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Reminder: Homework 5  

 Due April 3 

 Topics: Vector processing, VLIW, Virtual memory, Caching 
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Reminder: Lab Assignment 5 

 Lab Assignment 5 

 Due Friday, April 5 

 Modeling caches and branch prediction at the 
microarchitectural level (cycle level) in C 

 

 Extra credit: Cache design optimization 

 Size, block size, associativity 

 Replacement and insertion policies 

 Cache indexing policies 

 Anything else you would like 

 

 TAs will go over the baseline simulator in lab sessions 
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Last Lecture 

 The memory hierarchy 

 

 Caches start 

 Structure 

 Associativity 

 

 

 

 

 

 

 

 

 

 

 

 

4 



Today 

 More (and more advanced) caching 
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Review: Direct-Mapped Cache Structure 

 Assume byte-addressable memory:           
256 bytes, 8-byte blocks  32 blocks 

 Assume cache: 64 bytes, 8 blocks 

 Direct-mapped: A block can go to only one location 

 

 

 

 

 

 

 

 

 

 Addresses with same index contend for the same location 

 Cause conflict misses 
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Review: Problem with Direct-Mapped 

 Direct-mapped cache: Two blocks in memory that map to 
the same index in the cache cannot be present in the cache 
at the same time 

 One index  one entry 

 

 Can lead to 0% hit rate if more than one block accessed in 
an interleaved manner map to the same index  

 Assume addresses A and B have the same index bits but 
different tag bits 

 A, B, A, B, A, B, A, B, …  conflict in the cache index 

 All accesses are conflict misses 
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Review: Set Associativity 

 Addresses 0 and 8 always conflict in direct mapped cache 

 Instead of having one column of 8, have 2 columns of 4 blocks 
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Review: Higher Associativity 

 4-way 

 

 

 

 

 

 

 

 

 

-- More tag comparators and wider data mux; larger tags 

+ Likelihood of conflict misses even lower 
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Review: Full Associativity 

 Fully associative cache 

 A block can be placed in any cache location 
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Review: Approximations of LRU 

 Most modern processors do not implement “true LRU” in 
highly-associative caches 

 

 Why? 

 True LRU is complex 

 LRU is an approximation to predict locality anyway (i.e., not 
the best possible replacement policy) 

 

 Examples: 

 Not MRU (not most recently used) 

 Hierarchical LRU: divide the 4-way set into 2-way “groups”, 
track the MRU group and the MRU way in each group 

 Victim-NextVictim Replacement: Only keep track of the victim 
and the next victim 
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Victim/Next-Victim Example 
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Replacement Policy 

 LRU vs. Random 

 Set thrashing: When the “program working set” in a set is 
larger than set associativity 

 4-way: Cyclic references to A, B, C, D, E  

 0% hit rate with LRU policy 

 Random replacement policy is better when thrashing occurs 

 In practice: 

 Depends on workload 

 Average hit rate of LRU and Random are similar 

 

 Hybrid of LRU and Random 

 How to choose between the two? Set sampling 

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 
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Optimal Replacement Policy? 

 Belady’s OPT 

 Replace the block that is going to be referenced furthest in the 
future by the program 

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966. 

 How do we implement this? Simulate? 

 

 Is this optimal for minimizing miss rate? 

 Is this optimal for minimizing execution time? 

 No. Cache miss latency/cost varies from block to block! 

 Two reasons: Remote vs. local caches and miss overlapping 

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 
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Aside: Cache versus Page Replacement 

 Physical memory (DRAM) is a cache for disk 

 Usually managed by system software via the virtual memory 
subsystem 

 

 Page replacement is similar to cache replacement 

 Page table is the “tag store” for physical memory data store 

 

 What is the difference? 

 Hardware versus software 

 Number of blocks in a cache versus physical memory 

 “Tolerable” amount of time to find a replacement candidate 
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What’s In A Tag Store Entry? 

 Valid bit 

 Tag 

 Replacement policy bits 

 

 Dirty bit? 

 Write back vs. write through caches 
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Handling Writes (Stores) 

 When do we write the modified data in a cache to the next level? 

