses in EAF

– Insert low reuse with low priority to mitigate pollution

– Clear EAF periodically and use BIP to mitigate thrashing

– Low complexity implementation using Bloom filter

• EAF-Cache outperforms five prior approaches that address
pollution or thrashing

78

Base-Delta-Immediate

Cache Compression

Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, Michael
A. Kozuch, and Todd C. Mowry,

"Base-Delta-Immediate Compression: Practical Data Compression
for On-Chip Caches"

Proceedings of the 21st ACM International Conference on Parallel
Architectures and Compilation Techniques (PACT), Minneapolis, MN,

September 2012. Slides (pptx)

79

http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://users.ece.cmu.edu/~omutlu/pub/bdi-compression_pact12.pdf
http://www.pactconf.org
http://www.pactconf.org
http://users.ece.cmu.edu/~omutlu/pub/pekhimenko_pact12_talk.pptx

Executive Summary
• Off-chip memory latency is high

– Large caches can help, but at significant cost

• Compressing data in cache enables larger cache at low
cost

• Problem: Decompression is on the execution critical path
• Goal: Design a new compression scheme that has
 1. low decompression latency, 2. low cost, 3. high compression ratio

• Observation: Many cache lines have low dynamic range
data

• Key Idea: Encode cachelines as a base + multiple differences
• Solution: Base-Delta-Immediate compression with low

decompression latency and high compression ratio
– Outperforms three state-of-the-art compression mechanisms

80

Motivation for Cache Compression
Significant redundancy in data:

81

0x00000000

How can we exploit this redundancy?

– Cache compression helps

– Provides effect of a larger cache without
making it physically larger

0x0000000B 0x00000003 0x00000004 …

Background on Cache Compression

• Key requirements:
– Fast (low decompression latency)

– Simple (avoid complex hardware changes)

– Effective (good compression ratio)

82

CPU
L2

Cache
Uncompressed

Compressed Decompression Uncompressed

L1
Cache

Hit

Shortcomings of Prior Work

83

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero
  

Shortcomings of Prior Work

84

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero
  

Frequent Value
  

Shortcomings of Prior Work

85

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero
  

Frequent Value
  

Frequent Pattern
 / 

Shortcomings of Prior Work

86

Compression
Mechanisms

Decompression
Latency

Complexity Compression
Ratio

Zero
  

Frequent Value
  

Frequent Pattern
 / 

Our proposal:
BΔI

  

Outline

• Motivation & Background

• Key Idea & Our Mechanism

• Evaluation

• Conclusion

87

Key Data Patterns in Real Applications

88

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization, sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

How Common Are These Patterns?

0%

20%

40%

60%

80%

100%

 l
ib

q
u

an
tu

m

 l
b

m

 m
cf

 t
p

ch
1

7

 s
je

n
g

 o
m

n
et

p
p

 t
p

ch
2

 s
p

h
in

x3

 x
al

an
cb

m
k

 b
zi

p
2

 t
p

ch
6

 l
es

lie
3

d

 a
p

ac
h

e

 g
ro

m
ac

s

 a
st

ar

 g
o

b
m

k

 s
o

p
le

x

 g
cc

 h
m

m
er

 w
rf

 h
2

6
4

re
f

 z
eu

sm
p

 c
ac

tu
sA

D
M

 G
em

sF
D

TD

A
ve

ra
ge

C
ac

h
e

C
o

ve
ra

ge
 (

%
)

Zero

Repeated Values

Other Patterns

89

SPEC2006, databases, web workloads, 2MB L2 cache
“Other Patterns” include Narrow Values

43% of the cache lines belong to key patterns

Key Data Patterns in Real Applications

90

0x00000000 0x00000000 0x00000000 0x00000000 …

0x000000FF 0x000000FF 0x000000FF 0x000000FF …

0x00000000 0x0000000B 0x00000003 0x00000004 …

0xC04039C0 0xC04039C8 0xC04039D0 0xC04039D8 …

Zero Values: initialization, sparse matrices, NULL pointers

Repeated Values: common initial values, adjacent pixels

Narrow Values: small values stored in a big data type

Other Patterns: pointers to the same memory region

Low Dynamic Range:

Differences between values are significantly
smaller than the values themselves

32-byte Uncompressed Cache Line

Key Idea: Base+Delta (B+Δ) Encoding

91

0xC04039C0 0xC04039C8 0xC04039D0 … 0xC04039F8

4 bytes

0xC04039C0

Base

0x00

1 byte

0x08

1 byte

0x10

1 byte

… 0x38 12-byte
Compressed Cache Line

20 bytes saved
 Fast Decompression:

vector addition

 Simple Hardware:
 arithmetic and comparison

 Effective: good compression ratio

Can We Do Better?

• Uncompressible cache line (with a single base):

• Key idea:
 Use more bases, e.g., two instead of one
• Pro:

– More cache lines can be compressed
• Cons:

– Unclear how to find these bases efficiently
– Higher overhead (due to additional bases)

92

0x00000000 0x09A40178 0x0000000B 0x09A4A838 …

B+Δ with Multiple Arbitrary Bases

93

1

1.2

1.4

1.6

1.8

2

2.2

GeoMean

C
o

m
p

re
ss

io
n

 R
at

io
 1 2 3 4 8 10 16

 2 bases – the best option based on evaluations

How to Find Two Bases Efficiently?
1. First base - first element in the cache line

2. Second base - implicit base of 0

Advantages over 2 arbitrary bases:

