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Upcoming Schedule 

• Friday (3/1): Lab 3 Due 

• Friday (3/1): Lecture/Recitation  

• Monday (3/4): Lecture – Q&A Session 

• Wednesday (3/6): Midterm 1 

– 12:30 – 2:20 

– Closed book 

– One letter-sized cheat sheet 

• Can be double-sided 

• Can be either typed or written 

 

 

 



Readings 

• Required 

– P&H, Chapter 5.4 

– Hamacher et al., Chapter 8.8 

 

• Recommended 
– Denning, P. J. Virtual Memory. ACM Computing Surveys. 1970 

– Jacob, B., & Mudge, T. Virtual Memory in Contemporary 
Microprocessors. IEEE Micro. 1998. 

 

• References 

– Intel Manuals for 8086/80286/80386/IA32/Intel64  

 

 



Review of Last Lecture 

• The programer does not know a priori ... 

1. the physical memory size of the machine 

• what is the largest address that can be safely used? 

2. which other programs will be co-running on the machine 

• what if another program uses the same address? 

 

• How to solve these two problems? 

 

“Any problem in computer science can be solved with 
another level of indirection.” David Wheeler 

 



Review of Last Lecture (cont’d) 

• Virtual memory is a level of indirection that ... 

1. Provides the illusion of a large address space  

2. This illusion is provided separately for each program 

 

• Advantages of virtual memory 

1. Easier memory management 

2. Provides memory isolation/protection 

 

“At the heart [...] is the notion that ‘address’ is a 
concept distinct from ‘physical location.’” Peter Denning 

 



Today’s Lecture 

• Two approaches to virtual memory 

1. Segmentation 

• Not as popular today 

2. Paging 

• What is usually meant today by “virtual memory” 

 

• Virtual memory requires HW+SW support 

– HW component is called the MMU 

•  Memory management unit 

– How to translate: virtual ↔ physical addresses? 

 



1. SEGMENTATION 



Overview of Segmentation 

• Divide the physical address space into segments 

– The segments may overlap 
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Segmentation in Intel 8086 

• Intel 8086 (Late 70s) 

– 16-bit processor 

– 4 segment registers that store the base address 
 

 



Intel 8086: Specifying a Segment 
• There can be many segments 

 

• But only 4 of them are  
addressable at once 

 

• Which 4 depends on  
the 4 segment registers 

– The programmer sets 
the segment register value 

 

• Each segment is 64KB in size 

– Because 8086 is 16-bit 

1MB?? 



Intel 8086: Translation 

• 8086 is a 16-bit processor ... 

– How can it address up to 0xFFFFF (1MB)? 

 

 
 

Segment Register 

Virtual Addr. 



Intel 8086: Which Segment Register? 

• Q: For a memory access, how does the machine 
know which of the 4 segment register to use? 

– A: Depends on the type of memory access 

 

 

 

 

 
– Can be overriden: mov %AX,(%ES:0x1234) 

 
x86 Instruction 



Segmentation in Intel 80286 

• Intel 80286 (Early 80s) 

– Still a 16-bit processor 

– Still has 4 segment registers that ... 

• stores the index into a table of base addresses 

• not the base address itself 
 

Segment Descriptor 2 

Segment Descriptor 0 

Segment Descriptor 1 

Segment Descriptor N-1 

··
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Segment Register (DS) 

Segment Register (SS) 
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Intel 80286: Segment Descriptor 

• A segment descriptor describes a segment: 

1.BASE: Base address 

2.LIMIT: The size of the segment 

3.DPL: Descriptor Privilege Level (!!) 

4. Etc. 

0 63 

Segment Descriptor  



Intel 80286: Translation 

• Example: mov %AX,(0x1234) 

1. Accesses the data segment (unless otherwise specified) 

2. DS is the segment selector for the data segment 

3. DS points to a particular segment descriptor within the 
segment descriptor table 

4. The segment descriptor specifies BASE and LIMIT 

• Virtual address: 0x1234 

• assert(0x1234 ≤ LIMIT); 

• Physical address: BASE+0x1234 

 

• Also referred to as “base-and-bound” 



Intel 80286: Accelerating Translation 

• Segment selectors: stored in registers (fast) 

• Segment descriptors: stored in memory (slow) 

– Before every memory access, always fetch the segment 
descriptor from memory?  Large performance penalty 

 

• Solution: “Cache” the segment descriptor as part of 
the segment selector 

 

 

 Segment Register 

15 0 

Programmer-Visible 

“Cached” Segment Descriptor 

Programmer-Invisible 

Segment Selector 



Intel 80286: Privilege Levels 

• Four privilege levels in x86 (referred to as “rings”) 

– Ring 0: Highest privilege (operating system) 

– Ring 1: Not widely used 

– Ring 2: Not widely used 

– Ring 3: Lowest privilege (user applications) 

 

• Let us assume that you are currently at Ring 3 ... 

