
Computer Architecture:

Multi-Core Evolution and Design

Prof. Onur Mutlu

Carnegie Mellon University

Multiple Cores on Chip

 Simpler and lower power than a single large core

 Large scale parallelism on chip

2

IBM Cell BE
8+1 cores

Intel Core i7
8 cores

Tilera TILE Gx
100 cores, networked

IBM POWER7
8 cores

Intel SCC
48 cores, networked

Nvidia Fermi
448 “cores”

AMD Barcelona
4 cores

Sun Niagara II
8 cores

With Multiple Cores on Chip

 What we want:

 N times the performance with N times the cores when we
parallelize an application on N cores

 What we get:

 Amdahl’s Law (serial bottleneck)

 Bottlenecks in the parallel portion

3

Caveats of Parallelism

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

4

Speedup =
1

+ 1 - f
f

N

The Problem: Serialized Code Sections

 Many parallel programs cannot be parallelized completely

 Causes of serialized code sections

 Sequential portions (Amdahl’s “serial part”)

 Critical sections

 Barriers

 Limiter stages in pipelined programs

 Serialized code sections

 Reduce performance

 Limit scalability

 Waste energy

 5

Example from MySQL

6

Open database tables

Perform the operations
….

Critical

Section

Parallel

Access Open Tables Cache

0

1

2

3

4

5

6

7

8

0 8 16 24 32
0

1

2

3

4

5

6

7

8

0 8 16 24 32

Chip Area (cores)

S
p
e
e
d
u
p

Today

???

Demands in Different Code Sections

 What we want:

 In a serialized code section  one powerful “large” core

 In a parallel code section  many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many
cores

 A small core is much more energy and area efficient than a
large core

7

“Large” vs. “Small” Cores

8

• Out-of-order
• Wide fetch e.g. 4-wide
• Deeper pipeline
• Aggressive branch

predictor (e.g. hybrid)
• Multiple functional units
• Trace cache
• Memory dependence

speculation

• In-order

• Narrow Fetch e.g. 2-wide

• Shallow pipeline

• Simple branch predictor

(e.g. Gshare)

• Few functional units

Large

Core
Small

Core

Large Cores are power inefficient:
e.g., 2x performance for 4x area (power)

Large vs. Small Cores

 Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

9

Meet Small Cores: Piranha Chip Multiprocessor

 Barroso et al., “Piranha: A Scalable Architecture Based on Single-
Chip Multiprocessing,” ISCA 2000.

 An early example of a symmetric multi-core processor

 Large-scale server based on CMP nodes

 Designed for commercial workloads

 Read:

 Barroso et al., “Memory System Characterization of Commercial
Workloads,” ISCA 1998.

 Ranganathan et al., “Performance of Database Workloads on
Shared-Memory Systems with Out-of-Order Processors,” ASPLOS
1998.

Commercial Workload Characteristics

 Memory system is the main bottleneck

 Very high CPI

 Execution time dominated by memory stall times

 Instruction stalls as important as data stalls

 Fast/large L2 caches are critical

 Very poor Instruction Level Parallelism (ILP) with existing
techniques

 Frequent hard-to-predict branches

 Large L1 miss ratios

 Small gains from wide-issue out-of-order techniques

 No need for floating point and multimedia units

11

Piranha Processing Node

Alpha core:

 1-issue, in-order,

 500MHz

CPU

Next few slides from

Luiz Barroso’s ISCA 2000 presentation of

Piranha: A Scalable Architecture

Based on Single-Chip Multiprocessing

Piranha Processing Node

CPU

Alpha core:

 1-issue, in-order,

 500MHz

L1 caches:

 I&D, 64KB, 2-way

D$ I$

Piranha Processing Node

CPU

Alpha core:

 1-issue, in-order,

 500MHz

L1 caches:

 I&D, 64KB, 2-way

Intra-chip switch (ICS)

 32GB/sec, 1-cycle

delay

D$ I$

ICS

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

CPU

D$ I$

Piranha Processing Node

CPU

Alpha core:

 1-issue, in-order,

 500MHz

L1 caches:

