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What Will We Cover in This Lecture? 

 Hill, Jouppi, Sohi, “Multiprocessors and Multicomputers,” 
pp. 551-560, in Readings in Computer Architecture. 

 

 Culler, Singh, Gupta, Chapter 1 (Introduction) in “Parallel 
Computer Architecture: A Hardware/Software Approach.” 
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Programming Models vs. Architectures 

 Five major models 

 (Sequential) 

 Shared memory   

 Message passing 

 Data parallel (SIMD) 

 Dataflow 

 Systolic 

 

 Hybrid models? 
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Shared Memory vs. Message Passing 

 Are these programming models or execution models 
supported by the hardware architecture?  

 

 Does a multiprocessor that is programmed by “shared 
memory programming model” have to support a shared 
address space processors? 

 

 Does a multiprocessor that is programmed by “message 
passing programming model” have to have no shared 
address space between processors? 
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Programming Models: Message Passing vs. Shared Memory 

 Difference: how communication is achieved between tasks 

 Message passing programming model 

 Explicit communication via messages  

 Loose coupling of program components 

 Analogy: telephone call or letter, no shared location accessible to 
all 

 Shared memory programming model 

 Implicit communication via memory operations (load/store) 

 Tight coupling of program components 

 Analogy: bulletin board, post information at a shared space 
 

 Suitability of the programming model depends on the 
problem to be solved. Issues affected by the model include: 

 Overhead, scalability, ease of programming, bugs, match to 
underlying hardware, … 
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Message Passing vs. Shared Memory Hardware 

 Difference: how task communication is supported in 
hardware 

 Shared memory hardware (or machine model) 

 All processors see a global shared address space 

 Ability to access all memory from each processor 

 A write to a location is visible to the reads of other processors 

 Message passing hardware (machine model) 

 No global shared address space 

 Send and receive variants are the only method of 
communication between processors (much like networks of 
workstations today, i.e. clusters) 
 

 Suitability of the hardware depends on the problem to be 
solved as well as the programming model.  
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Message Passing vs. Shared Memory Hardware 
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Programming Model vs. Hardware 

 Most of parallel computing history, there was no separation 
between programming model and hardware 

 Message passing: Caltech Cosmic Cube, Intel Hypercube, Intel 
Paragon 

 Shared memory: CMU C.mmp, Sequent Balance, SGI Origin. 

 SIMD: ILLIAC IV, CM-1 

 

 However, any hardware can really support any 
programming model 

 Why? 

 Application  compiler/library  OS services  hardware 
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Layers of Abstraction 

 Compiler/library/OS map the communication abstraction at 
the programming model layer to the communication 
primitives available at the hardware layer 
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Programming Model vs. Architecture 

 Machine  Programming Model 

 Join at network, so program with message passing model 

 Join at memory, so program with shared memory model 

 Join at processor, so program with SIMD or data parallel 
 

 Programming Model  Machine 

 Message-passing programs on message-passing machine 

 Shared-memory programs on shared-memory machine 

 SIMD/data-parallel programs on SIMD/data-parallel machine 

 

 Isn’t hardware basically the same?  

 Processors, memory, interconnect (I/O) 

 Why not have generic parallel machine and program with 
model that fits the problem? 
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A Generic Parallel Machine 

 Separation of 
programming 
models from 
architectures 

 

 All models require 
communication 
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Simple Problem 

   

  for i = 1 to N 

   A[i] = (A[i] + B[i]) * C[i] 

   sum = sum + A[i] 

 

 How do I make this parallel? 

 



Simple Problem 

  for i = 1 to N 
   A[i] = (A[i] + B[i]) * C[i] 
   sum = sum + A[i] 
 
 Split the loops  Independent iterations  

 
  for i = 1 to N 
   A[i] = (A[i] + B[i]) * C[i] 
  for i = 1 to N 
   sum = sum + A[i] 
 
 Data flow graph? 



Data Flow Graph 
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Partitioning of Data Flow Graph 
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Shared (Physical) Memory 

 Communication, sharing, 
and synchronization with 
store / load on shared 
variables 

 

 Must map virtual pages to 
physical page frames 

 

 Consider OS support for 
good mapping 
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Shared (Physical) Memory on Generic MP 

Interconnect 

CA 

Mem 
P 

$ 

CA 

Mem 
P 

$ 

CA 

Mem 
P 

$ 
CA 

Mem 
P 

$ 

Node 0 0,N-1 (Addresses) Node 1 N,2N-1 

Node 2 2N,3N-1 Node 3 3N,4N-1 

Keep private data 

and frequently 

used shared data 

on same node as 

computation 



Return of The Simple Problem 

  private int i, my_start, my_end, mynode; 

  shared float A[N], B[N], C[N], sum; 

  for i = my_start to my_end 

   A[i] = (A[i] + B[i]) * C[i] 