– In other words, your Current Privilege Level (CPL) = 3 

– Then, you can access only the segments whose Descriptor 
Privilege Level (DPL) is 3 

• You cannot access segments whose DPL < 3 

 



Intel 80286: Privilege Levels (cont’d) 

• What’s my CPL? 

– Assume that the CS points to a segment descriptor 

– Assume that the DPL field in this segment descriptor is N  

– This means that your CPL is N 

• (Not really; CPL == DPL in the “cached” segment descriptor) 

• What can I do if my CPL = 0? 

– You are in “kernel mode” 

– Can access all segments 

– Can execute all x86 instructions, even the privileged ones 

• How do I change my CPL? 

– System calls: referred to as “software interrupts” 

– We will not go into detail 
 

 



Fast Forward to Today (2013) 

• Modern x86 Machines 

– 32-bit x86: Segmentation is similar to 80286 

– 64-bit x86: Segmentation is not supported per se 
• Forces the BASE=0x0000000000000000 

• Forces the LIMIT=0xFFFFFFFFFFFFFFFF 

• But DPL is still supported 

• Side Note: Linux & 32-bit x86 

– Linux does not use segmentation per se 
• For all segments, Linux sets BASE=0x00000000 

• For all segments, Linux sets LIMIT=0xFFFFFFFF 

– Instead, Linux uses segments for privilege levels 
• For segments used by the kernel, Linux sets DPL = 0 

• For segments used by the applications, Linux sets DPL = 3 



Summary of Segmentation 
• Summary: Divide the address space into segments 

– Modularity: Different pieces of a program in different segments 

– Isolation: Different programs in different segments 

– Protection: Privilege levels 

• Advantages 
– Translation is easy: Simple addition 

– Provides modularity, isolation, and protection 

• Disadvantages 
– Susceptible to fragmentation 

• Segments are relatively large 

• Large contiguous regions of unoccupied memory may not be found 

– Only a few segments are addressable at the same time 

– Complicated management 

• Overlapping, differently-sized segments 

• Programmer has to change the value of the segment base/limit 
 



Today’s Lecture 

• Two approaches to virtual memory 

1. Segmentation 

• Not as popular today 

2. Paging 

• What is usually meant today by “virtual memory” 

 

• Virtual memory requires HW+SW support 

– HW component is called the MMU 

•  Memory management unit 

– How to translate: virtual ↔ physical addresses? 

 



2. PAGING 



Overview of Paging 
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Overview of Paging (cont’d) 

1. Based on the notion of a virtual address space 

– A large, contiguous address space that is only an illusion 

• Virtual address space >> Physical address space 

– Each “program” gets its own separate virtual address space 

• Each process, not each thread 

 

2. Divide the address spaces into fixed-sized pages 

– Virtual page: A “chunk” of the virtual address space 

– Physical page: A “chunk” of the physical address space 

• Also called a frame 

– Size of virtual page == Size of physical page 
 

 



Overview of Paging (cont’d) 

3. Map virtual pages to physical pages 

– By itself, a virtual page is merely an illusion 

• Cannot actually store anything 

• Needs to be backed-up by a physical page 

– Before a virtual page can be accessed … 

• It must be paired with a physical page 

• I.e., it must be mapped to a physical page 

• This mapping is stored somewhere 

– On every subsequent access to the virtual page … 

• Its mapping is looked up 

• Then, the access is directed to the physical page 
 

 

 



Overview of Paging (cont’d) 
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Paging in Intel 80386 

• Intel 80386 (Mid 80s) 
– 32-bit processor 

– 4KB virtual/physical pages 
• Q: What is the size of a virtual address space? 

– A: 2^32 = 4GB 

• Q: How many virtual pages per virtual address space? 

– A: 4GB/4KB = 1M 

• Q: What is the size of the physical address space? 

– A: Depends… but less than or equal to 4GB 

• Q: How many physical pages in the physical address space? 

– A: Depends… but less than or equal to 1M 

– But let us assume that physical addresses are still 32 bits 



Intel 80386: Virtual Pages 

Virtual Page 0 

Virtual Page 1 

Virtual Page 2 

0KB 

··
· 

Virtual Page 1M-1 

4KB 

8KB 

4GB 

12KB 

0 31 

XXXXX 

11 12 

32-bit Virtual Address 

0000000000 



Intel 80386: Virtual Pages 

Virtual Page 0 

Virtual Page 1 

Virtual Page 2 

0KB 

··
· 

Virtual Page 1M-1 
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Intel 80386: Virtual Pages 

Virtual Page 0 
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Intel 80386: Virtual Pages 
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Intel 80386: Virtual Pages 

Virtual Page 0 
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Intel 80386: Translation  

• Assume: Virtual Page 7 is mapped to Physical Page 32 

• For an access to Virtual Page 7 … 

0 31 

011001 

11 12 

0000000111 

Offset VPN 

Virtual Address: 

0 31 

011001 

11 12 

0000100000 

Offset PPN 

Physical Address: 

Translated 



Intel 80386: VPN → PPN 

• How to keep track of VPN → PPN mappings? 

