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Multiple Cores on Chip 

 Simpler and lower power than a single large core 

 Large scale parallelism on chip 
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IBM Cell BE 
8+1 cores 

Intel Core i7 
8 cores 

Tilera TILE Gx 
100 cores, networked 

IBM POWER7 
8 cores 

Intel SCC 
48 cores, networked 

Nvidia Fermi 
448 “cores” 

AMD Barcelona 
4 cores 

Sun Niagara II 
8 cores 



With Multiple Cores on Chip 

 What we want: 

 N times the performance with N times the cores when we 
parallelize an application on N cores 

 

 What we get: 

 Amdahl’s Law (serial bottleneck) 

 Bottlenecks in the parallel portion 
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Caveats of Parallelism 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 
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Speedup = 
1 

+ 1 - f 
f 

N 



The Problem: Serialized Code Sections 

 Many parallel programs cannot be parallelized completely 

 

 Causes of serialized code sections 

 Sequential portions (Amdahl’s “serial part”) 

 Critical sections 

 Barriers 

 Limiter stages in pipelined programs 

 

 Serialized code sections 

 Reduce performance 

 Limit scalability 

 Waste energy 
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Example from MySQL 
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Demands in Different Code Sections 

 What we want: 

 

 In a serialized code section  one powerful “large” core  

 

 In a parallel code section  many wimpy “small” cores 

 

 These two conflict with each other: 

 If you have a single powerful core, you cannot have many 
cores 

 A small core is much more energy and area efficient than a 
large core 
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“Large” vs. “Small” Cores 
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• Out-of-order 
• Wide fetch e.g. 4-wide 
• Deeper pipeline 
• Aggressive branch 

predictor (e.g. hybrid) 
• Multiple functional units 
• Trace cache 
• Memory dependence 

speculation 

• In-order 

• Narrow Fetch e.g. 2-wide 

• Shallow pipeline 

• Simple branch predictor 

(e.g. Gshare) 

• Few functional units 

Large 

Core 
Small 

Core 

Large Cores are power inefficient: 
e.g., 2x performance for 4x area (power) 



Large vs. Small Cores 

 Grochowski et al., “Best of both Latency and Throughput,” 
ICCD 2004. 
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Meet Small Cores: Piranha Chip Multiprocessor 

 Barroso et al., “Piranha: A Scalable Architecture Based on Single-
Chip Multiprocessing,” ISCA 2000. 

 

 An early example of a symmetric multi-core processor 

 Large-scale server based on CMP nodes 

 Designed for commercial workloads 

 

 Read: 

 Barroso et al., “Memory System Characterization of Commercial 
Workloads,” ISCA 1998. 

 Ranganathan et al., “Performance of Database Workloads on 
Shared-Memory Systems with Out-of-Order Processors,” ASPLOS 
1998. 

 



Commercial Workload Characteristics 

 Memory system is the main bottleneck  

 Very high CPI  

 Execution time dominated by memory stall times  

 Instruction stalls as important as data stalls  

 Fast/large L2 caches are critical  

 

 Very poor Instruction Level Parallelism (ILP) with existing 
techniques  

 Frequent hard-to-predict branches  

 Large L1 miss ratios  

 Small gains from wide-issue out-of-order techniques 

 

 No need for floating point and multimedia units 
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Piranha Processing Node 

Alpha core: 

   1-issue, in-order, 

   500MHz 

 
CPU 

Next few slides from 

Luiz Barroso’s ISCA 2000 presentation of 

Piranha: A Scalable Architecture 

Based on Single-Chip Multiprocessing 
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Piranha Processing Node 
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Inter-Node Coherence Protocol Engine 
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Piranha System 

22 



Piranha I/O Node 
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Meet Small: Sun Niagara (UltraSPARC T1) 

24 

 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC 
Processor,” IEEE Micro 2005. 

 



Niagara Core 

 4-way fine-grain multithreaded, 6-stage, dual-issue in-order 

 Round robin thread selection (unless cache miss) 

 Shared FP unit among cores 
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Niagara Design Point 

 Designed for commercial applications 
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Meet Small: Sun Niagara II (UltraSPARC T2) 

 8 SPARC cores, 8 

threads/core. 8 stages. 16 KB 

I$ per Core. 8 KB D$ per 

Core. FP, Graphics, Crypto, 

units per Core.  

