
18-447: Computer Architecture

Lecture 23: Caches

Prof. Onur Mutlu

Carnegie Mellon University

Spring 2013, 3/29/2013

Reminder: Homework 5

 Due April 3

 Topics: Vector processing, VLIW, Virtual memory, Caching

2

Reminder: Lab Assignment 5

 Lab Assignment 5

 Due Friday, April 5

 Modeling caches and branch prediction at the
microarchitectural level (cycle level) in C

 Extra credit: Cache design optimization

 Size, block size, associativity

 Replacement and insertion policies

 Cache indexing policies

 Anything else you would like

 TAs will go over the baseline simulator in lab sessions

3

Last Lecture

 The memory hierarchy

 Caches start

 Structure

 Associativity

4

Today

 More (and more advanced) caching

5

Review: Direct-Mapped Cache Structure

 Assume byte-addressable memory:
256 bytes, 8-byte blocks  32 blocks

 Assume cache: 64 bytes, 8 blocks

 Direct-mapped: A block can go to only one location

 Addresses with same index contend for the same location

 Cause conflict misses

6

Tag store Data store

Address

tag index byte in block

3 bits 3 bits 2b

V tag

=? MUX
byte in block

Hit? Data

Review: Problem with Direct-Mapped

 Direct-mapped cache: Two blocks in memory that map to
the same index in the cache cannot be present in the cache
at the same time

 One index  one entry

 Can lead to 0% hit rate if more than one block accessed in
an interleaved manner map to the same index

 Assume addresses A and B have the same index bits but
different tag bits

 A, B, A, B, A, B, A, B, …  conflict in the cache index

 All accesses are conflict misses

7

Review: Set Associativity

 Addresses 0 and 8 always conflict in direct mapped cache

 Instead of having one column of 8, have 2 columns of 4 blocks

8

Tag store Data store

V tag

=?

V tag

=?

Address

tag index byte in block

3 bits 2 bits 3b

Logic

MUX

MUX
byte in block

Associative memory within the set

-- More complex, slower access, larger tag store

+ Accommodates conflicts better (fewer conflict misses)

SET

Hit?

Review: Higher Associativity

 4-way

-- More tag comparators and wider data mux; larger tags

+ Likelihood of conflict misses even lower

9

Tag store

Data store

=? =? =? =?

MUX

MUX
byte in block

Logic Hit?

Review: Full Associativity

 Fully associative cache

 A block can be placed in any cache location

10

Tag store

Data store

=? =? =? =? =? =? =? =?

MUX

MUX
byte in block

Logic

Hit?

Review: Approximations of LRU

 Most modern processors do not implement “true LRU” in
highly-associative caches

 Why?

 True LRU is complex

 LRU is an approximation to predict locality anyway (i.e., not
the best possible replacement policy)

 Examples:

 Not MRU (not most recently used)

 Hierarchical LRU: divide the 4-way set into 2-way “groups”,
track the MRU group and the MRU way in each group

 Victim-NextVictim Replacement: Only keep track of the victim
and the next victim

11

Victim/Next-Victim Example

12

Replacement Policy

 LRU vs. Random

 Set thrashing: When the “program working set” in a set is
larger than set associativity

 4-way: Cyclic references to A, B, C, D, E

 0% hit rate with LRU policy

 Random replacement policy is better when thrashing occurs

 In practice:

 Depends on workload

 Average hit rate of LRU and Random are similar

 Hybrid of LRU and Random

 How to choose between the two? Set sampling

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

 13

Optimal Replacement Policy?

 Belady’s OPT

 Replace the block that is going to be referenced furthest in the
future by the program

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966.

 How do we implement this? Simulate?

 Is this optimal for minimizing miss rate?

 Is this optimal for minimizing execution time?

 No. Cache miss latency/cost varies from block to block!

 Two reasons: Remote vs. local caches and miss overlapping

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“
ISCA 2006.

14

Aside: Cache versus Page Replacement

 Physical memory (DRAM) is a cache for disk

 Usually managed by system software via the virtual memory
subsystem

 Page replacement is similar to cache replacement

 Page table is the “tag store” for physical memory data store

 What is the difference?

 Hardware versus software

 Number of blocks in a cache versus physical memory

 “Tolerable” amount of time to find a replacement candidate

15

What’s In A Tag Store Entry?

 Valid bit

 Tag

 Replacement policy bits

 Dirty bit?

 Write back vs. write through caches

16

Handling Writes (Stores)

 When do we write the modified data in a cache to the next level?

