
The NYU Ultracomputer -- Designing a MIMD, Shared-Memory Parallel Machine
(Extended Abstract)

Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe,
Larry Rudolph, and Marc Snir

Courant Institute of Mathematical Sciences, NYU
251 Mercer St., New York, NY 10012

Abstract

We present the design for the NYU
Ultracomputer, a shared-memory MIMD parallel
machine composed of thousands of autonomous
processing elements. This machine uses an enhanced
message switching network with the geometry of an
Omega-network to approximate the ideal behavior of
Schwartz's paracomputer model of computation and to
implement efficiently the important fetch-and-add
synchronization primitive. We outline the hardware
that would be required to build a 4096 processor
system using 1990's technology. We also discuss
system software issues, and present analytic
studies of the network performance. Finally, we
include a sample of our effort to implement and
simulate parallel variants of important scientific
programs.

The major thrust of this report is to outline
and justify, in some detail, the proposed hardware
and present the analytic and simulation results
upon which parts of the design are based. We also
discuss system software issues and describe some of
our ongoing efforts to produce parallel versions of
important scientific programs (but the reader
should see Gottlieb et al. [81] and Kalos [81]
respectively for a more detailed treatment of these
last two topics). Section 2 of the present report
reviews the idealized computation model upon which
our design is based; section 3 presents the
machine design; section 4 analyzes network
performance; section 5 highlights a parallel
scientific program; and section 6 summarizes our
results.

1.0 INTRODUCTION

Within a few years advanced VLSI (very large
scale integration) technology will produce a fast
single-chip processor including high-speed
floating-point arithmetic. This leads one to
contemplate the level of computing power that would
be attained if thousands of such processors
cooperated effectively on the solution of
large-scale computational problems.

2.0 MACHINE MODEL

In this section we first review the
paracomputer model, upon which our machine design
is based, and the fetch-and-add operation, which we
use for interprocessor synchronization. After
illustrating the power of this model, we examine
alternates and justify our selection. Although the
paracomputer model to be described is not
physically realizable, we shall see in section 3
that close approximations can be built.

The NYU "Ultracomputer" group has been
studying how such ensembles can be constructed for
effective use and has produced a tentative design
that includes some novel hardware and software
components. The design may be broadly classified
as a general purpose MIMD machine accessing a
central shared memory via a message switching
network with the geometry of an Omega-network.
(For related designs see Burroughs [79], Siegel et
al. [81], Smith [78], Sullivan etal. [77], and
Swan et al. [77].)

* Current address University of Illinois, Urbana.

** Current address University of Toronto.

This work was supported in part by the National
Science Foundation and the Applied Mathematical
Sciences Program of the Department of Energy, grant
numbers NSF-MCS79-07804 and DE-AC02-76ER03077
respectively.

2.1 Paracomouters

An idealized parallel processor, dubbed a
"paraeomputer" by Schwartz [80] and classified as a
WRAM by Borodin and Hopcroft [81], consists of
autonomous processing elements (PEs) sharing a
central memory. The model permits every PE to read
or write a shared memory cell in one cycle. In
particular, simultaneous reads and writes directed
at the same memory cell are effected in a single
cycle.

We augment the paracomputer model with the
"fetch-and-add" operation (described below) and
make precise the effect of simultaneous access to
the shared memory. To accomplish the latter we
define the serialization DrlnciDle: The effect of
simultaneous actions by the PEs is as if the
actions occurred in some (unspecified) serial
order. For example, consider the effect of one
load and two stores simultaneously directed at the

0149-7111/82/0000/0027500.75 © 1982 IEEE
27

same memory cell. The cell will come to contain
some one of the quantities written into it. The
load will return either the original value or one
of the stored values, possibly different from the
value the cell comes to contain. Note that
simultaneous memory updates are in fact
accomplished in one cycle; the serialization
principle speaks only of the effect of simultaneous
actions and not of their implementation.

We stress that paracomputers must be regarded
as idealized computational models since physical
limitations, such as restricted fan-in, prevent
their realization. In the next section we review
the technique whereby a connection network may be
used to construct a parallel processor closely
approximating our enhanced paracomputer.

2.2 The Fetch-And-Add Ooeration

We now introduce a simple yet very effective
interprocessor synchronization operation, called
fetch-and-add, which permits highly concurrent
execution of operating system primitives and
application programs. The format of this operation
is F&A(V,e), where V is an integer variable and e
is an integer expression. This indivisible
operation is defined to return the (old) value of V
and to replace V by the sum V+e. Moreover,
fetch-and-add must satisfy the serialization
principle stated above: If V is a shared variable
an~ many fetch-and-add operations simultaneously
address V, the effect of these operations is
exactly what it would be if they occurred in some
(unspecified) serial order, i.e. V is modified by
the appropriate total increment and each operation
yields the intermediate value of V corresponding to
its position in this order. The following example
illustrates the semantics of fetch-and-add:
Assuming V is a shared variable, if PEi executes

ANSi <-- F&A(V,ei) ,
and if PEj simultaneously executes

ANSj <-- F&A(V,eJ) ,
and if V is not simultaneously updated by yet
another processor, then either

ANSi <-- V or ANSi <-- V+ej
ANSj <-- V+ei ANSj <-- V

and, in either case, the value of V becomes
V+ei+ej.

For another example consider several PEs
concurrently applying fetch-and-add, with an
increment of I, to a shared array index. Each PE
obtains an index to a distinct array element
(although one does not know beforehand which
element will be assigned to which PE).
Furthermore, the shared index receives the
appropriate total increment.

Section 3 presents a hardware design that
realizes fetch-and-add without significantly
increasing the time required to access shared
memory and that realizes simultaneous
fetch-and-adds updating the same variable in a
particularly efficient manner.

2.3 The Power 9~ Fetch-And-A4d

Since in a parallel processor the relative
cost of serial bottlenecks rises with the number of
PEs, users of future ultra-large-scale machines
will be anxious to avoid the use of critical (and
hence necessarily serial) code sections, even if
these sections are small enough to be entirely
acceptable in current practice.

If the fetch-and-add operation is available,
we can perform many important algorithms in a
completely parallel manner, i.e. without using any
critical sections. For example Gottlieb et al.
[81]* presents a completely parallel solution to
the readers-writers problem** and a highly
concurrent queue management technique that can be
used to implement a totally decentralized operating
system scheduler. We are unaware of any other
completely parallel solutions to these problems.
To illustrate the nonserial behavior of these
algorithms, we note that given a single queue that
is neither empty nor full, the concurrent execution
of thousands of inserts and thousands of deletes
can all be accomplished in the time required for
just one such operation. Other highly parallel
fetch-and-add-based algorithms appear in Kalos
[81], Kruskal [81], and Rudolph [82].

2.4 Generalizing Fetch-And-Add

One can define a more general fetch-and-phi
operation that fetches the value in V and replaces
it with phi(V,e). Of course defining phi(a,b)=a+b
gives fetch-and-add. If phi is both associative
and commutative, the final value in V after the
completion of concurrent fetch-and-phi's is
independent of the serialization order chosen.

We now show that two important coordination
primitives, swap and test-and-set, may also be
obtained as special cases of fetch-and-phi. (It
must be noted, however, that the fetch-and-add
operation has proved to be a sufficient
coordination primitive for all the highly
concurrent algorithms developed to date.) We use
the brackets { and } to group statements that must
be executed indivisibly and define test-and-set to
be a value-returning procedure operating on a
shared Boolean variable:

TestAndSet(V)
{ Temp <-- V

V <-- TRUE }
RETURN Temp

* As explained in Gottlieb and Kruskal [81], the
replaee-add primitive defined in Gottlieb et al.
[81] and used in several of our earlier reports is
essentially equivalent to the fetch-and-add
primitive used in the present paper.
** Since writers are inherently serial, the
solution cannot strictly speaking be considered
completely parallel. However, the only critical
section used is required by the problem
specification. In particular, during periods when
no writers are active, no serial code is executed.

