
740: Computer Architecture

Programming Models and Architectures

Prof. Onur Mutlu

Carnegie Mellon University

What Will We Cover in This Lecture?

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,”
pp. 551-560, in Readings in Computer Architecture.

 Culler, Singh, Gupta, Chapter 1 (Introduction) in “Parallel
Computer Architecture: A Hardware/Software Approach.”

2

Programming Models vs. Architectures

 Five major models

 (Sequential)

 Shared memory

 Message passing

 Data parallel (SIMD)

 Dataflow

 Systolic

 Hybrid models?

3

Shared Memory vs. Message Passing

 Are these programming models or execution models
supported by the hardware architecture?

 Does a multiprocessor that is programmed by “shared
memory programming model” have to support a shared
address space processors?

 Does a multiprocessor that is programmed by “message
passing programming model” have to have no shared
address space between processors?

4

Programming Models: Message Passing vs. Shared Memory

 Difference: how communication is achieved between tasks

 Message passing programming model

 Explicit communication via messages

 Loose coupling of program components

 Analogy: telephone call or letter, no shared location accessible to
all

 Shared memory programming model

 Implicit communication via memory operations (load/store)

 Tight coupling of program components

 Analogy: bulletin board, post information at a shared space

 Suitability of the programming model depends on the
problem to be solved. Issues affected by the model include:

 Overhead, scalability, ease of programming, bugs, match to
underlying hardware, …

5

Message Passing vs. Shared Memory Hardware

 Difference: how task communication is supported in
hardware

 Shared memory hardware (or machine model)

 All processors see a global shared address space

 Ability to access all memory from each processor

 A write to a location is visible to the reads of other processors

 Message passing hardware (machine model)

 No global shared address space

 Send and receive variants are the only method of
communication between processors (much like networks of
workstations today, i.e. clusters)

 Suitability of the hardware depends on the problem to be
solved as well as the programming model.

 6

Message Passing vs. Shared Memory Hardware

P

M

IO

P

M

IO

P

M

IO

I/O (Network)

Message Passing

P

M

IO

P

M

IO

P

M

IO

Memory

Shared Memory

P

M

IO

P

M

IO

P

M

IO

Processor

(Dataflow/Systolic),

Single-Instruction

Multiple-Data

(SIMD)

==> Data Parallel

Join At:

Program With:

Programming Model vs. Hardware

 Most of parallel computing history, there was no separation
between programming model and hardware

 Message passing: Caltech Cosmic Cube, Intel Hypercube, Intel
Paragon

 Shared memory: CMU C.mmp, Sequent Balance, SGI Origin.

 SIMD: ILLIAC IV, CM-1

 However, any hardware can really support any
programming model

 Why?

 Application  compiler/library  OS services  hardware

8

Layers of Abstraction

 Compiler/library/OS map the communication abstraction at
the programming model layer to the communication
primitives available at the hardware layer

9

Programming Model vs. Architecture

 Machine  Programming Model

 Join at network, so program with message passing model

 Join at memory, so program with shared memory model

 Join at processor, so program with SIMD or data parallel

 Programming Model  Machine

 Message-passing programs on message-passing machine

 Shared-memory programs on shared-memory machine

 SIMD/data-parallel programs on SIMD/data-parallel machine

 Isn’t hardware basically the same?

 Processors, memory, interconnect (I/O)

 Why not have generic parallel machine and program with
model that fits the problem?

10

A Generic Parallel Machine

 Separation of
programming
models from
architectures

 All models require
communication

 Node with
processor(s),
memory,
communication
assist

Interconnect

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$

Node 0 Node 1

Node 2 Node 3

Simple Problem

 for i = 1 to N

 A[i] = (A[i] + B[i]) * C[i]

 sum = sum + A[i]

 How do I make this parallel?

Simple Problem

 for i = 1 to N
 A[i] = (A[i] + B[i]) * C[i]
 sum = sum + A[i]

 Split the loops  Independent iterations

 for i = 1 to N
 A[i] = (A[i] + B[i]) * C[i]
 for i = 1 to N
 sum = sum + A[i]

 Data flow graph?

Data Flow Graph

A[0] B[0]

+
C[0]

*

+

A[1] B[1]

+
C[1]

*

A[2] B[2]

+
C[2]

*

+

A[3] B[3]

+
C[3]

*

+

2 + N-1 cycles to execute on N processors

what assumptions?

