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Reminder: Homework 5 (Wednesday)  

 Due April 3 (Wednesday!) 

 Topics: Vector processing, VLIW, Virtual memory, Caching 
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Reminder: Lab Assignment 5 (Friday) 

 Lab Assignment 5 

 Due Friday, April 5 

 Modeling caches and branch prediction at the 
microarchitectural level (cycle level) in C 

 

 Extra credit: Cache design optimization 

 Size, block size, associativity 

 Replacement and insertion policies 

 Cache indexing policies 

 Anything else you would like 

 

 TAs will go over the baseline simulator in lab sessions 
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Heads Up: Midterm II Coming 

 Originally scheduled for April 10 

 

 Will likely move to the week after 
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Last Lecture 

 More caching 

 Replacement policy 

 Sectored caches 

 Multi-level caching 

 Write policies 

 Virtual memory – cache interaction 

 VIVT, PIPT, VIPT caches 

 Homonyms and synonyms 
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Today 

 Wrap up virtual memory – cache interaction 

 

 Improving cache (and memory hierarchy) performance 

 

 Enabling multiple accesses in parallel 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 



Virtual Memory and Cache Interaction 

 

 

 

 



Review: Homonyms and Synonyms 

 Homonym: Same VA can map to two different PAs 

 Why?  

 VA is in different processes 

 

 Synonym: Different VAs can map to the same PA 

 Why?  

 Different pages can share the same physical frame within or 
across processes 

 Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, … 

 

 Do homonyms and synonyms create problems when we 
have a cache? 

 Is the cache virtually or physically addressed? 
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Review: Cache-VM Interaction 
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Review: Virtual-Physical Cache 
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Review: Virtually-Indexed Physically-Tagged 

 
 If C≤(page_size  associativity), the cache index bits come only 

from page offset (same in VA and PA) 

 If both cache and TLB are on chip 

 index both arrays concurrently using VA bits 

 check cache tag (physical) against TLB output at the end 
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Review: Virtually-Indexed Physically-Tagged 

 
 If C>(page_size  associativity), the cache index bits include VPN 
 Synonyms can cause problems 

 The same physical address can exist in two locations 

 Solutions? 
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Review: Solutions to the Synonym Problem 

 Limit cache size to (page size times associativity) 

  get index from page offset  

 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate 

 Used in Alpha 21264, MIPS R10K 

 

 Restrict page placement in OS 

 make sure index(VA) = index(PA) 

 Called page coloring 

 Used in many SPARC processors 
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An Exercise 

 Problem 5 from  

 ECE 741 midterm exam Problem 5, Spring 2009 

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf 
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http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf


An Exercise (I) 
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An Exercise (II) 
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An Exercise (Concluded) 
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Solutions to the Exercise 

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf 

 

 And, more exercises are in past exams and in your 
homeworks… 
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http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf
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Review: Solutions to the Synonym Problem 

 Limit cache size to (page size times associativity) 

  get index from page offset  

 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate 

 Used in Alpha 21264, MIPS R10K 

 

 Restrict page placement in OS 

 make sure index(VA) = index(PA) 

 Called page coloring 

 Used in many SPARC processors 
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Some Questions to Ponder 

 At what cache level should we worry about the synonym 
and homonym problems? 

 

 What levels of the memory hierarchy does the system 
software’s page mapping algorithms influence? 

 

 What are the potential benefits and downsides of page 
coloring? 
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Virtual Memory – DRAM Interaction 

 Operating System influences where an address maps to in 
DRAM 

 

 

 

 

 Operating system can control which bank/channel/rank a 
virtual page is mapped to.  