 I&D, 64KB, 2-way

Intra-chip switch (ICS)

 32GB/sec, 1-cycle

delay

L2 cache:

 shared, 1MB, 8-way

D$ I$

L2$

ICS

CPU

D$ I$

L2$

L2$

CPU

D$ I$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

L2$

CPU

D$ I$
L2$

CPU

D$ I$

Piranha Processing Node

CPU

Alpha core:

 1-issue, in-order,

 500MHz

L1 caches:

 I&D, 64KB, 2-way

Intra-chip switch (ICS)

 32GB/sec, 1-cycle

delay

L2 cache:

 shared, 1MB, 8-way

Memory Controller

(MC)

 RDRAM, 12.8GB/sec

D$ I$

L2$

ICS

CPU

D$ I$

L2$

L2$

CPU

D$ I$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

L2$

CPU

D$ I$
L2$

CPU

D$ I$

MEM-CTL

MEM-CTL

MEM-CTL MEM-CTL MEM-CTL

MEM-CTL MEM-CTL MEM-CTL

8 banks

@1.6GB/sec

Piranha Processing Node

CPU

Alpha core:

 1-issue, in-order,

 500MHz

L1 caches:

 I&D, 64KB, 2-way

Intra-chip switch (ICS)

 32GB/sec, 1-cycle

delay

L2 cache:

 shared, 1MB, 8-way

Memory Controller (MC)

 RDRAM, 12.8GB/sec

Protocol Engines (HE &

RE)

 prog., 1K instr.,

 even/odd interleaving

D$ I$

L2$

ICS

CPU

D$ I$

L2$

L2$

CPU

D$ I$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

L2$

CPU

D$ I$
L2$

CPU

D$ I$

MEM-CTL

MEM-CTL

MEM-CTL MEM-CTL MEM-CTL

MEM-CTL MEM-CTL MEM-CTL

RE

HE

Piranha Processing Node

CPU

Alpha core:

 1-issue, in-order,

 500MHz

L1 caches:

 I&D, 64KB, 2-way

Intra-chip switch (ICS)

 32GB/sec, 1-cycle

delay

L2 cache:

 shared, 1MB, 8-way

Memory Controller (MC)

 RDRAM, 12.8GB/sec

Protocol Engines (HE &

RE):

 prog., 1K instr.,

 even/odd interleaving

System Interconnect:

 4-port Xbar router

 topology independent

 32GB/sec total

bandwidth

D$ I$

L2$

ICS

CPU

D$ I$

L2$

L2$

CPU

D$ I$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

L2$

CPU

D$ I$
L2$

CPU

D$ I$

MEM-CTL

MEM-CTL

MEM-CTL MEM-CTL MEM-CTL

MEM-CTL MEM-CTL MEM-CTL

RE

HE

R
o

u
te

r

4 Links

@ 8GB/s

Piranha Processing Node

CPU

Alpha core:

 1-issue, in-order,

 500MHz

L1 caches:

 I&D, 64KB, 2-way

Intra-chip switch (ICS)

 32GB/sec, 1-cycle

delay

L2 cache:

 shared, 1MB, 8-way

Memory Controller (MC)

 RDRAM, 12.8GB/sec

Protocol Engines (HE &

RE):

 prog., 1K instr.,

 even/odd interleaving

System Interconnect:

 4-port Xbar router

 topology independent

 32GB/sec total

bandwidth

D$ I$

L2$

ICS

CPU

D$ I$

L2$

L2$

CPU

D$ I$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

CPU

D$ I$
L2$

L2$

CPU

D$ I$
L2$

CPU

D$ I$

MEM-CTL

MEM-CTL

MEM-CTL MEM-CTL MEM-CTL

MEM-CTL MEM-CTL MEM-CTL

RE

HE

R
o

u
te

r

Piranha Processing Node

20

Inter-Node Coherence Protocol Engine

21

Piranha System

22

Piranha I/O Node

23

Meet Small: Sun Niagara (UltraSPARC T1)

24

 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC
Processor,” IEEE Micro 2005.

