18-447: Computer Architecture
Lecture 23: Caches

Prof. Onur Mutlu
Carnegie Mellon University
Spring 2013, 3/29/2013

Reminder: Homework 5

= Due April 3
= Topics: Vector processing, VLIW, Virtual memory, Caching

Reminder: L.ab Assignment 5

Lab Assignment 5
o Due Friday, April 5

o Modeling caches and branch prediction at the
microarchitectural level (cycle level) in C

o Extra credit: Cache design optimization
Size, block size, associativity
Replacement and insertion policies
Cache indexing policies
Anything else you would like

TAs will go over the baseline simulator in lab sessions

l.ast Lecture

The memory hierarchy

Caches start
o Structure
o Associativity

Today

= More (and more advanced) caching

Review: Direct-Mapped Cache Structure

Assume byte-addressable memory:
256 bytes, 8-byte blocks - 32 blocks
Assume cache: 64 bytes, 8 blocks

o Direct-mapped: A block can go to only one location
tag index byte in block

2b | 3 bits| 3 bits Tag store Data store
Address
\Y tag
\ byte in block
=7 \ MUX 4
Hit? Data

o Addresses with same index contend for the same location
Cause conflict misses

Review: Problem with Direct-Mapped

Direct-mapped cache: Two blocks in memory that map to
the same index in the cache cannot be present in the cache
at the same time

o One index = one entry

Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index

o Assume addresses A and B have the same index bits but
different tag bits

a A, B, A B, A B, A, B, ... 2 conflict in the cache index
a All accesses are conflict misses

Review: Set Associativity

Addresses 0 and 8 always conflict in direct mapped cache
Instead of having one column of 8, have 2 columns of 4 blocks

Tag store

SET |

V

tag

Address

Data store
] (]
\ tag
Logic \ MUX byte in block
i Hit?

index byte in block

3b

2 bits

3 hits

Associative memory within the set
-- More complex, slower access, larger tag store
+ Accommodates conflicts better (fewer conflict misses)

8

Review: Higher Associativity

4-Way Tag store
=7 =7 =7 =7
/ Logic ——> Hit?
Data store

>\ MUX - —

v byte in block
MUX <&
\ \l/

-- More tag comparators and wider data mux; larger tags
+ Likelihood of conflict misses even lower

Review: Full Associativity

Fully associative cache

o A block can be placed in any cache location

Tag store | I I I I I I I
=7 =7 =7 ? =7
Logic
¢ Hit?
Data store| Il I I | | \ | |
o MUX

~C MSX > byte in block

v

Review: Approximations of LRU

Most modern processors do not implement “true LRU"” in
highly-associative caches

Why?
o True LRU is complex

o LRU is an approximation to predict locality anyway (i.e., not
the best possible replacement policy)

Examples:
o Not MRU (not most recently used)

o Hierarchical LRU: divide the 4-way set into 2-way “groups”,
track the MRU group and the MRU way in each group
o Victim-NextVictim Replacement: Only keep track of the victim

and the next victim
11

Victim/Next-Victim Example

Ewomple

\

OO P
=NeNo R N &

o-0 0|4

i

—=

TR oY
5 TN o TR
"0 S
N
» SR

G

S awe questienrs 6% ledec

12

Replacement Policy

LRU vs. Random

o Set thrashing: When the “program working set” in a set is
larger than set associativity

o 4-way: Cyclic references to A, B, C, D, E
0% hit rate with LRU policy
o Random replacement policy is better when thrashing occurs
In practice:
o Depends on workload
o Average hit rate of LRU and Random are similar

Hybrid of LRU and Random
o How to choose between the two? Set sampling

See Qureshi et al., “A Case for MLP-Aware Cache Replacement,”

ISCA 2006.

13

Optimal Replacement Policy?

Belady’ s OPT

o Replace the block that is going to be referenced furthest in the
future by the program

o Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

o How do we implement this? Simulate?

Is this optimal for minimizing miss rate?

Is this optimal for minimizing execution time?

o No. Cache miss latency/cost varies from block to block!

o Two reasons: Remote vs. local caches and miss overlapping

o Qureshi et al. “A Case for MLP-Aware Cache Replacement,”
ISCA 2006.

14

Aside: Cache versus Page Replacement

Physical memory (DRAM) is a cache for disk

o Usually managed by system software via the virtual memory
subsystem

Page replacement is similar to cache replacement
Page table is the “tag store” for physical memory data store

What is the difference?

o Hardware versus software

o Number of blocks in a cache versus physical memory

o Tolerable” amount of time to find a replacement candidate

15

What’s In A Tag Store Entry?

Valid bit
Tag
Replacement policy bits

Dirty bit?
o Write back vs. write through caches

16

Handling Writes (Stores)

When do we write the modified data in a cache to the next level?
Write through: At the time the write happens
Write back: When the block is evicted

o Write-back

+ Can consolidate multiple writes to the same block before eviction
o Potentially saves bandwidth between cache levels + saves energy

-- Need a bit in the tag store indicating the block is “modified”

o Write-through
+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes

17

Handling Writes (Stores)

Do we allocate a cache block on a write miss?
o Allocate on write miss: Yes
o No-allocate on write miss: No

Allocate on write miss

+ Can consolidate writes instead of writing each of them
individually to next level

+ Simpler because write misses can be treated the same way as
read misses

-- Requires (?) transfer of the whole cache block

No-allocate

+ Conserves cache space if locality of writes is low (potentially

better cache hit rate)
18

Sectored Caches

Divide a block into subblocks (or sectors)

o Have separate valid and dirty bits for each sector
o When is this useful? (Think writes...)

o How many subblocks do you transfer on a read?

