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Multiple Cores on Chip

= Simpler and lower power than a single large core
= Large scale parallelism on chip

Memory Controller
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With Multiple Cores on Chip

What we want:

a N times the performance with N times the cores when we
parallelize an application on N cores

What we get:
o Amdahl’s Law (serial bottleneck)
o Bottlenecks in the parallel portion



Caveats of Parallelism

Amdahl’ s Law

a f: Parallelizable fraction of a program
o N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
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The Problem: Serialized Code Sections

Many parallel programs cannot be parallelized completely

Causes of serialized code sections

o Sequential portions (Amdahl’s “serial part”)
a Ciritical sections

o Barriers

o Limiter stages in pipelined programs

Serialized code sections
o Reduce performance

o Limit scalability

o Waste energy
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Demands in Different Code Sections

What we want:
In a serialized code section - one powerful “large” core
In a parallel code section 2> many wimpy “small” cores

These two conflict with each other:

o If you have a single powerful core, you cannot have many
cores

o A small core is much more energy and area efficient than a
large core



“Large” vs. “Small” Cores

Large Small
Core Core
o Qut-of-order * |n-order
* Wide fetch e.g. 4-wide » Narrow Fetch e.g. 2-wide
* Deeper pipeline » Shallow pipeline
o Aggressive branch . .
predictor (e.g. hybrid) « Simple branch predictor
o Multiple functional units (e.g. Gshare)
e Jrace cache « Few functional units
o Memory dependence
speculation
( . = . \
Large Cores are power inefficient:

e.g., 2x performance for 4x area (power)
\_ J




Large vs. Small Cores

= Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

Large core Small core
Microarchitecture Qut-of-order, In-order
128-256 entry
ROB
Width 3-4 1
Pipeline depth 20-30
MNormalized 5-8x 1%
performance
Normalized power 20-50x 1x
Normalized 4-6x 1%
energy/instruction




Meet Small Cores: Piranha Chip Multiprocessor

Barroso et al., “Piranha: A Scalable Architecture Based on Single-
Chip Multiprocessing,” ISCA 2000.

An early example of a symmetric multi-core processor
Large-scale server based on CMP nodes
Designed for commercial workloads

Read:

a Barroso et al., "Memory System Characterization of Commercial
Workloads,” ISCA 1998.

o Ranganathan et al., “"Performance of Database Workloads on
Shared-Memory Systems with Out-of-Order Processors,” ASPLOS
1998.



Commercial Workload Characteristics

Memory system is the main bottleneck

o Very high CPI

o Execution time dominated by memory stall times
o Instruction stalls as important as data stalls

o Fast/large L2 caches are critical

Very poor Instruction Level Parallelism (ILP) with existing
techniques

o Frequent hard-to-predict branches
o Large L1 miss ratios
o Small gains from wide-issue out-of-order techniques

No need for floating point and multimedia units
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Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

Next few slides from
Luiz Barroso’ s ISCA 2000 presentation of

Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing




Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

L1 caches:
1&D, 64KB, 2-way
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Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

L1 caches:
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Intra-chip switch (ICS)
32GB/sec, 1-cycle

delay

L2 cache:
shared, 1MB, 8-way




Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz

L1 caches:

1&D, 64KB, 2-way
Intra-chip switch (ICS)
32GB/sec, 1-cycle

delay

L2 cache:
shared, 1MB, 8-way

Memory Controller

(MC)
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Piranha Processing Node

Alpha core:
1-issue, in-order,
500MHz
L1 caches:
|1&D, 64KB, 2-way
Intra-chip switch (ICS)
32GB/sec, 1-cycle
delay
L2 cache:
shared, 1MB, 8-way
Memory Controller (MC)
RDRAM, 12.8GB/sec
Protocol Engines (HE &
RE)
uprog., 1K ninstr.,
even/odd interleaving




Piranha Processing Node

Alpha core:
4 Links 1-issue, in-order,
@ 8GBIs 500MHz

L1 caches:

|1&D, 64KB, 2-way
Intra-chip switch (ICS)

32GB/sec, 1-cycle
delay
L2 cache:

shared, 1MB, 8-way
Memory Controller (MC)

RDRAM, 12.8GB/sec
Protocol Engines (HE &
RE):

uprog., 1K ninstr.,

even/odd interleaving
System Interconnect:

