
18-447: Computer Architecture
Lecture 18: Virtual Memory III

Yoongu Kim

Carnegie Mellon University

Spring 2013, 3/1

Upcoming Schedule

• Today: Lab 3 Due

• Today: Lecture/Recitation

• Monday (3/4): Lecture – Q&A Session

• Wednesday (3/6): Midterm 1

– 12:30 – 2:20

– Closed book

– One letter-sized cheat sheet

• Can be double-sided

• Can be either typed or written

Readings

• Required

– P&H, Chapter 5.4

– Hamacher et al., Chapter 8.8

• Recommended
– Denning, P. J. Virtual Memory. ACM Computing Surveys. 1970

– Jacob, B., & Mudge, T. Virtual Memory in Contemporary
Microprocessors. IEEE Micro. 1998.

• References

– Intel Manuals for 8086/80286/80386/IA32/Intel64

– MIPS Manual

Review of Last Lecture

• Two approaches to virtual memory

1. Segmentation
• Not as popular today

2. Paging
• What is usually meant today by “virtual memory”

• Virtual memory requires HW+SW support

– HW component is called the MMU

• Memory management unit

– How to translate: virtual ↔ physical addresses?

Review of Last Lecture (cont’d)

1. Segmentation

– Divide the address space into segments

• Physical Address = BASE + Virtual Address

– Case studies: Intel 8086, 80286, x86, x86-64

– Advantages

• Modularity/Isolation/Protection

• Translation is simple

– Disadvantages

• Complicated management

• Fragmentation

• Only a few segments are addressable at the same time

Review of Last Lecture (cont’d)

2. Paging

– Virtual address space: Large, contiguous, imaginary

– Page: A fixed-sized chunk of the address space

– Mapping: Virtual pages → physical pages

– Page table: The data structure that stores the mappings

• Problem #1: Too large

– Solution: Hierarchical page tables

• Problem #2: Large latency

– Solution: Translation Lookaside Buffer (TLB)

– Case study: Intel 80386

– Today, we’ll talk more about paging ...

Today’s Lecture

• More on Paging

1. Translation

2. Protection

3. TLB Management

4. Page Faults

5. Page Size

6. Software Side

1. TRANSLATION

Translation: “Flat” Page Table
pte_t PAGE_TABLE[1<<20];

PAGE_TABLE[7]=2;

31

XXX 000000111

Offset VPN

Virtual Address
0 11 12

NULL PTE0

NULL PTE1

NULL PTE7

NULL PTE1<<20-1

··
·

··
·

19 0

PAGE_TABLE

31

XXX 000000010

Offset PPN

Physical Address
0 11 12

000000010 PTE7

NULL PDE0

Translation: Two-Level Page Table
pte_t *PAGE_DIRECTORY[1<<10];

PAGE_DIRECTORY[0]=malloc((1<<10)*sizeof(pte_t));

PAGE_DIRECTORY[0][7]=2;

&PT0 PDE0

NULL PDE1

NULL PDE1023

31 0

PAGE_DIR

NULL PTE0

PTE7

NULL PTE1023

19 0

NULL

PAGE_TABLE0

PTE7
000000010

VPN[19:0]=0000000000_0000000111
Directory index Table index

Two-Level Page Table (x86)

– CR3: Control Register 3 (or Page Directory Base Register)
• Stores the physical address of the page directory

• Q: Why not the virtual address?

Per-Process Virtual Address Space

• Each process has its own virtual address space

– Process X: text editor

– Process Y: video player

– X writing to its virtual address 0 does not affect the data
stored in Y’s virtual address 0 (or any other address)

• This was the entire purpose of virtual memory

– Each process has its own page directory and page tables

• On a context switch, the CR3’s value must be updated

X’s PAGE_DIR Y’s PAGE_DIR

CR3

Multi-Level Page Table (x86-64)

• Q: Why so many levels?

• A: Virtual address space is extremely
large; too many empty PDEs. Need to
unallocate them.

Translation: Segmentation + Paging

2. PROTECTION

x86: Privilege Level (Review)

• Four privilege levels in x86 (referred to as rings)

– Ring 0: Highest privilege (operating system)

– Ring 1: Not widely used

– Ring 2: Not widely used

– Ring 3: Lowest privilege (user applications)

• Current Privilege Level (CPL) determined by:

– Address of the instruction that you are executing

– Specifically, the Descriptor Privilege Level (DPL) of the
code segment

“Supervisor”

“User”

x86: A Closer Look at the PDE/PTE

• PDE: Page Directory Entry (32 bits)

• PTE: Page Table Entry (32 bits)

PPN PTE Flags

&PT PDE Flags

Protection: PDE’s Flags

• Protects all 1024 pages in a page table

Protection: PTE’s Flags

• Protects one page at a time

Protection: PDE + PTE = ???

Protection: Segmentation + Paging
• Paging provides protection

– Flags in the PDE/PTE (x86)
• Read/Write

• User/Supervisor

• Executable (x86-64)

• Segmentation also provides protection
– Flags in the Segment Descriptor (x86)

• Read/Write

• Descriptor Privilege Level

• Executable

3. TLB MANAGEMENT

TLB (Review)

• Translation Lookaside Buffer (TLB)

– A hardware structure where PTEs are cached
• Q: How about PDEs? Should they be cached?