 

 It can perform page coloring to minimize bank conflicts 

 Or to minimize inter-application interference 
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Cache Performance 

 

 

 

 



Cache Parameters vs. Miss Rate 

 Cache size 

 

 Block size 

 

 Associativity 

 

 Replacement policy 

 Insertion/Placement policy 
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Cache Size 

 Cache size: total data (not including tag) capacity 

  bigger can exploit temporal locality better 

  not ALWAYS better 

 Too large a cache adversely affects hit and miss latency 

  smaller is faster => bigger is slower 

  access time may degrade critical path 

 Too small a cache 

  doesn’t exploit temporal locality well 

  useful data replaced often 

 

 Working set: the whole set of data                                                    
the executing application references  

 Within a time interval  
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Block Size 

 Block size is the data that is associated with an address tag  

  not necessarily the unit of transfer between hierarchies 

 Sub-blocking: A block divided into multiple pieces (each with V bit) 

 Can improve “write” performance 

 

 Too small blocks 

  don’t exploit spatial locality well 

  have larger tag overhead 

 

 Too large blocks 

 too few total # of blocks 

 likely-useless data transferred 

 Extra bandwidth/energy consumed 
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Large Blocks: Critical-Word and Subblocking 

 Large cache blocks can take a long time to fill into the cache 

 fill cache line critical word first  

 restart cache access before complete fill 

 

 Large cache blocks can waste bus bandwidth  

 divide a block into subblocks 

 associate separate valid bits for each subblock 

 When is this useful? 
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Associativity 

 How many blocks can map to the same index (or set)? 

 

 Larger associativity 

 lower miss rate, less variation among programs 

 diminishing returns, higher hit latency 

 

 Smaller associativity 

 lower cost 

 lower hit latency 

 Especially important for L1 caches 

 

 Power of 2 associativity? 
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Classification of Cache Misses 

 Compulsory miss  

 first reference to an address (block) always results in a miss 

 subsequent references should hit unless the cache block is 
displaced for the reasons below 

 dominates when locality is poor 

 

 Capacity miss  

 cache is too small to hold everything needed 

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same 
capacity              

 Conflict miss  

 defined as any miss that is neither a compulsory nor a capacity 
miss  
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How to Reduce Each Miss Type 

 Compulsory 

 Caching cannot help 

 Prefetching 

 Conflict 

 More associativity 

 Other ways to get more associativity without making the 
cache associative 

 Victim cache 

 Hashing 

 Software hints? 

 Capacity 

 Utilize cache space better: keep blocks that will be referenced 

 Software management: divide working set such that each 
“phase” fits in cache 
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Improving Cache “Performance” 

 Remember  

 Average memory access time (AMAT) 

= ( hit-rate * hit-latency ) + ( miss-rate * miss-latency ) 

 

 Reducing miss rate 

 Caveat: reducing miss rate can reduce performance if more 
costly-to-refetch blocks are evicted 

 

 Reducing miss latency/cost 

 

 Reducing hit latency 
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Improving Basic Cache Performance 
 Reducing miss rate 

 More associativity 

 Alternatives/enhancements to associativity  

 Victim caches, hashing, pseudo-associativity, skewed associativity 

 Better replacement/insertion policies 

 Software approaches 
 

 Reducing miss latency/cost 

 Multi-level caches 

 Critical word first 

 Subblocking/sectoring 

 Better replacement/insertion policies 

 Non-blocking caches (multiple cache misses in parallel) 

 Multiple accesses per cycle 

 Software approaches 
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Victim Cache: Reducing Conflict Misses 

 

 

 

 

 
 

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a 
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990. 

 Idea: Use a small fully associative buffer (victim cache) to 
store evicted blocks  

+ Can avoid ping ponging of cache blocks mapped to the same 
set (if two cache blocks continuously accessed in nearby time 
conflict with each other) 

-- Increases miss latency if accessed serially with L2 
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Hashing and Pseudo-Associativity 

 Hashing: Better “randomizing” index functions   

+ can reduce conflict misses 

 by distributing the accessed memory blocks more evenly to sets 

 Example: stride where stride value equals cache size 

-- More complex to implement: can lengthen critical path 

 

 Pseudo-associativity (Poor Man’s associative cache) 

 Serial lookup: On a miss, use a different index function and 
access cache again 

 Given a direct-mapped array with K cache blocks 

 Implement K/N sets 

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}  
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Skewed Associative Caches (I) 

 Basic 2-way associative cache structure 
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Skewed Associative Caches (II) 

 Skewed associative caches 

 Each bank has a different index function 
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Skewed Associative Caches (III) 

