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Multiple Cores on Chip 

 Simpler and lower power than a single large core 

 Large scale parallelism on chip 
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IBM Cell BE 
8+1 cores 

Intel Core i7 
8 cores 

Tilera TILE Gx 
100 cores, networked 

IBM POWER7 
8 cores 

Intel SCC 
48 cores, networked 

Nvidia Fermi 
448 “cores” 

AMD Barcelona 
4 cores 

Sun Niagara II 
8 cores 



With Multiple Cores on Chip 

 What we want: 

 N times the performance with N times the cores when we 
parallelize an application on N cores 

 

 What we get: 

 Amdahl’s Law (serial bottleneck) 

 Bottlenecks in the parallel portion 
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Caveats of Parallelism 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 
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Speedup = 
1 

+ 1 - f 
f 

N 



The Problem: Serialized Code Sections 

 Many parallel programs cannot be parallelized completely 

 

 Causes of serialized code sections 

 Sequential portions (Amdahl’s “serial part”) 

 Critical sections 

 Barriers 

 Limiter stages in pipelined programs 

 

 Serialized code sections 

 Reduce performance 

 Limit scalability 

 Waste energy 
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Example from MySQL 
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Demands in Different Code Sections 

 What we want: 

 

 In a serialized code section  one powerful “large” core  

 

 In a parallel code section  many wimpy “small” cores 

 

 These two conflict with each other: 

 If you have a single powerful core, you cannot have many 
cores 

 A small core is much more energy and area efficient than a 
large core 

 

7 



“Large” vs. “Small” Cores 

 

8 

• Out-of-order 
• Wide fetch e.g. 4-wide 
• Deeper pipeline 
• Aggressive branch 

predictor (e.g. hybrid) 
• Multiple functional units 
• Trace cache 
• Memory dependence 

speculation 

• In-order 

• Narrow Fetch e.g. 2-wide 

• Shallow pipeline 

• Simple branch predictor 

(e.g. Gshare) 

• Few functional units 

Large 

Core 
Small 

Core 

Large Cores are power inefficient: 
e.g., 2x performance for 4x area (power) 



Large vs. Small Cores 

 Grochowski et al., “Best of both Latency and Throughput,” 
ICCD 2004. 
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Meet Small Cores: Piranha Chip Multiprocessor 

 Barroso et al., “Piranha: A Scalable Architecture Based on Single-
Chip Multiprocessing,” ISCA 2000. 

 

 An early example of a symmetric multi-core processor 

 Large-scale server based on CMP nodes 

 Designed for commercial workloads 

 

 Read: 

 Barroso et al., “Memory System Characterization of Commercial 
Workloads,” ISCA 1998. 

 Ranganathan et al., “Performance of Database Workloads on 
Shared-Memory Systems with Out-of-Order Processors,” ASPLOS 
1998. 

 



Commercial Workload Characteristics 

 Memory system is the main bottleneck  

 Very high CPI  

 Execution time dominated by memory stall times  

 Instruction stalls as important as data stalls  

 Fast/large L2 caches are critical  

 

 Very poor Instruction Level Parallelism (ILP) with existing 
techniques  

 Frequent hard-to-predict branches  

 Large L1 miss ratios  

 Small gains from wide-issue out-of-order techniques 

 

 No need for floating point and multimedia units 
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Piranha Processing Node 

Alpha core: 

   1-issue, in-order, 

   500MHz 

 
CPU 

Next few slides from 

Luiz Barroso’s ISCA 2000 presentation of 

Piranha: A Scalable Architecture 

Based on Single-Chip Multiprocessing 
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Piranha Processing Node 
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Inter-Node Coherence Protocol Engine 
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Piranha System 
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Piranha I/O Node 
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Meet Small: Sun Niagara (UltraSPARC T1) 

24 

 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC 
Processor,” IEEE Micro 2005. 

 



Niagara Core 

 4-way fine-grain multithreaded, 6-stage, dual-issue in-order 

 Round robin thread selection (unless cache miss) 

 Shared FP unit among cores 

 

25 



Niagara Design Point 

 Designed for commercial applications 
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Meet Small: Sun Niagara II (UltraSPARC T2) 

 8 SPARC cores, 8 

threads/core. 8 stages. 16 KB 

I$ per Core. 8 KB D$ per 

Core. FP, Graphics, Crypto, 

units per Core.  