– Better compression ratio

– Simpler compression logic

94

 Base+Delta part

 Immediate part

Base-Delta-Immediate (BΔI) Compression

B+Δ (with two arbitrary bases) vs. BΔI

95

1

1.2

1.4

1.6

1.8

2

2.2
 l

b
m

 w
rf

 h
m

m
er

 s
p

h
in

x3

 t
p

ch
1

7

 l
ib

q
u

an
tu

m

 l
es

lie
3

d

 g
ro

m
ac

s

 s
je

n
g

 m
cf

 h
2

6
4

re
f

 t
p

ch
2

 o
m

n
et

p
p

 a
p

ac
h

e

 b
zi

p
2

 x
al

an
cb

m
k

 a
st

ar

 t
p

ch
6

 c
ac

tu
sA

D
M

 g
cc

 s
o

p
le

x

 g
o

b
m

k

 z
eu

sm
p

 G
em

sF
D

TD

G
eo

M
ea

n
 C
o

m
p

re
ss

io
n

 R
at

io
 B+Δ (2 bases) BΔI

Average compression ratio is close, but BΔI is simpler

BΔI Implementation

• Decompressor Design

– Low latency

• Compressor Design

– Low cost and complexity

• BΔI Cache Organization

– Modest complexity

96

Δ0 B0

BΔI Decompressor Design

97

Δ1 Δ2 Δ3

Compressed Cache Line

V0 V1 V2 V3

+ +

Uncompressed Cache Line

+ +

B0 Δ0

B0 B0 B0 B0

Δ1 Δ2 Δ3

V0
V1 V2 V3

Vector addition

BΔI Compressor Design

98

32-byte Uncompressed Cache Line

8-byte B0

1-byte Δ
CU

8-byte B0

2-byte Δ
CU

8-byte B0

4-byte Δ
CU

4-byte B0

1-byte Δ
CU

4-byte B0

2-byte Δ
CU

2-byte B0

1-byte Δ
CU

Zero
CU

Rep.
Values

CU

Compression Selection Logic (based on compr. size)

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

CFlag &
CCL

Compression Flag
& Compressed

Cache Line

CFlag &
CCL

Compressed Cache Line

BΔI Compression Unit: 8-byte B0 1-byte Δ

99

32-byte Uncompressed Cache Line

V0 V1 V2 V3

8 bytes

- - - -

B0=

V0

V0 B0 B0 B0 B0

V0 V1 V2 V3

Δ0 Δ1 Δ2 Δ3

Within 1-byte
range?

Within 1-byte
range?

Within 1-byte
range?

Within 1-byte
range?

Is every element within 1-byte range?

Δ0 B0 Δ1 Δ2 Δ3 B0 Δ0 Δ1 Δ2 Δ3

Yes No

BΔI Cache Organization

100

Tag0 Tag1

… …

… …

Tag Storage:

Set0

Set1

Way0 Way1

Data0

…

…

Set0

Set1

Way0 Way1

…

Data1

…

32 bytes Data Storage:
Conventional 2-way cache with 32-byte cache lines

BΔI: 4-way cache with 8-byte segmented data

Tag0 Tag1

… …

… …

Tag Storage:

Way0 Way1 Way2 Way3

… …

Tag2 Tag3

… …

Set0

Set1

Twice as many tags

C - Compr. encoding bits C

Set0

Set1

… … … … … … … …

S0 S0 S1 S2 S3 S4 S5 S6 S7

… … … … … … … …

8 bytes

Tags map to multiple adjacent segments 2.3% overhead for 2 MB cache

Qualitative Comparison with Prior Work

• Zero-based designs
– ZCA [Dusser+, ICS’09]: zero-content augmented cache

– ZVC [Islam+, PACT’09]: zero-value cancelling

– Limited applicability (only zero values)

• FVC [Yang+, MICRO’00]: frequent value compression
– High decompression latency and complexity

• Pattern-based compression designs
– FPC [Alameldeen+, ISCA’04]: frequent pattern compression

• High decompression latency (5 cycles) and complexity

– C-pack [Chen+, T-VLSI Systems’10]: practical implementation of
FPC-like algorithm

• High decompression latency (8 cycles)

101

Outline

• Motivation & Background

• Key Idea & Our Mechanism

• Evaluation

• Conclusion

102

Methodology
• Simulator

– x86 event-driven simulator based on Simics
[Magnusson+, Computer’02]

• Workloads
– SPEC2006 benchmarks, TPC, Apache web server

– 1 – 4 core simulations for 1 billion representative
instructions

• System Parameters
– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]

– 4GHz, x86 in-order core, 512kB - 16MB L2, simple
memory model (300-cycle latency for row-misses)

103

Compression Ratio: BΔI vs. Prior Work

BΔI achieves the highest compression ratio

104

1

1.2

1.4

1.6

1.8

2

2.2
 l

b
m

 w
rf

 h

m
m

er

 s
p

h
in

x3

 t
p

ch
1

7

 l
ib

q
u

an
tu

m

 l
es

lie
3

d

 g
ro

m
ac

s

 s
je

n
g

 m
cf

 h

2
6

4
re

f

 t
p

ch
2

 o

m
n

et
p

p

 a
p

ac
h

e

 b
zi

p
2

 x
al

an
cb

m
k

 a

st
ar

 t
p

ch
6

 c

ac
tu

sA
D

M

 g
cc

 s

o
p

le
x

 g
o

b
m

k

 z
eu

sm
p

 G
em

sF
D

TD

G
eo

M
ea

n
 C
o

m
p

re
ss

io
n

 R
at

io

ZCA FVC FPC BΔI

1.53

SPEC2006, databases, web workloads, 2MB L2

Single-Core: IPC and MPKI

105

0.9
1

1.1
1.2
1.3
1.4
1.5

N
o

rm
al

iz
e

d
 IP

C

L2 cache size

Baseline (no compr.)
BΔI

8.1%
5.2%

5.1%
4.9%

5.6%
3.6%

0
0.2
0.4
0.6
0.8

1

N
o

rm
al

iz
e

d
 M

P
K

I

L2 cache size

Baseline (no compr.)
BΔI
16%

24%
21%

13%
19%

14%

BΔI achieves the performance of a 2X-size cache

Performance improves due to the decrease in MPKI

Multi-Core Workloads
• Application classification based on

Compressibility: effective cache size increase

(Low Compr. (LC) < 1.40, High Compr. (HC) >= 1.40)