Niagara Core

 4-way fine-grain multithreaded, 6-stage, dual-issue in-order

 Round robin thread selection (unless cache miss)

 Shared FP unit among cores

25

Niagara Design Point

 Designed for commercial applications

26

Meet Small: Sun Niagara II (UltraSPARC T2)

 8 SPARC cores, 8

threads/core. 8 stages. 16 KB

I$ per Core. 8 KB D$ per

Core. FP, Graphics, Crypto,

units per Core.

 4 MB Shared L2, 8 banks, 16-

way set associative.

 4 dual-channel FBDIMM

memory controllers.

 X8 PCI-Express @ 2.5 Gb/s.

 Two 10G Ethernet ports @

3.125 Gb/s.

27

Meet Small, but Larger: Sun ROCK

 Chaudhry et al., “Rock: A High-Performance Sparc CMT Processor,”
IEEE Micro, 2009.

 Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

 Goals:

 Maximize throughput when threads are available

 Boost single-thread performance when threads are not
available and on cache misses

 Ideas:

 Runahead on a cache miss  ahead thread executes miss-

independent instructions, behind thread executes dependent
instructions

 Branch prediction (gshare)

 28

Sun ROCK

 16 cores, 2 threads
per core (fewer
threads than Niagara
2)

 4 cores share a 32KB
instruction cache

 2 cores share a 32KB
data cache

 2MB L2 cache (smaller
than Niagara 2)

29

Runahead Execution (I)

 A simple pre-execution method for prefetching purposes

 Mutlu et al., “Runahead Execution: An Alternative to Very
Large Instruction Windows for Out-of-order Processors,”
HPCA 2003, IEEE Micro 2003.

 When the oldest instruction is a long-latency cache miss:

 Checkpoint architectural state and enter runahead mode

 In runahead mode:

 Speculatively pre-execute instructions

 The purpose of pre-execution is to generate prefetches

 L2-miss dependent instructions are marked INV and dropped

 Runahead mode ends when the original miss returns

 Checkpoint is restored and normal execution resumes

30

Runahead Execution (II)

31

Compute

Compute

Load 1 Miss

Miss 1

Stall Compute

Load 2 Miss

Miss 2

Stall

Load 1 Miss

Runahead

Load 2 Miss Load 2 Hit

Miss 1

Miss 2

Compute

Load 1 Hit

Saved Cycles

Small Window:

Runahead:

Runahead Execution (III)

 Advantages
+ Very accurate prefetches for data/instructions (all cache levels)

 + Follows the program path

+ Simple to implement, most of the hardware is already built in

 Disadvantages
-- Extra executed instructions

 Limitations
-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses. Solution?

-- Effectiveness limited by available Memory Level Parallelism

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” IEEE Micro Jan/Feb 2006.

 Implemented in IBM POWER6, Sun ROCK

32

33

12%

35%

13%

15%

22% 12%

16% 52%

22%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s
P

er
 C

y
cl

e

No prefetcher, no runahead

Only prefetcher (baseline)

Only runahead

Prefetcher + runahead

Performance of Runahead Execution

34

Performance of Runahead Execution (II)

39%

50%28%

14%

20%

17%

73%

73%

15%

20%

47%15%

12%

22%

13%

16%

23%

10%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

M
ic

ro
-o

p
er

a
ti

o
n

s
P

er
 C

y
cl

e

in-order baseline

in-order + runahead

out-of-order baseline

out-of-order + runahead

More Powerful Cores in Sun ROCK

 Chaudhry talk, Aug 2008.

35

Sun ROCK Cores: Speculative Parallelization

 Load miss in L1 cache starts parallelization using 2 HW threads

 Ahead thread

 Checkpoints state and executes speculatively

 Speculatively executes instructions independent of the load miss

 Defers load miss(es) and dependent instructions to the behind thread

 Behind thread

 Executes deferred instructions and re-defers them if necessary

 Exploits Memory-Level Parallelism (MLP)

 Run ahead on load miss and generate additional load misses

 Exploits Instruction-Level Parallelism (ILP)

 Ahead and behind threads execute independent instructions from
different points in program in parallel

36

ROCK Pipeline

37

More Powerful Cores in Sun ROCK

 Advantages

+ Higher single-thread performance (MLP + ILP)

+ Better cache miss tolerance  Can reduce on-chip cache sizes

 Disadvantages

- Bigger cores  Fewer cores  Lower parallel throughput (in

terms of threads).

