
18-447: Computer Architecture

Lecture 24: Advanced Caches

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 4/1/2013

Reminder: Homework 5 (Wednesday)

 Due April 3 (Wednesday!)

 Topics: Vector processing, VLIW, Virtual memory, Caching

2

Reminder: Lab Assignment 5 (Friday)

 Lab Assignment 5

 Due Friday, April 5

 Modeling caches and branch prediction at the
microarchitectural level (cycle level) in C

 Extra credit: Cache design optimization

 Size, block size, associativity

 Replacement and insertion policies

 Cache indexing policies

 Anything else you would like

 TAs will go over the baseline simulator in lab sessions

3

Heads Up: Midterm II Coming

 Originally scheduled for April 10

 Will likely move to the week after

4

Last Lecture

 More caching

 Replacement policy

 Sectored caches

 Multi-level caching

 Write policies

 Virtual memory – cache interaction

 VIVT, PIPT, VIPT caches

 Homonyms and synonyms

5

Today

 Wrap up virtual memory – cache interaction

 Improving cache (and memory hierarchy) performance

 Enabling multiple accesses in parallel

6

Virtual Memory and Cache Interaction

Review: Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why?

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why?

 Different pages can share the same physical frame within or
across processes

 Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

 Do homonyms and synonyms create problems when we
have a cache?

 Is the cache virtually or physically addressed?

8

Review: Cache-VM Interaction

9

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Review: Virtual-Physical Cache

10

Review: Virtually-Indexed Physically-Tagged

 If C≤(page_size associativity), the cache index bits come only

from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end

11

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data =

cache hit? TLB hit?

Review: Virtually-Indexed Physically-Tagged

 If C>(page_size associativity), the cache index bits include VPN
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?

12

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data =

cache hit? TLB hit?

a

Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

13

An Exercise

 Problem 5 from

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf

14

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf

An Exercise (I)

15

16

An Exercise (II)

17

An Exercise (Concluded)

18

Solutions to the Exercise

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?m
edia=wiki:midterm:midterm_s09_solution.pdf

 And, more exercises are in past exams and in your
homeworks…

19

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09_solution.pdf

Review: Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

20

Some Questions to Ponder

 At what cache level should we worry about the synonym
and homonym problems?

 What levels of the memory hierarchy does the system
software’s page mapping algorithms influence?

 What are the potential benefits and downsides of page
coloring?

21

Virtual Memory – DRAM Interaction

 Operating System influences where an address maps to in
DRAM

 Operating system can control which bank/channel/rank a
virtual page is mapped to.

 It can perform page coloring to minimize bank conflicts

 Or to minimize inter-application interference

22

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits) Physical Frame number (19 bits)

Page offset (12 bits) Virtual Page number (52 bits) VA

PA

PA

Cache Performance

Cache Parameters vs. Miss Rate

 Cache size

 Block size

 Associativity

 Replacement policy

 Insertion/Placement policy

24

Cache Size

 Cache size: total data (not including tag) capacity

 bigger can exploit temporal locality better

 not ALWAYS better

 Too large a cache adversely affects hit and miss latency

 smaller is faster => bigger is slower

 access time may degrade critical path

 Too small a cache

 doesn’t exploit temporal locality well

 useful data replaced often

 Working set: the whole set of data
the executing application references

 Within a time interval

 25

hit rate

cache size

“working set”

 size

Block Size

 Block size is the data that is associated with an address tag

 not necessarily the unit of transfer between hierarchies

 Sub-blocking: A block divided into multiple pieces (each with V bit)

 Can improve “write” performance

 Too small blocks

 don’t exploit spatial locality well

 have larger tag overhead

 Too large blocks

 too few total # of blocks

 likely-useless data transferred

 Extra bandwidth/energy consumed

26

hit rate

block

size

Large Blocks: Critical-Word and Subblocking

 Large cache blocks can take a long time to fill into the cache

 fill cache line critical word first

 restart cache access before complete fill

 Large cache blocks can waste bus bandwidth

 divide a block into subblocks

 associate separate valid bits for each subblock

 When is this useful?

27

tag subblock v subblock v subblock v d d d

Associativity

 How many blocks can map to the same index (or set)?

 Larger associativity

 lower miss rate, less variation among programs

 diminishing returns, higher hit latency

 Smaller associativity

 lower cost

 lower hit latency

 Especially important for L1 caches

 Power of 2 associativity?

 28

associativity

hit rate

Classification of Cache Misses

 Compulsory miss

 first reference to an address (block) always results in a miss

 subsequent references should hit unless the cache block is
displaced for the reasons below

 dominates when locality is poor

 Capacity miss

 cache is too small to hold everything needed

 defined as the misses that would occur even in a fully-
associative cache (with optimal replacement) of the same
capacity

 Conflict miss

 defined as any miss that is neither a compulsory nor a capacity
miss

29

How to Reduce Each Miss Type

 Compulsory

 Caching cannot help

 Prefetching

 Conflict

 More associativity

 Other ways to get more associativity without making the
cache associative

 Victim cache

 Hashing

 Software hints?

