Agenda

- Syllabus
 - Course logistics, info, requirements
- Online nature of the course
- Introduction
- Background Videos and Lectures to Study
Non-Agenda

- Grading and Policies
- Details on Course Project
- Details on Paper Review Assignments
- Initial Assignments and Homeworks
- These are covered in separate videos.
Course Info: Who Are We?

- Instructor: Prof. Onur Mutlu
 - onur@cmu.edu
 - Office: CIC 4105
 - Office Hours: W 2:30-3:30pm (or by appointment)
 - http://www.ece.cmu.edu/~omutlu
 - PhD from UT-Austin, worked at Microsoft Research, Intel, AMD

- Research interests:
 - Computer architecture, hardware/software interaction
 - Many-core systems
 - Memory and storage systems
 - Improving programmer productivity
 - Interconnection networks
 - Hardware/software interaction and co-design (PL, OS, Architecture)
 - Fault tolerance
 - Hardware security
 - Algorithms and architectures for genomics and embedded systems
Course Info: Who Are We?

- Instructor: Prof. Seth Copen Goldstein
 - seth@cmu.edu
 - Office: GHC 7111
 - Office Hours: T 1-2pm (or by appointment)
 - http://www.cs.cmu.edu/~seth
- Research interests:
 - Computer architecture
 - Compilers
 - Massively distributed systems
 - Programmable matter
 - Programming Languages
 - Nanotechnology
 - Modular Robotics
 - Governance
 - Web Technology
Course Info: Who Are We?

- Teaching Assistants
 - Tyler Huberty
 - thuberty@andrew.cmu.edu
 - Brian Osbun
 - bosbun@andrew.cmu.edu
 - Hongyi Xin
 - hxin@andrew.cmu.edu
 - TBD
Where to Get Up-to-date Course Info?

- Website: http://www.ece.cmu.edu/~ece740
 - Syllabus and contact information
 - Links to videos and online education site
 - Lecture notes
 - Readings and link to review website
 - Project information
 - ...

- Blackboard: Linked from website

- Your email

- Email to us: 740-official@ece.cmu.edu
This is a Hybrid Course

- Heavily online
- With in-person recitations and office hours
Lectures, Readings and Recitations

- **Lectures will be online**
 - Purpose: Learn the basics of a topic
 - You are expected to watch them fully as assigned by the due date
 - Videos and supplemental material will be linked from the website

- **Readings will be online**
 - Purpose: Enhance understanding beyond the lectures
 - You are expected to do them before the due date (& enter reviews)

- **Recitations will be both in-person and online**
 - Purpose: Enhance understanding via deeper discussion
 - During the specified times in the syllabus and course schedule
 - We will announce recitation times and format weekly
 - In-person recitations will be recorded and posted online
Office Hours

- Office hours will be both in-person and online
 - Purpose: Clarify unclear points, delve deeper
 - Locations and times will be posted
A Note

- Please provide us feedback with the online lectures and quality of the online environment
- If there are issues, we would like to know these early
- Especially true if you are remotely attending the class
What Will You Learn?

- **Computer Architecture:** The science and art of designing, selecting, and interconnecting hardware components and designing the hardware/software interface to create a computing system that meets functional, performance, energy consumption, cost, and other specific goals.

- **Traditional definition:** “The term *architecture* is used here to describe the attributes of a system as seen by the programmer, i.e., the conceptual structure and functional behavior as distinct from the organization of the dataflow and controls, the logic design, and the physical implementation.” *Gene Amdahl*, IBM Journal of R&D, April 1964
Levels of Transformation

- Problem
- Algorithm
- Programs
- Runtime System (VM, OS, MM)
- ISA
- Microarchitecture
- Circuits/Technology
- Electrons
- User
What Will You Learn?

