
18-447: Computer Architecture

Lecture 23: Caches

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 3/29/2013

Reminder: Homework 5

 Due April 3

 Topics: Vector processing, VLIW, Virtual memory, Caching

2

Reminder: Lab Assignment 5

 Lab Assignment 5

 Due Friday, April 5

 Modeling caches and branch prediction at the
microarchitectural level (cycle level) in C

 Extra credit: Cache design optimization

 Size, block size, associativity

 Replacement and insertion policies

 Cache indexing policies

 Anything else you would like

 TAs will go over the baseline simulator in lab sessions

3

Last Lecture

 The memory hierarchy

 Caches start

 Structure

 Associativity

4

Today

 More (and more advanced) caching

5

Review: Direct-Mapped Cache Structure

 Assume byte-addressable memory:
256 bytes, 8-byte blocks 32 blocks

 Assume cache: 64 bytes, 8 blocks

 Direct-mapped: A block can go to only one location

 Addresses with same index contend for the same location

 Cause conflict misses

6

Tag store Data store

Address

tag index byte in block

3 bits 3 bits 2b

V tag

=? MUX
byte in block

Hit? Data

Review: Problem with Direct-Mapped

 Direct-mapped cache: Two blocks in memory that map to
the same index in the cache cannot be present in the cache
at the same time

 One index one entry

 Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index

 Assume addresses A and B have the same index bits but
different tag bits

 A, B, A, B, A, B, A, B, … conflict in the cache index

 All accesses are conflict misses

7

Review: Set Associativity

 Addresses 0 and 8 always conflict in direct mapped cache

 Instead of having one column of 8, have 2 columns of 4 blocks

8

Tag store Data store

V tag

=?

V tag

=?

Address

tag index byte in block

3 bits 2 bits 3b

Logic

MUX

MUX
byte in block

Associative memory within the set

-- More complex, slower access, larger tag store

+ Accommodates conflicts better (fewer conflict misses)

SET

Hit?

Review: Higher Associativity

 4-way

-- More tag comparators and wider data mux; larger tags

+ Likelihood of conflict misses even lower

9

Tag store

Data store

=? =? =? =?

MUX

MUX
byte in block

Logic Hit?

Review: Full Associativity

 Fully associative cache

 A block can be placed in any cache location

10

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Review: Approximations of LRU

 Most modern processors do not implement “true LRU” in
highly-associative caches

 Why?

 True LRU is complex

 LRU is an approximation to predict locality anyway (i.e., not
the best possible replacement policy)

 Examples:

 Not MRU (not most recently used)

 Hierarchical LRU: divide the 4-way set into 2-way “groups”,
track the MRU group and the MRU way in each group

 Victim-NextVictim Replacement: Only keep track of the victim
and the next victim

11

Victim/Next-Victim Example

12

Replacement Policy

 LRU vs. Random

 Set thrashing: When the “program working set” in a set is
larger than set associativity

 4-way: Cyclic references to A, B, C, D, E

 0% hit rate with LRU policy

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

 13

Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

14

Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Hardware versus software

 Number of blocks in a cache versus physical memory

 “Tolerable” amount of time to find a replacement candidate

15

What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches

16

Handling Writes (Stores)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can consolidate multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

 -- Need a bit in the tag store indicating the block is “modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes

17

Handling Writes (Stores)

 Do we allocate a cache block on a write miss?

 Allocate on write miss: Yes

 No-allocate on write miss: No

 Allocate on write miss

+ Can consolidate writes instead of writing each of them
individually to next level

+ Simpler because write misses can be treated the same way as
read misses

-- Requires (?) transfer of the whole cache block

 No-allocate

+ Conserves cache space if locality of writes is low (potentially
better cache hit rate)

18

Sectored Caches

 Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

 How many subblocks do you transfer on a read?

++ No need to transfer the entire cache block into the cache

 (A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

-- More complex design

-- May not exploit spatial locality fully when used for reads

19

tag subblock v subblock v subblock v d d d

Instruction vs. Data Caches

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that
might happen with static partitioning (i.e., split I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

 First level caches are almost always split

 Mainly for the last reason above

 Second and higher levels are almost always unified

20

Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter

21

Virtual Memory and Cache Interaction

Address Translation and Caching

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical
address same physical address can be present in multiple
locations in the cache can lead to inconsistency in data

23

Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why?

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why?

 Different pages can share the same physical frame within or
across processes

 Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

 Do homonyms and synonyms create problems when we
have a cache?

 Is the cache virtually or physically addressed?

24

Cache-VM Interaction

25

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Physical Cache

26

Virtual Cache

27

Virtual-Physical Cache

28

Virtually-Indexed Physically-Tagged

 If C≤(page_size associativity), the cache index bits come only

from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end

29

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data =

cache hit? TLB hit?

Virtually-Indexed Physically-Tagged

 If C>(page_size associativity), the cache index bits include VPN
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?

30

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data =

cache hit? TLB hit?

a

Some Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

31

An Exercise

 Problem 5 from

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf

32

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf

An Exercise (I)

33

34

An Exercise (II)

35

An Exercise (Concluded)

36