Sensitivity: performance gain with more cache

(Low Sens. (LS) < 1.10, High Sens. (HS) >= 1.10; 512kB -> 2MB)

• Three classes of applications:

– LCLS, HCLS, HCHS, no LCHS applications

• For 2-core - random mixes of each possible class pairs
(20 each, 120 total workloads)

106

Multi-Core: Weighted Speedup

BΔI performance improvement is the highest (9.5%)

4.5%
3.4%

4.3%

10.9%

16.5%
18.0%

9.5%

0.95

1.00

1.05

1.10

1.15

1.20

LCLS - LCLS LCLS - HCLS HCLS - HCLS LCLS - HCHS HCLS - HCHS HCHS - HCHS

Low Sensitivity High Sensitivity GeoMean

N
o

rm
al

iz
ed

 W
ei

gh
te

d
 S

p
ee

d
u

p

ZCA FVC FPC BΔI

If at least one application is sensitive, then the
performance improves 107

Other Results in Paper

• IPC comparison against upper bounds

– BΔI almost achieves performance of the 2X-size cache

• Sensitivity study of having more than 2X tags

– Up to 1.98 average compression ratio

• Effect on bandwidth consumption

– 2.31X decrease on average

• Detailed quantitative comparison with prior work

• Cost analysis of the proposed changes

– 2.3% L2 cache area increase

108

Conclusion
• A new Base-Delta-Immediate compression mechanism

• Key insight: many cache lines can be efficiently
represented using base + delta encoding

• Key properties:

– Low latency decompression

– Simple hardware implementation

– High compression ratio with high coverage

• Improves cache hit ratio and performance of both single-
core and multi-core workloads

– Outperforms state-of-the-art cache compression techniques:
FVC and FPC

109

Linearly Compressed Pages

Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu,
Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"Linearly Compressed Pages: A Main Memory Compression
Framework with Low Complexity and Low Latency"

SAFARI Technical Report, TR-SAFARI-2012-005, Carnegie Mellon University,
September 2012.

110

http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_safari-tech-report-2012-005.pdf
http://users.ece.cmu.edu/~omutlu/pub/linearly-compressed-pages_safari-tech-report-2012-005.pdf
http://www.ece.cmu.edu/~safari/tr.html

Executive Summary

111

 Main memory is a limited shared resource

 Observation: Significant data redundancy

 Idea: Compress data in main memory

 Problem: How to avoid latency increase?

 Solution: Linearly Compressed Pages (LCP):

 fixed-size cache line granularity compression

 1. Increases capacity (69% on average)

 2. Decreases bandwidth consumption (46%)

 3. Improves overall performance (9.5%)

Challenges in Main Memory Compression

112

1. Address Computation

2. Mapping and Fragmentation

3. Physically Tagged Caches

L0 L1 L2 . . . LN-1

Cache Line (64B)

Address Offset 0 64 128 (N-1)*64

L0 L1 L2 . . . LN-1
Compressed
Page

0 ? ? ? Address Offset

Uncompressed
Page

Address Computation

113

Mapping and Fragmentation

114

Virtual Page
(4kB)

Physical Page
(? kB) Fragmentation

Virtual
Address

Physical
Address

Physically Tagged Caches

115

Core

TLB

tag

tag

tag

Physical
Address

data

data

data

Virtual
Address

Critical Path
Address Translation

L2 Cache
Lines

Shortcomings of Prior Work

116

Compression
Mechanisms

Access
Latency

Decompression
Latency

Complexity Compression
Ratio

IBM MXT
[IBM J.R.D. ’01]    

Shortcomings of Prior Work

117

Compression
Mechanisms

Access
Latency

Decompression
Latency

Complexity Compression
Ratio

IBM MXT
[IBM J.R.D. ’01]    
Robust Main
Memory
Compression
[ISCA’05]









Shortcomings of Prior Work

118

Compression
Mechanisms

Access
Latency

Decompression
Latency

Complexity Compression
Ratio

IBM MXT
[IBM J.R.D. ’01]    
Robust Main
Memory
Compression
[ISCA’05]









LCP:
Our Proposal









Linearly Compressed Pages (LCP): Key Idea

119

64B 64B 64B 64B . . .