28

The swap operation is defined as exchanging the
values of a local variable L (which specifies a
processor register or stack location) and a
variable V stored in central memory

Swap(L,V)
{ Temp <-- L
L<--V
V <-- Temp]

It is easy to see that
TestAndSet(V) is equivalent to Fetch~R(V,TRUE).

Similarly, a swap operation can be effeeted by
using the projection operator pi2, where pi2(a,b) =
b; i.e.

Swap(L,V) is equivalent to L <-- Fetch~i2(V,L).

We conclude this discussion of fetch-and-phi
by showing that this operation may be used as the
sole primitive for accessing central memory.
Specifically, we show how to obtain the familiar
load and store operations as degenerate cases of
fetch-and-phi. To load the local variable L from a
variable V stored in central memory one simply
executes

L <-- Fetch~i1(V, •)
where Pi1(a,b)=a and the value of • is immaterial
(and thus need not be transmitted). Similarly, to
store the value of L into V one executes

. <__ Fetch~i2(V,L) where the • indicates that
the value returned is not used (and thus again need
not be transmitted).

2.5 Alternate Machine Models

In this subsection we discuss several other
heavily researched models of parallel processors
and explain our choice of a large-scale MIMD shared
memory machine.

One line of study pioneered by H. T. Kung (see
e.g. Kung [80]), focuses on the great economic and
speed advantages obtainable by designing parallel
algorithms that conform well to the restrictions
imposed by VLSI technology, in particular
algorithms and architectures that lay out well in
two dimensions. These "systolic" processor designs
are already having a significant impact on signal
processing, an impact that will doubtless increase
dramatically over the next several years. However,
for computations having complex control and data
flow, the systolic architecture is less well
suited. We do expect that VLSI systolic systems
will be used for those subcomponents of our machine
having regular control and data flow; the design
of one such component, an enhanced systolic queue,
is presented in section 3.5.

The current generation of supercomputers may
be roughly classified as SIMD shared memory
machines by considering their vector pipelines to
be multiple processors each executing the same
instruction (cf. Stone [80]). Effective use of
such machines is only attained by algorithms
consisting primarily of vector operations.
Although it is far from trivial to "vectorize"
algorithms, such a program has been successfully
undertaken at many supercomputer sites. Once

again, however, some problems (especially those
with many data dependent decisions) appear to
resist effective vectorization. Rodrigue, Giroux,
and Pratt [80] of Lawrence Livermore National
Laboratory write:

Vector and array processors were
designed with the idea of solving
fluid-type problems efficiently. In
general these machines do not lend
themselves well to particle tracking
calculations. For a scientific
laboratory such as LLNL, the computer
should be able to handle both forms
of calculation, but it remains to be
seen whether this goal will ever be
achieved.

This goal is achieved by rejecting SIMD machines in
favor of the MIMD paracomputer model, which our
simulation studies have shown to be effective for
both fluld-type (Rushfield [81]) and particle
tracking calculations (Kales et al. [81]).

Yet a third alternative model, specifically
architectures derived from very general abstract
"dataflow" models of parallel computation, have
been pursued by other researchers (see the February
1982 special issue of ComPuter and the references
contained therein). Recent work in this area has
stressed the advantages of a purely applicative,
side-effect-free programming language for the
description of parallel computation. Although such
dataflow machines have been discussed for several
years, no completely satisfactory physical design
has yet emerged. Without commenting on the
relative merits of applicative programming, we note
that Gottlieb and Schwartz [81] show how a dataflow
language may be executed with maximal parallelism
on our machine.

The final model we consider is a message
passing alternative to shared memory. Except for
very small systems, it is not possible to have
every PE directly connected to every other PE.
Thus it may be necessary to route messages via
intermediate PEs. In the original ultracomputer
design of Schwartz [80] the programmer specified
the routing explicitly. By tailoring algorithms to
the particular interconnection geometry, one can
obtain very high performance. However, we found
such a machine to be significantly more difficult
to program than one in which the entire memory is
available to each PE (see Schwartz [80], Gottlieb
[80a, 80c], Gottlieb and Kruskal [80]). If the
geometry is hidden from the programmer by having
the individual PEs perform the necessary routing, a
more loosely coupled machine results. In recent
years such machines have been much studied for
distributed computing applications. Although
message passing architectures are indeed quite
attractive for distributed computing, we believe
that for the applications we have emphasized,
thousands of processors cooperating to solve a
single large-scale scientific problem, the more
tightly coupled model featuring high speed
concurrent access to shared memory is more
effective.

29

3.0 MACHINE DESIGN

In this section we sketch the design of the
NYU Ultracomputer, a machine that appears to the
user as a paracomputer, and we Justify our design
decisions. As indicated above, no machine can
provide the single-cycle access to shared memory
postulated in the paracomputer model; our design
approximates a paracomputer by using a message
switching network with the geometry of the
Omega-network of Lawrie* to connect N = 2TD
autonomous PEs to a central shared memory composed
of N memory modules (MMs). Thus, the direct single
cycle access to shared memory characteristic of
paracomputers is replaced by an indirect access via
a multicycle connection network. Each PE is
attached to the network via a processor network
interface (PNI) and each MM is attached via a
memory network interface (MNI). Figure I gives a
block diagram of the machine.

,÷ 0 0 0 0 0 0 0

.... :~. CT] O~"l
I
I

F
0000000

+
NETI(ORK !

I

Figure 1. Block Diagram

After reviewing routing in the network, we
show that an analogous network composed of enhanced
switches provides efficient support for concurrent
fetch-and-add operatlons. We then examine our
choice of network and local memory implementation.
To conclude this section we present a detailed
design for the switches and deseribe the PEs, MMs,
and network interfaces. As will be shown both the
PEs and MMs are relatively standard components;
the novelty of the design lies in the network and
in particular in the constituent switches and
interfaces.

3.1 NetwoFk Design

For machines with thousands of PEs the
communication network is likely to be the dominant

• Note that this network has the same topology as a
rectangular SW banyan network (see Goke and
Lipovsky).

component with respect to both cost and
performance. The design to be presented achieves
the following objectives.

I. Bandwidth linear in N, the number of PEs.

2. Latency, i.e. memory access time,
logarithmic in N.

3. Only O(N log N) identical components.

4. Routing decisions local to each switch;
thus routing is not a serial bottleneck
and is efficient for short messages.

5. Concurrent access b y multiple PEs to the
same memory cell suffers no performance
penalty; thus interprocessor coordination
is not serialized.

We are unaware of any significantly different
design that also attains these goals.

3.1.1 Routing i/! an Omega-Network - The manner in
which an Omega-network can be used to implement
memory loads and stores is well known and is based
on the existence of a (unique) path connecting each
PE-MM pair. To describe the routing algorithm we
use the notation in Figure 2: both the PEs and the
MMs are numbered using D-bit identifiers whose
values range from 0 to N-I; the binary
representation of each identifier x is denoted
xD...xl; upper ports on switches are numbered 0
and lower ports I; messages from PEs to MMs
traverse the switches from left to right; and
returning messages traverse the switches from right
to left.

0 0 1 ~

,oo,>.-io oi-, i\,-.io ov

o1!

