Computer Architecture: Parallel Processing Basics

> Prof. Onur Mutlu Carnegie Mellon University

Readings

- Required
 - Hill, Jouppi, Sohi, "Multiprocessors and Multicomputers," pp. 551-560 in Readings in Computer Architecture.
 - Hill, Jouppi, Sohi, "Dataflow and Multithreading," pp. 309-314 in Readings in Computer Architecture.
 - Suleman et al., "Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures," ASPLOS 2009.
 - Joao et al., "Bottleneck Identification and Scheduling in Multithreaded Applications," ASPLOS 2012.
- Recommended
 - Culler & Singh, Chapter 1
 - Mike Flynn, "Very High-Speed Computing Systems," Proc. of IEEE, 1966

Related Video

- 18-447 Spring 2013 Lecture 30B: Multiprocessors
 - http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31

Parallel Processing Basics

Flynn's Taxonomy of Computers

- Mike Flynn, "Very High-Speed Computing Systems," Proc. of IEEE, 1966
- SISD: Single instruction operates on single data element
- SIMD: Single instruction operates on multiple data elements
 Array processor
 - Vector processor
- MISD: Multiple instructions operate on single data element
 Closest form: systolic array processor, streaming processor
- MIMD: Multiple instructions operate on multiple data elements (multiple instruction streams)
 - Multiprocessor
 - Multithreaded processor

Why Parallel Computers?

- Parallelism: Doing multiple things at a time
- Things: instructions, operations, tasks
- Main Goal
 - Improve performance (Execution time or task throughput)
 - Execution time of a program governed by Amdahl' s Law
- Other Goals
 - Reduce power consumption
 - (4N units at freq F/4) consume less power than (N units at freq F)
 - Why?
 - Improve cost efficiency and scalability, reduce complexity
 - Harder to design a single unit that performs as well as N simpler units
 - Improve dependability: Redundant execution in space

Types of Parallelism and How to Exploit

Them Instruction Level Parallelism

- Different instructions within a stream can be executed in parallel
- Pipelining, out-of-order execution, speculative execution, VLIW
- Dataflow

Data Parallelism

- Different pieces of data can be operated on in parallel
- SIMD: Vector processing, array processing
- Systolic arrays, streaming processors
- Task Level Parallelism
 - Different "tasks/threads" can be executed in parallel
 - Multithreading
 - Multiprocessing (multi-core)

Task-Level Parallelism: Creating Tasks

- Partition a single problem into multiple related tasks (threads)
 - Explicitly: Parallel programming
 - Easy when tasks are natural in the problem
 - Web/database queries
 - Difficult when natural task boundaries are unclear
 - Transparently/implicitly: Thread level speculation
 - Partition a single thread speculatively
- Run many independent tasks (processes) together
 - Easy when there are many processes
 - Batch simulations, different users, cloud computing workloads
 - Does not improve the performance of a single task