. . . M E

Metadata (64B):
? (compressible)

Exception
Storage

4:1 Compression

64B

Uncompressed Page (4kB: 64*64B)

Compressed Data
(1kB)

LCP Overview

120

• Page Table entry extension

– compression type and size

– extended physical base address

• Operating System management support

– 4 memory pools (512B, 1kB, 2kB, 4kB)

• Changes to cache tagging logic

– physical page base address + cache line index

 (within a page)

• Handling page overflows

• Compression algorithms: BDI [PACT’12] , FPC [ISCA’04]

LCP Optimizations

121

• Metadata cache

– Avoids additional requests to metadata

• Memory bandwidth reduction:

• Zero pages and zero cache lines

– Handled separately in TLB (1-bit) and in metadata

 (1-bit per cache line)

• Integration with cache compression

– BDI and FPC

64B 64B 64B 64B
 1 transfer

instead of 4

Methodology
• Simulator

– x86 event-driven simulators

• Simics-based [Magnusson+, Computer’02] for CPU

• Multi2Sim [Ubal+, PACT’12] for GPU

• Workloads

– SPEC2006 benchmarks, TPC, Apache web server,
GPGPU applications

• System Parameters

– L1/L2/L3 cache latencies from CACTI [Thoziyoor+, ISCA’08]

– 512kB - 16MB L2, simple memory model

122

Compression Ratio Comparison

123

1.30

1.59 1.62 1.69

2.31

2.60

1

1.5

2

2.5

3

3.5

C
o

m
p

re
ss

io
n

 R
at

io

GeoMean

Zero Page FPC
LCP (BDI) LCP (BDI+FPC-fixed)
MXT LZ

SPEC2006, databases, web workloads, 2MB L2 cache

LCP-based frameworks achieve competitive
average compression ratios with prior work

Bandwidth Consumption Decrease

124

SPEC2006, databases, web workloads, 2MB L2 cache

0.92 0.89

0.57 0.63 0.54 0.55 0.54

0
0.2
0.4
0.6
0.8

1
1.2

GeoMean N
o

rm
al

iz
e

d
 B

P
K

I

FPC-cache BDI-cache
FPC-memory (None, LCP-BDI)
(FPC, FPC) (BDI, LCP-BDI)
(BDI, LCP-BDI+FPC-fixed)

LCP frameworks significantly reduce bandwidth (46%)

B
et

te
r

Performance Improvement

125

Cores LCP-BDI (BDI, LCP-BDI) (BDI, LCP-BDI+FPC-fixed)

1 6.1% 9.5% 9.3%

2 13.9% 23.7% 23.6%

4 10.7% 22.6% 22.5%

LCP frameworks significantly improve performance

Conclusion

• A new main memory compression framework
called LCP (Linearly Compressed Pages)
– Key idea: fixed size for compressed cache lines within

a page and fixed compression algorithm per page

• LCP evaluation:
– Increases capacity (69% on average)

– Decreases bandwidth consumption (46%)

– Improves overall performance (9.5%)

– Decreases energy of the off-chip bus (37%)

126

Controlled Shared Caching

127

Controlled Cache Sharing

 Utility based cache partitioning
 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-Overhead, High-

Performance, Runtime Mechanism to Partition Shared Caches,” MICRO
2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

 Fair cache partitioning
 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor

Architecture,” PACT 2004.

 Shared/private mixed cache mechanisms
 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching in

CMPs,” HPCA 2009.

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 2009.

128

Utility Based Shared Cache Partitioning
 Goal: Maximize system throughput

 Observation: Not all threads/applications benefit equally from
caching  simple LRU replacement not good for system

throughput

 Idea: Allocate more cache space to applications that obtain the
most benefit from more space

 The high-level idea can be applied to other shared resources as
well.

 Qureshi and Patt, “Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” MICRO 2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-
Aware Scheduling and Partitioning,” HPCA 2002.

129

Marginal Utility of a Cache Way

130

 Utility Ua
b = Misses with a ways – Misses with b ways

Low Utility

High Utility

Saturating Utility

Num ways from 16-way 1MB L2

M
is

s
e
s
 p

e
r

1
0
0
0
 i
n
s
tr

u
c
ti
o
n
s

Utility Based Shared Cache Partitioning Motivation

131

Num ways from 16-way 1MB L2

M
is

s
e
s
 p

e
r

1
0
0
0
 i
n
s
tr

u
c
ti
o
n
s
 (

M
P

K
I)

equake

vpr

LRU

UTIL
Improve performance by giving more cache to

the application that benefits more from cache

Utility Based Cache Partitioning (III)

132

Three components:

 Utility Monitors (UMON) per core

 Partitioning Algorithm (PA)

 Replacement support to enforce partitions

I$

D$
Core1

I$

D$
Core2

Shared

L2 cache

Main Memory

UMON1 UMON2 PA

Utility Monitors

 For each core, simulate LRU policy using ATD

 Hit counters in ATD to count hits per recency position

 LRU is a stack algorithm: hit counts  utility
 E.g. hits(2 ways) = H0+H1

133

MTD

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

ATD

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

+ + + +
(MRU)H0 H1 H2…H15(LRU)

Utility Monitors

134

Dynamic Set Sampling

 Extra tags incur hardware and power overhead

 Dynamic Set Sampling reduces overhead [Qureshi, ISCA’06]

 32 sets sufficient (analytical bounds)

 Storage < 2kB/UMON

135

MTD

ATD Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

+ + + +
(MRU)H0 H1 H2…H15(LRU)

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

Set B

Set E

Set G

Set A

Set C
Set D

Set F

Set H

Set B
Set E
Set G

UMON (DSS)

Partitioning Algorithm

 Evaluate all possible partitions and select the best

 With a ways to core1 and (16-a) ways to core2:

 Hitscore1 = (H0 + H1 + … + Ha-1) ---- from UMON1
 Hitscore2 = (H0 + H1 + … + H16-a-1) ---- from UMON2

 Select a that maximizes (Hitscore1 + Hitscore2)

 Partitioning done once every 5 million cycles

136

Way Partitioning

137

Way partitioning support: [Suh+ HPCA’02, Iyer ICS’04]

1. Each line has core-id bits

2. On a miss, count ways_occupied in set by miss-causing app

ways_occupied < ways_given

Yes No

Victim is the LRU line

from other app

Victim is the LRU line

from miss-causing app

Performance Metrics

 Three metrics for performance:

1. Weighted Speedup (default metric)
  perf = IPC1/SingleIPC1 + IPC2/SingleIPC2
  correlates with reduction in execution time

2. Throughput
  perf = IPC1 + IPC2

  can be unfair to low-IPC application

3. Hmean-fairness
  perf = hmean(IPC1/SingleIPC1, IPC2/SingleIPC2)

  balances fairness and performance

138

Weighted Speedup Results for UCP

139

IPC Results for UCP

140

UCP improves average throughput by 17%

Any Problems with UCP So Far?