 How about each thread’s response time?

- More complex than Niagara cores (but simpler than
conventional out-of-order execution)  Longer design time?

38

More Powerful Cores in Sun ROCK

 Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

39

Meet Large: IBM POWER4

 Tendler et al., “POWER4 system microarchitecture,” IBM J
R&D, 2002.

 Another symmetric multi-core chip…

 But, fewer and more powerful cores

40

IBM POWER4

 2 cores, out-of-order execution

 100-entry instruction window in each core

 8-wide instruction fetch, issue, execute

 Large, local+global hybrid branch predictor

 1.5MB, 8-way L2 cache

 Aggressive stream based prefetching

41

IBM POWER5

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

42

Meet Large, but Smaller: IBM POWER6

 Le et al., “IBM POWER6
microarchitecture,” IBM J R&D,
2007.

 2 cores, in order, high
frequency (4.7 GHz)

 8 wide fetch

 Simultaneous multithreading in
each core

 Runahead execution in each
core

 Similar to Sun ROCK

43

IBM POWER7

 Kalla et al., “Power7: IBM’s Next-Generation Server
Processor,” IEEE Micro 2010.

 8 out-of-order cores, 4-way SMT in each core

 TurboCore mode

 Can turn off cores so that other cores can be run at higher
frequency

44

Remember the Demands

 What we want:

 In a serialized code section  one powerful “large” core

 In a parallel code section  many wimpy “small” cores

 These two conflict with each other:

 If you have a single powerful core, you cannot have many
cores

 A small core is much more energy and area efficient than a
large core

 Can we get the best of both worlds?

45

Performance vs. Parallelism

46

Assumptions:

 1. Small cores takes an area budget of 1 and has

 performance of 1

 2. Large core takes an area budget of 4 and has

 performance of 2

Tile-Large Approach

 Tile a few large cores

 IBM Power 5, AMD Barcelona, Intel Core2Quad, Intel Nehalem

+ High performance on single thread, serial code sections (2 units)

- Low throughput on parallel program portions (8 units)

47

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Tile-Small Approach

 Tile many small cores

 Sun Niagara, Intel Larrabee, Tilera TILE (tile ultra-small)

+ High throughput on the parallel part (16 units)

- Low performance on the serial part, single thread (1 unit)

48

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Can we get the best of both worlds?

 Tile Large

 + High performance on single thread, serial code sections (2
units)

 - Low throughput on parallel program portions (8 units)

 Tile Small

 + High throughput on the parallel part (16 units)

 - Low performance on the serial part, single thread (1 unit),
reduced single-thread performance compared to existing single
thread processors

 Idea: Have both large and small on the same chip 

Performance asymmetry

 49

Asymmetric Multi-Core

50

Asymmetric Chip Multiprocessor (ACMP)

 Provide one large core and many small cores

+ Accelerate serial part using the large core (2 units)

+ Execute parallel part on small cores and large core for high
throughput (12+2 units)

51

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Accelerating Serial Bottlenecks

52

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP Approach

Single thread  Large core

Performance vs. Parallelism

53

Assumptions:

 1. Small cores takes an area budget of 1 and has

 performance of 1

 2. Large core takes an area budget of 4 and has

 performance of 2

ACMP Performance vs. Parallelism

54 54

Large

core

Large

core

Large

core

Large

core

“Tile-Large”

Large

Cores

4 0 1

Small

Cores

0 16 12

Serial

Performance

2 1 2

Parallel

Throughput

2 x 4 = 8 1 x 16 = 16 1x2 + 1x12 = 14

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

“Tile-Small”

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Small

core

Large

core

ACMP

Area-budget = 16 small cores

Some Analysis

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE
Computer 2008.