Multiprocessing Fundamentals

Multiprocessor Types

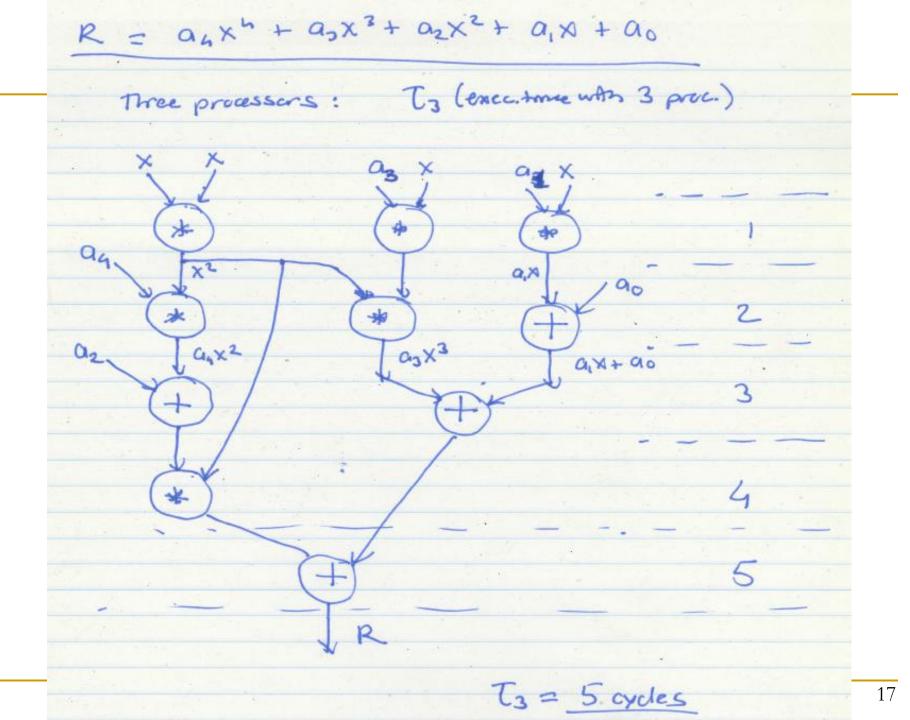
- Loosely coupled multiprocessors
 - No shared global memory address space
 - Multicomputer network
 - Network-based multiprocessors
 - Usually programmed via message passing
 - Explicit calls (send, receive) for communication
- Tightly coupled multiprocessors
 - Shared global memory address space
 - Traditional multiprocessing: symmetric multiprocessing (SMP)
 - Existing multi-core processors, multithreaded processors
 - Programming model similar to uniprocessors (i.e., multitasking uniprocessor) except
 - Operations on shared data require synchronization

Main Issues in Tightly-Coupled MP

- Shared memory synchronization
 - Locks, atomic operations
- Cache consistency
 - More commonly called cache coherence
- Ordering of memory operations
 - What should the programmer expect the hardware to provide?
- Resource sharing, contention, partitioning
- Communication: Interconnection networks
- Load imbalance

Aside: Hardware-based Multithreading

- Idea: Multiple threads execute on the same processor with multiple hardware contexts; hardware controls switching between contexts
- Coarse grained
 - Quantum based
 - Event based (switch-on-event multithreading)
- Fine grained
 - Cycle by cycle
 - □ Thornton, "CDC 6600: Design of a Computer," 1970.
 - □ Smith, "A pipelined, shared resource MIMD computer," ICPP 1978.
- Simultaneous
 - Can dispatch instructions from multiple threads at the same time
 - Good for improving utilization of multiple execution units


Metrics of Multiprocessors

Time to execute the program with 1 processor divided by Time to execute the program with N processors

Parallel Speedup Example

- $a4x^4 + a3x^3 + a2x^2 + a1x + a0$
- Assume each operation 1 cycle, no communication cost, each op can be executed in a different processor
- How fast is this with a single processor?
 Assume no pipelining or concurrent execution of instructions
- How fast is this with 3 processors?

 $R = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ Single processor: 11 operations (date flow graph) a. * 0, 20 03 q4 t * 43X3 agxu OzXL ¥ a,X' Q4X4+03X3 ao T1 = 11 cycles

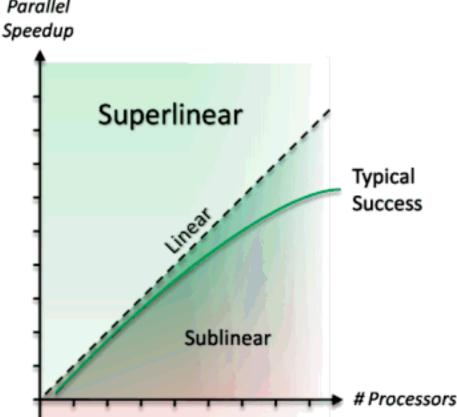
Speedup with 3 Processors

T3 = 5 cycles - 2.2 Speedup with 3 processors = 11 $\left(\frac{T_1}{T}\right)$ Is this a four composison?

Revisiting the Single-Processor Algorithm

Revisit TI Better single-processor algorithm: R = a1x4 + a2x3 + a2x2 + a, x + a0 $R = (((a_4x + a_3)x + a_2)x + a_1)x + a_0)$ (Horner's method)

Horner, "A new method of solving numerical equations of all orders, by continuous approximation," Philosophical Transactions of the Royal Society, 1819.