Figure 2. Omega-network (N=8)

30

A message is transmitted from PE(pD...pl) to
MM(mD...ml) by using output port mj when leaving
the stage j switch. Similarly, to travel from
MM(mD...ml) to PE(pD...pl) a message uses output
port pj at a stage j switch.

The routing algorithm just presented
generalizes immediately to a D-stage network
composed of k-input-k-output switches (instead of
the 2x2 switches used above) connecting k~D PEs to
k~D MMs: The ports of a switch are numbered 0 to
k-1 and the identifiers are written in base k.
Although the remainder of this section deals
exclusively with 2x2 switches, all the results
generalize to larger switches, which are considered
in section 4.

3.1.2 Omega-Network Enhancements - To prevent the
network from becoming a bottleneck for machines
comprising large numbers of PEs, an important
design goal has been to attain a bandwidth
proportional to the number of PEs. This has been
achieved by a combination of three factors (see
section 4 for an analysis of network bandwidth):

I.

2.

3.

The network is pipelined, l.e. the delay
between messages equals the switch cycle
tlme not the network transit time. (Since
the latter grows logarithmically,
nonplpelined networks can have bandwidth
at most O(N/log N).)

The network is message switched, l.e. the
switch settings are not maintained while a
reply is awaited. (The alternative,
circuit switching, is incompatible wlth
pipelining.)

A queue is associated with each switch to
enable concurrent processing of requests
for the same port. (The alternative
adopted by Burroughs [79] of killing one
of the two conflicting requests also
limits bandwidth to O(N/log N), see
Kruskal and Snir.)

Since we propose using a message switching
network, it may appear that both the destination
and return addresses must be transmitted with each
message. We need, however, transmit only one D blt
address, an amalgam of the origin and destination:
When a message first enters the network, its origin
is determined by the input port, so only the
destination address is needed. Switches at the
j-th stage route messages based on memory address
blt mJ and then replace thls blt with the PE number
bit pJ, which equals the number of the input port
on which the message arrived. Thus, when the
message reaches its destination, the return address
is available.

When concurrent loads and stores are directed
at the same memory location and meet at a switch,
they can be combined without introducing any delay
by using the following procedure (see Klappholtz
[81], Sullivan and Cohen [79], and Gottlleb et al.
[81])

I. Load-Load: Forward one of the two
(identical) loads and satisfy each by
returning the value obtained from memory.

2. Load-Store: Forward the store and return
its value to satisfy the load.

3. Store-Store: Forward either store and
ignore the other.

Combining requests reduces communication traffic
and thus decreases the lengths of the queues
mentioned above, leading to lower network latency
(i.e. reduced memory access time). Since combined
requests can themselves be combined, the network
satisfies the key property that any number of
concurrent memory references to the same location
can be satisfied in the tlme required for just one
central memory access. It is this property, when
extended to include fetch-and-add operations as
indicated below, that permits the bottleneck-free
implementation of many coordination protocols.

3.1.3 Imolementing~etoh-And-Add - By including
adders in the MNI's, the fetch-and-add operation
can be easily implemented: When F&A(X,e) is
transmitted through the network and reaches the MNI
associated with the MM containing X, the value of X
and the transmitted e are brought to the MNI adder,
the sum is stored in X, and the old value of X is
returned through the network to the requesting PE.
Since fetch-and-add is our sole synchronization
primitive (and is also a key ingredient in many
algorithms), concurrent fetch-and-add operations
will often be directed at the same location. Thus,
as indicated above, it is crucial in a design
supporting large numbers of processors not to
serialize this activity.

Enhanced switches permit the network to
combine fetch-and-adds with the same efficiency as
it combines loads and stores: When two
fetch-and-adds referencing the same shared
variable, say F&A(X,e) and F&A(X,f), meet at a
switch, the switch forms the sum e+f, transmits the
combined request F&A(X,e+f), and stores the value e
in its local memory (see Figure 3). When the value
Y is returned to the switch in response to
F&A(X,e+f), the switch transmits Y to satisfy the
original request F&A(X,e) and transmits Y+e to
satisfy the original request F&A(X,f).
Assuming that the combined request was not further
combined with yet another request, we would have Y
= X; thus the values returned by the switch are X
and X+e, thereby effecting the serialization order
"F&A(X,e) followed immediately by F&A(X,f)". The
memory location X is also properly incremented,
becoming X+e+f. If other fetch-and-add operations
updating X are encountered, the combined requests
are themselves combined, and the associativity of

31

|
I
I

FI.~LL f] ..--4> I

F~q (X, e+f)
'q"-" T

Figure 3. Combining Fetch-And-Adds

addition guarantees that the procedure gives a
result consistent with the serialization principle.

Although the preceding description assumed
that the requests to be combined arrive at a switch
simultaneously, the actual design can also merge an
incoming request with requests already queued for
output to the next stage (see section 3.4).

To combine a fetch-and-add operation with
another reference to the same memory location we
proceed as follows:

I. FetchAdd-FetchAdd. As described above, a
combined request is transmitted and the
result is used to satisfy both
fetch-and-adds.

2. FetchAdd-Load. Treat Load(X)
FetchAdd(X,0).

as

3. FetchAdd(X,e)-Store(X,f). Transmit
Store(e+f) and satisfy the fetch-and-add
by returning f.

Finally, we note that a straightforward
generalization of the above design yields a network
implementing the fetch-and-phl primitive for any
associative operator phi.

3.1.4 Other Considerations - We now turn our
attention to other issues concerning the proposed
network design.

Since the introduction of queues in each
switch leads to stochastic delays and the network
is pipelined, it is possible for memory references
from a given PE to distinct MMs to be satisfied in
an order different from the order in which they
were issued. This reordering can violate the
serialization principle specified in our model. A
simple-minded solution to this problem is not to
pipeline requests to read-write shared variables;
however, this approach is overly conservative since
most such request can be safely pipelined.

Since the analyses thus far obtained require
the introduction of simplifying assumptions (see
section 4), and we are unable to perform faithful
simulations of full 4096 PE networks, we cannot
confidently predict the expected network latency.
Our preliminary analyses and partial simulations

have yielded encouraging results.

A potential serial bottleneck is the memory
module itself. If every PE simultaneously requests
a distinct word from the same MM, these N requests
are serviced one at a time. However, introducing a
hashing function when translating the virtual
address to a physical address, assures that this
unfavorable situation occurs with probability
approaching zero as N increases.

The hardware complexity due to the decision to
adopt a queued message switching network introduces
significant processing at each stage. Although the
internal cycle time of the switches may be
important for today's technology, we expect that by
the end of the decade any on-chip delay will be
dominated by the chip-to-chip transmission delays.
(Since the switch bandwidth will be pin limited,
the added internal complexity will not increase the
component count.)

3.2 Local Memory

The negative impact of the large network
latency can be partially mitigated by providing
each PE with a local memory in which private
variables reside and into which read-only shared
data (in particular, program text) may be copied.
Storing shared read-write data in the local memory
of multiple PEs must, in general, be prohibited:
The resulting memory incoherence would otherwise
lead to violations of the serialization principle.
We shall show in section 3.4 that in certain
special cases, this restriction may be relaxed.

One common design for parallel machines is to
implement a separately addressable local memory at
each PE, imposing upon compilers and loaders the
onus of managing the two level store. The
alternative approach, which we intend to implement,
is the one conventionally used on uniprocessors:
The local memory is implemented as a cache.
Experience with uniprocessor systems shows that a
large cache can capture up to 95% of the references
to cacheable variables, effectively shifting the
burden of managing a two level store from the
software to the hardware (see Kaplan and Winder
[73]).