 Capacity

 Utilize cache space better: keep blocks that will be referenced

 Software management: divide working set such that each
“phase” fits in cache

30

Improving Cache “Performance”

 Remember

 Average memory access time (AMAT)

= (hit-rate * hit-latency) + (miss-rate * miss-latency)

 Reducing miss rate

 Caveat: reducing miss rate can reduce performance if more
costly-to-refetch blocks are evicted

 Reducing miss latency/cost

 Reducing hit latency

31

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
32

Victim Cache: Reducing Conflict Misses

 Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a
Small Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

 Idea: Use a small fully associative buffer (victim cache) to
store evicted blocks

+ Can avoid ping ponging of cache blocks mapped to the same
set (if two cache blocks continuously accessed in nearby time
conflict with each other)

-- Increases miss latency if accessed serially with L2

33

Direct

Mapped

Cache

Next Level

Cache

Victim

cache

Hashing and Pseudo-Associativity

 Hashing: Better “randomizing” index functions

+ can reduce conflict misses

 by distributing the accessed memory blocks more evenly to sets

 Example: stride where stride value equals cache size

-- More complex to implement: can lengthen critical path

 Pseudo-associativity (Poor Man’s associative cache)

 Serial lookup: On a miss, use a different index function and
access cache again

 Given a direct-mapped array with K cache blocks

 Implement K/N sets

 Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]},
{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]}

 34

Skewed Associative Caches (I)

 Basic 2-way associative cache structure

35

Way 0 Way 1

Tag Index Byte in Block

Same index function

for each way

=? =?

Skewed Associative Caches (II)

 Skewed associative caches

 Each bank has a different index function

36

Way 0 Way 1

 tag index byte in block

f0

same index
same set

same index
redistributed to

different sets

=? =?

Skewed Associative Caches (III)

 Idea: Reduce conflict misses by using different index
functions for each cache way

 Benefit: indices are randomized

 Less likely two blocks have same index

 Reduced conflict misses

 May be able to reduce associativity

 Cost: additional latency of hash function

 Seznec, “A Case for Two-Way Skewed-Associative Caches,” ISCA 1993.

37

Improving Hit Rate via Software (I)

 Restructuring data layout

 Example: If column-major

 x[i+1,j] follows x[i,j] in memory

 x[i,j+1] is far away from x[i,j]

 This is called loop interchange

 Other optimizations can also increase hit rate

 Loop fusion, array merging, …

 What if multiple arrays? Unknown array size at compile time?
38

Poor code

for i = 1, rows

 for j = 1, columns

 sum = sum + x[i,j]

Better code

for j = 1, columns

 for i = 1, rows

 sum = sum + x[i,j]

More on Data Structure Layout

 Pointer based traversal
(e.g., of a linked list)

 Assume a huge linked
list (1M nodes) and
unique keys

 Why does the code on
the left have poor cache
hit rate?

 “Other fields” occupy
most of the cache line
even though rarely
accessed!

 39

struct Node {

 struct Node* node;

 int key;

 char [256] name;

 char [256] school;

}

while (node) {

 if (nodekey == input-key) {

 // access other fields of node

 }

 node = nodenext;

}

How Do We Make This Cache-Friendly?

 Idea: separate frequently-
used fields of a data
structure and pack them
into a separate data
structure

 Who should do this?

 Programmer

 Compiler

 Profiling vs. dynamic

 Hardware?

 Who can determine what
is frequently used?

40

struct Node {

 struct Node* node;

 int key;

 struct Node-data* node-data;

}

struct Node-data {

 char [256] name;

 char [256] school;

}

while (node) {

 if (nodekey == input-key) {

 // access nodenode-data

 }

 node = nodenext;

}

Improving Hit Rate via Software (II)

 Blocking

 Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache

 Avoids cache conflicts between different chunks of
computation

 Essentially: Divide the working set so that each piece fits in
the cache

 But, there are still self-conflicts in a block

1. there can be conflicts among different arrays

2. array sizes may be unknown at compile/programming time

41

Improving Basic Cache Performance
 Reducing miss rate

 More associativity

 Alternatives/enhancements to associativity

 Victim caches, hashing, pseudo-associativity, skewed associativity

 Better replacement/insertion policies

 Software approaches

 Reducing miss latency/cost

 Multi-level caches

 Critical word first

 Subblocking/sectoring

 Better replacement/insertion policies

 Non-blocking caches (multiple cache misses in parallel)

 Multiple accesses per cycle

 Software approaches
42

43

Memory Level Parallelism (MLP)

 Memory Level Parallelism (MLP) means generating and
servicing multiple memory accesses in parallel [Glew’98]

 Several techniques to improve MLP (e.g., out-of-order execution)

 MLP varies. Some misses are isolated and some parallel

 How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss

Traditional Cache Replacement Policies

 Traditional cache replacement policies try to reduce miss
count

 Implicit assumption: Reducing miss count reduces memory-
related stall time

 Misses with varying cost/MLP breaks this assumption!

 Eliminating an isolated miss helps performance more than
eliminating a parallel miss

 Eliminating a higher-latency miss could help performance
more than eliminating a lower-latency miss

44

45

Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

An Example

Fewest Misses = Best Performance

46

P3 P2 P1 P4

H H H H M H H H M Hit/Miss

Misses=4
Stalls=4

S1 P4 P3 P2 P1 P1 P2 P3 P4 S2 S3

Time stall

Belady’s OPT replacement

M M

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2 P4 P3 P2 S3 P4 S1 S2 S3 P1 P3 P2 S3 P4 S1 S2 S3 P4

H H H

S1 S2 S3 P4

H M M M H M M M

Time stall Misses=6
Stalls=2

Saved
cycles

Cache

MLP-Aware Cache Replacement

 How do we incorporate MLP into replacement decisions?

 Qureshi et al., “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

 Required reading for this week

47