4-port Xbar router

topology independent
el il ielele 32GB/sec total
bandwidth




Piranha Processing Node

. Alpha core:
1-issue, in-order,
500MHz
: L1 caches:
: 1&D, 64KB, 2-way
: Intra-chip switch (ICS)
:  32GB/sec, 1-cycle
: delay
: L2 cache:
:  shared, 1MB, 8-way
: Memory Controller (MC)
:  RDRAM, 12.8GB/sec
: Protocol Engines (HE &
: RE):
i uprog., 1K pninstr.,
:  even/odd interleaving
: System Interconnect:
4- port Xbar router

to ndent




Piranha Processing Node

Interconnect Links
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Inter-Node Coherence Protocol Engine

Input Stage
(Hardwired)

Execution Stage
(Firmware Conirolled)

Qutput Stage
(Hardwired)

From Packet Switch

\ 4

From Intra-Chip Switch

\ 4

Input Controller (FSM)

v
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Input Buffers
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To Packet Switch
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Figure 4. Block diagram of a protocol engine.
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Piranha System

Figure 3. Example configuration for a Piranha system with six
processing (8 CPUs each) and two I/O chips.
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Piranha I/0O Node
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Figure 2. Block diagram of a single-chip Piranha I/O node.



Meet Small: Sun Niagara (UltraSPARC T1)

= Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC
Processor,” IEEE Micro 2005.
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Niagara Core

= 4-way fine-grain multithreaded, 6-stage, dual-issue in-order
= Round robin thread selection (unless cache miss)
= Shared FP unit among cores

Fatch | Thread select | Decode | Exacute ‘ Memuory | Wihiteback

Ragister

.y
N

ICache | Instruction [ | "\\\\ DCac =
me | butterx4 | | | Thread I'f-"I][!LII_ - |}11_|E|-IEI Crossbar
E:nlmi | Drecode [~ Shifter store interface
o M
| L o buffers = 4

[ ! -
~+— |nstruction bype
Thread selacts Thread |4  ptisses
salact
- PC
Thread lagic
select w4
Mux

logic -s—— Traps and interrupis

= Resource conflicts
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Niagara Design Point

= Designed for commercial applications

Table 1. Commercial server applications.

) Memory latency [l Compute latency

Instruction-level Thread-level Working Data
Benchmark Application category parallelism parallelism set sharing
Web38 Web server Low High Large Low
J3B Java application server Low High Large Medium
TPC-C Transaction processing Low High Large High
SAP-2T Enterprise resource planning Medium High Medium Medium
SAP-3T Enterprise resource planning Low High Large High
TPC-H Decision support system High High Large Medium
Single =~ =
issue cC M Cc M C M
LPE M € MC M [ ==
TLP|C M i
(onshared = . Time saved
singleissue |G M o =
pipeline) T M |
-
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Meet Small: Sun Niagara II (UltraSPARC T2)

= 8 SPARC cores, 8
— _ threads/core. 8 stages. 16 KB
L2 Data | [REE I iR el - G| fe 1$ per Core. 8 KB D$ per

Bank0 | Epame : I Core. FP, Graphics, Crypto,
L2 Data | (CoFeN ‘Corel® Mio¥e’S’ “Core® | ff units per Core.

Bank 1 fig iF ANk |

L2B1 _ ik SR
Mcuo o | L2 Lo

= 4 MB Shared L2, 8 banks, 16-
way set associative.

» 4 dual-channel FBDIMM
memory controllers.

|'SPARG SPARS &PARC SPARC
"Core 2 "Cor@ & ~Core T Corg 6" RDP ' TDS

= X8 PCl-Express @ 2.5 Gb/s.

L

= Two 10G Ethernet ports @
3.125 Gb/s.
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Meet Small, but Larger: Sun ROCK

Chaudhry et al., “Rock: A High-Performance Sparc CMT Processor,”
IEEE Micro, 20009.

Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

Goals:
o Maximize throughput when threads are available

o Boost single-thread performance when threads are not
available and on cache misses

Ideas:

2 Runahead on a cache miss = ahead thread executes miss-
independent instructions, behind thread executes dependent
instructions

o Branch prediction (gshare)

28



Sun ROCK

512 KB

L2$ Bnk

mﬁmmm

512 KB

16 cores, 2 threads
per core (fewer
threads than Niagara
2)

4 cores share a 32KB
instruction cache

2 cores share a 32KB
data cache

2MB L2 cache (smaller
than Niagara 2)
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Runahead Execution (I)

A simple pre-execution method for prefetching purposes

Mutlu et al., “Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,”
HPCA 2003, IEEE Micro 2003.