3.3 The Switches

We now detail an individual network switch,
which is essentially a 2x2 bidirectional routing
device transmitting a message from its input ports
to the appropriate output port on the opposite
side. The PE side sends and receives messages to
and from the PEs via input ports, called FromPEi,
where i=0,I, and output ports, called ToPEi.
Similarly, the MM side communicates with the MMs
via ports FromMMi and ToMMi. (Note that in our
figures the To and From ports are coalesced into
bidirectional ports.)

32

As indicated above, we associate a queue with
each output port. The head entry is transmitted
when the switch at the adjacent stage is ready to
receive it (the message might be delayed if the
queue this message is due to enter is already
full).

To describe the process whereby requests are
combined in a switch, we view a request as
consisting of several components: function
indicator (i.e. load, store, or fetch-and-add),
address, and data. The address itself consists of
the amalgamation of part of the PE number and part
of the MM number, and the internal address within
the specified MM. For ease of exposition, we
consider only combining homogeneous requests (i.e.
requests with like function fields); it is not
hard to extend the design to permit combining
heterogeneous requests. For each request, E-new,
that enters a ToMM queue*, we search the requests
already in this queue using as key the function, MM
number, and internal address from R-new.** If no
request matches R-new, then no combining is
possible and R-new simply remains the tail entry of
the output queue. Otherwise, let R-old denote the
message in the ToMM queue that matches R-new.
Then, to effect the serialization R-old followed
immediately by R-new, the switch performs the
following actions: The addresses of R-new and
R-old are placed into a Wait Buffer (to await the
return of R-old from memory) and R-new is deleted
from the ToMM queue. If the request is a store
then the datum of R-old (in the toMM queue) is
replaced by the datum of R-new. If the request is
a fetch-and-add then the datum of R-old is replaced
by the sum of the two data. In addition, for
fetch-and-adds, the datum of R-old is sent to the
Wait Buffer. Thus, each entry sent to the wait
buffer consists of the address of R-old (the entry
key); the address of R-new; and, in the case of a
combined fetch-and-add, a datum. (Note that stores
and fetch-and-adds can both be implemented by using
an ALU that receives the data of R-old and R-new
ana returns either the sum of the two numbers or
just R-new.)

Before presenting the actions that occur when
a request returns to a switch from a MM, we make
two remarks. First, we would use two Wait Buffers
(one associated with each ToMM queue) if access to
a single wait buffer is rate limiting. Second, the
key of each entry in the Wait Buffer uniquely
identifies the message for which it is waiting
since the PNI is to prohibit a PE from having more
than one outstanding reference to the same memory
location.

After arriving at a FromMM port, a returning
request, E-rat, is both routed to the appropriate
ToPE queue and used to search associatively the
relevant Wait Buffer. If a match occurs, the entry

* Although we use the term queue, entries within
the middle of the queue may also be accessed.

** The design of the ToMM queue, permitting this
search and subsequent actions to be performed with

minimal delay, is detailed in setion 3.3.1.

found, R-wait, is removed from the buffer and its
function indicator, PE and MM numbers, and address
are routed to the appropriate ToPE queue. If the
request was a load, the data field is taken from
R-rat; if a fetch-and-add, the R-wait data field
is added to the R-rat data field.

To summarize the necessary hardware, w e note
that in addition to adders, registers, and routing
logic, each switch requires two instances of each
of the following memory units. For each unit we
have indicated the operations it must support.

I. ToMM-queue: Entries are inserted and
deleted in a queue-like fashion,
associative searches may be performed, and
matched entries may be updated.

2. ToPE-queue: Entries may be inserted and
deleted in a queue-like fashion.

3. Wait-Buffer: Entries may be inserted and
associative searches may be performed with
matched entries removed.

Note that it is possible for more than two
requests to be combined at a switch. However, the
structure of the switch is simplified if it
supports only combinations of pairs since a request
returning from memory could then match at most one
request in the Wait Buffer, eliminating the need
for contention logic. Another advantage of not
supporting multiple combinations within one switch
is that it permits the pipelined implementation of
the ToMM queue described below.

The switch can be partitioned into two
essentially independent components, each
implementing a unidirectional switch. The
communication between the two components is
restricted to the information pertaining to
combined messages, that is, the information sent
from the ToMM queues to the Wait Buffers. Since
requests are combined relatively infrequently, the
link between the two components can have a small
bandwidth. We are currently investigating other
possible partitions for a switch while noting that
the its increased functionality impedes a bit-slice
implementation.

3.3.1 ~_eToMM Oueue - As illustrated in Figure 4
our ToMM queue is an enhancement of the VLSI
systolic queue of Guibas and Liang. We first
describe the queue-like behavior of this structure
and then explain how the necessary searching is
accomplished.

Items added to the queue enter the middle
column, check the adjacent slot in the right
column, and move into this slot if it is empty. If
the slot is full, the item moves up one position in
the middle column and the process is repeated.
(Should the item reach the top of the middle column
and still be unable to shift right, the queue is
full.) Meanwhile, items in the right column shift

down, exiting the queue at the bottom. Before

33

f ~

I "L ,
+ r' i

IN

F------- I r--~

i i I i

k--,/+COn AnATOR
J + t__

I COHBINE I
~I LOGIC

I /

HAIT OUT
BUFFER

Figure 4. Systolic ToMM Queue

giving the enhancements needed for searching, we
make four observations: the entries proceed in a
FIFO order; as long as the queue is not empty and
the switch in the next stage can receive an item,
one item exits the queue at each cycle; as long as
the queue is not full a new item can be entered at
each cycle*; items are not delayed if the queue is
empty and the next switch can receive them.

The queue is enhanced by adding comparison
logic between adjacent slots in the right two
columns, permitting a new entry moving up the
middle column to be matched successively against
all the previous entries as they move down the
right column**. If a match is found, the matched
entry moves (from the middle column) to the left
column, called the "match column". Entries in the
match column shift down at the same rate as entries
on the right column of the queue. A pair of
requests to be combined will therefore exit their
respective columns at the same time and will thus
enter the combining unit simultaneously.

Note that it is possible to reduce the width
of the ToMM queue by having each request split into
several successive entries. If requests are
transmitted between switches as a series of
successive packets, a ToMM queue with a width

*The number of cycles between successive insertions
must, however, be even (zero included).

**Actually, an item is matched against half of the
entries moving down the rigth column. This does
not create any problem if a request consists of an
even number of successive packets. If an entire
request is contained in one packet then one needs
either twice as many comparators or two cycles for
each movement.

matching the size of these packets would avoid the
assembly and disassembly of messages, resulting in
a complete pipelining of the message processing.
The smaller size of oomparators and adders may also
result in faster logic. A detailed description of
the VLSI switch logic appears in Snir and Solworth
[82].

3.4 The Network Interfaces

The PNI (processor-network interface) performs
four functions: virtual to physical address
translation, assembly/disassembly of memory
requests, enforcement of the network pipeline
policy, and cache management. The MNI
(memory-network interface) is much simpler,
performing only request assembly/disassembly and
the additions operation necessary to support
fetch-and-add. Since the MNI operations as well as
the first two PNI functions are straightforward, we
discuss only pipelining policy and cache
management.

Before detailing these two functions, we note
two restrictions on pipelining memory requests
(i.e. issuing a request before the previous one is
acknowledged). As indicated above, pipelining
requests indisciminately can violate the
serialization principle (section 3.1.4), and
furthermore, pipelining requests to the same memory
location is not supported by our current+switch
design (3.3).

Since accessing central memory involves
traversing a multistage network, effective cache
management is very important. To reduce network
traffic a write-back update policy was chosen:
Writes to the cache are not written through to
central memory; instead, when a cache miss occurs
and eviction is necessary, updated words within the
evicted block are written to central memory. Note
that cache generated traffic can always be
pipelined.