 Write through: At the time the write happens 

 Write back: When the block is evicted 

 

 Write-back 

+ Can consolidate multiple writes to the same block before eviction 

 Potentially saves bandwidth between cache levels + saves energy 

    -- Need a bit in the tag store indicating the block is “modified” 

 

 Write-through 

+ Simpler 

+ All levels are up to date. Consistency: Simpler cache coherence 
because no need to check lower-level caches 

-- More bandwidth intensive; no coalescing of writes 
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Handling Writes (Stores) 

 Do we allocate a cache block on a write miss? 

 Allocate on write miss: Yes 

 No-allocate on write miss: No 

 

 Allocate on write miss 

+ Can consolidate writes instead of writing each of them 
individually to next level 

+ Simpler because write misses can be treated the same way as 
read misses 

-- Requires (?) transfer of the whole cache block 

 

 No-allocate 

+ Conserves cache space if locality of writes is low (potentially 
better cache hit rate) 
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Sectored Caches 

 Divide a block into subblocks (or sectors) 

 Have separate valid and dirty bits for each sector 

 When is this useful? (Think writes…) 

 How many subblocks do you transfer on a read?  

 

++ No need to transfer the entire cache block into the cache 

      (A write simply validates and updates a subblock)   

++ More freedom in transferring subblocks into the cache (a 
cache block does not need to be in the cache fully) 

 

-- More complex design 

-- May not exploit spatial locality fully when used for reads 
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Instruction vs. Data Caches 

 Unified: 

+ Dynamic sharing of cache space: no overprovisioning that 
might happen with static partitioning (i.e., split I and D 
caches) 

-- Instructions and data can thrash each other (i.e., no 
guaranteed space for either) 

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access? 

 

 First level caches are almost always split  

 Mainly for the last reason above 

 Second and higher levels are almost always unified 
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Multi-level Caching in a Pipelined Design 

 First-level caches (instruction and data) 

 Decisions very much affected by cycle time 

 Small, lower associativity 

 Tag store and data store accessed in parallel 

 Second-level caches 

 Decisions need to balance hit rate and access latency 

 Usually large and highly associative; latency not as important 

 Tag store and data store accessed serially 

 

 Serial vs. Parallel access of levels 

 Serial: Second level cache accessed only if first-level misses 

 Second level does not see the same accesses as the first 

 First level acts as a filter 
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Virtual Memory and Cache Interaction 

 

 

 

 



Address Translation and Caching 

 When do we do the address translation? 

 Before or after accessing the L1 cache? 

 

 In other words, is the cache virtually addressed or 
physically addressed? 

 Virtual versus physical cache 

 

 What are the issues with a virtually addressed cache? 

 

 Synonym problem: 

 Two different virtual addresses can map to the same physical 
address  same physical address can be present in multiple 
locations in the cache  can lead to inconsistency in data 
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Homonyms and Synonyms 

 Homonym: Same VA can map to two different PAs 

 Why?  

 VA is in different processes 

 

 Synonym: Different VAs can map to the same PA 

 Why?  

 Different pages can share the same physical frame within or 
across processes 

 Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, … 

 

 Do homonyms and synonyms create problems when we 
have a cache? 

 Is the cache virtually or physically addressed? 
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Cache-VM Interaction 
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Virtual Cache 
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Virtual-Physical Cache 
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Virtually-Indexed Physically-Tagged 

 
 If C≤(page_size  associativity), the cache index bits come only 

from page offset (same in VA and PA) 

 If both cache and TLB are on chip 

 index both arrays concurrently using VA bits 

 check cache tag (physical) against TLB output at the end 

 

29 

VPN Page Offset 

TLB 

PPN 

Index BiB 

physical 
cache 

tag data = 

cache hit? TLB hit? 



Virtually-Indexed Physically-Tagged 

 
 If C>(page_size  associativity), the cache index bits include VPN 
 Synonyms can cause problems 

 The same physical address can exist in two locations 

 Solutions? 
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Some Solutions to the Synonym Problem 

 Limit cache size to (page size times associativity) 

  get index from page offset  

 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate 

 Used in Alpha 21264, MIPS R10K 

 

 Restrict page placement in OS 

 make sure index(VA) = index(PA) 

 Called page coloring 

 Used in many SPARC processors 
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An Exercise 

 Problem 5 from  

 ECE 741 midterm exam Problem 5, Spring 2009 

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf 
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An Exercise (I) 
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An Exercise (II) 
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An Exercise (Concluded) 
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