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
Runahead mode ends when the original miss returns

o Checkpoint is restored and normal execution resumes
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Runahead Execution (II)

Small Window:

Load 1 Miss Load 2 Miss
Miss 1

Runahead: :
Load 1 Miss  Load 2Miss Load 1Hit  Load 2 Hit :

Saved Cycles
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Runahead Execution (I1I)

Advantages

+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path

+ Simple to implement, most of the hardware is already built in

Disadvantages
-- Extra executed instructions

Limitations

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available Memory Level Parallelism

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” IEEE Micro Jan/Feb 2006.

Implemented in IBM POWER6, Sun ROCK
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Performance of Runahead Execution
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Performance of Runahead Execution (1)

" 15% 10% M in-order baseline

1.2 M in-order + runahead
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More Powerful Cores in Sun ROCK

= Chaudhry talk, Aug 2008.

3.00

2.50 7" No
o // Scout
% 2.00 |Buys 12 MB
Q i
% 1.50 — Buys 7 MB /.,/V
Q
< 1.00 40% Better

= Performance
0.50 i

256KB512KB 1iMB 2MB 4MB 8MB 16MB 32MB 64MB
L2 Cache Size
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Sun ROCK Cores: Speculative Parallelization

Load miss in L1 cache starts parallelization using 2 HW threads

Ahead thread

o Checkpoints state and executes speculatively

o Speculatively executes instructions independent of the load miss

o Defers load miss(es) and dependent instructions to the behind thread
Behind thread

o Executes deferred instructions and re-defers them if necessary

Exploits Memory-Level Parallelism (MLP)
o Run ahead on load miss and generate additional load misses
Exploits Instruction-Level Parallelism (ILP)

o Ahead and behind threads execute independent instructions from
different points in program in parallel
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ROCK Pipeline
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More Powerful Cores in Sun ROCK

Advantages

+ Higher single-thread performance (MLP + ILP)
+ Better cache miss tolerance = Can reduce on-chip cache sizes

Disadvantages

- Bigger cores - Fewer cores - Lower parallel throughput (in
terms of threads).

How about each thread’ s response time?

- More complex than Niagara cores (but simpler than
conventional out-of-order execution) - Longer design time?
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More Powerful Cores in Sun ROCK

Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline

Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

Performance Improvement over STALL
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Figure 9: Commercial Performance.
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Meet Large: IBM POWLER4

= Tendler et al., “POWER4 system microarchitecture,” IBM J

= Another symmetric multi-core chip...
= But, fewer and more powerful cores

R&D, 2002.
— e ——
40



IBM POWERA4

2 cores, out-of-order execution

100-entry instruction window in each core
8-wide instruction fetch, issue, execute
Large, local+global hybrid branch predictor
1.5MB, 8-way L2 cache

Aggressive stream based prefetching
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IBM POWERS5

= Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

Data

Data

Translation Cache

o Dynamic
| Branch prediction J instruction
t selection
Shared Shared
Program Branch| || Return| | Target o execution
counter nistory| li| stack | | cache queues units
tables LSUO
2 Altemate [FXU0!
lnmlgn G f tio LSt
: roup formation s - s =
Init;ﬁt;on Instruction decode [— ¢ » = o PXUT—= -
Dispatch FPUOD
Instruction
translation ik
Thread BXY
priority Shared- Read CRLJ  write
reqister shared- shared-
mappers register files reqister files
[—_)Shared by two threads [[) Thread O resources [l Thread 1 resources

Data Data

translation | | cache
L2

cache

Figure 4. Power5 instruction data flow (BXU = branch execution unit and CRL = condition register logical execution unit).
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Meet Large, but Smaller: IBM POWERG

Le et al., “IBM POWER6
microarchitecture,” IBM J R&D,
2007.

2 cores, in order, high
frequency (4.7 GHz)

8 wide fetch

Simultaneous multithreading in
each core

Runahead execution in each
core

o Similar to Sun ROCK
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IBM POWERY

Kalla et al., "Power7: IBM’s Next-Generation Server
Processor,” IEEE Micro 2010.