In addition to the usual operations described
above, which are invisible to the PE, our cache
provides two functions, release and flush, that
must be specifically requested and can be performed
on a segment level or for the entire cache. We now
show that judicious use of release and flush
further reduces network traffic.

The release command marks a cache entry as
available without performing a central memory
update. This enables a task to free cache space
allocated to virtual addresses that will no longer
be referenced. For example, private variables
declared within a begln-end block can be released
at block exit. Thus, the release operation reduces
network traffic by lowering the quantity of data
written back to central memory during a task
switch. Moreover, if (prior to a task switch)
another virtual address maps to a released cache
address, no central memory update is necessary.

34

Release also facilitates caching shared
read-write data during periods of read-only access:
If a set of tasks sharing read-write data can
guarantee that during a period of time no updates
will occur, then the data is eligable for caching
for the duration of this period. Subsequently, the
data must be released and marked uncacheable to
insure that no task uses stale data.

The flush facility, which enables the PE to
force a write-back of cached values, is needed for
task switching since a blocked task may be
rescheduled on a different PE. To illustrate
another use of flush and release, consider a
variable V that is declared in task T and is shared
with T's subtasks. Prior to spawning these
subtasks, T may treat V as private (and thus
eligible to be cached and pipelined) providing that
V is flushed, released, and marked shared
immediately before the subtasks are spawned. The
flush updates main memory, the release insures that
the parent task will not use stale data, and
marking V shared enables T's subtasks to reference
V. Once the subtasks have completed T may again
consider V as private and eligable for caching.
Coherence is maintained since V is cached only
during periods of exclusive use by one task.

3.5 The Processors and Memory Modules

The MMs are standard components consisting of
off the shelf memory chips. The PEs, however, need
to be a (slightly) custom design since we require
the fetch-and-add operation. Moreover, to fully
utilize the high bandwidth connection network, a PE
must continue execution of the instruction stream
immediately after issuing a request to fetch a
value from central memory. The target register
would be marked "locked" until the requested value
is returned from memory; an attempt to use a
blocked register would suspend execution. Note
that this policy is currently supported on large
scale computers and is becoming available on one
chip processors (Radin [82]). Software designed
for such processors attempts to prefetch data
sufficiently early to permit uninterrupted
execution.

If the latency remains an impediment to
performance, we would hardware-multiprogram the PEs
(as in the CHOPP design (Sullivan [77]) and the
Denelcor HEP machine (Denelcor [81]). Note that
k-fold multiprogr~mming is equivalent to using k
times as many PEs -- each having relative
performance I/k. Since, to attain a given
efficiency, such a configuration requires larger
problems, we view multiprogramming as a last
resort.

Although we have not given sufficient
attention to I/O, we have noticed that I/O
processors can be substituted for arbitrary PEs in
the system. More generally, since the design does
not require homogeneous PEs, a variety of special
purpose processors (e.g. FFT chips, matrix
multipliers, voice generators, etc.) can be
attached to the network.

3.6 Machine Packa~in~

We conservatively estimate that a machine
built in 1990 would require four chips for each
PE-PNI pair, nine chips for each MM-MNI pair
(assuming a I megabyte MM built out of I megablt
chips), and two chips for each 4-input-4-output
switch (which replaces four of the 2x2 switches
described above). Thus, a 4096 processor machine
would require roughly 65,000 chips, not counting
the I/O interfaces. Note that the chip count is
still dominated, as in present day machines, by the
memory chips, and that only 19% of the chips are
used for the network. Nevertheless, most of the
machine volume will be occupied by the network, and
its assembly will be the dominant system cost, due
to the nonlocal wiring required.

It is possible to partition an N input, N
output Omega network built from 2x2 switches into
sqrt(N) "input modules" and sqrt(N) "output
modules". An input module consists of sqrt(N)
network inputs and the sqrt(N)(log N)/4 switches
that can be accessed from these inputs in the first
(log N)/2 stages of the network. An output module
consists of sqrt(N) network outputs and the
sqrt(N)(log N)/4 switches that can be accessed from
these outputs in the last half of the network.
Moreover, it is possible to arrange the switches of
each module so that, between any two successive
stages, all lines have the same length (Figure 5).

Figure 5. Layout of Network on Boards

Finally, if the input boards are stacked vertically
on one rack, the output boards are stacked
vertically on another rack, and the two racks are
stacked one atop another, such that the boards on
one rack are orthogonal to the boards on the other
rack, then all off board lines will run nearly
vertically between the two sets of boards as
illustrated in Figure 6 (Figures 5 and 6 are
reprinted from Wise [81]).
The same strategy can be used for networks built of
kxk switches.

We propose using this layout for a 4K
processor machine constructed from the chips
described at the beginning of this section. This

35

Figure 6. Packaging of Network Boards

machine would include two types of boards: "PE
boards" that contain the PEs, the PNIs, and the
first half of the network stages and "MM boards"
that contain the MMs, the MNIs and the last half of
the network stages. Using the chip counts given
above, a 4K PE machine built from two chip 4x4
switches would need 64 PE boards and 64 MM boards,
with each PE board containing 352 chips and each MM
board containing 672 chips. Since the PE chips
will be near the free edge of the PE board and the
MM chips will be near the free edge of the MM
board, I/O interfaces can be connected along these
edges.

4.0 COMMUNICATION NETWORK PERFORMANCE

Since the overall ultracomputer performance is
critically dependent on the communication network
and this network is likely to be the most expensive
component of the completed machine, it is essential
to evaluate the network performance carefully so as
to choose a favorable configuration.

4.1 Performance Analysis

Although each switch in the network requires a
significant amount of hardware it appears feasible
to implement a 2x2 switch on one chip, using
today's technology. Further, we assume it will be
feasible in 1990 technology to implement 4x4, or
even 8x8 switches on one chip. It seems, however,
that the main restriction on the switch performance
will be the rate at which information can be fed

into and carried from the chip, rather than the
rate at which that information can be processed
within the chip. The basic hardware constraint
will be, therefore, the number of bits that can be
carried on or off the chip in one unit of time (one
cycle).

Suppose that 400 bits can be transferred on or
off the chip in one cycle (which we estimate, for
1990 technology, to be on the order of 25 nsec).
If each message transmitted through the network
consists of approximately 100 bits (64 bits data,
30 bits address), then a 2x2 switch needs two
cycles for the transfer of the 800 bits involved in
the relaying of two messages in each direction. It
is, however, possible to pipeline the transmission
of each message, so that the delay at each switch
is only one cycle if the queues are empty.

The chip bandwidth constraint does not
determine a unique design for the network. It is
possible to replace 2x2 switches by kxk switches,
time multiplexing each line by a factor of k/2. It
is also possible to use several copies of the same
network, thereby reducing the effective load on
each one of them and enhancing network reliability.
We present performance analyses of various networks
in order to indicate the tradeoffs involved.

A particular configuration is characterized by
the values of the following three parameters:

I. k - the size of the switch. Recall that a
kxk switch requires 4k lines.

2. m - the time multiplexing factor, i.e. the
number of switch cycles required to input
a message (to simplify the analysis we
assume that all the messages have the same
length).

3. d - the number of copies of the network
that are used.

The chip bandwidth constraint yields an upper
bound on the k/m ratio. We shall assume therefore
that this ratio is a constant B for all designs.
Note that for any k a network with n inputs and n
outputs can be built from (n ign)/(k lgk) kxk
switches and a proportional number of wires. Since
our network contains a large number of identical
switches, the network's cost is essentially
proportional to the number of switches and
independent of their complexity. We thus define
the cost of a configuration to be C*(n ign), where
the cost factor C = d/(k lgk) (we are neglecting
the small cost of interfacing several copies of the
network).