 

 4 MB Shared L2, 8 banks, 16-

way set associative.  

 

 4 dual-channel FBDIMM 

memory controllers. 

 

 X8 PCI-Express @ 2.5 Gb/s. 

 

 Two 10G Ethernet ports @ 

3.125 Gb/s. 
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Meet Small, but Larger: Sun ROCK  

 Chaudhry et al., “Rock: A High-Performance Sparc CMT Processor,” 
IEEE Micro, 2009. 

 Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline 
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009 

 

 Goals: 

 Maximize throughput when threads are available 

 Boost single-thread performance when threads are not 
available and on cache misses 

 Ideas:  

 Runahead on a cache miss  ahead thread executes miss-

independent instructions, behind thread executes dependent 
instructions 

 Branch prediction (gshare) 
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Sun ROCK 

 16 cores, 2 threads 
per core (fewer 
threads than Niagara 
2) 

 4 cores share a 32KB 
instruction cache 

 2 cores share a 32KB 
data cache 

 2MB L2 cache (smaller 
than Niagara 2) 
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Runahead Execution (I) 

 A simple pre-execution method for prefetching purposes 

 Mutlu et al., “Runahead Execution: An Alternative to Very 
Large Instruction Windows for Out-of-order Processors,” 
HPCA 2003, IEEE Micro 2003. 

 

 When the oldest instruction is a long-latency cache miss: 

 Checkpoint architectural state and enter runahead mode 

 In runahead mode: 

 Speculatively pre-execute instructions 

 The purpose of pre-execution is to generate prefetches 

 L2-miss dependent instructions are marked INV and dropped 

 Runahead mode ends when the original miss returns 

 Checkpoint is restored and normal execution resumes 
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Runahead Execution (II) 
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Compute 

Compute 

Load 1 Miss 

Miss 1 

Stall Compute 

Load 2 Miss 

Miss 2 

Stall 

Load 1 Miss 

Runahead 

Load 2 Miss Load 2 Hit 

Miss 1 

Miss 2 

Compute 

Load 1 Hit 

Saved Cycles 

Small Window: 

Runahead: 



Runahead Execution (III) 

 Advantages 
+ Very accurate prefetches for data/instructions (all cache levels) 

    + Follows the program path 

+ Simple to implement, most of the hardware is already built in 

 Disadvantages 
-- Extra executed instructions 

 Limitations 
-- Limited by branch prediction accuracy 

-- Cannot prefetch dependent cache misses. Solution? 

-- Effectiveness limited by available Memory Level Parallelism 

 

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient 
Memory Latency Tolerance,” IEEE Micro Jan/Feb 2006. 

 Implemented in IBM POWER6, Sun ROCK 
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Performance of Runahead Execution (II) 
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More Powerful Cores in Sun ROCK 

 Chaudhry talk, Aug 2008. 

35 



Sun ROCK Cores: Speculative Parallelization 

 Load miss in L1 cache starts parallelization using 2 HW threads 

 Ahead thread  

 Checkpoints state and executes speculatively  

 Speculatively executes instructions independent of the load miss  

 Defers load miss(es) and dependent instructions to the behind thread  

 Behind thread  

 Executes deferred instructions and re-defers them if necessary 

 

 Exploits Memory-Level Parallelism (MLP)  

 Run ahead on load miss and generate additional load misses  

 Exploits Instruction-Level Parallelism (ILP)  

 Ahead and behind threads execute independent instructions from 
different points in program in parallel 
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ROCK Pipeline 
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More Powerful Cores in Sun ROCK 

 Advantages 

+ Higher single-thread performance (MLP + ILP) 

+ Better cache miss tolerance  Can reduce on-chip cache sizes 

 

 

 

 Disadvantages 

- Bigger cores  Fewer cores  Lower parallel throughput (in 

terms of threads).  

 How about each thread’s response time? 

- More complex than Niagara cores (but simpler than 
conventional out-of-order execution)  Longer design time? 
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More Powerful Cores in Sun ROCK 

 Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline 
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009 
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Meet Large: IBM POWER4 

 Tendler et al., “POWER4 system microarchitecture,” IBM J 
R&D, 2002. 