04 X 4 a3 * a, T1 = 8 cycles X Speedup with 3 pras. best 8 = 1.6 a Z3 best 30 (not 2.2)

Takeaway

- To calculate parallel speedup fairly you need to use the best known algorithm for each system with N processors
- If not, you can get superlinear speedup

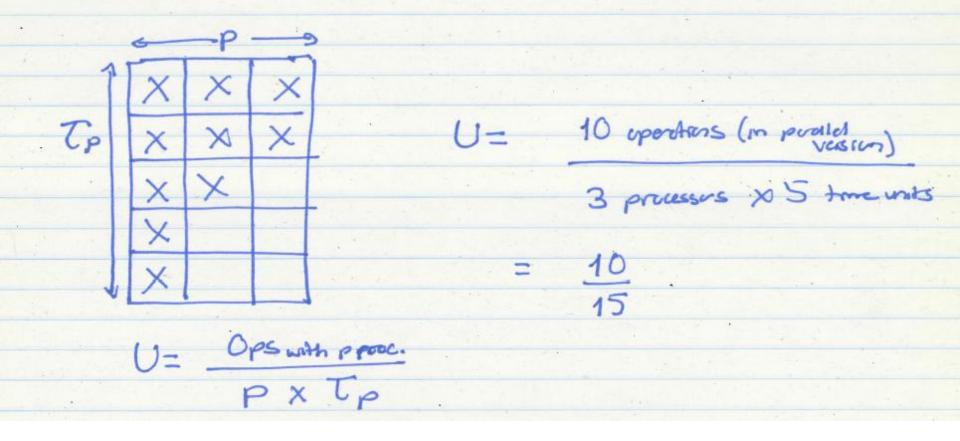
Superlinear Speedup

- Can speedup be greater than P with P processing elements?
 Parallel
- Consider:
 - Cache effects
 - Memory effects
 - Working set
- Happens in two ways:
 - Unfair comparisons
 - Memory effects

Utilization, Redundancy, Efficiency

Traditional metrics

- Assume all P processors are tied up for parallel computation
- Utilization: How much processing capability is used
 - U = (# Operations in parallel version) / (processors x Time)
- Redundancy: how much extra work is done with parallel processing
 - R = (# of operations in parallel version) / (# operations in best single processor algorithm version)


Efficiency

- E = (Time with 1 processor) / (processors x Time with P processors)
- □ E = U/R

Utilization of a Multiprocessor

Multiprocessor metrics.

Utilization: How much processing capability we use

How much extra work due to multiprocessing Redundary: R = Ops was proc. best = 10 Ops with 1 proc. best 8 R is always > 1 How much resource we use compared to how Efficiency: much resource we can get away with

E = 1. Ti best (tyms up 1 proces Ty time units) (typing up p prece for Tp time units) p. Tpest = 8 15 $\left(\begin{array}{c} E = U \\ R \end{array} \right)$ 0

Caveats of Parallelism (I)

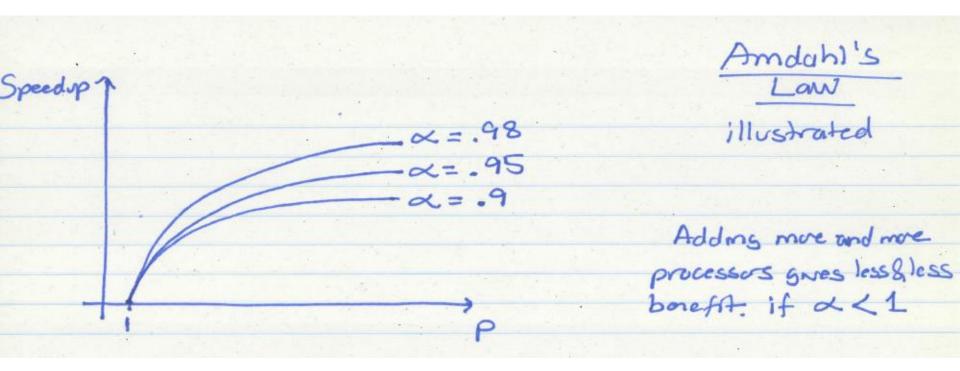
Speedup 1 Superineer rester Imeor speedup reality P(# cf processors) Why the reality? (dominishing relims) X._[1 (1-a). T1 pon-porallelizeble par purallelizable purt/fractions of the single-processor program