In order to obtain a tractible mathematical
model of the network we have made the following
simplifying assumptions:

I. Requests are not combined.

2. Requests have the same length.

36

3. Queues are of infinite size.

4. Requests are generated at each PE by
independent identically distributed
time-invariant random processes.

5. MMs are equally likely to be referenced.

Let p be the average number of messages
entered into the network by each PE per network
cycle. If the queues at each switch are large
enough ("infinite queues") then the average switch
delay is approximately I + mT2*p(1-1/k)/2(1-mp)
cycles (see Kruskal and Snir; similar results can
be found in Jacobsen and Misunas [77], and in Dias
and Jump [81]). The average network traversal time
(in one direction) is the number of stages times
the switch delay plus the setting time for the
pipe. Thus the number of cycles is:

T = (lgn/igk)(1 + mT2*p(1-1/k)/2(1-mp) + m - I.
Let us note, however, the following facts:

I. The average number of messages per cycle
entered into the network by each PE, p,
must be smaller than I/m, as it takes m
cycles to input a message. Conversely,
the network has a capacity of I/m messages
per cycle per PE, that is it can
accommodate any traffic below this
threshold. Thus, the global bandwidth of
the network is indeed proportional to the
number of PEs connected to it.

2. The initial I in the expression for the
switch delay corresponds to the time
required for a message to be transmitted
through a switch without being queued (the
switch service time). The second term
corresponds to the average queueing delay.
This term decreases to zero when the
traffic intensity p decreases to zero and
increases to infinity when traffic
intensity p increases to the I/m
threshold. The surprising feature of this
formula is the mT2 facCor, which is
explained by noting that the queueing
delay for a switch with a multiplexing
factor of m is roughly the same as the
queueing delay for a switch with a
multiplexing factor of one, a cycle m
times longer, and m times as much traffic
per cycle.

We now use these formulae to compare the
performance of different configurations. Let us
assume that, using kxk switches, a time
multiplexing factor m = k, that is, the bandwidth
constant B = I. Using d copies of the network
reduces the effective load on each copy by a factor
of d. Thus the average transit time for a network
consisting of d Omega-networks composed of kxk
switches is

T = (I + k(k-1)p/2(d-kp))ign/igk + k-1 cycles,
where p is, as before, the average number of
messages sent to the network by each PE per cycle.
As expected, delays decrease when d increases. The
dependency on k is more subtle. Increasing k

decreases the number of stages in the network, but
increases the pipelining factor, and therefore
increases the queuing delays and the pipe setting
delay.

We have plotted in Figure 7 the graphs of T as
a function of the traffic intensity, p, for
different values of k and d. We see that for
reasonable traffic intensities (see next paragraph)
a duplexed network composed of 4x4 switches yields
the best performance.

!°1

[-2. d- I

~-$, mS

~Joo o~os o:,o o'.,s ,'.2, o'.2s o'.so o'.3s
p = messages per P[per netmork cuc|e

Figure 7.
Transit Times for Different Configurations

A network with 8x8 switches and d=6 also yields an
acceptable performance, at approximately the same
cost as the previous network. Since the bandwidth
of the first network is d/k=.5 and the bandwidth of
the second is .75, we see that for a given traffic
level the second network is less heavily loaded and
thus should provide better performance for traffic
with high variance.

The above discussion indicates the type of
considerations involved in the choice of an optimal
configuration. An actual choice requires more
accurate assessments of the technological
constraints and the traffic distribution. The
pipelining delays incurred for large multiplexing
factors, the complexity of large switches, and the
heretofore ignored cost and performance penalty
incurred with interfacing many network copies, will
probably make the use of switches larger than 8x8
impractical for a 4K PE parallel machine.

The previous discussion assumed a one chip
implementation of each switch. By using the two
chip implementation described at the end of section

37

3.3, one can nearly double the bandwidth of each
switch while doubling the chip count. As delays
are highly sensitive to the multiplexing factor m,
this implementation would yield a better
performance than that obtained by taking two copies
of a network built of one chip switches. (It would
also have the extra advantage of decreasing the
gate count on each chip.) Thus, the ultimate choice
may well be one network built of 4x4 switches, each
switch consisting of two chips.

We now return to the five assumptions listed
above, all of which may not be satisfied by actual
hardware implementations. Our first two
assumptions, that all messages are of equal
(maximal) length and traverse the entire network,
are clearly conservative: In practice, messages
that do not carry data (load requests and store
acknowledgements) would be shorter and merged
messages do not each traverse the entire network.

Simulations have shown that queues of modest
size (18) gives essentially the same performance as
infinite queues. Although the requests generated
by PEs cooperating on a single problem are not
independent, the presence of a large number of PEs
and a number of different problems will tend to
smooth the data. On the other hand, even in a
large system the pattern of requests by a Single PE
will be time dependent and further analytic and
simulation studies are needed to determine the
effect of this deviation from our assumed model.

Finally, by applying a hashing function when
translating from virtual to physical addresses, the
system can ensure that each MM is equally likely to
be referenced.

4.2 Network Simulations

Our discussion of the possible configurations
for the communication network still lacks two
essential ingredients: an assessment of the
traffic intensity we expect to encounter in
practical applications, and an assessment of the
impact of the network delay on the overall
performance.

We routinely run parallel scientific programs
under a paracomputer simulator (see Gottlieb [80c])
to measure the speedup obtained by parallelism and
to Judge the difficulty involved in creating
parallel programs (see section 5). A recent
modification allows us to simulate an approximation
to the proposed network design rather than an ideal
paracomputer: Since an accurate simulation would
be very expensive, we used instead a multi-stage
queuing system model with stochastic service time
at each stage (see Snir [81]), parameterized to
correspond to a network with six stages of 4x4
switches, connecting 4096 PEs to 4096 MMs. A
message was modeled as one packet if it did not
contain data and as three packets otherwise. Each
queue was limited to fifteen packets and both the
PE instruction time and the MM access time were

assumed to equal twice the network cycle time.
Thus the minimum central memory access time, which

consists of the MM access time plus twice the the
minimum network transit time, equals eight times
the PE instruction time.

We have monitored the amount of network
traffic generated by several scientific programs
under the pessimistic assumptions that no shared
data is cached and the optimistic assumption that
all references to program text and private data are
satisfied by the cache. The programs studied were:

I. A parallel version of part of a NASA
weather program (solving a two dimensional
PDE), with 16 PEs.

2. The same program, with 48 PEs.

3. The TRED2 program described in section 5,
with 16 PEs.

4. A multigrid Poisson PDE solver, with 16
PEs.

Table 1 summarizes simulations of the four
previously mentioned programs. The time unit is
the PE instruction time.

÷------~ ÷ ÷ + ÷ +

I lavg. CMI idle I idle ~memory Ishared f
laccess Icycleslcycles perlref perlref perl

I I time ~ ~ CM load linstr I instr
+------÷ + ÷ ÷ ÷ +

I 1 I 8 .94 I 37% 5 .3 0.21 t .08
I 2 I 8 .83 I 39% 4 .5 0 .19 l .08
I 3 I 8.81 I 22% 4.9 0 .25 I .05
I 4 I 8 .85 J 19% 3 .5 0 .24 I .06
+----.+ ÷ + + ÷

Table I. Network Traffic and Performance

In these simulations the number of requests to
central memory (CM) are comfortably below the
maximal number that the network can support and
indeed the average access time is close to the
minimum. (Since each PE was a CDC 6600-type CPU,
most instructions involved register-to-register
transfers.) Specifically, only one instruction
every five cycles for the first two programs (and
one every four for the last two) generated a data
memory reference.* Moreover only one data memory
reference out of 2.6 in the first two programs, and
one reference out of five for the last two programs
were for shared data. We note that the last two
programs were designed to minimize the number of
accesses to shared data. As a result the number of
idle cycles was significantly higher for the first
two programs. Since the code generated by the CDC
compiler often prefetched operands from memory, the
average number of idle cycles per load from average
central memory was significantly lower than the
central memory access time.