- Scalability

- Non-convex curves?

 Time complexity of partitioning low for two cores
(number of possible partitions ≈ number of ways)

 Possible partitions increase exponentially with cores

 For a 32-way cache, possible partitions:

 4 cores  6545

 8 cores  15.4 million

 Problem NP hard  need scalable partitioning algorithm

141

Greedy Algorithm [Stone+ ToC ’92]

 GA allocates 1 block to the app that has the max utility for
one block. Repeat till all blocks allocated

 Optimal partitioning when utility curves are convex

 Pathological behavior
for non-convex curves

142

Problem with Greedy Algorithm

 Problem: GA considers benefit only from the immediate
block. Hence, it fails to exploit large gains from looking ahead

143

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

A

B

In each iteration, the

utility for 1 block:

U(A) = 10 misses

U(B) = 0 misses

Blocks assigned

M
is

s
e
s

All blocks assigned to

A, even if B has same

miss reduction with

fewer blocks

Lookahead Algorithm

 Marginal Utility (MU) = Utility per cache resource
 MUa

b = Ua
b/(b-a)

 GA considers MU for 1 block. LA considers MU for all
possible allocations

 Select the app that has the max value for MU.
Allocate it as many blocks required to get max MU

 Repeat till all blocks assigned

144

Lookahead Algorithm Example

145

Time complexity ≈ ways2/2 (512 ops for 32-ways)

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

A

B

Iteration 1:

 MU(A) = 10/1 block

MU(B) = 80/3 blocks

B gets 3 blocks

Result: A gets 5 blocks and B gets 3 blocks (Optimal)

Next five iterations:

 MU(A) = 10/1 block

 MU(B) = 0

A gets 1 block

Blocks assigned

M
is

s
e
s

UCP Results

146

Four cores sharing a 2MB 32-way L2

Mix2
(swm-glg-mesa-prl)

Mix3
(mcf-applu-art-vrtx)

Mix4
(mcf-art-eqk-wupw)

Mix1
(gap-applu-apsi-gzp)

LA performs similar to EvalAll, with low time-complexity

LRU
UCP(Greedy)
UCP(Lookahead)

UCP(EvalAll)

Utility Based Cache Partitioning

 Advantages over LRU

+ Improves system throughput

+ Better utilizes the shared cache

 Disadvantages

- Fairness, QoS?

 Limitations

- Scalability: Partitioning limited to ways. What if you have
numWays < numApps?

- Scalability: How is utility computed in a distributed cache?

- What if past behavior is not a good predictor of utility?

147

Fair Shared Cache Partitioning

 Goal: Equalize the slowdowns of multiple threads sharing
the cache

 Idea: Dynamically estimate slowdowns due to sharing and
assign cache blocks to balance slowdowns

 Approximate slowdown with change in miss rate

 + Simple

 - Not accurate. Why?

 Kim et al., “Fair Cache Sharing and Partitioning in a Chip
Multiprocessor Architecture,” PACT 2004.

148

Problem with Shared Caches

149

L2 $

L1 $

……

Processor Core 1

L1 $

Processor Core 2 ←t1

Problem with Shared Caches

150

L1 $

Processor Core 1

L1 $

Processor Core 2

L2 $

……

t2→

Problem with Shared Caches

151

L1 $

L2 $

……

Processor Core 1 Processor Core 2 ←t1

L1 $

t2→

t2’s throughput is significantly reduced due to unfair cache sharing.

Problem with Shared Caches

152

0

2

4

6

8

10

gzip(alone) gzip+applu gzip+apsi gzip+art gzip+swim

gzip's

Normalized

Cache Misses

0

0.2

0.4

0.6

0.8

1

1.2

gzip(alone) gzip+applu gzip+apsi gzip+art gzip+swim

gzip's

Normalized

IPC

Fairness Metrics

153

• Uniform slowdown

• Minimize:

– Ideally:

i

i
iji

ij

aloneMiss

sharedMiss
XwhereXXM

_

_
,1 

i

i
iji

ij

aloneMissRate

sharedMissRate
XwhereXXM

_

_
,3 

j

j

i

i

aloneT

sharedT

aloneT

sharedT

_

_

_

_


i

i
iji

ij

aloneT

sharedT
XwhereXXM

_

_
,0 

Block-Granularity Partitioning

154

LRU
LRU

LRU
LRU

P1: 448B

P2 Miss

P2: 576B

Current Partition

P1: 384B

P2: 640B

Target Partition

• Modified LRU cache replacement policy

– G. Suh, et. al., HPCA 2002

Block-Granularity Partitioning

155

LRU
LRU

LRU
* LRU

P1: 448B

P2 Miss

P2: 576B

Current Partition

P1: 384B

P2: 640B

Target Partition

• Modified LRU cache replacement policy

– G. Suh, et. al., HPCA 2002

LRU
LRU

LRU
* LRU

P1: 384B

P2: 640B

Current Partition

P1: 384B

P2: 640B

Target Partition

Dynamic Fair Caching Algorithm

156

P1:

P2:

Ex) Optimizing

M3 metric

P1:

P2:

Target Partition

MissRate alone

P1:

P2:

MissRate shared

Repartitioning

interval

157

Dynamic Fair Caching Algorithm

1st Interval
P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:

P2:

MissRate shared

P1:20%

P2:15%

MissRate shared

P1:256KB

P2:256KB

Target Partition

158

Dynamic Fair Caching Algorithm

Repartition!