  GLOBAL_SYNCH; 

  if (mynode == 0) 

   for i = 1 to N 

    sum = sum + A[i] 

 

 Can run this on any shared memory machine 



Message Passing Architectures 

 Cannot directly 
access memory 
on another node 

 

 IBM SP-2, Intel 
Paragon 

 

 Cluster of 
workstations 
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Message Passing Programming Model 

 User level send/receive abstraction 

 local buffer (x,y), process (Q,P) and tag (t) 

 naming and synchronization 

Local Process 

Address Space 

address x address y 

match 

Process P Process Q 

Local Process 

Address Space 

Send x, Q, t 
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The Simple Problem Again 

  int i, my_start, my_end, mynode; 

  float A[N/P], B[N/P], C[N/P], sum; 

  for i = 1 to N/P 

   A[i] = (A[i] + B[i]) * C[i] 

   sum = sum + A[i] 

  if (mynode != 0) 

   send (sum,0); 

  if (mynode == 0) 

   for i = 1 to P-1 

    recv(tmp,i) 

    sum = sum + tmp 
 

 Send/Recv communicates and synchronizes 

 P processors 



Separation of Architecture from Model 

 At the lowest level shared memory model is all about 
sending and receiving messages 

 HW is specialized to expedite read/write messages using load 
and store instructions 

 

 What programming model/abstraction is supported at user 
level? 

 

 Can I have shared-memory abstraction on message passing 
HW? How efficient? 

 

 Can I have message passing abstraction on shared memory 
HW? How efficient? 



Challenges in Mixing and Matching 
 Assume prog. model same as ABI (compiler/library  OS 
 hardware) 

 Shared memory prog model on shared memory HW 

 How do you design a scalable runtime system/OS? 

 Message passing prog model on message passing HW 

 How do you get good messaging performance? 

 Shared memory prog model on message passing HW 

 How do you reduce the cost of messaging when there are 
frequent operations on shared data? 

 Li and Hudak, “Memory Coherence in Shared Virtual Memory 
Systems,” ACM TOCS 1989. 

 Message passing prog model on shared memory HW 

 Convert send/receives to load/stores on shared buffers 

 How do you design scalable HW? 
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Data Parallel Programming Model 

 Programming Model 

 Operations are performed on each element of a large (regular) 
data structure (array, vector, matrix) 

 Program is logically a single thread of control, carrying out a 
sequence of either sequential or parallel steps 

 

 The Simple Problem Strikes Back 

                    A = (A + B) * C 

   sum = global_sum (A) 

 

 Language supports array assignment 

 
 

 

 

 



Data Parallel Hardware Architectures (I) 

 Early architectures directly mirrored programming model 

 

 Single control processor (broadcast each instruction to an 
array/grid of processing elements) 

 Consolidates control 

 Many processing elements controlled by the master 

 

 Examples: Connection Machine, MPP 

 Batcher, “Architecture of a massively parallel processor,” ISCA 
1980. 

 16K bit-serial processing elements 

 Tucker and Robertson, “Architecture and Applications of the 
Connection Machine,” IEEE Computer 1988. 

 64K bit-serial processing elements 
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Connection Machine 
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Data Parallel Hardware Architectures (II) 

 Later data parallel architectures  

 Higher integration  SIMD units on chip along with caches 

 More generic  multiple cooperating multiprocessors with 

vector units 

 Specialized hardware support for global synchronization 

 E.g. barrier synchronization 

 

 Example: Connection Machine 5 

 Hillis and Tucker, “The CM-5 Connection Machine: a scalable 
supercomputer,” CACM 1993. 

 Consists of 32-bit SPARC processors 

 Supports Message Passing and Data Parallel models 

 Special control network for global synchronization 
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Review: Separation of Model and Architecture 

 Shared Memory 

 Single shared address space 

 Communicate, synchronize using load / store 

 Can support message passing 
 

 Message Passing 

 Send / Receive  

 Communication + synchronization 

 Can support shared memory 
 

 Data Parallel 

 Lock-step execution on regular data structures 

 Often requires global operations (sum, max, min...) 

 Can be supported on either SM or MP 



Review: A Generic Parallel Machine 

 Separation of 
programming 
models from 
architectures 

 All models require 
communication 
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Data Flow Programming Models and Architectures 

 A program consists of data flow nodes 

 A data flow node fires (fetched and executed) when all its 
inputs are ready 

 i.e. when all inputs have tokens 

 No artificial constraints, like sequencing instructions 

 How do we know when operands are ready? 