 Idea: Reduce conflict misses by using different index 
functions for each cache way 

 

 Benefit: indices are randomized 

 Less likely two blocks have same index 

 Reduced conflict misses 

 May be able to reduce associativity 

 

 Cost: additional latency of hash function 

 

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993. 
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Improving Hit Rate via Software (I) 

 Restructuring data layout 

 Example: If column-major 

 x[i+1,j] follows x[i,j] in memory 

 x[i,j+1] is far away from x[i,j] 

 

 

 

 

 

 This is called loop interchange 

 Other optimizations can also increase hit rate 

 Loop fusion, array merging, … 

 What if multiple arrays? Unknown array size at compile time? 
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Poor code   

for i = 1, rows 

      for j = 1, columns 

            sum = sum + x[i,j] 

Better code    

for j = 1, columns 

      for i = 1, rows 

           sum = sum + x[i,j] 



More on Data Structure Layout 

 Pointer based traversal 
(e.g., of a linked list) 

 Assume a huge linked 
list (1M nodes) and 
unique keys 

 Why does the code on 
the left have poor cache 
hit rate? 

 “Other fields” occupy 
most of the cache line 
even though rarely 
accessed! 
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struct Node { 

     struct Node* node; 

     int key; 

     char [256] name; 

     char [256] school; 

} 

 

while (node) { 

      if (nodekey == input-key) { 

       // access other fields of node 

      } 

      node = nodenext; 

} 

  



How Do We Make This Cache-Friendly? 

 Idea: separate frequently-
used fields of a data 
structure and pack them 
into a separate data 
structure 

 

 Who should do this? 

 Programmer 

 Compiler  

 Profiling vs. dynamic 

 Hardware? 

 Who can determine what 
is frequently used? 
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struct Node { 

     struct Node* node; 

     int key; 

     struct Node-data* node-data; 

} 

 

struct Node-data { 

     char [256] name; 

     char [256] school; 

} 

 

while (node) { 

      if (nodekey == input-key) { 

       // access nodenode-data 

      } 

      node = nodenext; 

} 

  



Improving Hit Rate via Software (II) 

 Blocking  

 Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache 

 Avoids cache conflicts between different chunks of 
computation 

 Essentially: Divide the working set so that each piece fits in 
the cache 

 

 

 But, there are still self-conflicts in a block 

1. there can be conflicts among different arrays 

2. array sizes may be unknown at compile/programming time 
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Improving Basic Cache Performance 
 Reducing miss rate 

 More associativity 

 Alternatives/enhancements to associativity  

 Victim caches, hashing, pseudo-associativity, skewed associativity 

 Better replacement/insertion policies 

 Software approaches 
 

 Reducing miss latency/cost 

 Multi-level caches 

 Critical word first 

 Subblocking/sectoring 

 Better replacement/insertion policies 

 Non-blocking caches (multiple cache misses in parallel) 

 Multiple accesses per cycle 

 Software approaches 
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Memory Level Parallelism (MLP)  

 Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98] 

 

 Several techniques to improve MLP (e.g., out-of-order execution) 
 

 MLP varies. Some misses are isolated and some parallel  
 

 How does this affect cache replacement? 

time 

A 
B 

C 

isolated miss parallel miss 



Traditional Cache Replacement Policies 

 Traditional cache replacement policies try to reduce miss 
count 

 

 Implicit assumption: Reducing miss count reduces memory-
related stall time  

 

 Misses with varying cost/MLP breaks this assumption! 

 

 Eliminating an isolated miss helps performance more than 
eliminating a parallel miss 

 Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss 
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Misses to blocks P1, P2, P3, P4 can be parallel 
Misses to blocks S1, S2, and S3 are isolated 

Two replacement algorithms: 
1. Minimizes miss count (Belady’s OPT) 
2. Reduces isolated miss (MLP-Aware) 
 

For a fully associative cache containing 4 blocks 

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3 

An Example 



Fewest Misses = Best Performance 
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MLP-Aware Cache Replacement 

 How do we incorporate MLP into replacement decisions? 

 

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,” 
ISCA 2006. 

 Required reading for this week 
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