8 out-of-order cores, 4-way SMT in each core

TurboCore mode

o Can turn off cores so that other cores can be run at higher
frequency
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Remember the Demands

What we want:
In a serialized code section - one powerful “large” core
In a parallel code section 2> many wimpy “small” cores

These two conflict with each other:

o If you have a single powerful core, you cannot have many
cores

o A small core is much more energy and area efficient than a
large core

Can we get the best of both worlds?
45



Pertormance vs. Parallelism

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2
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Tile-Large Approach

Large Large
core core
Large Large
core core
“Tile-Large”

Tile a few large cores

IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem
+ High performance on single thread, serial code sections (2 units)
- Low throughput on parallel program portions (8 units)



Tile-Small Approach

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

Small | Small | Small | Small
core core core core

“Tile-Small”

Tile many small cores

Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)
+ High throughput on the parallel part (16 units)
- Low performance on the serial part, single thread (1 unit)



Can we get the best of both worlds?

Tile Large

+ High performance on single thread, serial code sections (2
units)

- Low throughput on parallel program portions (8 units)

Tile Small

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

Idea: Have both large and small on the same chip »>
Performance asymmetry
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Asymmetric Multi-Core
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Asymmetric Chip Multiprocessor (ACMP)

Small | Small | Small | Small Small | Small
core core core core core core

Large Large Large

core core Small | Small | Small | Small core Small | Small
core core core core core core
Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core

Large Large

core core Small | Small | Small | Small Small | Small | Small | Small
core core core core core core core core

13 - ” 13 - ”
Tile-Large Tile-Small ACMP

Provide one large core and many small cores
+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (1242 units)
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Accelerating Serial Bottlenecks

Single thread - Large core

Small
core

Small
core

Small
core

Small Small Small Small
core core core core

ACMP Approach
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Pertormance vs. Parallelism

Assumptions:

1. Small cores takes an area budget of 1 and has
performance of 1

2. Large core takes an area budget of 4 and has
performance of 2
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ACMP Performance vs. Parallelism

Area-budget = 16 small cores

-

Large | Large
core core
Large | Large
core core

N

(Small Small|Small{Small

core | core | core | core

Small{Small{Small|Small
core | core | core | core

Small{Small{Small|Small
core | core | core | core

Small|Small|Small{Small
core | core | core | core

~

(

Small

Large | core

Small
core

Small
core

core

Small
core

Small{Small{Small
core | core | core

Small
core

Small|Small|Small
core | core | core

Small
core

“Tile-Large” “Tile-Small” ACMP
Large 4 0 1
Cores
Small 0 16 12
Cores
Serial 2 1 2
Performance
Parallel 2x4=8 1x16=16 1x2 + 1x12 =14
Throughput




Some Analysis

Hill and Marty, “Amdahl’ s Law in the Multi-Core Era,” IEEE
Computer 2008.

Each Chip Bounded to N BCEs (Base Core Equivalents)
One R-BCE Core leaves N-R BCEs

Use N-R BCEs for N-R Base Cores

Therefore, 1 + N - R Cores per Chip

For an N = 16 BCE Chip:
il e I 1Dl [t | 1
_]:B_=_ _]:B_=_
D:%jiwm D:%jimm Bt Eﬁim Bt
D:%i: I D:%i: I it R ot
4 1)1 (B3] [t
Symmetric: Four 4-BCE cores Asymmetric: One 4-BCE core

& Twelve I-BCE base cores



Amdahl’ s Law Modified

= Serial Fraction 1-F same, so time = (1 — F) / Perf(R)

= Parallel Fraction F
a One core at rate Perf(R)
o N-R cores atrate 1
a Parallel time = F / (Perf(R) + N - R)

= Therefore, w.r.t. one base core:

Asymmetric Speedup = =
1-F

+
Perf(R) Perf(R) + N - R
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Asymmetric Multicore Chip, N = 256 BCEs

250

2 200
©
(]
g /’-—\\
v 150 F=0.99
2
E /‘\
E v / F=0.975
>
T 50
< __— F=0.9
F=0.5
0 ‘?T T T T T T T 1
1 2 4 8 16 32 64 128 256
R BCEs

= Number of Cores = 1 (Enhanced) + 256 — R (Base)
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Symmetric Multicore Chip, N = 256 BCEs

250
Q- 200 N
S F=0.999
Q
&
& 150
(S
=
‘6 100
E F=0.99
> F=0.975

F=0.9

F=0.5 I >
0 =0.9, R=28, =9,-Speedup=26.7
1 2 4 8 16 32 64 128 256
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Asymmetric Multicore Chip, N = 256 BCEs

250

F=0.999

_— N F=0.99

2 200
3 R 41 (vs. 3)
Q Cores 216 (vs. 85)
ﬂ 150 F20.99 Speedup=166 (vs. 80)
.‘E /
g 100 F=0.975
>
< 50 F=0.9 F=0.9
F=0.5 R=118 (vs. 28)
0 f— , : ~ Cores=139 (vs. 9)
1 2 4 8

256 Speedup=65.6

R BCES (vs. 26.7)

= Asymmetric multi-core provides better speedup than
symmetric multi-core when N is large
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Asymmetric vs. Symmetric Cores

Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient
+ Schedule computation to the core type that can best execute it

Disadvantages

- Need to design more than one type of core. Always?