Amdahl's Law

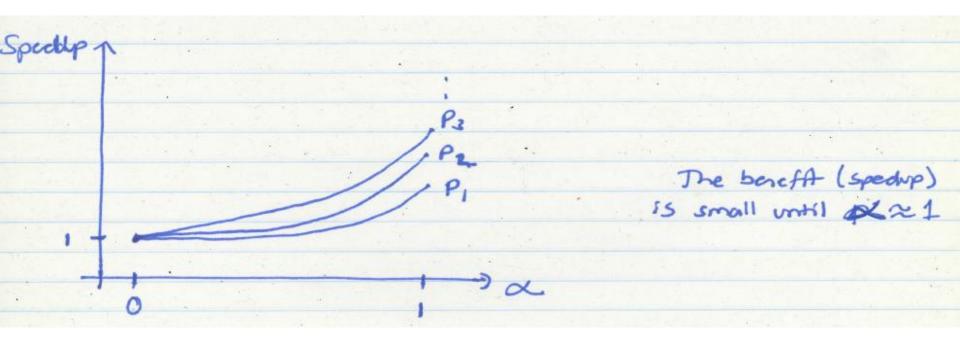
peedup 1-x Speedup 00 thereck for probled

Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," AFIPS 1967.

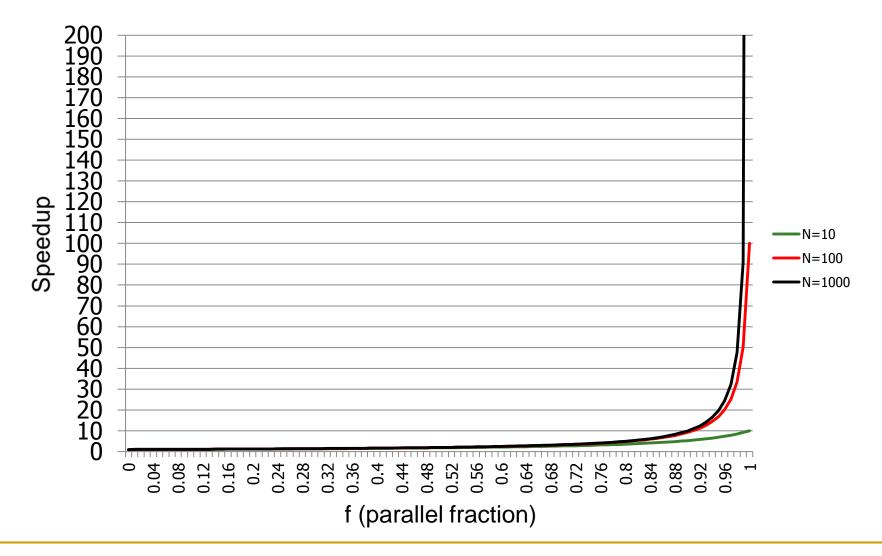
Caveats of Parallelism (I): Amdahl's Law

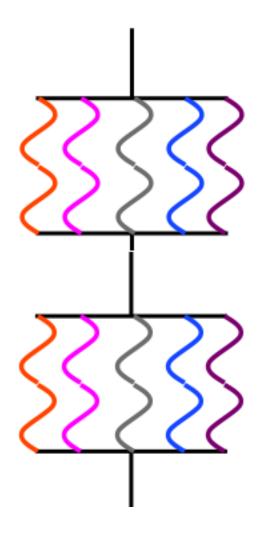

- Amdahl' s Law
 - □ f: Parallelizable fraction of a program
 - P: Number of processors

Speedup =
$$\frac{1}{1 - f} + \frac{f}{P}$$

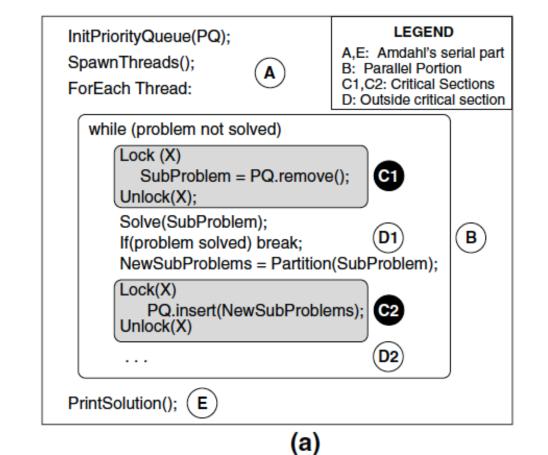

 Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," AFIPS 1967.