 

 Another symmetric multi-core chip… 

 But, fewer and more powerful cores 
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IBM POWER4 

 2 cores, out-of-order execution 

 100-entry instruction window in each core 

 8-wide instruction fetch, issue, execute 

 Large, local+global hybrid branch predictor 

 1.5MB, 8-way L2 cache 

 Aggressive stream based prefetching 
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IBM POWER5 

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE 
Micro 2004. 
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Meet Large, but Smaller: IBM POWER6 

 Le et al., “IBM POWER6 
microarchitecture,” IBM J R&D, 
2007. 

 

 2 cores, in order, high 
frequency (4.7 GHz) 

 8 wide fetch 

 Simultaneous multithreading in 
each core 

 Runahead execution in each 
core 

 Similar to Sun ROCK 
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IBM POWER7 

 Kalla et al., “Power7: IBM’s Next-Generation Server 
Processor,” IEEE Micro 2010. 

 8 out-of-order cores, 4-way SMT in each core 

 TurboCore mode  

 Can turn off cores so that other cores can be run at higher 
frequency 
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Remember the Demands 

 What we want: 

 

 In a serialized code section  one powerful “large” core  

 

 In a parallel code section  many wimpy “small” cores 

 

 These two conflict with each other: 

 If you have a single powerful core, you cannot have many 
cores 

 A small core is much more energy and area efficient than a 
large core 

 

 Can we get the best of both worlds? 
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Performance vs. Parallelism 
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Assumptions: 

 1. Small cores takes an area budget of 1 and has  

 performance  of 1 

  

 2. Large core takes an area budget of 4 and has 

 performance of 2 

  

  



Tile-Large Approach 

 

 

 

 

 

 

 

 

 Tile a few large cores 

 IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem 

+ High performance on single thread, serial code sections (2 units) 

- Low throughput on parallel program portions (8 units) 
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Tile-Small Approach 

 

 

 

 

 

 

 

 

 Tile many small cores 

 Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small) 

+ High throughput on the parallel part (16 units) 

- Low performance on the serial part, single thread (1 unit) 
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Can we get the best of both worlds? 

 Tile Large 

 + High performance on single thread, serial code sections (2 
units) 

 - Low throughput on parallel program portions (8 units) 

 

 Tile Small 

 + High throughput on the parallel part (16 units) 

 - Low performance on the serial part, single thread (1 unit), 
reduced single-thread performance compared to existing single 
thread processors 

 

 Idea: Have both large and small on the same chip  

Performance asymmetry 
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Asymmetric Multi-Core 
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Asymmetric Chip Multiprocessor (ACMP) 

 

 

 

 

 

 

 

 

 Provide one large core and many small cores 

+ Accelerate serial part using the large core (2 units) 

+ Execute parallel part on small cores and large core for high 
throughput (12+2 units) 
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Accelerating Serial Bottlenecks 
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Performance vs. Parallelism 
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Assumptions: 

 1. Small cores takes an area budget of 1 and has  

 performance  of 1 

  

 2. Large core takes an area budget of 4 and has 

 performance of 2 

  

  



ACMP Performance vs. Parallelism 
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Some Analysis  

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE 
Computer 2008. 

 Each Chip Bounded to N BCEs (Base Core Equivalents) 

 One R-BCE Core leaves N-R BCEs 

 Use N-R BCEs for N-R Base Cores 

 Therefore, 1 + N - R Cores per Chip 

 For an N = 16 BCE Chip: 
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Symmetric: Four 4-BCE cores Asymmetric: One 4-BCE core 

& Twelve 1-BCE base cores 



Amdahl’s Law Modified  

 Serial Fraction 1-F same, so time = (1 – F) / Perf(R)  
 

 Parallel Fraction F 

 One core at rate Perf(R) 

 N-R cores at rate 1 

 Parallel time = F / (Perf(R) + N - R) 
 

 Therefore, w.r.t. one base core: 
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Asymmetric Speedup  = 

1 

+ 
1 - F 

Perf(R) 

F 

Perf(R) + N - R 



Asymmetric Multicore Chip, N = 256 BCEs 

 

 

 

 

 

 

 

 

 

 

 

 Number of Cores = 1 (Enhanced) + 256 – R (Base) 
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Symmetric Multicore Chip, N = 256 BCEs 
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Asymmetric Multicore Chip, N = 256 BCEs 

 

 

 

 

 

 

 

 

 

 

 Asymmetric multi-core provides better speedup than 
symmetric multi-core when N is large 
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Asymmetric vs. Symmetric Cores 

 Advantages of Asymmetric 

+ Can provide better performance when thread parallelism is 
limited 

+ Can be more energy efficient 

 + Schedule computation to the core type that can best execute it 

 

 Disadvantages 

- Need to design more than one type of core. Always? 