- Hardware/software interface, major components, and programming models of a modern microprocessor
 - State-of-the-art as well as research proposals
 - Tradeoffs and how to make them
 - Emphasis on cutting-edge research

- Hands-on research in a computer architecture topic
 - Semester-long project
 - How to design better architectures (not an intro course)

- How to dig out information
 - No textbook really required
 - But, see the syllabus
An Example: Multi-Core Systems

Die photo credit: AMD Barcelona
Unexpected Slowdowns in Multi-Core

![Graph showing memory performance slowdowns.

- High priority (Core 1): 3.04
- Low priority (Core 0): 1.07

Memory Performance Hoq

- Matlab (Core 0): 1.07
- Gcc (Core 1): 3.04

The graph indicates a significant slowdown in memory performance on Core 1 compared to Core 0. Higher values indicate worse performance.]
Why the Disparity in Slowdowns?

Shared DRAM Memory System

Multi-Core Chip

unfairness
For More Information, Read

Course Goals

- **Goal 1:** To familiarize computer architecture students and those interested in computer system design with both fundamental design tradeoffs and recent research issues/trends in processor, memory, and platform architectures in today’s and future systems.
 - Strong emphasis on fundamentals and design tradeoffs.

- **Goal 2:** To provide the necessary background and experience to advance the state-of-the-art in computer architecture by performing cutting-edge research.
 - Strong emphasis on
 - Critically evaluating research papers (through literature review assignments)
 - Developing new mechanisms that advance the state of the art (through the course research project).
This is a Graduate-Level Class

- Required background:
 - basic architecture (18-447)
 - basic compilers
 - basic OS
 - programming skills
 - spirit, excitement, and dedication for deep exploration of a topic in computer architecture
What Do I Expect From You?

- Learn the material
 - And, research it → find the original source of ideas

- Do the work & **work hard**

- **Ask questions, take notes, participate in discussion**

- Read and review the assigned research papers & readings
 - Discuss/critique them online with peers and us
 - Write your critique/review online

- Start the research project early and focus on it

- If you want feedback, come to office hours
Recommended Background Videos and Lectures (I)

- All 447 lecture videos and notes are at:
 - http://www.youtube.com/playlist?list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ

- Please watch as many as you can, to brush up on background material

- I would especially encourage everyone to watch:
 - Lecture 1: Basics of Computer Architecture
 - http://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=1
Recommended Background Videos and Lectures (II)

- Lectures 2-3: Fundamental Concepts and ISA, ISA Tradeoffs
 - [Lecture 2](http://www.youtube.com/watch?v=BqJgYN6S6Qw&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=2)
 - [Lecture 3](http://www.youtube.com/watch?v=BqJgYN6S6Qw&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=3)

- Lecture 8: Pipelining
 - [Lecture 8](http://www.youtube.com/watch?v=5E_W7EeNs8U&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=8)

- Lecture 9: Data Dependence Handling
 - [Lecture 9](http://www.youtube.com/watch?v=Gpz1I47LfDo&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=9)

- Lecture 10-11: Branch Prediction
 - [Lecture 10](http://www.youtube.com/watch?v=XkerLktFtJg&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=11)

- Lecture 16: Virtual Memory
 - [Lecture 16](http://www.youtube.com/watch?v=ppPq-ntaAWU&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=16)
Recommended Background Videos and Lectures (II)

- Lecture 22: Memory Hierarchy
 - http://www.youtube.com/watch?v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=22

- Lecture 23-24: Caches
 - http://www.youtube.com/watch?v=TpMdBrM1hVc&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=23
 - http://www.youtube.com/watch?v=TboaFbjTdE&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=24

- Lecture 30B: Multiprocessors
 - http://www.youtube.com/watch?v=7ozCK_Mgxfk&list=PL5PHm2jkkXmidJ0d59REog9jDnPDTG6IJ&index=31
740: Computer Architecture
Introduction, Logistics, and Background Assignments

Profs. Onur Mutlu and Seth Copen Goldstein
Carnegie Mellon University
Fall 2013