 Each Chip Bounded to N BCEs (Base Core Equivalents)

 One R-BCE Core leaves N-R BCEs

 Use N-R BCEs for N-R Base Cores

 Therefore, 1 + N - R Cores per Chip

 For an N = 16 BCE Chip:

55

Symmetric: Four 4-BCE cores Asymmetric: One 4-BCE core

& Twelve 1-BCE base cores

Amdahl’s Law Modified

 Serial Fraction 1-F same, so time = (1 – F) / Perf(R)

 Parallel Fraction F

 One core at rate Perf(R)

 N-R cores at rate 1

 Parallel time = F / (Perf(R) + N - R)

 Therefore, w.r.t. one base core:

56

Asymmetric Speedup =

1

+
1 - F

Perf(R)

F

Perf(R) + N - R

Asymmetric Multicore Chip, N = 256 BCEs

 Number of Cores = 1 (Enhanced) + 256 – R (Base)

 57

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

A
sy

m
m

et
ri

c
Sp

e
e

d
u

p

R BCEs

F=0.999

F=0.99

F=0.975

F=0.9

F=0.5

Symmetric Multicore Chip, N = 256 BCEs

58

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

Sy
m

m
et

ri
c

Sp
e

e
d

u
p

R BCEs

F=0.999

F=0.99

F=0.975

F=0.9

F=0.5

F=0.9, R=28, Cores=9, Speedup=26.7

Asymmetric Multicore Chip, N = 256 BCEs

 Asymmetric multi-core provides better speedup than
symmetric multi-core when N is large

59

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

A
sy

m
m

et
ri

c
Sp

e
e

d
u

p

R BCEs

F=0.999

F=0.99

F=0.975

F=0.9

F=0.5

F=0.9

R=118 (vs. 28)

Cores= 139 (vs. 9)

Speedup=65.6

 (vs. 26.7)

F=0.99

R=41 (vs. 3)

Cores=216 (vs. 85)

Speedup=166 (vs. 80)

Asymmetric vs. Symmetric Cores

 Advantages of Asymmetric

+ Can provide better performance when thread parallelism is
limited

+ Can be more energy efficient

 + Schedule computation to the core type that can best execute it

 Disadvantages

- Need to design more than one type of core. Always?

- Scheduling becomes more complicated

 - What computation should be scheduled on the large core?

 - Who should decide? HW vs. SW?

- Managing locality and load balancing can become difficult if
threads move between cores (transparently to software)

- Cores have different demands from shared resources
60

Caveats of Parallelism, Revisited

 Amdahl’s Law

 f: Parallelizable fraction of a program

 N: Number of processors

 Amdahl, “Validity of the single processor approach to achieving large scale

computing capabilities,” AFIPS 1967.

 Maximum speedup limited by serial portion: Serial bottleneck

 Parallel portion is usually not perfectly parallel

 Synchronization overhead (e.g., updates to shared data)

 Load imbalance overhead (imperfect parallelization)

 Resource sharing overhead (contention among N processors)

61

Speedup =
1

+ 1 - f
f

N

Accelerating Parallel Bottlenecks

 Serialized or imbalanced execution in the parallel portion
can also benefit from a large core

 Examples:

 Critical sections that are contended

 Parallel stages that take longer than others to execute

 Idea: Dynamically identify these code portions that cause
serialization and execute them on a large core

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE Micro Top
Picks 2010.

 Joao et al., “Bottleneck Identification and Scheduling,” ASPLOS 2012.

62

How to Achieve Asymmetry

 Static

 Type and power of cores fixed at design time

 Two approaches to design “faster cores”:

 High frequency

 Build a more complex, powerful core with entirely different uarch

 Is static asymmetry natural? (chip-wide variations in frequency)

 Dynamic

 Type and power of cores change dynamically

 Two approaches to dynamically create “faster cores”:

 Boost frequency dynamically (limited power budget)

 Combine small cores to enable a more complex, powerful core

 Is there a third, fourth, fifth approach?

