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Reminder: Homework 5 (Wednesday)  

 Due April 3 (Wednesday!) 

 Topics: Vector processing, VLIW, Virtual memory, Caching 
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Reminder: Lab Assignment 5 (Friday) 

 Lab Assignment 5 

 Due Friday, April 5 

 Modeling caches and branch prediction at the 
microarchitectural level (cycle level) in C 

 

 Extra credit: Cache design optimization 

 Size, block size, associativity 

 Replacement and insertion policies 

 Cache indexing policies 

 Anything else you would like 

 

 TAs will go over the baseline simulator in lab sessions 
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Heads Up: Midterm II Coming 

 Originally scheduled for April 10 

 

 Will likely move to the week after 
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Last Lecture 

 More caching 

 Replacement policy 

 Sectored caches 

 Multi-level caching 

 Write policies 

 Virtual memory – cache interaction 

 VIVT, PIPT, VIPT caches 

 Homonyms and synonyms 
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Today 

 Wrap up virtual memory – cache interaction 

 

 Improving cache (and memory hierarchy) performance 

 

 Enabling multiple accesses in parallel 
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Virtual Memory and Cache Interaction 

 

 

 

 



Review: Homonyms and Synonyms 

 Homonym: Same VA can map to two different PAs 

 Why?  

 VA is in different processes 

 

 Synonym: Different VAs can map to the same PA 

 Why?  

 Different pages can share the same physical frame within or 
across processes 

 Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, … 

 

 Do homonyms and synonyms create problems when we 
have a cache? 

 Is the cache virtually or physically addressed? 

8 



Review: Cache-VM Interaction 
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Review: Virtual-Physical Cache 
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Review: Virtually-Indexed Physically-Tagged 

 
 If C≤(page_size  associativity), the cache index bits come only 

from page offset (same in VA and PA) 

 If both cache and TLB are on chip 

 index both arrays concurrently using VA bits 

 check cache tag (physical) against TLB output at the end 
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Review: Virtually-Indexed Physically-Tagged 

 
 If C>(page_size  associativity), the cache index bits include VPN 
 Synonyms can cause problems 

 The same physical address can exist in two locations 

 Solutions? 
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Review: Solutions to the Synonym Problem 

 Limit cache size to (page size times associativity) 

  get index from page offset  

 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate 

 Used in Alpha 21264, MIPS R10K 

 

 Restrict page placement in OS 

 make sure index(VA) = index(PA) 

 Called page coloring 

 Used in many SPARC processors 
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An Exercise 

 Problem 5 from  

 ECE 741 midterm exam Problem 5, Spring 2009 

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf 
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An Exercise (I) 
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An Exercise (II) 
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An Exercise (Concluded) 
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Solutions to the Exercise 

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf 

 

 And, more exercises are in past exams and in your 
homeworks… 
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Review: Solutions to the Synonym Problem 

 Limit cache size to (page size times associativity) 

  get index from page offset  

 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate 

 Used in Alpha 21264, MIPS R10K 

 

 Restrict page placement in OS 

 make sure index(VA) = index(PA) 

 Called page coloring 

 Used in many SPARC processors 
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Some Questions to Ponder 

 At what cache level should we worry about the synonym 
and homonym problems? 

 

 What levels of the memory hierarchy does the system 
software’s page mapping algorithms influence? 

 

 What are the potential benefits and downsides of page 
coloring? 
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Virtual Memory – DRAM Interaction 

 Operating System influences where an address maps to in 
DRAM 

 

 

 

 

 Operating system can control which bank/channel/rank a 
virtual page is mapped to.  

