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Reminder: Homework 5  

 Due April 3 

 Topics: Vector processing, VLIW, Virtual memory, Caching 
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Reminder: Lab Assignment 5 

 Lab Assignment 5 

 Due Friday, April 5 

 Modeling caches and branch prediction at the 
microarchitectural level (cycle level) in C 

 

 Extra credit: Cache design optimization 

 Size, block size, associativity 

 Replacement and insertion policies 

 Cache indexing policies 

 Anything else you would like 

 

 TAs will go over the baseline simulator in lab sessions 
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Last Lecture 

 The memory hierarchy 

 

 Caches start 

 Structure 

 Associativity 
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Today 

 More (and more advanced) caching 
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Review: Direct-Mapped Cache Structure 

 Assume byte-addressable memory:           
256 bytes, 8-byte blocks  32 blocks 

 Assume cache: 64 bytes, 8 blocks 

 Direct-mapped: A block can go to only one location 

 

 

 

 

 

 

 

 

 

 Addresses with same index contend for the same location 

 Cause conflict misses 
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Review: Problem with Direct-Mapped 

 Direct-mapped cache: Two blocks in memory that map to 
the same index in the cache cannot be present in the cache 
at the same time 

 One index  one entry 

 

 Can lead to 0% hit rate if more than one block accessed in 
an interleaved manner map to the same index  

 Assume addresses A and B have the same index bits but 
different tag bits 

 A, B, A, B, A, B, A, B, …  conflict in the cache index 

 All accesses are conflict misses 
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Review: Set Associativity 

 Addresses 0 and 8 always conflict in direct mapped cache 

 Instead of having one column of 8, have 2 columns of 4 blocks 
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Review: Higher Associativity 

 4-way 

 

 

 

 

 

 

 

 

 

-- More tag comparators and wider data mux; larger tags 

+ Likelihood of conflict misses even lower 
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Review: Full Associativity 

 Fully associative cache 

 A block can be placed in any cache location 
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Review: Approximations of LRU 

 Most modern processors do not implement “true LRU” in 
highly-associative caches 

 

 Why? 

 True LRU is complex 

 LRU is an approximation to predict locality anyway (i.e., not 
the best possible replacement policy) 

 

 Examples: 

 Not MRU (not most recently used) 

 Hierarchical LRU: divide the 4-way set into 2-way “groups”, 
track the MRU group and the MRU way in each group 

 Victim-NextVictim Replacement: Only keep track of the victim 
and the next victim 
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Victim/Next-Victim Example 
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Replacement Policy 

 LRU vs. Random 

 Set thrashing: When the “program working set” in a set is 
larger than set associativity 

 4-way: Cyclic references to A, B, C, D, E  

 0% hit rate with LRU policy 

 Random replacement policy is better when thrashing occurs 

 In practice: 

 Depends on workload 

 Average hit rate of LRU and Random are similar 

 

 Hybrid of LRU and Random 

 How to choose between the two? Set sampling 

 See Qureshi et al., “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 
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Optimal Replacement Policy? 

 Belady’s OPT 

 Replace the block that is going to be referenced furthest in the 
future by the program 

 Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, 1966. 

 How do we implement this? Simulate? 

 

 Is this optimal for minimizing miss rate? 

 Is this optimal for minimizing execution time? 

 No. Cache miss latency/cost varies from block to block! 

 Two reasons: Remote vs. local caches and miss overlapping 

 Qureshi et al. “A Case for MLP-Aware Cache Replacement,“ 
ISCA 2006. 
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Aside: Cache versus Page Replacement 

 Physical memory (DRAM) is a cache for disk 

 Usually managed by system software via the virtual memory 
subsystem 

 

 Page replacement is similar to cache replacement 

 Page table is the “tag store” for physical memory data store 

 

 What is the difference? 

 Hardware versus software 

 Number of blocks in a cache versus physical memory 

 “Tolerable” amount of time to find a replacement candidate 
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What’s In A Tag Store Entry? 

 Valid bit 

 Tag 

 Replacement policy bits 

 

 Dirty bit? 

 Write back vs. write through caches 
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Handling Writes (Stores) 

 When do we write the modified data in a cache to the next level? 

 Write through: At the time the write happens 

 Write back: When the block is evicted 

 

 Write-back 

+ Can consolidate multiple writes to the same block before eviction 

 Potentially saves bandwidth between cache levels + saves energy 

    -- Need a bit in the tag store indicating the block is “modified” 

 

 Write-through 

+ Simpler 

+ All levels are up to date. Consistency: Simpler cache coherence 
because no need to check lower-level caches 

-- More bandwidth intensive; no coalescing of writes 
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Handling Writes (Stores) 

 Do we allocate a cache block on a write miss? 