– Whenever a virtual address needs to be translated, the TLB
is first searched: “hit” vs. “miss”

• Example: 80386

– 32 entries in the TLB

– TLB entry: tag + data
• Tag: 20-bit VPN + 4-bit flag (valid, dirty, R/W, U/S)

• Data: 20-bit PPN

• Q: Why is the tag needed?

Context Switches

• Assume that Process X is running

– Process X’s VPN 5 is mapped to PPN 100

– The TLB caches this mapping

• VPN 5 PPN 100

• Now assume a context switch to Process Y

– Process Y’s VPN 5 is mapped to PPN 200

– When Process Y tries to access VPN 5, it searches the TLB

• Process Y finds an entry whose tag is 5

• Hurray! It’s a TLB hit!

• The PPN must be 100!

• … Are you sure?

Context Switches (cont’d)

• Approach #1. Flush the TLB

– Whenever there is a context switch, flush the TLB
• All TLB entries are invalidated

– Example: 80836
• Updating the value of CR3 signals a context switch

• This automatically triggers a TLB flush

• Approach #2. Associate TLB entries with processes

– All TLB entries have an extra field in the tag ...
• That identifies the process to which it belongs

– Invalidate only the entries belonging to the old process

– Example: Modern x86, MIPS

Handling TLB Misses

• The TLB is small; it cannot hold all PTEs

– Some translations will inevitably miss in the TLB

– Must access memory to find the appropriate PTE

• Called walking the page directory/table

• Large performance penalty

• Who handles TLB misses?

1. Hardware-Managed TLB

2. Software-Managed TLB

Handling TLB Misses (cont’d)

• Approach #1. Hardware-Managed (e.g., x86)

– The hardware does the page walk

– The hardware fetches the PTE and inserts it into the TLB

• If the TLB is full, the entry replaces another entry

– All of this is done transparently

• Approach #2. Software-Managed (e.g., MIPS)

– The hardware raises an exception

– The operating system does the page walk

– The operating system fetches the PTE

– The operating system inserts/evicts entries in the TLB

Handling TLB Misses (cont’d)

• Hardware-Managed TLB

– Pro: No exceptions. Instruction just stalls

– Pro: Independent instructions may continue

– Pro: Small footprint (no extra instructions/data)

– Con: Page directory/table organization is etched in stone

• Software-Managed TLB

– Pro: The OS can design the page directory/table

– Pro: More advanced TLB replacement policy

– Con: Flushes pipeline

– Con: Performance overhead

4. PAGE FAULTS

Introduction to Page Faults

• If a virtual page is not mapped to a physical page …

– The virtual page does not have a valid PTE

– x86: 0th bit of PDE/PTE is set to 0

• What would happen if you accessed that page?

– A hardware exception: page fault

– The operating system needs to handle it

• Page fault handler
– Side note

• In x86, the term “page fault” has one additional meaning …

• Violation of page protection (e.g., writing to read-only page)

• For our purposes, we will not consider this to be a page fault

Source of Page Faults

1. Program error
int *ptr=random();

int val=*ptr; // Error

– The operating system cannot save you

2. The virtual page is mapped to disk, not memory

– What is typically meant by “page fault”

– The operating system can save you

• Read the data from disk into a physical page in memory

• Map the virtual page to the physical page

• Create the appropriate PDE/PTE

• Resume program that caused the page fault

Why Mapped to Disk?

• Why would a virtual page ever be mapped to disk?

– Two possible reasons

1. Demand Paging
– When a large file in disk needs to be read, not all of it is

loaded into memory at once

– Instead, page-sized chunks are loaded on-demand

– If most of the file is never actually read …

• Saves time (remember, disk is extremely slow)

• Saves memory space

– Q: When can demand paging be bad?

Why Mapped to Disk? (cont’d)

2. Swapping
– Assume that physical memory is exhausted

• You are running many programs that require lots of memory

– What happens if you try to run another program?
• Some physical pages are “swapped out” to disk

• I.e., the data in some physical pages are migrated to disk

• This frees up those physical pages

• As a result, their PTEs become invalid

– When you access a physical page that has been swapped
out, only then is it brought back into physical memory
• This may cause another physical page to be swapped out

• If this “ping-ponging” occurs frequently, it is called thrashing

• Extreme performance degradation

5. PAGE SIZE

Trade-Offs in Page Size

• Large page size (e.g., 1GB)
– Pro: Fewer PTEs required Saves memory space

– Pro: Fewer TLB misses Improves performance

– Con: Cannot have fine-grained permissions

– Con: Large transfers to/from disk
• Even when only 1KB is needed, 1GB must be transferred

• Waste of bandwidth/energy

• Reduces performance

– Con: Internal fragmentation
• Even when only 1KB is needed, 1GB must be allocated

• Waste of space

• Q: What is external fragmentation?

6. SOFTWARE SIDE

Hardware and Software

• Virtual memory requires both HW+SW support

• The hardware component is called the MMU

– Most of what’s been explained today is done by the MMU

• It is the job of the software to leverage the MMU

– Populate page directories and page tables

– Modify the Page Directory Base Register on context switch

– Set correct permissions

– Handle page faults

– Etc.

More on Software

• Other software issues (that we won’t go into)

– Keeping track of which physical pages are free

– Allocating free physical pages to virtual pages

– Page replacement policy
• When no physical pages are free, which should be swapped out?

– Sharing pages between processes

– Copy-on-write optimization

– Page-flip optimization

Today’s Lecture

• More on Paging

1. Translation

2. Protection

3. TLB Management

4. Page Size

5. Page Faults

6. Software Side