- Scheduling becomes more complicated
- What computation should be scheduled on the large core?
- Who should decide? HW vs. SW?

- Managing locality and load balancing can become difficult if
threads move between cores (transparently to software)

- Cores have different demands from shared resources
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Caveats of Parallelism, Revisited

Amdahl’ s Law

a f: Parallelizable fraction of a program
o N: Number of processors

Speedup = f

N

1-f 4+

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

Parallel portion is usually not perfectly parallel
o Synchronization overhead (e.g., updates to shared data)
o Load imbalance overhead (imperfect parallelization)

o Resource sharing overhead (contention among N processors)
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Accelerating Parallel Bottlenecks

Serialized or imbalanced execution in the parallel portion
can also benefit from a large core

Examples:
o Ciritical sections that are contended
o Parallel stages that take longer than others to execute

Idea: Dynamically identify these code portions that cause
serialization and execute them on a large core

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top
Picks 2010.

Joao et al., "Bottleneck Identification and Scheduling,” ASPLOS 2012.
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How to Achieve Asymmetry

Static
o Type and power of cores fixed at design time

o Two approaches to design “faster cores”:

High frequency

Build a more complex, powerful core with entirely different uarch
a Is static asymmetry natural? (chip-wide variations in frequency)

Dynamic
o Type and power of cores change dynamically

o Two approaches to dynamically create “faster cores”:
Boost frequency dynamically (limited power budget)
Combine small cores to enable a more complex, powerful core

o Is there a third, fourth, fifth approach?
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Asymmetry via Boosting ot Frequency

Static

o Due to process variations, cores might have different
frequency

o Simply hardwire/design cores to have different frequencies

Dynamic

o Annavaram et al., “Mitigating Amdahl’ s Law Through EPI
Throttling,” ISCA 2005.

o Dynamic voltage and frequency scaling
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EPI Throttling

Goal: Minimize execution time of parallel programs while
keeping power within a fixed budget

For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism

o P =EPI x IPS

o P = fixed power budget

o EPI = energy per instruction

o IPS = aggregate instructions retired per second

Idea: For a fixed power budget
o Run sequential phases on high-EPI processor

o Run parallel phases on multiple low-EPI processors
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EPI Throttling via DVES

DVFS: Dynamic voltage frequency scaling

In phases of low thread parallelism
o Run a few cores at high supply voltage and high frequency

In phases of high thread parallelism
o Run many cores at low supply voltage and low frequency
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Possible EPI Throttling Techniques

Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

Pl Range | Tim o Alts EP

Voltage /frequency 100us (ramp Vcc) Lower voltage and frequency

scaling

Asymmetric cores 10us (migrate 256KB | Migrate threads from large
L2 cache) cores to small cores

Variable-size core 1:1 to 1:2 Tus (fill 32KB L1 Reduce capacity of processor
cache) resources

Speculation control 1:1 to 1:1.4 10ns (pipeline Reduce amount of
latency) speculation
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Boosting Frequency of a Small Core vs. Large Core

Frequency boosting implemented on Intel Nehalem, IBM
POWER?7

Advantages of Boosting Frequency

+ Very simple to implement; no need to design a new core
+ Parallel throughput does not degrade when TLP is high
+ Preserves locality of boosted thread

Disadvantages
- Does not improve performance if thread is memory bound

- Does not reduce Cycles per Instruction (remember the
performance equation?)

- Changing frequency/voltage can take longer than switching to a

large core
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Uses of Asymmetry

So far:
o Improvement in serial performance (sequential bottleneck)

What else can we do with asymmetry?
o Energy reduction?

o Energy/performance tradeoff?

o Improvement in parallel portion?
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Use ot Asymmetry for Energy Etficiency

Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction,” MICRO 2003.