 

 4 MB Shared L2, 8 banks, 16-

way set associative.  

 

 4 dual-channel FBDIMM 

memory controllers. 

 

 X8 PCI-Express @ 2.5 Gb/s. 

 

 Two 10G Ethernet ports @ 

3.125 Gb/s. 
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Meet Small, but Larger: Sun ROCK  

 Chaudhry et al., “Rock: A High-Performance Sparc CMT Processor,” 
IEEE Micro, 2009. 

 Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline 
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009 

 

 Goals: 

 Maximize throughput when threads are available 

 Boost single-thread performance when threads are not 
available and on cache misses 

 Ideas:  

 Runahead on a cache miss  ahead thread executes miss-

independent instructions, behind thread executes dependent 
instructions 

 Branch prediction (gshare) 
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Sun ROCK 

 16 cores, 2 threads 
per core (fewer 
threads than Niagara 
2) 

 4 cores share a 32KB 
instruction cache 

 2 cores share a 32KB 
data cache 

 2MB L2 cache (smaller 
than Niagara 2) 
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Runahead Execution (I) 

 A simple pre-execution method for prefetching purposes 

 Mutlu et al., “Runahead Execution: An Alternative to Very 
Large Instruction Windows for Out-of-order Processors,” 
HPCA 2003, IEEE Micro 2003. 

 

 When the oldest instruction is a long-latency cache miss: 

 Checkpoint architectural state and enter runahead mode 

 In runahead mode: 

 Speculatively pre-execute instructions 

 The purpose of pre-execution is to generate prefetches 

 L2-miss dependent instructions are marked INV and dropped 

 Runahead mode ends when the original miss returns 

 Checkpoint is restored and normal execution resumes 
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Runahead Execution (II) 
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Compute 

Compute 

Load 1 Miss 

Miss 1 

Stall Compute 

Load 2 Miss 

Miss 2 

Stall 

Load 1 Miss 

Runahead 

Load 2 Miss Load 2 Hit 

Miss 1 

Miss 2 

Compute 

Load 1 Hit 

Saved Cycles 

Small Window: 

Runahead: 



Runahead Execution (III) 

 Advantages 
+ Very accurate prefetches for data/instructions (all cache levels) 

    + Follows the program path 

+ Simple to implement, most of the hardware is already built in 

 Disadvantages 
-- Extra executed instructions 

 Limitations 
-- Limited by branch prediction accuracy 

-- Cannot prefetch dependent cache misses. Solution? 

-- Effectiveness limited by available Memory Level Parallelism 

 

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” IEEE Micro Jan/Feb 2006. 

 Implemented in IBM POWER6, Sun ROCK 

 
32 



33 

12%

35%

13%

15%

22% 12%

16% 52%

22%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s 
P

er
 C

y
cl

e

No prefetcher, no runahead

Only prefetcher (baseline)

Only runahead

Prefetcher + runahead

Performance of Runahead Execution 



34 

Performance of Runahead Execution (II) 
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More Powerful Cores in Sun ROCK 

 Chaudhry talk, Aug 2008. 
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Sun ROCK Cores: Speculative Parallelization 

 Load miss in L1 cache starts parallelization using 2 HW threads 

 Ahead thread  

 Checkpoints state and executes speculatively  

 Speculatively executes instructions independent of the load miss  

 Defers load miss(es) and dependent instructions to the behind thread  

 Behind thread  

 Executes deferred instructions and re-defers them if necessary 

 

 Exploits Memory-Level Parallelism (MLP)  

 Run ahead on load miss and generate additional load misses  

 Exploits Instruction-Level Parallelism (ILP)  

 Ahead and behind threads execute independent instructions from 
different points in program in parallel 
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ROCK Pipeline 
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More Powerful Cores in Sun ROCK 

 Advantages 

+ Higher single-thread performance (MLP + ILP) 

+ Better cache miss tolerance  Can reduce on-chip cache sizes 

 

 

 

 Disadvantages 

- Bigger cores  Fewer cores  Lower parallel throughput (in 

terms of threads).  