63

Asymmetry via Boosting of Frequency

 Static

 Due to process variations, cores might have different
frequency

 Simply hardwire/design cores to have different frequencies

 Dynamic

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI
Throttling,” ISCA 2005.

 Dynamic voltage and frequency scaling

64

EPI Throttling

 Goal: Minimize execution time of parallel programs while
keeping power within a fixed budget

 For best scalar and throughput performance, vary energy
expended per instruction (EPI) based on available
parallelism

 P = EPI x IPS

 P = fixed power budget

 EPI = energy per instruction

 IPS = aggregate instructions retired per second

 Idea: For a fixed power budget

 Run sequential phases on high-EPI processor

 Run parallel phases on multiple low-EPI processors

65

EPI Throttling via DVFS

 DVFS: Dynamic voltage frequency scaling

 In phases of low thread parallelism

 Run a few cores at high supply voltage and high frequency

 In phases of high thread parallelism

 Run many cores at low supply voltage and low frequency

66

Possible EPI Throttling Techniques

 Grochowski et al., “Best of both Latency and Throughput,”
ICCD 2004.

67

Boosting Frequency of a Small Core vs. Large Core

 Frequency boosting implemented on Intel Nehalem, IBM
POWER7

 Advantages of Boosting Frequency

+ Very simple to implement; no need to design a new core

+ Parallel throughput does not degrade when TLP is high

+ Preserves locality of boosted thread

 Disadvantages

- Does not improve performance if thread is memory bound

- Does not reduce Cycles per Instruction (remember the
performance equation?)

- Changing frequency/voltage can take longer than switching to a
large core

68

Uses of Asymmetry

 So far:

 Improvement in serial performance (sequential bottleneck)

 What else can we do with asymmetry?

 Energy reduction?

 Energy/performance tradeoff?

 Improvement in parallel portion?

69

Use of Asymmetry for Energy Efficiency

 Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction,” MICRO 2003.

 Idea:

 Implement multiple types of cores on chip

 Monitor characteristics of the running thread

 e.g., sample energy/perf on each core periodically

 Dynamically pick the core that provides the best
energy/performance tradeoff for a given phase

 “Best core”  Depends on optimization metric

 Example: ARM’s big.LITTLE architecture

70

Use of Asymmetry for Energy Efficiency

71

Use of Asymmetry for Energy Efficiency

 Advantages

+ More flexibility in energy-performance tradeoff

+ Can execute computation to the core that is best suited for it (in terms of
energy)

 Disadvantages/issues

- Incorrect predictions/sampling  wrong core  reduced performance or

increased energy

- Overhead of core switching

- Disadvantages of asymmetric CMP (e.g., design multiple cores)

- Need phase monitoring and matching algorithms

 - What characteristics should be monitored?

 - Once characteristics known, how do you pick the core?

72

Functional vs. Performance Asymmetry

 Functional asymmetry: Place on chip multiple cores with
different ISAs/interfaces

 Examples

 CPU+GPU architectures (Intel Sandybridge, AMD APU, Nvidia
Tegra)

 SoC’s with different accelerators (e.g., Qualcomm)

 Example: Nvidia Tegra

 72-core GPU

 4-core ARM processor

73

Summary: Multi-Core Evolution

 Symmetric Multi-core

 Evolution of Sun’s and IBM’s Multicore systems and design
choices

 Niagara, Niagara 2, ROCK

 IBM POWERx

 Asymmetric Multi-core

 Motivation

 Static vs. Dynamic Asymmetry

 EPI Throttling

 Use of Asymmetry for Energy Efficiency

 Functional vs. Performance Asymmetry

74

Computer Architecture:

Multi-Core Evolution and Design

Prof. Onur Mutlu

Carnegie Mellon University

Backup Slides

76

Referenced Readings (I)

 Grochowski et al., “Best of both Latency and Throughput,” ICCD 2004.

 Barroso et al., “Piranha: A Scalable Architecture Based on Single-Chip
Multiprocessing,” ISCA 2000.

 Barroso et al., “Memory System Characterization of Commercial
Workloads,” ISCA 1998.