Idea:
o Implement multiple types of cores on chip
o Monitor characteristics of the running thread
e.g., sample energy/perf on each core periodically

o Dynamically pick the core that provides the best
energy/performance tradeoff for a given phase

“Best core” = Depends on optimization metric

Example: ARM’s big.LITTLE architecture
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Use of Asymmetry for Energy Etficiency

EVE-

Figure 1. Relative sizes of the Alpha cores scaled to 0.10 pm. EVE is 80 times
bigger but provides only two fo three times more single-threaded performance.

Table 1. Power and relative performance of Alpha cores scaled to
0.10 pm. Performance is expressed normalized to EV4 performance.

Peak power Average power Performance
Core (Watts) (Watts) (norm. IPC)
EV4 4.97 3.73 1.00
EV5 9.83 6.88 1.30
EVE 17.8 10.68 1.87
EVS 92.88 46.44 214
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Use ot Asymmetry for Energy Etficiency

Advantages
+ More flexibility in energy-performance tradeoff

+ Can execute computation to the core that is best suited for it (in terms of
energy)

Disadvantages/issues

- Incorrect predictions/sampling - wrong core - reduced performance or
increased energy

- Overhead of core switching
- Disadvantages of asymmetric CMP (e.g., design multiple cores)
- Need phase monitoring and matching algorithms

- What characteristics should be monitored?

- Once characteristics known, how do you pick the core?
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Functional vs. Performance Asymmetry

Functional asymmetry: Place on chip multiple cores with
different ISAs/interfaces

Examples

o CPU+GPU architectures (Intel Sandybridge, AMD APU, Nvidia
Tegra)
a SoC’s with different accelerators (e.g., Qualcomm)

Example: Nvidia Tegra
a /2-core GPU
o 4-core ARM processor
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Summary: Multi-Core Evolution

Symmetric Multi-core

o Evolution of Sun’ s and IBM’s Multicore systems and design
choices

o Niagara, Niagara 2, ROCK
o IBM POWERX

Asymmetric Multi-core

o Motivation

o Static vs. Dynamic Asymmetry

o EPI Throttling

o Use of Asymmetry for Energy Efficiency
o Functional vs. Performance Asymmetry
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Related Videos

= Multi-Core Systems and Heterogeneity

a http://www.youtube.com/watch?v=LIDxTOhPI2U&list=PLVhgZ
7BemHHV6NQejHhwOfLWTr8Q-UKXj&index=1

o http://www.youtube.com/watch?v=00zylLVnzkrM&list=PLVngZ
7BemHHV6NQ0ejiHhwOfLwTr80Q-UKXj&index=2
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EPI Throttling (Annavaram et al., ISCA’ 05)

Static AMP

Q

o O 0O 0O

Duty cycles set once prior to program run

Parallel phases run on 3P/1.25GHz

Sequential phases run on 1P/2GHz

Affinity guarantees sequential on 1P and parallel on 3

Benchmarks that rapidly transition between sequential and
parallel phases

Dynamic AMP

Q

Q
Q
Q

Duty cycle changes during program run

Parallel phases run on all or a subset of four processors
Sequential phases of execution on 1P/2GHz
Benchmarks with long sequential and parallel phases
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EPI Throttling (Annavaram et al., ISCA’ 05)

Evaluation on Base SMP: 4 Base SMP: 4-way 2GHz Xeon,
2MB L3, 4GB Memory

Hand-modified programs

o OMP threads set to 3 for static AMP

o Calls to set affinity in each thread for static AMP

o Calls to change duty cycle and to set affinity in dynamic AMP

AMP Configuration Programs
Static AMP: 1P/2GHz | wupwise, swim, mgrid,
or 3P/1.25GHz equake, fma3d, art, ammp,
BLAST, HMMER
Dynamic AMP: | applu, apsi, FFTW, TPC-H

1P/2GHz to 4P/1GHz
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EPI Throttling (Annavaram et al., ISCA’ 05)
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= Frequency boosting AMP improves performance compared
to 4-way SMP for many applications




EPI Throttling

Why does Frequency Boosting (FB) AMP not always
improve performance?

Loss of throughput in static AMP (only 3 processors in
parallel portion)

o Is this really the best way of using FB-AMP?

Rapid transitions between serial and parallel phases
o Data/thread migration and throttling overhead

Boosting frequency does not help memory-bound phases
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Use of ACMP to Improve Parallel Portion Performance

Mutual Exclusion:
o Threads are not allowed to update shared data concurrently

Accesses to shared data are encapsulated inside
critical sections

Only one thread can execute a critical section at
a given time

Idea: Ship critical sections to a large core

Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE
Micro Top Picks 2010.
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