 How about each thread’s response time? 

- More complex than Niagara cores (but simpler than 
conventional out-of-order execution)  Longer design time? 
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More Powerful Cores in Sun ROCK 

 Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline 
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009 
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Meet Large: IBM POWER4 

 Tendler et al., “POWER4 system microarchitecture,” IBM J 
R&D, 2002. 

 

 Another symmetric multi-core chip… 

 But, fewer and more powerful cores 
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IBM POWER4 

 2 cores, out-of-order execution 

 100-entry instruction window in each core 

 8-wide instruction fetch, issue, execute 

 Large, local+global hybrid branch predictor 

 1.5MB, 8-way L2 cache 

 Aggressive stream based prefetching 
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IBM POWER5 

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 

 

42 



Meet Large, but Smaller: IBM POWER6 

 Le et al., “IBM POWER6 
microarchitecture,” IBM J R&D, 
2007. 

 

 2 cores, in order, high 
frequency (4.7 GHz) 

 8 wide fetch 

 Simultaneous multithreading in 
each core 

 Runahead execution in each 
core 

 Similar to Sun ROCK 
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IBM POWER7 

 Kalla et al., “Power7: IBM’s Next-Generation Server 
Processor,” IEEE Micro 2010. 

 8 out-of-order cores, 4-way SMT in each core 

 TurboCore mode  

 Can turn off cores so that other cores can be run at higher 
frequency 
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Remember the Demands 

 What we want: 

 

 In a serialized code section  one powerful “large” core  

 

 In a parallel code section  many wimpy “small” cores 

 

 These two conflict with each other: 

 If you have a single powerful core, you cannot have many 
cores 

 A small core is much more energy and area efficient than a 
large core 

 

 Can we get the best of both worlds? 
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Performance vs. Parallelism 
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Assumptions: 

 1. Small cores takes an area budget of 1 and has  

 performance  of 1 

  

 2. Large core takes an area budget of 4 and has 

 performance of 2 

  

  



Tile-Large Approach 

 

 

 

 

 

 

 

 

 Tile a few large cores 

 IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem 

+ High performance on single thread, serial code sections (2 units) 

- Low throughput on parallel program portions (8 units) 
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Tile-Small Approach 

 

 

 

 

 

 

 

 

 Tile many small cores 

 Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small) 

+ High throughput on the parallel part (16 units) 

- Low performance on the serial part, single thread (1 unit) 
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Can we get the best of both worlds? 

 Tile Large 

 + High performance on single thread, serial code sections (2 
units) 

 - Low throughput on parallel program portions (8 units) 

 

 Tile Small 

 + High throughput on the parallel part (16 units) 

 - Low performance on the serial part, single thread (1 unit), 
reduced single-thread performance compared to existing single 
thread processors 

 

 Idea: Have both large and small on the same chip  

Performance asymmetry 
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Asymmetric Multi-Core 
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Asymmetric Chip Multiprocessor (ACMP) 

 

 

 

 

 

 

 

 

 Provide one large core and many small cores 

+ Accelerate serial part using the large core (2 units) 

+ Execute parallel part on small cores and large core for high 
throughput (12+2 units) 
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Accelerating Serial Bottlenecks 
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Performance vs. Parallelism 
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Assumptions: 

 1. Small cores takes an area budget of 1 and has  

 performance  of 1 

  

 2. Large core takes an area budget of 4 and has 

 performance of 2 

  

  



ACMP Performance vs. Parallelism 
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Some Analysis  

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE 
Computer 2008. 