* Since for the first two programs, the PEs were
idle (waiting for a memory reference to be
satisfied) approximately 40% of the time, five
cycles corresponds to approximately three

instructions.

38

We conclude that were these studies repeated
on actual hardware the traffic intensity would be
low (p<.04), and prefetching would mitigate the
problem of large memory latency. The first
conclusion, however, must be strongly qualified.
The simulator we used is much less sensitive to
fluctuations in the network traffic than an actual
network would be. Moreover, we have ignored both
cache generated traffic and the effect of operating
system programs.

5.0 SIMULATION AND SCIENTIFIC PROGRAMMING

As indicated above we use an instruction level
paracomputer simulator to study parallel variants
of scientific programs. Applications already
studied include radiation transport, incompressible
fluid flow within an elastic boundary, atmospheric
modeling, and Monte Carlo simulation of fluid
structure. Current efforts include both extending
the simulator to model the connection network more
faithfully and running programs under a parallel
operating system scheduler.

The goals of our paraeomputer simulation
studies are, first, to develop methodologies for
writing and debugging parallel programs and second,
to predict the efficiency that future large scale
parallel systems can attain. As an example of the
approach taken, and of the results thus far
obtained, we report on experiments with a
parallelized variant of the program TRED2 (taken
from Argonne's EISPACK library), which uses
Householder's method to reduce a real symmetric
matrix to tridiagonal form (see Korn [81] for
details).

An analysis of the parallel variant of this
program shows that the time required to reduce an N
by N matrix using P processors is well approximated
by

T(P,N) = aN + dN~3/P + W(P,N)
where the first term represents "overhead"
instructions that must be executed by all PEs (e.g.
loop initializations), the second term represents
work that is divided among the PEs, and W(P,N), the
waiting time, is of order max(N,P~.5). We
determined the constants experimentally by
simulating TRED2 for several (P,N) pairs and
measuring both the total time T and the waiting
time W. (Subsequent runs with other (P,N) pairs
have always yielded results within I% of the
predicted value.) Table 2 summarizes our
experimental results and supplies predictions for
problems and machines too large to simulate (these
values appear with an asterisk). In examining this
table, recall that the efficiency of a parallel
computation is defined as

E(P,N) = T(I,N)/(P*T(P,N)) .

I\ I Reduction of Matrices to Tridiagonal Form
I\ I
I \PE I 16 64 256 1024 4096
IN\I

+-- + ~

1 16
1 32
1 64
I 128
I 256
I 512
11024

62% 26% 7% I%* 0%*
87% 60% 25% 6%* I%*
96% 86% 59% 27%* 7%*
99%* 96%* 86%* 59%* 24%*

100%* 99%* 96%* 86%* 58%*
100%* 100%* 99%* 96%* 85%*
100%* 100%* 100%* 99%* 96%*

Table 2. Measured and Projected Efficiencies.

Although we consider these measured
efficiencies encouraging, we note that system
performance can probably be improved even more by
sharing PEs among multiple tasks. (Currently the
simulated PEs perform no useful work while
waiting.) If we make the optimistic assumption
that all the waiting time can be recovered, the
efficiencies rise to the values given in Table 3.

\ I Reduction of Matrices to Tridiagonal Form
\ I
\PE I 16 64 256 1024 4096

N \ I (without waiting time)

32
64

128
256
512

1024

16 71%
90%
97%
99%

100%
100%
100%

37% 12% 3% o%
69% 35% 12% 3%
90% 68% 35% 12%
97% 90% 68% 35%
99% 97% 90% 68%

100% 99% 97% 90%
100% 100% 99% 97%

Table 3. Projected Efficiencies.

6.0 CONCLUSION

Our simulations have conclusively shown that a
ParacomPuter containing thousands of processors
would be an extremely powerful computing engine for
large scientific programs. But such ideal machines
cannot be built. In this report we have described
a realizable approximation, the NYU Ultracomputer.
We believe that, within the decade, a 4096 PE
Ultracomputer can be constructed with roughly the
same component count as found in today's large
machines. Although our Ultracomputer simulations
are still fragmentary, the preliminary results thus
far obtained are encouraging.

To demonstrate further the feasibility of the
hardware and software design, we plan to construct
an 8 PE and subsequently a 64 PE prototype using
the switches and interfaces described above to
connect commercial microprocessors and memories.

39

APPENDIX

Management of Highly Parallel Queues

Since queues are a central data structure for
many algorithms, a concurrent queue access method
can be an important tool for constructing parallel
programs. In analyzing one of their parallel
shortest path algorithms, Dec etal. [80] dramatize
the need for this tool:

"However, regardless of the number
of processors used, we expect that
algorithm PPDM has a constant upper
bound on its speedup, because every
processor demands private use of
the Q."

Refuting this pessimistic conclusion, we show
in this appendix that, although at first glance the
important problem of queue management may appear to
require use of at least a few inherently serial
operations, a queue can be shared among processors
without using any code that could create serial
bottlenecks. The procedures to be shown maintain
the basic first-in first-out property of a queue,
whose proper formulation in the assumed environment
of large numbers of simultaneous insertions and
deletions is as follows: If insertion of a data
item p is completed before insertion of another
data item q is started, then it must not be
possible for a deletion yielding q to complete
before a deletion yielding p has started.

In the algorithm below we represent a queue of
length Size by a public circular array Q[0:Size-1]
with public variables I and D pointing to the
locations of the items last inserted and deleted
(these correspond to the rear and front of the
queue respectively). Thus MOD(I+1,Size) and
MOD(D+I,Size) yield the locations for the next
insertion and deletion, respectively. Initially
I=D=0 (corresponding to an empty queue).

We maintain two additional counters, ~Qi and
#Qu, which hold lower and upper bounds respectively
for the number of items in the queue, and which
never differ by more than the number of active
insertions and deletions. Initially #Qi=#Qu=0,
indicating no activity and an empty queue. The
parameters QueueOverflow and QueueUnderflow
appearing in the program shown below are flags
denoting the exceptional conditions that occur when
a processor attempts to insert into a full queue or
delete from an empty queue. (Since a queue is
considered full when #Qu ~ Size and since deletions
do not decrement #Qu until after they have removed
their data, a full queue may actually have cells
that could be used by another insertion.) The
actions appropriate for the QueueOverflow and
QueueUnderflow conditions are application
dependent: One possibility is simply to retry an
offending insert or delete; another possibility is
to proceed to some other task.

Critical-section-free Insert and Delete
Drograms are given below. The insert operation
proceeds as follows: First a test-increment-retest
(TIR) sequence is used to guarantee the existence

of space for the insertion, and to increment the
upper bound #Qu. If the TIR fails, a QueueOverflow
occurs. If it succeeds, the expression
Mod(FetchAdd(I,1),Size) gives the appropriate
location for the insertion, and the insert
procedure waits its turn to overwrite this cell
(see Gottlieb et al. [81]). Finally, the lower
bound #Qi is incremented. The delete operation is
performed in a symmetrical fashion; the deletion
of data can be viewed as the insertion of vacant
space.

