
18-447: Computer Architecture

Lecture 24: Advanced Caches

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 4/1/2013

Reminder: Homework 5 (Wednesday)

 Due April 3 (Wednesday!)

 Topics: Vector processing, VLIW, Virtual memory, Caching

2

Reminder: Lab Assignment 5 (Friday)

 Lab Assignment 5

 Due Friday, April 5

 Modeling caches and branch prediction at the
microarchitectural level (cycle level) in C

 Extra credit: Cache design optimization

 Size, block size, associativity

 Replacement and insertion policies

 Cache indexing policies

 Anything else you would like

 TAs will go over the baseline simulator in lab sessions

3

Heads Up: Midterm II Coming

 Originally scheduled for April 10

 Will likely move to the week after

4

Last Lecture

 More caching

 Replacement policy

 Sectored caches

 Multi-level caching

 Write policies

 Virtual memory – cache interaction

 VIVT, PIPT, VIPT caches

 Homonyms and synonyms

5

Today

 Wrap up virtual memory – cache interaction

 Improving cache (and memory hierarchy) performance

 Enabling multiple accesses in parallel

6

Virtual Memory and Cache Interaction

Review: Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why?

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why?

 Different pages can share the same physical frame within or
across processes

 Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

 Do homonyms and synonyms create problems when we
have a cache?

 Is the cache virtually or physically addressed?

8

Review: Cache-VM Interaction

9

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Review: Virtual-Physical Cache

10

Review: Virtually-Indexed Physically-Tagged

 If C≤(page_size  associativity), the cache index bits come only

from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end

11

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data =

cache hit? TLB hit?

Review: Virtually-Indexed Physically-Tagged

 If C>(page_size  associativity), the cache index bits include VPN
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?

12

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data =

cache hit? TLB hit?

a

Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

13

An Exercise

 Problem 5 from

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf

14

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf

An Exercise (I)

15

16

An Exercise (II)

17

An Exercise (Concluded)

18

Solutions to the Exercise

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf

 And, more exercises are in past exams and in your
homeworks…

19

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf

Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

20

Some Questions to Ponder

 At what cache level should we worry about the synonym
and homonym problems?

 What levels of the memory hierarchy does the system
software’s page mapping algorithms influence?

 What are the potential benefits and downsides of page
coloring?

21

Virtual Memory – DRAM Interaction

 Operating System influences where an address maps to in
DRAM

 Operating system can control which bank/channel/rank a
virtual page is mapped to.

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference

22

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits) Physical Frame number (19 bits)

Page offset (12 bits) Virtual Page number (52 bits) VA

PA

PA

Cache Performance

Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy

24

Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data
the executing application references

 Within a time interval

 25

hit rate

cache size

“working set”

 size

Block Size

 Block size is the data that is associated with an address tag

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks

 likely-useless data transferred

 Extra bandwidth/energy consumed

26

hit rate

block

size

Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?

27

tag subblock v subblock v subblock v d d d

Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?

 28

associativity

hit rate

Classification of Cache Misses

 Compulsory miss

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is
displaced for the reasons below

 dominates when locality is poor

 Capacity miss

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

 Conflict miss

 defined as any miss that is neither a compulsory nor a capacity
miss

29

How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each
“phase” fits in cache

30

Improving Cache “Performance”

 Remember

 Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency

31

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
32

Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same
set (if two cache blocks continuously accessed in nearby time
conflict with each other)

-- Increases miss latency if accessed serially with L2

33

Direct

Mapped

Cache

Next Level

Cache

Victim

cache

Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

 34

Skewed Associative Caches (I)

 Basic 2-way associative cache structure

35

Way 0 Way 1

Tag Index Byte in Block

Same index function

for each way

=? =?

Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function

36

Way 0 Way 1

 tag index byte in block

f0

same index
same set

same index
redistributed to

different sets

=? =?

Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

37

Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
38

Poor code

for i = 1, rows

 for j = 1, columns

 sum = sum + x[i,j]

Better code

for j = 1, columns

 for i = 1, rows

 sum = sum + x[i,j]

More on Data Structure Layout

 Pointer based traversal
(e.g., of a linked list)

 Assume a huge linked
list (1M nodes) and
unique keys

 Why does the code on
the left have poor cache
hit rate?

 “Other fields” occupy
most of the cache line
even though rarely
accessed!

 39

struct Node {

 struct Node* node;

 int key;

 char [256] name;

 char [256] school;

}

while (node) {

 if (nodekey == input-key) {

 // access other fields of node

 }

 node = nodenext;

}

How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

 Who should do this?

 Programmer

 Compiler

 Profiling vs. dynamic

 Hardware?

 Who can determine what
is frequently used?

40

struct Node {

 struct Node* node;

 int key;

 struct Node-data* node-data;

}

struct Node-data {

 char [256] name;

 char [256] school;

}

while (node) {

 if (nodekey == input-key) {

 // access nodenode-data

 }

 node = nodenext;

}

Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of
computation

 Essentially: Divide the working set so that each piece fits in
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time

41

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
42

43

Memory Level Parallelism (MLP)

 Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel

 How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

44

45

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

46

P3 P2 P1 P4

H H H H M H H H M Hit/Miss

Misses=4
Stalls=4

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2 P4 P3 P2 S3 P4 S1 S2 S3 P1 P3 P2 S3 P4 S1 S2 S3 P4

H H H

S1 S2 S3 P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week

47