 Allocate on write miss: Yes 

 No-allocate on write miss: No 

 

 Allocate on write miss 

+ Can consolidate writes instead of writing each of them 
individually to next level 

+ Simpler because write misses can be treated the same way as 
read misses 

-- Requires (?) transfer of the whole cache block 

 

 No-allocate 

+ Conserves cache space if locality of writes is low (potentially 
better cache hit rate) 
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Sectored Caches 

 Divide a block into subblocks (or sectors) 

 Have separate valid and dirty bits for each sector 

 When is this useful? (Think writes…) 

 How many subblocks do you transfer on a read?  

 

++ No need to transfer the entire cache block into the cache 

      (A write simply validates and updates a subblock)   

++ More freedom in transferring subblocks into the cache (a 
cache block does not need to be in the cache fully) 

 

-- More complex design 

-- May not exploit spatial locality fully when used for reads 
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Instruction vs. Data Caches 

 Unified: 

+ Dynamic sharing of cache space: no overprovisioning that 
might happen with static partitioning (i.e., split I and D 
caches) 

-- Instructions and data can thrash each other (i.e., no 
guaranteed space for either) 

-- I and D are accessed in different places in the pipeline. Where 
do we place the unified cache for fast access? 

 

 First level caches are almost always split  

 Mainly for the last reason above 

 Second and higher levels are almost always unified 
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Multi-level Caching in a Pipelined Design 

 First-level caches (instruction and data) 

 Decisions very much affected by cycle time 

 Small, lower associativity 

 Tag store and data store accessed in parallel 

 Second-level caches 

 Decisions need to balance hit rate and access latency 

 Usually large and highly associative; latency not as important 

 Tag store and data store accessed serially 

 

 Serial vs. Parallel access of levels 

 Serial: Second level cache accessed only if first-level misses 

 Second level does not see the same accesses as the first 

 First level acts as a filter 
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Virtual Memory and Cache Interaction 

 

 

 

 



Address Translation and Caching 

 When do we do the address translation? 

 Before or after accessing the L1 cache? 

 

 In other words, is the cache virtually addressed or 
physically addressed? 

 Virtual versus physical cache 

 

 What are the issues with a virtually addressed cache? 

 

 Synonym problem: 

 Two different virtual addresses can map to the same physical 
address  same physical address can be present in multiple 
locations in the cache  can lead to inconsistency in data 
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Homonyms and Synonyms 

 Homonym: Same VA can map to two different PAs 

 Why?  

 VA is in different processes 

 

 Synonym: Different VAs can map to the same PA 

 Why?  

 Different pages can share the same physical frame within or 
across processes 

 Reasons: shared libraries, shared data, copy-on-write pages 
within the same process, … 

 

 Do homonyms and synonyms create problems when we 
have a cache? 

 Is the cache virtually or physically addressed? 
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Cache-VM Interaction 
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Physical Cache 
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Virtual Cache 
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Virtual-Physical Cache 
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Virtually-Indexed Physically-Tagged 

 
 If C≤(page_size  associativity), the cache index bits come only 

from page offset (same in VA and PA) 

 If both cache and TLB are on chip 

 index both arrays concurrently using VA bits 

 check cache tag (physical) against TLB output at the end 
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Virtually-Indexed Physically-Tagged 

 
 If C>(page_size  associativity), the cache index bits include VPN 
 Synonyms can cause problems 

 The same physical address can exist in two locations 

 Solutions? 
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Some Solutions to the Synonym Problem 

 Limit cache size to (page size times associativity) 

  get index from page offset  

 

 On a write to a block, search all possible indices that can 
contain the same physical block, and update/invalidate 

 Used in Alpha 21264, MIPS R10K 

 

 Restrict page placement in OS 

 make sure index(VA) = index(PA) 

 Called page coloring 

 Used in many SPARC processors 

 

 

31 



An Exercise 

 Problem 5 from  

 ECE 741 midterm exam Problem 5, Spring 2009 

 http://www.ece.cmu.edu/~ece740/f11/lib/exe/fetch.php?medi
a=wiki:midterm:midterm_s09.pdf 
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An Exercise (I) 
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An Exercise (II) 
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An Exercise (Concluded) 
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