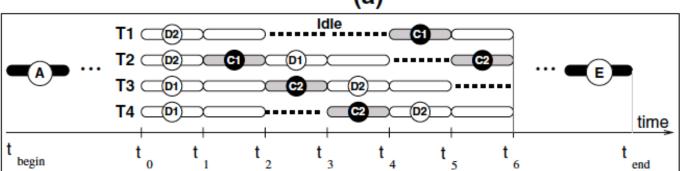
Maximum speedup limited by serial portion: Serial bottleneck

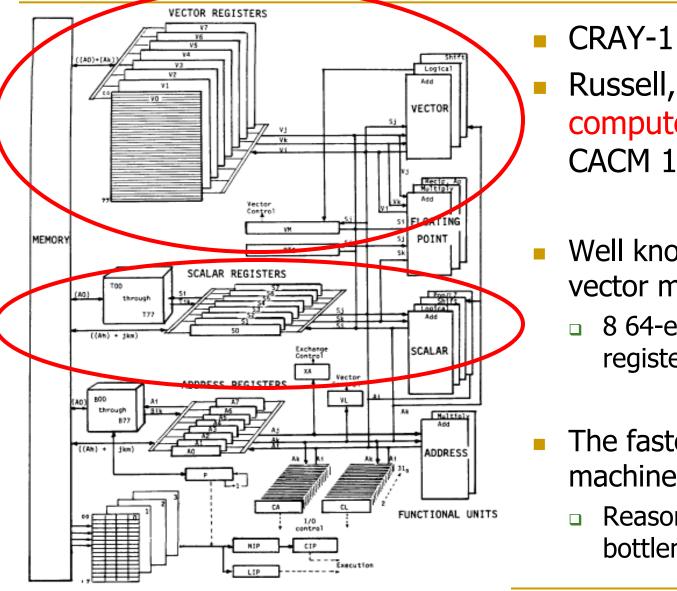

Amdahl's Law Implication 1


Amdahl's Law Implication 2

Sequential Bottleneck




Why the Sequential Bottleneck?


- Parallel machines have the sequential bottleneck
- Main cause: Non-parallelizable operations on data (e.g. nonparallelizable loops) for (i = 0; i < N; i++) A[i] = (A[i] + A[i-1]) / 2
- Single thread prepares data and spawns parallel tasks (usually sequential)

Another Example of Sequential Bottleneck

Implications of Amdahl's Law on Design

INSTRUCTION BUFFERS

Russell, "The CRAY-1 computer system," CACM 1978.

- Well known as a fast vector machine
 - 8 64-element vector registers
- The fastest SCALAR machine of its time!
 - Reason: Sequential bottleneck!

34

Caveats of Parallelism (II)

- Amdahl' s Law
 - f: Parallelizable fraction of a program
 - P: Number of processors

Speedup =
$$\frac{1}{1 - f} + \frac{f}{P}$$

- Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," AFIPS 1967.
- Maximum speedup limited by serial portion: Serial bottleneck
- Parallel portion is usually not perfectly parallel
 - Synchronization overhead (e.g., updates to shared data)
 - Load imbalance overhead (imperfect parallelization)
 - Resource sharing overhead (contention among N processors)

Bottlenecks in Parallel Portion

- Synchronization: Operations manipulating shared data cannot be parallelized
 - Locks, mutual exclusion, barrier synchronization
 - Communication: Tasks may need values from each other
 - Causes thread serialization when shared data is contended
- Load Imbalance: Parallel tasks may have different lengths
 - Due to imperfect parallelization or microarchitectural effects
 - Reduces speedup in parallel portion
- Resource Contention: Parallel tasks can share hardware resources, delaying each other
 - Replicating all resources (e.g., memory) expensive
 - Additional latency not present when each task runs alone

