
18-447: Computer Architecture
Lecture 17: Virtual Memory II

Yoongu Kim

Carnegie Mellon University

Spring 2013, 2/27

Upcoming Schedule

• Friday (3/1): Lab 3 Due

• Friday (3/1): Lecture/Recitation

• Monday (3/4): Lecture – Q&A Session

• Wednesday (3/6): Midterm 1

– 12:30 – 2:20

– Closed book

– One letter-sized cheat sheet

• Can be double-sided

• Can be either typed or written

Readings

• Required

– P&H, Chapter 5.4

– Hamacher et al., Chapter 8.8

• Recommended
– Denning, P. J. Virtual Memory. ACM Computing Surveys. 1970

– Jacob, B., & Mudge, T. Virtual Memory in Contemporary
Microprocessors. IEEE Micro. 1998.

• References

– Intel Manuals for 8086/80286/80386/IA32/Intel64

Review of Last Lecture

• The programer does not know a priori ...

1. the physical memory size of the machine

• what is the largest address that can be safely used?

2. which other programs will be co-running on the machine

• what if another program uses the same address?

• How to solve these two problems?

“Any problem in computer science can be solved with
another level of indirection.” David Wheeler

Review of Last Lecture (cont’d)

• Virtual memory is a level of indirection that ...

1. Provides the illusion of a large address space

2. This illusion is provided separately for each program

• Advantages of virtual memory

1. Easier memory management

2. Provides memory isolation/protection

“At the heart [...] is the notion that ‘address’ is a
concept distinct from ‘physical location.’” Peter Denning

Today’s Lecture

• Two approaches to virtual memory

1. Segmentation

• Not as popular today

2. Paging

• What is usually meant today by “virtual memory”

• Virtual memory requires HW+SW support

– HW component is called the MMU

• Memory management unit

– How to translate: virtual ↔ physical addresses?

1. SEGMENTATION

Overview of Segmentation

• Divide the physical address space into segments

– The segments may overlap

p
hy

si
ca

l m
em

o
ry

0x2345

0x0000

0xFFFF

se
g

m
en

t
se

g
m

en
t

Base:0x8000

Base:0x0000

+ 0xA345

Virtual Addr. Physical Addr.

Segmentation in Intel 8086

• Intel 8086 (Late 70s)

– 16-bit processor

– 4 segment registers that store the base address

Intel 8086: Specifying a Segment
• There can be many segments

• But only 4 of them are
addressable at once

• Which 4 depends on
the 4 segment registers

– The programmer sets
the segment register value

• Each segment is 64KB in size

– Because 8086 is 16-bit

1MB??

Intel 8086: Translation

• 8086 is a 16-bit processor ...

– How can it address up to 0xFFFFF (1MB)?

Segment Register

Virtual Addr.

Intel 8086: Which Segment Register?

• Q: For a memory access, how does the machine
know which of the 4 segment register to use?

– A: Depends on the type of memory access

– Can be overriden: mov %AX,(%ES:0x1234)

x86 Instruction

Segmentation in Intel 80286

• Intel 80286 (Early 80s)

– Still a 16-bit processor

– Still has 4 segment registers that ...

• stores the index into a table of base addresses

• not the base address itself

Segment Descriptor 2

Segment Descriptor 0

Segment Descriptor 1

Segment Descriptor N-1

··
·

Segment Register (CS)

Segment Register (DS)

Segment Register (SS)

Segment Register (ES)

“Segment Selectors” “Segment Descriptor Table”

15 0

0 63

Intel 80286: Segment Descriptor

• A segment descriptor describes a segment:

1.BASE: Base address

2.LIMIT: The size of the segment

3.DPL: Descriptor Privilege Level (!!)

4. Etc.

0 63

Segment Descriptor

Intel 80286: Translation

• Example: mov %AX,(0x1234)

1. Accesses the data segment (unless otherwise specified)

2. DS is the segment selector for the data segment

3. DS points to a particular segment descriptor within the
segment descriptor table

4. The segment descriptor specifies BASE and LIMIT

• Virtual address: 0x1234

• assert(0x1234 ≤ LIMIT);

• Physical address: BASE+0x1234

• Also referred to as “base-and-bound”

Intel 80286: Accelerating Translation

• Segment selectors: stored in registers (fast)

• Segment descriptors: stored in memory (slow)

– Before every memory access, always fetch the segment
descriptor from memory? Large performance penalty

• Solution: “Cache” the segment descriptor as part of
the segment selector

 Segment Register

15 0

Programmer-Visible

“Cached” Segment Descriptor

Programmer-Invisible

Segment Selector

Intel 80286: Privilege Levels

• Four privilege levels in x86 (referred to as “rings”)

– Ring 0: Highest privilege (operating system)

– Ring 1: Not widely used

– Ring 2: Not widely used

– Ring 3: Lowest privilege (user applications)

• Let us assume that you are currently at Ring 3 ...