Evaluate M3

P1: 20% / 20%

P2: 15% / 5%

P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:15%

MissRate shared

P1:256KB

P2:256KB

Target Partition

P1:192KB

P2:320KB

Target Partition

Partition

granularity:

64KB

159

Dynamic Fair Caching Algorithm

2nd Interval
P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:15%

MissRate shared

P1:20%

P2:15%

MissRate shared

P1:20%

P2:10%

MissRate shared

P1:192KB

P2:320KB

Target Partition

160

Dynamic Fair Caching Algorithm

Repartition!

Evaluate M3

P1: 20% / 20%

P2: 10% / 5%

P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:15%

MissRate shared

P1:20%

P2:10%

MissRate shared

P1:192KB

P2:320KB

Target Partition

P1:128KB

P2:384KB

Target Partition

161

Dynamic Fair Caching Algorithm

3rd Interval
P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:10%

MissRate shared

P1:128KB

P2:384KB

Target Partition

P1:20%

P2:10%

MissRate shared

P1:25%

P2: 9%

MissRate shared

162

Dynamic Fair Caching Algorithm

Repartition! Do Rollback if:

P2: Δ<Trollback

Δ=MRold-MRnew

P1:20%

P2: 5%

MissRate alone

Repartitioning

interval

P1:20%

P2:10%

MissRate shared

P1:25%

P2: 9%

MissRate shared

P1:128KB

P2:384KB

Target Partition

P1:192KB

P2:320KB

Target Partition

Dynamic Fair Caching Results

 Improves both fairness and throughput

163

0

0.5

1

1.5

2

apsi+art gzip+art swim+gzip tree+mcf AVG18

Normalized

Combined

IPC

0

0.5

1

1.5

apsi+art gzip+art swim+gzip tree+mcf AVG18

Normalized

Fairness

M1

PLRU FairM1Dyn FairM3Dyn FairM4Dyn

Effect of Partitioning Interval

 Fine-grained partitioning is important for both fairness and
throughput

164

1.11

1.12

1.13

1.14

1.15

1.16

AVG18

Normalized

Combined

IPC

10K 20K 40K 80K

0

0.2

0.4

0.6

0.8

AVG18

Normalized

Fairness

M1

10K 20K 40K 80K

Benefits of Fair Caching

 Problems of unfair cache sharing

 Sub-optimal throughput

 Thread starvation

 Priority inversion

 Thread-mix dependent performance

 Benefits of fair caching

 Better fairness

 Better throughput

 Fair caching likely simplifies OS scheduler design

165

Advantages/Disadvantages of the Approach

 Advantages

+ No (reduced) starvation

+ Better average throughput

 Disadvantages

- Scalable to many cores?

- Is this the best (or a good) fairness metric?

- Does this provide performance isolation in cache?

- Alone miss rate estimation can be incorrect (estimation interval
different from enforcement interval)

166

Software-Based Shared Cache Management

 Assume no hardware support (demand based cache sharing, i.e.
LRU replacement)

 How can the OS best utilize the cache?

 Cache sharing aware thread scheduling

 Schedule workloads that “play nicely” together in the cache

 E.g., working sets together fit in the cache

 Requires static/dynamic profiling of application behavior

 Fedorova et al., “Improving Performance Isolation on Chip
Multiprocessors via an Operating System Scheduler,” PACT 2007.

 Cache sharing aware page coloring

 Dynamically monitor miss rate over an interval and change
virtual to physical mapping to minimize miss rate

 Try out different partitions

167

OS Based Cache Partitioning

 Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging
the Gap between Simulation and Real Systems,” HPCA 2008.

 Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-
Level Page Allocation,” MICRO 2006.

 Static cache partitioning

 Predetermines the amount of cache blocks allocated to each
program at the beginning of its execution

 Divides shared cache to multiple regions and partitions cache
regions through OS page address mapping

 Dynamic cache partitioning

 Adjusts cache quota among processes dynamically

 Page re-coloring

 Dynamically changes processes’ cache usage through OS page
address re-mapping

168

Page Coloring

 Physical memory divided into colors

 Colors map to different cache sets

 Cache partitioning

 Ensure two threads are allocated

 pages of different colors

169

Thread A

Thread B

Cache

Way-1 Way-n …………

Memory page

Page Coloring

virtual page number Virtual address page offset

physical page number Physical address Page offset

Address translation

Cache tag Block offset Set index Cache address

Physically indexed cache

page color bits

… …

OS control

=

•Physically indexed caches are divided into multiple regions (colors).

•All cache lines in a physical page are cached in one of those regions (colors).

OS can control the page color of a virtual page through address mapping

(by selecting a physical page with a specific value in its page color bits).

Static Cache Partitioning using Page Coloring

… …

...

……
…

……
…

Physically indexed cache

…
……

……
…

Physical pages are grouped to page bins

according to their page color 1
2
3
4

…

i+2

i
i+1

…

Process 1

1
2
3
4

…

i+2

i
i+1

…

Process 2

O
S

 a
d
d
re

s
s
 m

a
p
p
in

g

Shared cache is partitioned between two processes through address mapping.