 Ranganathan et al., “Performance of Database Workloads on Shared-
Memory Systems with Out-of-Order Processors,” ASPLOS 1998.

 Kongetira et al., “Niagara: A 32-Way Multithreaded SPARC Processor,”
IEEE Micro 2005.

 Chaudhry et al., “Rock: A High-Performance Sparc CMT Processor,”
IEEE Micro, 2009.

 Chaudhry et al., “Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun's ROCK Processor,” ISCA 2009

 Mutlu et al., “Efficient Runahead Execution: Power-Efficient Memory
Latency Tolerance,” IEEE Micro Jan/Feb 2006.

 Mutlu et al., “Runahead Execution,” HPCA 2003.

77

Referenced Readings (II)

 Tendler et al., “POWER4 system microarchitecture,” IBM J R&D, 2002.

 Kalla et al., “IBM Power5 Chip: A Dual-Core Multithreaded Processor,” IEEE
Micro 2004.

 Le et al., “IBM POWER6 microarchitecture,” IBM J R&D, 2007.

 Kalla et al., “Power7: IBM’s Next-Generation Server Processor,” IEEE Micro
2010.

 Hill and Marty, “Amdahl’s Law in the Multi-Core Era,” IEEE Computer 2008.

 Suleman et al., “Accelerating Critical Section Execution with Asymmetric Multi-
Core Architectures,” ASPLOS 2009, IEEE Micro Top Picks 2010.

 Joao et al., “Bottleneck Identification and Scheduling,” ASPLOS 2012.

 Annavaram et al., “Mitigating Amdahl’s Law Through EPI Throttling,” ISCA
2005.

 Kumar et al., “Single-ISA Heterogeneous Multi-Core Architectures: The
Potential for Processor Power Reduction,” MICRO 2003.

 Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

78

Related Videos

 Multi-Core Systems and Heterogeneity

 http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ
7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1

 http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ
7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2

79

http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
http://www.youtube.com/watch?v=LlDxT0hPl2U&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=1
http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2
http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2
http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2
http://www.youtube.com/watch?v=Q0zyLVnzkrM&list=PLVngZ7BemHHV6N0ejHhwOfLwTr8Q-UKXj&index=2

More on EPI Throttling

80

EPI Throttling (Annavaram et al., ISCA’05)

 Static AMP

 Duty cycles set once prior to program run

 Parallel phases run on 3P/1.25GHz

 Sequential phases run on 1P/2GHz

 Affinity guarantees sequential on 1P and parallel on 3

 Benchmarks that rapidly transition between sequential and
parallel phases

 Dynamic AMP

 Duty cycle changes during program run

 Parallel phases run on all or a subset of four processors

 Sequential phases of execution on 1P/2GHz

 Benchmarks with long sequential and parallel phases

81

EPI Throttling (Annavaram et al., ISCA’05)

 Evaluation on Base SMP: 4 Base SMP: 4-way 2GHz Xeon,
2MB L3, 4GB Memory

 Hand-modified programs

 OMP threads set to 3 for static AMP

 Calls to set affinity in each thread for static AMP

 Calls to change duty cycle and to set affinity in dynamic AMP

82

EPI Throttling (Annavaram et al., ISCA’05)

 Frequency boosting AMP improves performance compared
to 4-way SMP for many applications

83

EPI Throttling

 Why does Frequency Boosting (FB) AMP not always
improve performance?

 Loss of throughput in static AMP (only 3 processors in
parallel portion)

 Is this really the best way of using FB-AMP?

 Rapid transitions between serial and parallel phases

 Data/thread migration and throttling overhead

 Boosting frequency does not help memory-bound phases

84

Use of ACMP to Improve Parallel Portion Performance

 Mutual Exclusion:

 Threads are not allowed to update shared data concurrently

 Accesses to shared data are encapsulated inside
critical sections

 Only one thread can execute a critical section at
a given time

 Idea: Ship critical sections to a large core

 Suleman et al., “Accelerating Critical Section Execution with
Asymmetric Multi-Core Architectures,” ASPLOS 2009, IEEE
Micro Top Picks 2010.

85