Difficulty in Parallel Programming

- Little difficulty if parallelism is natural
 - "Embarrassingly parallel" applications
 - Multimedia, physical simulation, graphics
 - Large web servers, databases?
- Big difficulty is in
 - Harder to parallelize algorithms
 - Getting parallel programs to work correctly
 - Optimizing performance in the presence of bottlenecks

Much of parallel computer architecture is about

- Designing machines that overcome the sequential and parallel bottlenecks to achieve higher performance and efficiency
- Making programmer's job easier in writing correct and highperformance parallel programs

Parallel and Serial Bottlenecks

- How do you alleviate some of the serial and parallel bottlenecks in a multi-core processor?
- We will return to this question in the next few lectures
- Reading list:
 - Annavaram et al., "Mitigating Amdahl's Law Through EPI Throttling," ISCA 2005.
 - Suleman et al., "Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures," ASPLOS 2009.
 - Joao et al., "Bottleneck Identification and Scheduling in Multithreaded Applications," ASPLOS 2012.
 - Ipek et al., "Core Fusion: Accommodating Software Diversity in Chip Multiprocessors," ISCA 2007.
 - Hill and Marty, "Amdahl' s Law in the Multi-Core Era," IEEE Computer 2008.

Bottlenecks in the Parallel Portion

- Amdahl's Law does not consider these
- How do synchronization (e.g., critical sections), and load imbalance, resource contention affect parallel speedup?
- Can we develop an intuitive model (like Amdahl's Law) to reason about these?
 - A research topic
- Example papers:
 - Eyerman and Eeckhout, "Modeling critical sections in Amdahl's law and its implications for multicore design," ISCA 2010.
 - Suleman et al., "Feedback-driven threading: power-efficient and high-performance execution of multi-threaded workloads on CMPs," ASPLOS 2008.
- Need better analysis of critical sections in real programs

Computer Architecture: Parallel Processing Basics

> Prof. Onur Mutlu Carnegie Mellon University

Backup slides

Readings

- Required
 - Hill, Jouppi, Sohi, "Multiprocessors and Multicomputers," pp. 551-560 in Readings in Computer Architecture.
 - Hill, Jouppi, Sohi, "Dataflow and Multithreading," pp. 309-314 in Readings in Computer Architecture.
 - Suleman et al., "Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures," ASPLOS 2009.
 - Joao et al., "Bottleneck Identification and Scheduling in Multithreaded Applications," ASPLOS 2012.
- Recommended
 - Culler & Singh, Chapter 1
 - Mike Flynn, "Very High-Speed Computing Systems," Proc. of IEEE, 1966

Referenced Readings (I)

- Thornton, "CDC 6600: Design of a Computer," 1970.
- Smith, "A pipelined, shared resource MIMD computer," ICPP 1978.
- Horner, "A new method of solving numerical equations of all orders, by continuous approximation," Philosophical Transactions of the Royal Society, 1819.
- Amdahl, "Validity of the single processor approach to achieving large scale computing capabilities," AFIPS 1967.
 Buscell, "The CDAX 1 computer system," CACM 1079.
- Russell, "The CRAY-1 computer system," CACM 1978.

Referenced Readings (II)

- Annavaram et al., "Mitigating Amdahl' s Law Through EPI Throttling," ISCA 2005.
- Suleman et al., "Accelerating Critical Section Execution with Asymmetric Multi-Core Architectures," ASPLOS 2009.
- Joao et al., "Bottleneck Identification and Scheduling in Multithreaded Applications," ASPLOS 2012.
- Ipek et al., "Core Fusion: Accommodating Software Diversity in Chip Multiprocessors," ISCA 2007.
- Hill and Marty, "Amdahl's Law in the Multi-Core Era," IEEE Computer 2008.
- Eyerman and Eeckhout, "Modeling critical sections in Amdahl's law and its implications for multicore design," ISCA 2010.
- Suleman et al., "Feedback-driven threading: power-efficient and highperformance execution of multi-threaded workloads on CMPs," ASPLOS 2008.

Related Video

- 18-447 Spring 2013 Lecture 30B: Multiprocessors
 - http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PH m2jkkXmidJOd59REog9jDnPDTG6IJ&index=31