Cost: Main memory space needs to be partitioned, too.

A
llo

c
a

te
d

 c
o

lo
r

Dynamic Cache Partitioning via Page Re-Coloring

page color table

……

N - 1

0

1

2

3

 Page re-coloring:

 Allocate page in new color

 Copy memory contents

 Free old page

A
llo

c
a

te
d

 c
o

lo
rs

 Pages of a process are organized into linked lists

by their colors.

 Memory allocation guarantees that pages are

evenly distributed into all the lists (colors) to

avoid hot points.

Dynamic Partitioning in Dual Core

Init: Partition the cache as (8:8)

Run current partition (P0:P1) for one epoch

finished

Try one epoch for each of the two neighboring

partitions: (P0 – 1: P1+1) and (P0 + 1: P1-1)

Choose next partitioning with best policy

metrics measurement (e.g., cache miss rate)

No

Yes
Exit

Experimental Environment

 Dell PowerEdge1950

 Two-way SMP, Intel dual-core Xeon 5160

 Shared 4MB L2 cache, 16-way

 8GB Fully Buffered DIMM

 Red Hat Enterprise Linux 4.0

 2.6.20.3 kernel

 Performance counter tools from HP (Pfmon)

 Divide L2 cache into 16 colors

Performance – Static & Dynamic

 Aim to minimize combined miss rate

 For RG-type, and some RY-type:

 Static partitioning outperforms dynamic partitioning

 For RR- and RY-type, and some RY-type

 Dynamic partitioning outperforms static partitioning

Software vs. Hardware Cache Management

 Software advantages

+ No need to change hardware

+ Easier to upgrade/change algorithm (not burned into hardware)

 Disadvantages

- Less flexible: large granularity (page-based instead of way/block)

- Limited page colors  reduced performance per application

(limited physical memory space!), reduced flexibility

- Changing partition size has high overhead  page mapping

changes

- Adaptivity is slow: hardware can adapt every cycle (possibly)

- Not enough information exposed to software (e.g., number of
misses due to inter-thread conflict)

176

Computer Architecture:

(Shared) Cache Management

Prof. Onur Mutlu

Carnegie Mellon University

Backup slides

178

Referenced Readings (I)

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” ISCA 2005.

 Seshadri et al., “The Evicted-Address Filter: A Unified Mechanism to
Address both Cache Pollution and Thrashing,” PACT 2012.

 Pekhimenko et al., “Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches,” PACT 2012.

 Pekhimenko et al., “Linearly Compressed Pages: A Main Memory
Compression Framework with Low Complexity and Low Latency,”
SAFARI Technical Report 2013.

 Qureshi et al., “Utility-Based Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to Partition Shared Caches,”
MICRO 2006.

 Suh et al., “A New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning,” HPCA 2002.

 Kim et al., “Fair Cache Sharing and Partitioning in a Chip Multiprocessor
Architecture,” PACT 2004.

179

Referenced Readings (II)

 Fedorova et al., “Improving Performance Isolation on Chip
Multiprocessors via an Operating System Scheduler,” PACT 2007.

 Lin et al., “Gaining Insights into Multi-Core Cache Partitioning: Bridging
the Gap between Simulation and Real Systems,” HPCA 2008.

 Cho and Jin, “Managing Distributed, Shared L2 Caches through OS-
Level Page Allocation,” MICRO 2006.

 Qureshi, “Adaptive Spill-Receive for Robust High-Performance Caching
in CMPs,” HPCA 2009.

 Hardavellas et al., “Reactive NUCA: Near-Optimal Block Placement and
Replication in Distributed Caches,” ISCA 2009.

180

Private/Shared Caching

181

Private/Shared Caching

 Example: Adaptive spill/receive caching

 Goal: Achieve the benefits of private caches (low latency,
performance isolation) while sharing cache capacity across
cores

 Idea: Start with a private cache design (for performance
isolation), but dynamically steal space from other cores that
do not need all their private caches

 Some caches can spill their data to other cores’ caches
dynamically

 Qureshi, “Adaptive Spill-Receive for Robust High-
Performance Caching in CMPs,” HPCA 2009.

182

183

Revisiting Private Caches on CMP

Private caches avoid the need for shared interconnect

 ++ fast latency, tiled design, performance isolation

Core A
I$ D$

CACHE A

Core B
I$ D$

CACHE B

Core C
I$ D$

CACHE C

Core D
I$ D$

CACHE D

Memory

Problem: When one core needs more cache and other core

has spare cache, private-cache CMPs cannot share capacity

184

 Cache Line Spilling

Spill evicted line from one cache to neighbor cache

 - Co-operative caching (CC) [Chang+ ISCA’06]

Problem with CC:

1. Performance depends on the parameter (spill probability)

2. All caches spill as well as receive  Limited improvement

Cache A Cache B Cache C Cache D

Spill

Goal: Robust High-Performance Capacity Sharing with Negligible Overhead

185

Spill-Receive Architecture

Each Cache is either a Spiller or Receiver but not both

 - Lines from spiller cache are spilled to one of the receivers

 - Evicted lines from receiver cache are discarded

What is the best N-bit binary string that maximizes the performance of Spill

Receive Architecture  Dynamic Spill Receive (DSR)

Cache A Cache B Cache C Cache D

Spill

S/R =1

(Spiller cache)
S/R =0

(Receiver cache)

S/R =1

(Spiller cache)
S/R =0

(Receiver cache)

186

Spiller-sets

Follower Sets

Receiver-sets

Dynamic Spill-Receive via “Set Dueling”

Divide the cache in three:

– Spiller sets

– Receiver sets

– Follower sets (winner of spiller,
receiver)

n-bit PSEL counter

misses to spiller-sets: PSEL--

misses to receiver-set: PSEL++

MSB of PSEL decides policy for
Follower sets:

– MSB = 0, Use spill

– MSB = 1, Use receive

PSEL
-

miss

+
miss

MSB = 0?