 Each Chip Bounded to N BCEs (Base Core Equivalents) 

 One R-BCE Core leaves N-R BCEs 

 Use N-R BCEs for N-R Base Cores 

 Therefore, 1 + N - R Cores per Chip 

 For an N = 16 BCE Chip: 
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Symmetric: Four 4-BCE cores Asymmetric: One 4-BCE core 

& Twelve 1-BCE base cores 



Amdahl’s Law Modified  

 Serial Fraction 1-F same, so time = (1 – F) / Perf(R)  
 

 Parallel Fraction F 

 One core at rate Perf(R) 

 N-R cores at rate 1 

 Parallel time = F / (Perf(R) + N - R) 
 

 Therefore, w.r.t. one base core: 
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Asymmetric Speedup  = 

1 

+ 
1 - F 

Perf(R) 

F 

Perf(R) + N - R 



Asymmetric Multicore Chip, N = 256 BCEs 

 

 

 

 

 

 

 

 

 

 

 

 Number of Cores = 1 (Enhanced) + 256 – R (Base) 
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Asymmetric Multicore Chip, N = 256 BCEs 

 

 

 

 

 

 

 

 

 

 

 Asymmetric multi-core provides better speedup than 
symmetric multi-core when N is large 
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Asymmetric vs. Symmetric Cores 

 Advantages of Asymmetric 

+ Can provide better performance when thread parallelism is 
limited 

+ Can be more energy efficient 

 + Schedule computation to the core type that can best execute it 

 

 Disadvantages 

- Need to design more than one type of core. Always? 

- Scheduling becomes more complicated 

 - What computation should be scheduled on the large core? 

    - Who should decide? HW vs. SW? 

- Managing locality and load balancing can become difficult if 
threads move between cores (transparently to software) 

- Cores have different demands from shared resources 
60 



Caveats of Parallelism, Revisited 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 
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Speedup = 
1 

+ 1 - f 
f 

N 



Accelerating Parallel Bottlenecks 

 Serialized or imbalanced execution in the parallel portion 
can also benefit from a large core 

 

 Examples: 

 Critical sections that are contended 

 Parallel stages that take longer than others to execute 

 

 Idea: Dynamically identify these code portions that cause 
serialization and execute them on a large core 

 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top 
Picks 2010.  

 Joao et al., “Bottleneck Identification and Scheduling,” ASPLOS 2012. 
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How to Achieve Asymmetry 

 Static 

 Type and power of cores fixed at design time 

 Two approaches to design “faster cores”: 

 High frequency 

 Build a more complex, powerful core with entirely different uarch 

 Is static asymmetry natural? (chip-wide variations in frequency) 

 

 Dynamic 

 Type and power of cores change dynamically 

 Two approaches to dynamically create “faster cores”: 

 Boost frequency dynamically (limited power budget)  

 Combine small cores to enable a more complex, powerful core  

 Is there a third, fourth, fifth approach? 
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Asymmetry via Boosting of Frequency 

 Static 

 Due to process variations, cores might have different 
frequency 

 Simply hardwire/design cores to have different frequencies 

 

 Dynamic 

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI 
Throttling,” ISCA 2005. 

 Dynamic voltage and frequency scaling 
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EPI Throttling 

 Goal: Minimize execution time of parallel programs while 
keeping power within a fixed budget  
 

 For best scalar and throughput performance, vary energy 
expended per instruction (EPI) based on available 
parallelism  

 P = EPI x IPS  

 P = fixed power budget  

 EPI = energy per instruction  

 IPS = aggregate instructions retired per second  
 

 Idea: For a fixed power budget  

 Run sequential phases on high-EPI processor  

 Run parallel phases on multiple low-EPI processors 
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EPI Throttling via DVFS 

 DVFS: Dynamic voltage frequency scaling 

 

 In phases of low thread parallelism 

 Run a few cores at high supply voltage and high frequency 

 

 In phases of high thread parallelism 

 Run many cores at low supply voltage and low frequency 
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Possible EPI Throttling Techniques 

 Grochowski et al., “Best of both Latency and Throughput,” 
ICCD 2004. 
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Boosting Frequency of a Small Core vs. Large Core 

 Frequency boosting implemented on Intel Nehalem, IBM 
POWER7 

 

 Advantages of Boosting Frequency 

+ Very simple to implement; no need to design a new core 

+ Parallel throughput does not degrade when TLP is high 

+ Preserves locality of boosted thread 

 

 Disadvantages 

- Does not improve performance if thread is memory bound 

- Does not reduce Cycles per Instruction (remember the 
performance equation?) 

- Changing frequency/voltage can take longer than switching to a 
large core  
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Uses of Asymmetry 

 So far: 

 Improvement in serial performance (sequential bottleneck) 

 

 What else can we do with asymmetry? 