Partitioning of Data Flow Graph

A[0] B[0]

+
C[0]

*

+

A[1] B[1]

+
C[1]

*

A[2] B[2]

+
C[2]

*

+

A[3] B[3]

+
C[3]

*

+
global synch

Shared (Physical) Memory

 Communication, sharing,
and synchronization with
store / load on shared
variables

 Must map virtual pages to
physical page frames

 Consider OS support for
good mapping

Pn

P0

load

store

Private Portion

of Address

Space

Shared Portion

of Address

Space

Common Physical

Addresses

Pn Private

P0 Private

P1 Private

P2 Private

Machine Physical Address Space

Shared (Physical) Memory on Generic MP

Interconnect

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$
CA

Mem
P

$

Node 0 0,N-1 (Addresses) Node 1 N,2N-1

Node 2 2N,3N-1 Node 3 3N,4N-1

Keep private data

and frequently

used shared data

on same node as

computation

Return of The Simple Problem

 private int i, my_start, my_end, mynode;

 shared float A[N], B[N], C[N], sum;

 for i = my_start to my_end

 A[i] = (A[i] + B[i]) * C[i]

 GLOBAL_SYNCH;

 if (mynode == 0)

 for i = 1 to N

 sum = sum + A[i]

 Can run this on any shared memory machine

Message Passing Architectures

 Cannot directly
access memory
on another node

 IBM SP-2, Intel
Paragon

 Cluster of
workstations

Interconnect

CA

Mem
P

$

CA

Mem
P

$

Node 0 0,N-1 Node 1 0,N-1

Node 2 0,N-1 Node 3 0,N-1

CA

Mem
P

$

CA

Mem
P

$

Message Passing Programming Model

 User level send/receive abstraction

 local buffer (x,y), process (Q,P) and tag (t)

 naming and synchronization

Local Process

Address Space

address x address y

match

Process P Process Q

Local Process

Address Space

Send x, Q, t

Recv y, P, t

The Simple Problem Again

 int i, my_start, my_end, mynode;

 float A[N/P], B[N/P], C[N/P], sum;

 for i = 1 to N/P

 A[i] = (A[i] + B[i]) * C[i]

 sum = sum + A[i]

 if (mynode != 0)

 send (sum,0);

 if (mynode == 0)

 for i = 1 to P-1

 recv(tmp,i)

 sum = sum + tmp

 Send/Recv communicates and synchronizes

 P processors

Separation of Architecture from Model

 At the lowest level shared memory model is all about
sending and receiving messages

 HW is specialized to expedite read/write messages using load
and store instructions

 What programming model/abstraction is supported at user
level?

 Can I have shared-memory abstraction on message passing
HW? How efficient?

 Can I have message passing abstraction on shared memory
HW? How efficient?

Challenges in Mixing and Matching
 Assume prog. model same as ABI (compiler/library  OS
 hardware)

 Shared memory prog model on shared memory HW

 How do you design a scalable runtime system/OS?

 Message passing prog model on message passing HW

 How do you get good messaging performance?

 Shared memory prog model on message passing HW

 How do you reduce the cost of messaging when there are
frequent operations on shared data?

 Li and Hudak, “Memory Coherence in Shared Virtual Memory
Systems,” ACM TOCS 1989.

 Message passing prog model on shared memory HW

 Convert send/receives to load/stores on shared buffers

 How do you design scalable HW?

23

Data Parallel Programming Model

 Programming Model

 Operations are performed on each element of a large (regular)
data structure (array, vector, matrix)

 Program is logically a single thread of control, carrying out a
sequence of either sequential or parallel steps

 The Simple Problem Strikes Back

 A = (A + B) * C

 sum = global_sum (A)

 Language supports array assignment

Data Parallel Hardware Architectures (I)

 Early architectures directly mirrored programming model

 Single control processor (broadcast each instruction to an
array/grid of processing elements)

 Consolidates control

 Many processing elements controlled by the master

 Examples: Connection Machine, MPP

 Batcher, “Architecture of a massively parallel processor,” ISCA
1980.

 16K bit-serial processing elements

 Tucker and Robertson, “Architecture and Applications of the
Connection Machine,” IEEE Computer 1988.

 64K bit-serial processing elements

25

Connection Machine

26

Data Parallel Hardware Architectures (II)

 Later data parallel architectures

 Higher integration  SIMD units on chip along with caches

 More generic  multiple cooperating multiprocessors with

vector units

 Specialized hardware support for global synchronization

 E.g. barrier synchronization

 Example: Connection Machine 5

 Hillis and Tucker, “The CM-5 Connection Machine: a scalable
supercomputer,” CACM 1993.

 Consists of 32-bit SPARC processors

 Supports Message Passing and Data Parallel models

 Special control network for global synchronization

27

Review: Separation of Model and Architecture

 Shared Memory

 Single shared address space

 Communicate, synchronize using load / store

 Can support message passing

 Message Passing

 Send / Receive

 Communication + synchronization

 Can support shared memory

 Data Parallel

 Lock-step execution on regular data structures

 Often requires global operations (sum, max, min...)

 Can be supported on either SM or MP

Review: A Generic Parallel Machine

 Separation of
programming
models from
architectures

 All models require
communication

 Node with
processor(s),
memory,
communication
assist

Interconnect

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$

CA

Mem
P

$

Node 0 Node 1

Node 2 Node 3

Data Flow Programming Models and Architectures

 A program consists of data flow nodes

 A data flow node fires (fetched and executed) when all its
inputs are ready

 i.e. when all inputs have tokens

 No artificial constraints, like sequencing instructions

 How do we know when operands are ready?

 Matching store for operands (remember OoO execution?)

 large associative search!