– In other words, your Current Privilege Level (CPL) = 3

– Then, you can access only the segments whose Descriptor
Privilege Level (DPL) is 3

• You cannot access segments whose DPL < 3

Intel 80286: Privilege Levels (cont’d)

• What’s my CPL?

– Assume that the CS points to a segment descriptor

– Assume that the DPL field in this segment descriptor is N

– This means that your CPL is N

• (Not really; CPL == DPL in the “cached” segment descriptor)

• What can I do if my CPL = 0?

– You are in “kernel mode”

– Can access all segments

– Can execute all x86 instructions, even the privileged ones

• How do I change my CPL?

– System calls: referred to as “software interrupts”

– We will not go into detail

Fast Forward to Today (2013)

• Modern x86 Machines

– 32-bit x86: Segmentation is similar to 80286

– 64-bit x86: Segmentation is not supported per se
• Forces the BASE=0x0000000000000000

• Forces the LIMIT=0xFFFFFFFFFFFFFFFF

• But DPL is still supported

• Side Note: Linux & 32-bit x86

– Linux does not use segmentation per se
• For all segments, Linux sets BASE=0x00000000

• For all segments, Linux sets LIMIT=0xFFFFFFFF

– Instead, Linux uses segments for privilege levels
• For segments used by the kernel, Linux sets DPL = 0

• For segments used by the applications, Linux sets DPL = 3

Summary of Segmentation
• Summary: Divide the address space into segments

– Modularity: Different pieces of a program in different segments

– Isolation: Different programs in different segments

– Protection: Privilege levels

• Advantages
– Translation is easy: Simple addition

– Provides modularity, isolation, and protection

• Disadvantages
– Susceptible to fragmentation

• Segments are relatively large

• Large contiguous regions of unoccupied memory may not be found

– Only a few segments are addressable at the same time

– Complicated management

• Overlapping, differently-sized segments

• Programmer has to change the value of the segment base/limit

Today’s Lecture

• Two approaches to virtual memory

1. Segmentation

• Not as popular today

2. Paging

• What is usually meant today by “virtual memory”

• Virtual memory requires HW+SW support

– HW component is called the MMU

• Memory management unit

– How to translate: virtual ↔ physical addresses?

2. PAGING

Overview of Paging

vi
rt

u
a

l
vi

rt
u

a
l

p
hy

si
ca

l

Program 1

Program 2

4
G

B

4
G

B

1
6

M
B

Overview of Paging (cont’d)

1. Based on the notion of a virtual address space

– A large, contiguous address space that is only an illusion

• Virtual address space >> Physical address space

– Each “program” gets its own separate virtual address space

• Each process, not each thread

2. Divide the address spaces into fixed-sized pages

– Virtual page: A “chunk” of the virtual address space

– Physical page: A “chunk” of the physical address space

• Also called a frame

– Size of virtual page == Size of physical page

Overview of Paging (cont’d)

3. Map virtual pages to physical pages

– By itself, a virtual page is merely an illusion

• Cannot actually store anything

• Needs to be backed-up by a physical page

– Before a virtual page can be accessed …

• It must be paired with a physical page

• I.e., it must be mapped to a physical page

• This mapping is stored somewhere

– On every subsequent access to the virtual page …

• Its mapping is looked up

• Then, the access is directed to the physical page

Overview of Paging (cont’d)

vi
rt

u
a

l
vi

rt
u

a
l

p
hy

si
ca

l

Process 1

Process 2

4
G

B

4
G

B

1
6

M
B

Virtual Page

Virtual Page

Physical Page

Paging in Intel 80386

• Intel 80386 (Mid 80s)
– 32-bit processor

– 4KB virtual/physical pages
• Q: What is the size of a virtual address space?

– A: 2^32 = 4GB

• Q: How many virtual pages per virtual address space?

– A: 4GB/4KB = 1M

• Q: What is the size of the physical address space?

– A: Depends… but less than or equal to 4GB

• Q: How many physical pages in the physical address space?

– A: Depends… but less than or equal to 1M

– But let us assume that physical addresses are still 32 bits

Intel 80386: Virtual Pages

Virtual Page 0

Virtual Page 1

Virtual Page 2

0KB

··
·

Virtual Page 1M-1

4KB

8KB

4GB

12KB

0 31

XXXXX

11 12

32-bit Virtual Address

0000000000

Intel 80386: Virtual Pages

Virtual Page 0

Virtual Page 1

Virtual Page 2

0KB

··
·

Virtual Page 1M-1

4KB

8KB

4GB

12KB

0 31

XXXXX

11 12

32-bit Virtual Address

0000000001

Intel 80386: Virtual Pages

Virtual Page 0

Virtual Page 1

Virtual Page 2

0KB

··
·

Virtual Page 1M-1

4KB

8KB

4GB

12KB

0 31

XXXXX

11 12

32-bit Virtual Address

1111111111

Intel 80386: Virtual Pages

Virtual Page 0

Virtual Page 1

Virtual Page 2

0KB

··
·

Virtual Page 1M-1

4KB

8KB

4GB

12KB

0 31

XXXXX

11 12

32-bit Virtual Address

1111111111

VPN
(Virtual Page No.)