 Matching store for operands (remember OoO execution?) 

 large associative search! 

 

 Later machines moved to coarser grained dataflow (threads 

+ dataflow across threads) 

 allowed registers and cache for local computation 

 introduced messages (with operations and operands) 
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Scalability, Convergence, and 

Some Terminology 
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Scaling Shared Memory Architectures 

32 



Interconnection Schemes for Shared Memory 

 Scalability dependent on interconnect 
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UMA/UCA: Uniform Memory or Cache Access 

• All processors have the same uncontended latency to memory 

• Latencies get worse as system grows 

• Symmetric multiprocessing (SMP) ~ UMA with bus interconnect 

Processor Processor Processor. . .

. . .

latency

long

Main Memory

contention in memory banks

Interconnection Network

contention in network



Uniform Memory/Cache Access 

+ Data placement unimportant/less important (easier to optimize code and 
make use of available memory space) 

- Scaling the system increases all latencies 

- Contention could restrict bandwidth and increase latency 

Processor Processor Processor. . .

. . .

latency

long

Main Memory

contention in memory banks

Interconnection Network

contention in network



Example SMP 

 Quad-pack Intel Pentium Pro 
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How to Scale Shared Memory Machines? 

 Two general approaches 

 

 Maintain UMA  

 Provide a scalable interconnect to memory 

 Downside: Every memory access incurs the round-trip network 
latency 

 

 Interconnect complete processors with local memory 

 NUMA (Non-uniform memory access) 

 Local memory faster than remote memory 

 Still needs a scalable interconnect for accessing remote 
memory 

 Not on the critical path of local memory access 
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NUMA/NUCA: NonUniform Memory/Cache Access 

• Shared memory as local versus remote memory 

+ Low latency to local memory 

- Much higher latency to remote memories 

. . .

Interconnection Network

contention in network

. . .

latency

long

Memory

Processor

Memory

Processor

Memory

Processor

short

latency

+ Bandwidth to local memory may be higher 

- Performance very sensitive to data placement 

 



Example NUMA Machines (I) – CM5 

 CM-5 

 Hillis and Tucker, “The 
CM-5 Connection 
Machine: a scalable 
supercomputer,” CACM 
1993. 
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Example NUMA Machines (I) – CM5 
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Example NUMA Machines (II) 

 Sun Enterprise Server 

 Cray T3E 
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Convergence of Parallel Architectures 

 Scalable shared memory architecture is similar to scalable 
message passing architecture 

 Main difference: is remote memory accessible with 
loads/stores? 
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Historical Evolution: 1960s & 70s 

• Early MPs 
– Mainframes 

– Small number of processors 

– crossbar interconnect 

– UMA 

Processor

Memory
Memory

Memory
Memory

Memory
Memory

Memory
Memory

Processor

Processor

Processor

corssbar



Historical Evolution: 1980s 

• Bus-Based MPs 

– enabler: processor-on-a-board 

– economical scaling 

– precursor of today’s SMPs 

– UMA 

MemoryMemoryMemoryMemory

Proc

cache

Proc

cache

Proc

cache

Proc

cache



Historical Evolution: Late 80s, mid 90s 

• Large Scale MPs   (Massively Parallel Processors) 

– multi-dimensional interconnects 

– each node a computer (proc + cache + memory) 

– both shared memory and message passing versions 

– NUMA 

– still used for “supercomputing”  



Historical Evolution: Current 

 Chip multiprocessors (multi-core) 

 Small to Mid-Scale multi-socket CMPs 

 One module type:  processor + caches + memory 

 Clusters/Datacenters 

 Use high performance LAN to connect SMP blades, racks 

 

 Driven by economics and cost 

 Smaller systems => higher volumes 

 Off-the-shelf components 

 Driven by applications 

 Many more throughput applications (web servers) 

 … than parallel applications (weather prediction) 

 Cloud computing 



Historical Evolution: Future 

 Cluster/datacenter on a chip? 

 

 Heterogeneous multi-core? 

 

 Bounce back to small-scale multi-core? 

 

 ??? 
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Referenced Readings 
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supercomputer,” CACM 1993. 
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 Tucker and Robertson, “Architecture and Applications of the 
Connection Machine,” IEEE Computer 1988. 
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Related Videos 

 Programming Models and Architectures (This Lecture) 

 http://www.youtube.com/watch?v=YnqpW-
mCYX8&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-
WRYoW4&index=3  

 

 Multiprocessor Correctness and Cache Coherence 

 http://www.youtube.com/watch?v=U-
VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&i
ndex=32 
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