 Energy reduction? 

 Energy/performance tradeoff?  

 Improvement in parallel portion? 
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Use of Asymmetry for Energy Efficiency 

 Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: 
The Potential for Processor Power Reduction,” MICRO 2003. 

 

 Idea:  

 Implement multiple types of cores on chip 

 Monitor characteristics of the running thread  

 e.g., sample energy/perf on each core periodically 

 Dynamically pick the core that provides the best 
energy/performance tradeoff for a given phase 

 “Best core”  Depends on optimization metric 

 

 Example: ARM’s big.LITTLE architecture 
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Use of Asymmetry for Energy Efficiency 
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Use of Asymmetry for Energy Efficiency 

 Advantages  

+ More flexibility in energy-performance tradeoff 

+ Can execute computation to the core that is best suited for it (in terms of 
energy) 

 

 Disadvantages/issues 

- Incorrect predictions/sampling  wrong core  reduced performance or 

increased energy 

- Overhead of core switching 

- Disadvantages of asymmetric CMP (e.g., design multiple cores) 

- Need phase monitoring and matching algorithms 

 - What characteristics should be monitored? 

 - Once characteristics known, how do you pick the core?  
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Functional vs. Performance Asymmetry 

 Functional asymmetry: Place on chip multiple cores with 
different ISAs/interfaces 

 

 Examples 

 CPU+GPU architectures (Intel Sandybridge, AMD APU, Nvidia 
Tegra) 

 SoC’s with different accelerators (e.g., Qualcomm) 

 

 Example: Nvidia Tegra 

 72-core GPU 

 4-core ARM processor 
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Summary: Multi-Core Evolution 

 Symmetric Multi-core 

 Evolution of Sun’s and IBM’s Multicore systems and design 
choices 

 Niagara, Niagara 2, ROCK 

 IBM POWERx  

 

 Asymmetric Multi-core 

 Motivation 

 Static vs. Dynamic Asymmetry 

 EPI Throttling 

 Use of Asymmetry for Energy Efficiency 

 Functional vs. Performance Asymmetry 
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Related Videos 

 Multi-Core Systems and Heterogeneity 

 http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ
7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1 

 http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ
7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2 
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More on EPI Throttling 
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EPI Throttling (Annavaram et al., ISCA’05) 

 Static AMP  

 Duty cycles set once prior to program run  

 Parallel phases run on 3P/1.25GHz  

 Sequential phases run on 1P/2GHz  

 Affinity guarantees sequential on 1P and parallel on 3 

 Benchmarks that rapidly transition between sequential and 
parallel phases  

 

 Dynamic AMP  

 Duty cycle changes during program run  

 Parallel phases run on all or a subset of four processors 

 Sequential phases of execution on 1P/2GHz  

 Benchmarks with long sequential and parallel phases 
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EPI Throttling (Annavaram et al., ISCA’05) 

 Evaluation on Base SMP: 4 Base SMP: 4-way 2GHz Xeon, 
2MB L3, 4GB Memory 

 

 Hand-modified programs  

 OMP threads set to 3 for static AMP  

 Calls to set affinity in each thread for static AMP  

 Calls to change duty cycle and to set affinity in dynamic AMP  
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EPI Throttling (Annavaram et al., ISCA’05) 

 

 

 

 

 

 

 

 

 

 

 Frequency boosting AMP improves performance compared 
to 4-way SMP for many applications 
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EPI Throttling 

 Why does Frequency Boosting (FB) AMP not always 
improve performance? 

 

 Loss of throughput in static AMP (only 3 processors in 
parallel portion) 

 Is this really the best way of using FB-AMP? 

 

 Rapid transitions between serial and parallel phases 

 Data/thread migration and throttling overhead  

 

 Boosting frequency does not help memory-bound phases 
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Use of ACMP to Improve Parallel Portion Performance 

 Mutual Exclusion: 

 Threads are not allowed to update shared data concurrently 

 

 Accesses to shared data are encapsulated inside  
critical sections 

 

 Only one thread can execute a critical section at  
a given time 

 

 Idea: Ship critical sections to a large core 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE 
Micro Top Picks 2010.  
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