Intel 80386: Virtual Pages

Virtual Page 0

Virtual Page 1

Virtual Page 2

0KB

··
·

Virtual Page 1M-1

4KB

8KB

4GB

12KB

0 31

XXXXX

11 12

32-bit Virtual Address

1111111111

Offset VPN
(Virtual Page No.)

Intel 80386: Translation

• Assume: Virtual Page 7 is mapped to Physical Page 32

• For an access to Virtual Page 7 …

0 31

011001

11 12

0000000111

Offset VPN

Virtual Address:

0 31

011001

11 12

0000100000

Offset PPN

Physical Address:

Translated

Intel 80386: VPN → PPN

• How to keep track of VPN → PPN mappings?

– VPN 65 → PPN 981,

– VPN 3161 → PPN 1629,

– VPN 9327 → PPN 524, …

• Page Table: A “lookup table” for the mappings

– Can be thought of as an array

– Each element in the array is called a page table entry (PTE)

uint32 PAGE_TABLE[1<<20];

PAGE_TABLE[65]=981;

PAGE_TABLE[3161]=1629;

PAGE_TABLE[9327]=524; ...

Intel 80386: Two Problems

• Two problems with page tables

• Problem #1: Page table is too large
– Page table has 1M entries

– Each entry is 4B (because 4B ≈ 20-bit PPN)

– Page table = 4MB (!!)

• very expensive in the 80s

• Problem #2: Page table is stored in memory

– Before every memory access, always fetch the PTE from
the slow memory? Large performance penalty

Intel 80386: Page Table Too Large

• Typically, the vast majority of PTEs are empty
PAGE_TABLE[0]=141;

...

PAGE_TABLE[532]=1190;

PAGE_TABLE[534]=NULL;

...

PAGE_TABLE[1048401]=NULL;

PAGE_TABLE[1048402]=845;

...

PAGE_TABLE[1048575]=742; // 1048575=(1<<20)-1;

– Q: Why? − A: Virtual address space is extremely large

• Typically, empty PTEs are clustered together

– Q: Why? − A: Stack vs. heap

 empty

Intel 80386: Page Table Too Large

• Solution: “Unallocate” the empty PTEs to save space
PAGE_TABLE[0]=141;

...

PAGE_TABLE[532]=1190;

PAGE_TABLE[534]=NULL;

...

PAGE_TABLE[1048401]=NULL;

PAGE_TABLE[1048402]=845;

...

PAGE_TABLE[1048575]=742; // 1048575=(1<<20)-1;

• Unallocating every single empty PTE is tedious

– Instead, unallocate only long stretches of empty PTEs

 empty Unallocated

Intel 80386: Page Table Too Large

• To allow PTEs to be “unallocated” …

– the page table must be restructured

• Before restructuring: flat
uint32 PAGE_TABLE[1024*1024];

uint32 PAGE_TABLE[0]=423;

uint32 PAGE_TABLE[1023]=381;

• After restructuring: hierarchical
uint32 *PAGE_DIRECTORY[1024];

PAGE_DIRECTORY[0]=malloc(sizeof(uint32)*1024);

PAGE_DIRECTORY[0][0]=423;

PAGE_DIRECTORY[0][1023]=381;

PAGE_DIRECTORY[1]=NULL; // 1024 PTEs unallocated

PAGE_DIRECTORY[2]=NULL; // 1024 PTEs unallocated

Intel 80386: Two Problems

• Two problems with page tables

• Problem #1: Page table is too large

– Page table has 1M entries

– Each entry is 4B (because 4B ≈ 20-bit PPN)

– Page table = 4MB (!!)

• very expensive in the 80s

– Solution: Hierarchical page table

• Problem #2: Page table is in memory
– Before every memory access, always fetch the PTE from

the slow memory? Large performance penalty

Intel 80386: Accelerating Translation

• Retrieving PTEs from the memory is slow …

• Solution: “Cache” the PTEs inside the processor

– Translation Lookaside Buffer (TLB)

• “Lookaside Buffer” is an old term for cache

– 32-entry TLB for 80386

– Each TLB entry consists of a tag and data

1. Tag: 20-bit VPN + 4-bit metadata

2. Data: 20-bit PPN

Intel 80386: Two Problems

• Two problems with page tables

• Problem #1: Page table is too large

– Page table has 1M entries

– Each entry is 4B (because 4B ≈ 20-bit PPN)

– Page table = 4MB (!!)

• very expensive in the 80s

– Solution: Hierarchical page table

• Problem #2: Page table is in memory

– Before every memory access, always fetch the PTE from
the slow memory? Large performance penalty

– Solution: Translation Lookaside Buffer

Next Lecture

• More on paging:

– Trade-offs in page size

– PTEs, PDEs & Page-level protection

– Demand paging & Page faults

– Thrashing & Replacement

– Handling TLB Misses

– Context switches & Homonyms