YES No

Use Recv Use spill

monitor  choose  apply
 (using a single counter)

187

Dynamic Spill-Receive Architecture

Cache A Cache B Cache C Cache D

Set X

Set Y

AlwaysSpill

AlwaysRecv

-

+

Miss in Set X

in any cache

Miss in Set Y

in any cache

PSEL B PSEL C PSEL D PSEL A

Decides policy for all sets of Cache A (except X and Y)

Each cache learns whether it should act as a spiller or receiver

188

Experimental Setup

 Baseline Study:

 4-core CMP with in-order cores

 Private Cache Hierarchy: 16KB L1, 1MB L2

 10 cycle latency for local hits, 40 cycles for remote hits

 Benchmarks:

 6 benchmarks that have extra cache: “Givers” (G)

 6 benchmarks that benefit from more cache: “Takers” (T)

 All 4-thread combinations of 12 benchmarks: 495 total

Five types of workloads: G4T0 G3T1 G2T2 G1T3 G0T4

189

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Gmean-G4T0 Gmean-G3T1 Gmean-G2T2 Gmean-G1T3 Gmean-G0T4 Avg (All 495)

N
or

m
a
li
ze

d
 T

h
ro

ug
h
pu

t
ov

e
r

N
oS

pi
ll Shared (LRU)

CC (Best)

DSR

StaticBest

Results for Throughput

On average, DSR improves throughput by 18%, co-operative caching by 7%

DSR provides 90% of the benefit of knowing the best decisions a priori

* DSR implemented with 32 dedicated sets and 10 bit PSEL counters

190

Results for Weighted Speedup

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Gmean-G4T0 Gmean-G3T1 Gmean-G2T2 Gmean-G1T3 Gmean-G0T4 Avg (All 495)

W
e
ig
h
t
e
d

S
p
e
e
d
u
p

Shared (LRU)
Baseline(NoSpill)
DSR
CC(Best)

On average, DSR improves weighted speedup by 13%

191

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gmean-G4T0 Gmean-G3T1 Gmean-G2T2 Gmean-G1T3 Gmean-G0T4 Avg All(495)

Baseline NoSpill

DSR

CC(Best)

Results for Hmean Speedup

On average, DSR improves Hmean Fairness from 0.58 to 0.78

192

DSR vs. Faster Shared Cache

DSR (with 40 cycle extra for remote hits) performs similar to

shared cache with zero latency overhead and crossbar interconnect

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

1.28

1.30

Gmean-G4T0 Gmean-G3T1 Gmean-G2T2 Gmean-G1T3 Gmean-G0T4 Avg All(495)

T
h
ro

ug
h
p
ut

 N
o
rm

a
li
z
e
d
 t

o
 N

o
S
p
il
l

Shared (Same latency as private)

DSR (0 cycle remote hit)

DSR (10 cycle remote hit)

DSR (40 cycle remote hit)

193

Scalability of DSR

DSR improves average throughput by 19% for both systems

 (No performance degradation for any of the workloads)

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

1.32

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

100 workloads (8/16 SPEC benchmarks chosen randomly)

N
or

m
a
liz

e
d
 T

h
ro

ug
h
pu

t
ov

e
r

N
oS

pi
ll

8-core
16-core

194

Over time, ΔMiss 0, if DSR is causing more misses.

Quality of Service with DSR

For 1 % of the 495x4 =1980 apps, DSR causes IPC loss of > 5%

In some cases, important to ensure that performance does not

degrade compared to dedicated private cache  QoS

DSR can ensure QoS: change PSEL counters by weight of miss:

 ΔMiss = MissesWithDSR – MissesWithNoSpill

 Weight of Miss = 1 + Max(0, f(ΔMiss))

Calculate weight every 4M cycles. Needs 3 counters per core

Estimated by Spiller Sets

195

IPC of QoS-Aware DSR

IPC curves for other categories almost overlap for the two schemes.

Avg. throughput improvement across all 495 workloads similar (17.5% vs. 18%)

0.75

1

1.25

1.5

1.75

2

2.25

2.5

1 6 11 16 21 26 31 36 41 46 51 56
15 workloads x 4 apps each = 60 apps

DSR

QoS Aware DSR

For Category: G0T4

IP
C

 N
o

rm
a

liz
e

d
 T

o
 N

o
S

p
ill

Distributed Caches

196

Caching for Parallel Applications

197

core

core

core

core

L2 L2 L2 L2

core

core

core

core

L2 L2 L2 L2

core

core

core

core

L2 L2 L2 L2

core

core

core

core

L2 L2 L2 L2

core

core

core

core

L2 L2 L2 L2

core

core

core

core

L2 L2 L2 L2

core

core

core

core

L2 L2 L2 L2

core

core

core

core

L2 L2 L2 L2

Data placement determines performance

Goal: place data on chip close to where they are used

cache

slice

Research Topics

198

Shared Cache Management: Research Topics

 Scalable partitioning algorithms

 Distributed caches have different tradeoffs

 Configurable partitioning algorithms

 Many metrics may need to be optimized at different times or
at the same time

 It is not only about overall performance

 Ability to have high capacity AND high locality (fast access)

 Within vs. across-application prioritization

 Holistic design

 How to manage caches, NoC, and memory controllers
together?

 Cache coherence in shared/private distributed caches

199