– VPN 65 → PPN 981, 

– VPN 3161 → PPN 1629, 

– VPN 9327 → PPN 524, … 

• Page Table: A “lookup table” for the mappings 

– Can be thought of as an array 

– Each element in the array is called a page table entry (PTE) 

uint32 PAGE_TABLE[1<<20]; 

PAGE_TABLE[65]=981; 

PAGE_TABLE[3161]=1629; 

PAGE_TABLE[9327]=524; ... 

 

 

 

 

 



Intel 80386: Two Problems 

• Two problems with page tables 

 

• Problem #1: Page table is too large 
– Page table has 1M entries 

– Each entry is 4B (because 4B ≈ 20-bit PPN) 

– Page table = 4MB (!!) 

• very expensive in the 80s 

 

• Problem #2: Page table is stored in memory 

– Before every memory access, always fetch the PTE from 
the slow memory?  Large performance penalty 



Intel 80386: Page Table Too Large 

• Typically, the vast majority of PTEs are empty 
PAGE_TABLE[0]=141; 

... 

PAGE_TABLE[532]=1190; 

PAGE_TABLE[534]=NULL; 

... 

PAGE_TABLE[1048401]=NULL; 

PAGE_TABLE[1048402]=845; 

... 

PAGE_TABLE[1048575]=742; // 1048575=(1<<20)-1; 

– Q: Why?   −   A: Virtual address space is extremely large 
 

• Typically, empty PTEs are clustered together 

– Q: Why?   −    A: Stack vs. heap 

 

                                   empty  



Intel 80386: Page Table Too Large 

• Solution: “Unallocate” the empty PTEs to save space 
PAGE_TABLE[0]=141; 

... 

PAGE_TABLE[532]=1190; 

PAGE_TABLE[534]=NULL; 

... 

PAGE_TABLE[1048401]=NULL; 

PAGE_TABLE[1048402]=845; 

... 

PAGE_TABLE[1048575]=742; // 1048575=(1<<20)-1; 

 

• Unallocating every single empty PTE is tedious 

– Instead, unallocate only long stretches of empty PTEs 

                                   empty  Unallocated 



Intel 80386: Page Table Too Large 

• To allow PTEs to be “unallocated” … 

– the page table must be restructured 

• Before restructuring: flat  
uint32 PAGE_TABLE[1024*1024]; 

uint32 PAGE_TABLE[0]=423; 

uint32 PAGE_TABLE[1023]=381; 

• After restructuring: hierarchical 
uint32 *PAGE_DIRECTORY[1024]; 

PAGE_DIRECTORY[0]=malloc(sizeof(uint32)*1024); 

PAGE_DIRECTORY[0][0]=423;  

PAGE_DIRECTORY[0][1023]=381; 

PAGE_DIRECTORY[1]=NULL; // 1024 PTEs unallocated 

PAGE_DIRECTORY[2]=NULL; // 1024 PTEs unallocated 

 

 



Intel 80386: Two Problems 

• Two problems with page tables 

• Problem #1: Page table is too large 

– Page table has 1M entries 

– Each entry is 4B (because 4B ≈ 20-bit PPN) 

– Page table = 4MB (!!) 

• very expensive in the 80s 

– Solution: Hierarchical page table 

• Problem #2: Page table is in memory 
– Before every memory access, always fetch the PTE from 

the slow memory?  Large performance penalty 



Intel 80386: Accelerating Translation 

• Retrieving PTEs from the memory is slow … 

 

• Solution: “Cache” the PTEs inside the processor 

– Translation Lookaside Buffer (TLB) 

• “Lookaside Buffer” is an old term for cache 

– 32-entry TLB for 80386 

– Each TLB entry consists of a tag and data 

1. Tag: 20-bit VPN + 4-bit metadata 

2. Data: 20-bit PPN 

 

 

 



Intel 80386: Two Problems 

• Two problems with page tables 

• Problem #1: Page table is too large 

– Page table has 1M entries 

– Each entry is 4B (because 4B ≈ 20-bit PPN) 

– Page table = 4MB (!!) 

• very expensive in the 80s 

– Solution: Hierarchical page table 

• Problem #2: Page table is in memory 

– Before every memory access, always fetch the PTE from 
the slow memory?  Large performance penalty 

– Solution: Translation Lookaside Buffer 



Next Lecture 

• More on paging: 

– Trade-offs in page size 

– PTEs, PDEs & Page-level protection 

– Demand paging & Page faults 

– Thrashing & Replacement 

– Handling TLB Misses 

– Context switches & Homonyms 

 