- Scheduling becomes more complicated 

 - What computation should be scheduled on the large core? 

    - Who should decide? HW vs. SW? 

- Managing locality and load balancing can become difficult if 
threads move between cores (transparently to software) 

- Cores have different demands from shared resources 
60 



Caveats of Parallelism, Revisited 

 Amdahl’s Law 

 f: Parallelizable fraction of a program 

 N: Number of processors 

 

 

 

 
 Amdahl, “Validity of the single processor approach to achieving large scale 

computing capabilities,” AFIPS 1967.  

 Maximum speedup limited by serial portion: Serial bottleneck 

 Parallel portion is usually not perfectly parallel 

 Synchronization overhead (e.g., updates to shared data) 

 Load imbalance overhead (imperfect parallelization) 

 Resource sharing overhead (contention among N processors) 
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Speedup = 
1 

+ 1 - f 
f 

N 



Accelerating Parallel Bottlenecks 

 Serialized or imbalanced execution in the parallel portion 
can also benefit from a large core 

 

 Examples: 

 Critical sections that are contended 

 Parallel stages that take longer than others to execute 

 

 Idea: Dynamically identify these code portions that cause 
serialization and execute them on a large core 

 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top 
Picks 2010.  

 Joao et al., “Bottleneck Identification and Scheduling,” ASPLOS 2012. 
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How to Achieve Asymmetry 

 Static 

 Type and power of cores fixed at design time 

 Two approaches to design “faster cores”: 

 High frequency 

 Build a more complex, powerful core with entirely different uarch 

 Is static asymmetry natural? (chip-wide variations in frequency) 

 

 Dynamic 

 Type and power of cores change dynamically 

 Two approaches to dynamically create “faster cores”: 

 Boost frequency dynamically (limited power budget)  

 Combine small cores to enable a more complex, powerful core  

 Is there a third, fourth, fifth approach? 
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Asymmetry via Boosting of Frequency 

 Static 

 Due to process variations, cores might have different 
frequency 

 Simply hardwire/design cores to have different frequencies 

 

 Dynamic 

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI 
Throttling,” ISCA 2005. 

 Dynamic voltage and frequency scaling 
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EPI Throttling 

 Goal: Minimize execution time of parallel programs while 
keeping power within a fixed budget  
 

 For best scalar and throughput performance, vary energy 
expended per instruction (EPI) based on available 
parallelism  

 P = EPI x IPS  

 P = fixed power budget  

 EPI = energy per instruction  

 IPS = aggregate instructions retired per second  
 

 Idea: For a fixed power budget  

 Run sequential phases on high-EPI processor  

 Run parallel phases on multiple low-EPI processors 
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EPI Throttling via DVFS 

 DVFS: Dynamic voltage frequency scaling 

 

 In phases of low thread parallelism 

 Run a few cores at high supply voltage and high frequency 

 

 In phases of high thread parallelism 

 Run many cores at low supply voltage and low frequency 
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Possible EPI Throttling Techniques 

 Grochowski et al., “Best of both Latency and Throughput,” 
ICCD 2004. 
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Boosting Frequency of a Small Core vs. Large Core 

 Frequency boosting implemented on Intel Nehalem, IBM 
POWER7 

 

 Advantages of Boosting Frequency 

+ Very simple to implement; no need to design a new core 

+ Parallel throughput does not degrade when TLP is high 

+ Preserves locality of boosted thread 

 

 Disadvantages 

- Does not improve performance if thread is memory bound 

- Does not reduce Cycles per Instruction (remember the 
performance equation?) 

- Changing frequency/voltage can take longer than switching to a 
large core  
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Uses of Asymmetry 

 So far: 

 Improvement in serial performance (sequential bottleneck) 

 

 What else can we do with asymmetry? 