++ No need to transfer the entire cache block into the cache
(A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

-- More complex design
-- May not exploit spatial locality fully when used for reads

v|d]| subblock |v|d|subblock e e 00 |yv|d]subblock tag

19

Instruction vs. Data Caches

Unified:
+ Dynamic sharing of cache space: no overprovisioning that

might happen with static partitioning (i.e., split I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

First level caches are almost always split

a Mainly for the last reason above
Second and higher levels are almost always unified

20

Multi-level Caching in a Pipelined Design

First-level caches (instruction and data)

a Decisions very much affected by cycle time
o Small, lower associativity

o Tag store and data store accessed in parallel

Second-level caches

o Decisions need to balance hit rate and access latency

o Usually large and highly associative; latency not as important
o Tag store and data store accessed serially

Serial vs. Parallel access of levels
o Serial: Second level cache accessed only if first-level misses

o Second level does not see the same accesses as the first
First level acts as a filter

21

Virtual Memory and Cache Interaction

Address Translation and Caching

When do we do the address translation?
o Before or after accessing the L1 cache?

In other words, is the cache virtually addressed or
physically addressed?

o Virtual versus physical cache
What are the issues with a virtually addressed cache?

Synonym problem:

o Two different virtual addresses can map to the same physical
address = same physical address can be present in multiple
locations in the cache = can lead to inconsistency in data

23

Homonyms and Synonyms

Homonym: Same VA can map to two different PAs
o Why?
VA is in different processes

Synonym: Different VAs can map to the same PA
o Why?

Different pages can share the same physical frame within or
aCross processes

Reasons: shared libraries, shared data, copy-on-write pages
within the same process, ...

Do homonyms and synonyms create problems when we
have a cache?

o Is the cache virtually or physically addressed?
24

Cache-VM Interaction

CPU

CPU

CPU

cache

lower
hier.

25

Physical Cache

PTPT cobe (Physrcat ccohe)

VA

Ph

A Pryeasd

adohrtds
Co e m o~y

26

Virtual Cache

VINT cache. (Vivival Code)

Pone .m.q VA

bt Maq

E/hs

yohal

L
=]
el ' !"L;’:é— dotu

sht

27

Virtual-Physical Cache

VIPT code
: peay of frd-
r e
. L 7
/
TLR e
=

Vs

Pty oifed—

Whee con Hre .so.-cpbv,gr“tc.ou_eﬁheh +e

Cocbe 7

28

Virtually-Indexed Physically-Tagged

If C<(page_size x associativity), the cache index bits come only
from page offset (same in VA and PA)

If both cache and TLB are on chip
0 index both arrays concurrently using VA bits
0 check cache tag (physical) against TLB output at the end

VPN Page Offset

TLB physical
cache

PPN @(tag data

TLB hit? cache hit? 29

Virtually-Indexed Physically-Tagged

= If C>(page size x associativity), the cache index bits include VPN
—> Synonyms can cause problems
0 The same physical address can exist in two locations

= Solutions?

VPN Page Offset

TLB physical
cache

PPN ‘@« tag data

TLB hit? cache hit?

Some Solutions to the Synonym Problem

Limit cache size to (page size times associativity)
o get index from page offset

On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

5 Used in Alpha 21264, MIPS R10K

Restrict page placement in OS

o make sure index(VA) = index(PA)
o Called page coloring

o Used in many SPARC processors

31

An Exercise

= Problem 5 from
o ECE 741 midterm exam Problem 5, Spring 2009

a http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm s09.pdf

32

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf

An Exercise (I)

We have a byte-addressable toy computer that has a physical address space of 512 bytes. The computer

uses a simple, one-level virtual memory system. The page table is always in physical memory. The page
size is specified as 8 bytes and the virtual address space is 2 KB.

Part A.

i. (1 point)
How many bits of each virtual address is the virtual page number?

ii. (1 point)
How many bits of each physical address is the physical frame number?

33

We would like to add a 128-byte write-through cache to enhance the performance of this computer.
However. we would like the cache access and address translation to be performed simultaneocusly. In
other words., we would like to index our cache using a virtnal address. but do the tag comparison using the
physical addresses (virtually-indexed physically-tagged). The cache we would like to add is direct-
mapped. and has a block size of 2 bytes. The replacement policy is LRU. Answer the following questions:

iii. (1 point)
How many bits of a virtual address are used to determine which byte in a block 1s accessed?

iv. (2 point)
How many bits of a virtual address are used to index into the cache? Which bits exactly?

v. (1 point)
How many bits of the virtual page number are used to index into the cache?

vi. (5 points)
What is the size of the tag store in bits? Show your work.

Part B.

Suppose we have two processes sharing our toy computer. These processes share some portion of the
physical memory. Some of the virtnal page-physical frame mappings of each process are given below:

PROCESS 0 PROCESS 1
Virtual Page | Physical Frame Virtual Page | Physical Frame
Page 0 Frame 0 Page 0 Frame 4
Page 3 Frame 7 Page 1 Frame 5
Page 7 Frame 1 Page 7 Frame 3
Page 15 Frame 3 Page 11 Frame 2

vii. (2 points)
Give a complete physical address whose data can exist in two different locations in the cache.

viii. (3 points)
Give the indexes of those two different locations in the cache.

An Exercise (Concluded)

ix. (5 points)
We do not want the same physical address stored in two different locations in the 128-byte cache. We can

prevent this by increasing the associativity of our virtually-indexed physically-tagged cache. What is the
minimum associativity required?

X. (4 points)
Assume we would like to use a direct-mapped cache. Describe a solution that ensures that the same

physical address 1s never stored in two different locations in the 128-byte cache.

36