 Write through: At the time the write happens

 Write back: When the block is evicted

 Write-back

+ Can consolidate multiple writes to the same block before eviction

 Potentially saves bandwidth between cache levels + saves energy

 -- Need a bit in the tag store indicating the block is “modified”

 Write-through

+ Simpler

+ All levels are up to date. Consistency: Simpler cache coherence
because no need to check lower-level caches

-- More bandwidth intensive; no coalescing of writes

17

Handling Writes (Stores)

 Do we allocate a cache block on a write miss?

 Allocate on write miss: Yes

 No-allocate on write miss: No

 Allocate on write miss

+ Can consolidate writes instead of writing each of them
individually to next level

+ Simpler because write misses can be treated the same way as
read misses

-- Requires (?) transfer of the whole cache block

 No-allocate

+ Conserves cache space if locality of writes is low (potentially
better cache hit rate)

18

Sectored Caches

 Divide a block into subblocks (or sectors)

 Have separate valid and dirty bits for each sector

 When is this useful? (Think writes…)

 How many subblocks do you transfer on a read?

++ No need to transfer the entire cache block into the cache

 (A write simply validates and updates a subblock)

++ More freedom in transferring subblocks into the cache (a
cache block does not need to be in the cache fully)

-- More complex design

-- May not exploit spatial locality fully when used for reads

19

tag subblock v subblock v subblock v d d d

Instruction vs. Data Caches

 Unified:

+ Dynamic sharing of cache space: no overprovisioning that
might happen with static partitioning (i.e., split I and D
caches)

-- Instructions and data can thrash each other (i.e., no
guaranteed space for either)

-- I and D are accessed in different places in the pipeline. Where
do we place the unified cache for fast access?

 First level caches are almost always split

 Mainly for the last reason above

 Second and higher levels are almost always unified

20

Multi-level Caching in a Pipelined Design

 First-level caches (instruction and data)

 Decisions very much affected by cycle time

 Small, lower associativity

 Tag store and data store accessed in parallel

 Second-level caches

 Decisions need to balance hit rate and access latency

 Usually large and highly associative; latency not as important

 Tag store and data store accessed serially

 Serial vs. Parallel access of levels

 Serial: Second level cache accessed only if first-level misses

 Second level does not see the same accesses as the first

 First level acts as a filter

21

Virtual Memory and Cache Interaction

Address Translation and Caching

 When do we do the address translation?

 Before or after accessing the L1 cache?

 In other words, is the cache virtually addressed or
physically addressed?

 Virtual versus physical cache

 What are the issues with a virtually addressed cache?

 Synonym problem:

 Two different virtual addresses can map to the same physical
address  same physical address can be present in multiple
locations in the cache  can lead to inconsistency in data

23

Homonyms and Synonyms

 Homonym: Same VA can map to two different PAs

 Why?

 VA is in different processes

 Synonym: Different VAs can map to the same PA

 Why?

 Different pages can share the same physical frame within or
across processes

 Reasons: shared libraries, shared data, copy-on-write pages
within the same process, …

 Do homonyms and synonyms create problems when we
have a cache?

 Is the cache virtually or physically addressed?

24

Cache-VM Interaction

25

CPU

TLB

cache

lower
hier.

physical cache

CPU

cache

tlb

lower
hier.

virtual (L1) cache

VA

PA

CPU

cache tlb

lower
hier.

virtual-physical cache

VA

PA

VA

PA

Physical Cache

26

Virtual Cache

27

Virtual-Physical Cache

28

Virtually-Indexed Physically-Tagged

 If C≤(page_size  associativity), the cache index bits come only

from page offset (same in VA and PA)

 If both cache and TLB are on chip

 index both arrays concurrently using VA bits

 check cache tag (physical) against TLB output at the end

29

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data =

cache hit? TLB hit?

Virtually-Indexed Physically-Tagged

 If C>(page_size  associativity), the cache index bits include VPN
 Synonyms can cause problems

 The same physical address can exist in two locations

 Solutions?

30

VPN Page Offset

TLB

PPN

Index BiB

physical
cache

tag data =

cache hit? TLB hit?

a

Some Solutions to the Synonym Problem

 Limit cache size to (page size times associativity)

 get index from page offset

 On a write to a block, search all possible indices that can
contain the same physical block, and update/invalidate

 Used in Alpha 21264, MIPS R10K

 Restrict page placement in OS

 make sure index(VA) = index(PA)

 Called page coloring

 Used in many SPARC processors

31

An Exercise

 Problem 5 from

 ECE 741 midterm exam Problem 5, Spring 2009

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf

32

http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf
http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?media=wiki:midterm:midterm_s09.pdf

An Exercise (I)

33

34

An Exercise (II)

35

An Exercise (Concluded)

36