 

 It can perform page coloring to minimize bank conflicts 

 Or to minimize inter-application interference 

 

 
22 

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) 

Page offset (12 bits) Physical Frame number (19 bits) 

Page offset (12 bits) Virtual Page number (52 bits) VA 

PA 

PA 



Cache Performance 

 

 

 

 



Cache Parameters vs. Miss Rate 

 Cache size 

 

 Block size 

 

 Associativity 

 

 Replacement policy 

 Insertion/Placement policy 

24 



Cache Size 

 Cache size: total data (not including tag) capacity 

  bigger can exploit temporal locality better 

  not ALWAYS better 

 Too large a cache adversely affects hit and miss latency 

  smaller is faster => bigger is slower 

  access time may degrade critical path 

 Too small a cache 

  doesn’t exploit temporal locality well 

  useful data replaced often 

 

 Working set: the whole set of data                                                    
the executing application references  

 Within a time interval  
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Block Size 

 Block size is the data that is associated with an address tag  

  not necessarily the unit of transfer between hierarchies 

 Sub-blocking: A block divided into multiple pieces (each with V bit) 

 Can improve “write” performance 

 

 Too small blocks 

  don’t exploit spatial locality well 

  have larger tag overhead 

 

 Too large blocks 

 too few total # of blocks 

 likely-useless data transferred 

 Extra bandwidth/energy consumed 
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Large Blocks: Critical-Word and Subblocking 

 Large cache blocks can take a long time to fill into the cache 

 fill cache line critical word first  

 restart cache access before complete fill 

 

 Large cache blocks can waste bus bandwidth  

 divide a block into subblocks 

 associate separate valid bits for each subblock 

 When is this useful? 
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Associativity 

 How many blocks can map to the same index (or set)? 

 

 Larger associativity 

 lower miss rate, less variation among programs 

 diminishing returns, higher hit latency 

 

 Smaller associativity 

 lower cost 

 lower hit latency 

 Especially important for L1 caches 

 

 Power of 2 associativity? 
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Classification of Cache Misses 

 Compulsory miss  

 first reference to an address (block) always results in a miss 

 subsequent references should hit unless the cache block is 
displaced for the reasons below 

 dominates when locality is poor 

 

 Capacity miss  

 cache is too small to hold everything needed 

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity              

 Conflict miss  

 defined as any miss that is neither a compulsory nor a capacity 
miss  
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How to Reduce Each Miss Type 

 Compulsory 

 Caching cannot help 

 Prefetching 

 Conflict 

 More associativity 

 Other ways to get more associativity without making the 
cache associative 

 Victim cache 

 Hashing 

 Software hints? 

 Capacity 

 Utilize cache space better: keep blocks that will be referenced 

 Software management: divide working set such that each 
“phase” fits in cache 
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Improving Cache “Performance” 

 Remember  

 Average memory access time (AMAT) 

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 

 

 Reducing miss rate 

 Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted 

 

 Reducing miss latency/cost 

 

 Reducing hit latency 
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Improving Basic Cache Performance 
 Reducing miss rate 

 More associativity 

 Alternatives/enhancements to associativity  

 Victim caches, hashing, pseudo-associativity, skewed associativity 

 Better replacement/insertion policies 

 Software approaches 
 

 Reducing miss latency/cost 

 Multi-level caches 

 Critical word first 

 Subblocking/sectoring 

 Better replacement/insertion policies 

 Non-blocking caches (multiple cache misses in parallel) 

 Multiple accesses per cycle 

 Software approaches 
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Victim Cache: Reducing Conflict Misses 

 

 

 

 

 
 

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a 
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990. 

 Idea: Use a small fully associative buffer (victim cache) to 
store evicted blocks  

+ Can avoid ping ponging of cache blocks mapped to the same 
set (if two cache blocks continuously accessed in nearby time 
conflict with each other) 

-- Increases miss latency if accessed serially with L2 

33 

Direct 

Mapped 

Cache 

Next Level 

Cache 

Victim 

cache 



Hashing and Pseudo-Associativity 

 Hashing: Better “randomizing” index functions   

+ can reduce conflict misses 

 by distributing the accessed memory blocks more evenly to sets 

 Example: stride where stride value equals cache size 

-- More complex to implement: can lengthen critical path 

 

 Pseudo-associativity (Poor Man’s associative cache) 

 Serial lookup: On a miss, use a different index function and 
access cache again 

 Given a direct-mapped array with K cache blocks 

 Implement K/N sets 

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}  
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Skewed Associative Caches (I) 

 Basic 2-way associative cache structure 
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Skewed Associative Caches (II) 