 Later machines moved to coarser grained dataflow (threads

+ dataflow across threads)

 allowed registers and cache for local computation

 introduced messages (with operations and operands)

 30

Scalability, Convergence, and

Some Terminology

31

Scaling Shared Memory Architectures

32

Interconnection Schemes for Shared Memory

 Scalability dependent on interconnect

33

UMA/UCA: Uniform Memory or Cache Access

• All processors have the same uncontended latency to memory

• Latencies get worse as system grows

• Symmetric multiprocessing (SMP) ~ UMA with bus interconnect

Processor Processor Processor. . .

. . .

latency

long

Main Memory

contention in memory banks

Interconnection Network

contention in network

Uniform Memory/Cache Access

+ Data placement unimportant/less important (easier to optimize code and
make use of available memory space)

- Scaling the system increases all latencies

- Contention could restrict bandwidth and increase latency

Processor Processor Processor. . .

. . .

latency

long

Main Memory

contention in memory banks

Interconnection Network

contention in network

Example SMP

 Quad-pack Intel Pentium Pro

36

How to Scale Shared Memory Machines?

 Two general approaches

 Maintain UMA

 Provide a scalable interconnect to memory

 Downside: Every memory access incurs the round-trip network
latency

 Interconnect complete processors with local memory

 NUMA (Non-uniform memory access)

 Local memory faster than remote memory

 Still needs a scalable interconnect for accessing remote
memory

 Not on the critical path of local memory access

37

NUMA/NUCA: NonUniform Memory/Cache Access

• Shared memory as local versus remote memory

+ Low latency to local memory

- Much higher latency to remote memories

. . .

Interconnection Network

contention in network

. . .

latency

long

Memory

Processor

Memory

Processor

Memory

Processor

short

latency

+ Bandwidth to local memory may be higher

- Performance very sensitive to data placement

Example NUMA Machines (I) – CM5

 CM-5

 Hillis and Tucker, “The
CM-5 Connection
Machine: a scalable
supercomputer,” CACM
1993.

39

Example NUMA Machines (I) – CM5

40

Example NUMA Machines (II)

 Sun Enterprise Server

 Cray T3E

41

Convergence of Parallel Architectures

 Scalable shared memory architecture is similar to scalable
message passing architecture

 Main difference: is remote memory accessible with
loads/stores?

42

Historical Evolution: 1960s & 70s

• Early MPs
– Mainframes

– Small number of processors

– crossbar interconnect

– UMA

Processor

Memory
Memory

Memory
Memory

Memory
Memory

Memory
Memory

Processor

Processor

Processor

corssbar

Historical Evolution: 1980s

• Bus-Based MPs

– enabler: processor-on-a-board

– economical scaling

– precursor of today’s SMPs

– UMA

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache

Historical Evolution: Late 80s, mid 90s

• Large Scale MPs (Massively Parallel Processors)

– multi-dimensional interconnects

– each node a computer (proc + cache + memory)

– both shared memory and message passing versions

– NUMA

– still used for “supercomputing”

Historical Evolution: Current

 Chip multiprocessors (multi-core)

 Small to Mid-Scale multi-socket CMPs

 One module type: processor + caches + memory

 Clusters/Datacenters

 Use high performance LAN to connect SMP blades, racks

 Driven by economics and cost

 Smaller systems => higher volumes

 Off-the-shelf components

 Driven by applications

 Many more throughput applications (web servers)

 … than parallel applications (weather prediction)

 Cloud computing

Historical Evolution: Future

 Cluster/datacenter on a chip?

 Heterogeneous multi-core?

 Bounce back to small-scale multi-core?

 ???

47

740: Computer Architecture

Programming Models and Architectures

Prof. Onur Mutlu

Carnegie Mellon University

Backup slides

49

Referenced Readings

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” pp.
551-560, in Readings in Computer Architecture.

 Culler, Singh, Gupta, Chapter 1 (Introduction) in “Parallel
Computer Architecture: A Hardware/Software Approach.”

 Li and Hudak, “Memory Coherence in Shared Virtual Memory
Systems,” ACM TOCS 1989.

 Hillis and Tucker, “The CM-5 Connection Machine: a scalable
supercomputer,” CACM 1993.

 Batcher, “Architecture of a massively parallel processor,” ISCA
1980.

 Tucker and Robertson, “Architecture and Applications of the
Connection Machine,” IEEE Computer 1988.

 Seitz, “The Cosmic Cube,” CACM 1985.

50

Related Videos

 Programming Models and Architectures (This Lecture)

 http://www.youtube.com/watch?v=YnqpW-
mCYX8&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-
WRYoW4&index=3

 Multiprocessor Correctness and Cache Coherence

 http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&i
ndex=32

51

http://www.youtube.com/watch?v=YnqpW-mCYX8&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4&index=3
http://www.youtube.com/watch?v=YnqpW-mCYX8&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4&index=3
http://www.youtube.com/watch?v=YnqpW-mCYX8&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4&index=3
http://www.youtube.com/watch?v=YnqpW-mCYX8&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4&index=3
http://www.youtube.com/watch?v=YnqpW-mCYX8&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4&index=3
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
http://www.youtube.com/watch?v=U-VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32