 Energy reduction? 

 Energy/performance tradeoff?  

 Improvement in parallel portion? 
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Use of Asymmetry for Energy Efficiency 

 Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: 
The Potential for Processor Power Reduction,” MICRO 2003. 

 

 Idea:  

 Implement multiple types of cores on chip 

 Monitor characteristics of the running thread  

 e.g., sample energy/perf on each core periodically 

 Dynamically pick the core that provides the best 
energy/performance tradeoff for a given phase 

 “Best core”  Depends on optimization metric 

 

 Example: ARM’s big.LITTLE architecture 
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Use of Asymmetry for Energy Efficiency 
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Use of Asymmetry for Energy Efficiency 

 Advantages  

+ More flexibility in energy-performance tradeoff 

+ Can execute computation to the core that is best suited for it (in terms of 
energy) 

 

 Disadvantages/issues 

- Incorrect predictions/sampling  wrong core  reduced performance or 

increased energy 

- Overhead of core switching 

- Disadvantages of asymmetric CMP (e.g., design multiple cores) 

- Need phase monitoring and matching algorithms 

 - What characteristics should be monitored? 

 - Once characteristics known, how do you pick the core?  
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Functional vs. Performance Asymmetry 

 Functional asymmetry: Place on chip multiple cores with 
different ISAs/interfaces 

 

 Examples 

 CPU+GPU architectures (Intel Sandybridge, AMD APU, Nvidia 
Tegra) 

 SoC’s with different accelerators (e.g., Qualcomm) 

 

 Example: Nvidia Tegra 

 72-core GPU 

 4-core ARM processor 
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Summary: Multi-Core Evolution 

 Symmetric Multi-core 

 Evolution of Sun’s and IBM’s Multicore systems and design 
choices 

 Niagara, Niagara 2, ROCK 

 IBM POWERx  

 

 Asymmetric Multi-core 

 Motivation 

 Static vs. Dynamic Asymmetry 

 EPI Throttling 

 Use of Asymmetry for Energy Efficiency 

 Functional vs. Performance Asymmetry 
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Related Videos 

 Multi-Core Systems and Heterogeneity 

 http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ
7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1 

 http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ
7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2 
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More on EPI Throttling 
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EPI Throttling (Annavaram et al., ISCA’05) 

 Static AMP  

 Duty cycles set once prior to program run  

 Parallel phases run on 3P/1.25GHz  

 Sequential phases run on 1P/2GHz  

 Affinity guarantees sequential on 1P and parallel on 3 

 Benchmarks that rapidly transition between sequential and 
parallel phases  

 

 Dynamic AMP  

 Duty cycle changes during program run  

 Parallel phases run on all or a subset of four processors 

 Sequential phases of execution on 1P/2GHz  

 Benchmarks with long sequential and parallel phases 
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EPI Throttling (Annavaram et al., ISCA’05) 

 Evaluation on Base SMP: 4 Base SMP: 4-way 2GHz Xeon, 
2MB L3, 4GB Memory 

 

 Hand-modified programs  

 OMP threads set to 3 for static AMP  

 Calls to set affinity in each thread for static AMP  

 Calls to change duty cycle and to set affinity in dynamic AMP  
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EPI Throttling (Annavaram et al., ISCA’05) 

 

 

 

 

 

 

 

 

 

 

 Frequency boosting AMP improves performance compared 
to 4-way SMP for many applications 

83 



EPI Throttling 

 Why does Frequency Boosting (FB) AMP not always 
improve performance? 

 

 Loss of throughput in static AMP (only 3 processors in 
parallel portion) 

 Is this really the best way of using FB-AMP? 

 

 Rapid transitions between serial and parallel phases 

 Data/thread migration and throttling overhead  

 

 Boosting frequency does not help memory-bound phases 
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Use of ACMP to Improve Parallel Portion Performance 

 Mutual Exclusion: 

 Threads are not allowed to update shared data concurrently 

 

 Accesses to shared data are encapsulated inside  
critical sections 

 

 Only one thread can execute a critical section at  
a given time 

 

 Idea: Ship critical sections to a large core 

 Suleman et al., “Accelerating Critical Section Execution with 
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE 
Micro Top Picks 2010.  

 

 
85 