 Skewed associative caches 

 Each bank has a different index function 
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Skewed Associative Caches (III) 

 Idea: Reduce conflict misses by using different index 
functions for each cache way 

 

 Benefit: indices are randomized 

 Less likely two blocks have same index 

 Reduced conflict misses 

 May be able to reduce associativity 

 

 Cost: additional latency of hash function 

 

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993. 
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Improving Hit Rate via Software (I) 

 Restructuring data layout 

 Example: If column-major 

 x[i+1,j] follows x[i,j] in memory 

 x[i,j+1] is far away from x[i,j] 

 

 

 

 

 

 This is called loop interchange 

 Other optimizations can also increase hit rate 

 Loop fusion, array merging, … 

 What if multiple arrays? Unknown array size at compile time? 
38 

Poor code   

for i = 1, rows 

      for j = 1, columns 

            sum = sum + x[i,j] 

Better code    

for j = 1, columns 

      for i = 1, rows 

           sum = sum + x[i,j] 



More on Data Structure Layout 

 Pointer based traversal 
(e.g., of a linked list) 

 Assume a huge linked 
list (1M nodes) and 
unique keys 

 Why does the code on 
the left have poor cache 
hit rate? 

 “Other fields” occupy 
most of the cache line 
even though rarely 
accessed! 
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struct Node { 

     struct Node* node; 

     int key; 

     char [256] name; 

     char [256] school; 

} 

 

while (node) { 

      if (nodekey == input-key) { 

       // access other fields of node 

      } 

      node = nodenext; 

} 

  



How Do We Make This Cache-Friendly? 

 Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure 

 

 Who should do this? 

 Programmer 

 Compiler  

 Profiling vs. dynamic 

 Hardware? 

 Who can determine what 
is frequently used? 
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struct Node { 

     struct Node* node; 

     int key; 

     struct Node-data* node-data; 

} 

 

struct Node-data { 

     char [256] name; 

     char [256] school; 

} 

 

while (node) { 

      if (nodekey == input-key) { 

       // access nodenode-data 

      } 

      node = nodenext; 

} 

  



Improving Hit Rate via Software (II) 

 Blocking  

 Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache 

 Avoids cache conflicts between different chunks of 
computation 

 Essentially: Divide the working set so that each piece fits in 
the cache 

 

 

 But, there are still self-conflicts in a block 

1. there can be conflicts among different arrays 

2. array sizes may be unknown at compile/programming time 
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Improving Basic Cache Performance 
 Reducing miss rate 

 More associativity 

 Alternatives/enhancements to associativity  

 Victim caches, hashing, pseudo-associativity, skewed associativity 

 Better replacement/insertion policies 

 Software approaches 
 

 Reducing miss latency/cost 

 Multi-level caches 

 Critical word first 

 Subblocking/sectoring 

 Better replacement/insertion policies 

 Non-blocking caches (multiple cache misses in parallel) 

 Multiple accesses per cycle 

 Software approaches 
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Memory Level Parallelism (MLP)  

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98] 

 

 Several techniques to improve MLP (e.g., out-of-order execution) 
 

 MLP varies. Some misses are isolated and some parallel  
 

 How does this affect cache replacement? 

time 

A 
B 

C 

isolated miss parallel miss 



Traditional Cache Replacement Policies 

 Traditional cache replacement policies try to reduce miss 
count 

 

 Implicit assumption: Reducing miss count reduces memory-
related stall time  

 

 Misses with varying cost/MLP breaks this assumption! 

 

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss 

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss 
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Misses to blocks P1, P2, P3, P4 can be parallel 
Misses to blocks S1, S2, and S3 are isolated 

Two replacement algorithms: 
1. Minimizes miss count (Belady’s OPT) 
2. Reduces isolated miss (MLP-Aware) 
 

For a fully associative cache containing 4 blocks 

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3 

An Example 



Fewest Misses = Best Performance 
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MLP-Aware Cache Replacement 

 How do we incorporate MLP into replacement decisions? 

 

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” 
ISCA 2006. 

 Required reading for this week 
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