Procedure Insert(Data,Q,QueueOverflow)
If TIR(#Qu, l,Size) Then {

MyI <-- Mod(FetchAdd(I,1),Size)
Wait turn at MyI
Q[MyI] <-- Data
Fetch~dd(#Ql,1)
QueueOverflow <-- False }

Else QueueOverflow <-- True
End Procedure

Procedure Delete(Data,Q,QueueUnderflow)
If TDR(#Qi,I) Then {

MyD <-- Mod(FetchAdd(D,1),Size)
Wait turn at MyD
Data <-- Q[MyD]
FetchAdd(#Qu,-1)
QueueUnderflow <-- False }

Else QueueUnderflow <-- True
End Procedure

Boolean Procedure TIR(S,Delta,Bound)
If S+Delta i Bound Then

If FetchAdd(S,Delta) ~ Bound Then
TIR <-- true

Else { FetchAdd(S,-Delta)
TIR <-- false }

End Procedure

Boolean Procedure TDR(S,Delta)
If S-Delta ~ 0 Then

If FetchAdd(S,-Delta) ~ 0 Then
TDR <-- True

Else { FetchAdd(S,Delta)
TDR <-- false }

End Procedure

Although the initial test in both TIR and TDR
may appear to be redundant, a closer inspection
shows that their removal permits unacceptable race
conditions. This point is also expanded in
Gottlieb et al. [81] where other fetch-and-add
based software primatives are presented as well.

It is important to note that when a queue is
neither full nor empty our program allows many
insertions and many deletions to proceed completely
in parallel with no serial code executed. This
should be contrasted with current parallel queue
algorithms, which use small critical sections to
update the insert and delete pointers.

40

2/22~NZZ_~

A. Borodin and J. E. Hoporoft, "Merging on Parallel
Models of Computation", Manuscript, 1981.

Burroughs Corp., Numerical Aerodynamic Simulation
Facility Feasibilty Study, NAS2-9897, March
1979.

Deneloor, Heterogeneous Element
Princioles o_fOperation, 1981.

Processor

Narsingh Dec, C. Y. Pang, and R. E. Lord, "Two
Parallel Algorithms for Shortest Path
Problems"

Daniel Dias and J. Robert Jump, "Analysis and
simulation of buffered delta networks", IEEE
Trans. 9_~ Computers C-30, 1981, 273-282.

L. Rodney Goke and G.J. Lipovsky, "Banyan Networks
for Partitioning Multiprocessor Systems",
First ~nual SvmD. o~ Comouter Architecture,
1973, 21-28.

Allan Oottlieb, "PLUS - A PL/I Based Ultracomputer
Simulator, I", Ultracomputer Note #10, Courant
Institute, NYU 1980a.

Allan Gottlieb, .WASHCLOTH - The Logical Successor
to Soapsuds", Ultraoomputer Note #12, Courant
Institute, NYU 1980b.

Allan Gottlieb, "PLUS - A PL/I Based Ultracomputer
Simulator, II", Ultracomputer Note #14,
Courant Institute, NYU 1980c.

Allan Gottlleb and Clyde P. Kruskal, "MULT - A
Multitasking Ultracomputer Language with
Timing, I & II", Ultracomputer Note #15,
Courant Institute, NYU 1980.

Allan Gottlieb and Clyde P. Kruskal, "Coordinating
Parallel Processors: A Partial Unification",
Comouter Architecture e~, October 1981, pp.
16-24.

Allan Gottlieb, Boris Lubachevsky, and Larry
Rudolph, "Coordinating Large Numbers of
Processors", Intl. Conf. on Parallel
Procesing, 1981.

Allan Gottlieb and Jack T. Schwartz, "Networks and
Algorithms for Very Large Scale Parallel
Computations", to appear in Comouter, January
1982.

Leo J. Guibas and Frank M. Liang, "Systolic stacks,
queues, and counters", Conference 9~_Advanced
Research ~iVLSI, Jan. 1982.

Robert G. Jacobsen and David P. Misunas, "Analysis
of structures for packet communication", Int.
Conf, o__n P~rallel Processing, 1977.

Steven D. Johnson, "Connection Networks for
Output-Driven List Multiprooesslng", Teoh.
Rep. 114, Computer Science Dept., Indiana
University, 1981.

Malvin Kalos, "Scientific Calculations on the
Ultracomputer", Ultraeomputer Note #30,
Courant Institute, NYU, 1981.

Malvln Kalos, Gabi Leshem, and B. D.
"Molecular Simulations of
Properties", Ultraoomputer Note
Institute, NYU, 1981.

Lubachevsky,
Equilibrium

#27, Courant

K. R. Kaplan and R. V. Winder, "Cache-Based
Computer Systems", ComDuteF 6, 1973, PP.
30-36.

David Korn, "Timing Analysis for Scientific Codes
Run under WASHCLOTH Simulation", Ultracomputer
Note #24, Courant Institute, NYU, 1981.

Clyde P. Kruskal, "Supersaturated Paracomputer
Algorithms", Ultracomputer Note #26, Courant
Institute, NYU, 1981.

Clyde P. Kruskal and Marc Snir, "Some results on
Packet-Switching Networks for
Multiprocessing", Princeton Conference
Information $~lences ~nd systems, 1982.

H. T. Kung, "The Structure of Parallel Algorithms",
in Advances /J! CQ~outers 19, M. C. Yovits
(ed.), Academic Press, New York, 1980, 65-112.

Leslie Lamport, "How to Make a Multiprocessor
Computer that Correctly Executes Multiprocess
Programs", IEEE Trans. C-28, 1979, PP.
690-691.

Duncan Lawrie, "Access and Alignment of Data in an
Array Processor", IEEE Trans. C-24, 1975, pP.
1145-1155.

Gary Rodrigue, E. Dick Giroux, and Michael Pratt,
"Perspectives o n Large-Scale Scientific
Computing", IEEE Computer v. 13 #10, Oct.
1980, pp. 65-80.

Norman Rushfield, "Atmospheric Computations on
Highly Parallel MIMD Computers", Ultracomputer
Note #22, Courant Institute, NYU, 1981

J. T. Schwartz, "Preliminary Thoughts o n

Ultracomputer Programming Style",
Ultraoomputer Note #3, Courant Institute, NYU,
1979.

J. T. Schwartz, "Ultraoomputers", ACM TOPLAS, 1980,
pp. 484-521.

Howard J. Siegel and Robert J. McMillen, "Using the
Augmented Data Manipulator Network in PASM",
ComDuter, 14, 1981, pp. 25-34.

Burton J. Smith, "A Pipelined, Shared Resource MIMD
Computer", Intl, Conf, on Parallel ~rocessin~,
1978, pp. 6-8.

41

Mare Snir, "'NETSIM' Network Simulator for the
Ultracomputer", Ultracomputer Note #28,
Courant Institute, NYU, 1981.

Marc Snir and Jon Solworth, "The Ultraswitch -- A
VLSI Network Node for Parallel Processing",
Ultracomputer Note #39, Courant Institute,
NYU, 1982.

Harold S. Stone, "Parallel Computers", in
Introduction to CQmputer Architecture, Harold
S. Stone (ed.), SRA, Chicago Ill., 1980, pp.
318-374.

Herbert Sullivan, Theodore Bashkow, and David
Klappholz, "A Large Scale Homogeneous, Fully
Distributed Parallel Machine", Prec. of the
4th Annual Sumn. o__n CQmp, Arch., 1977, pp.
105-124.

R. J. Swan, S. H. Fuller, and D. P. Siewiorek, "Cm*
- A Modular, Multi-microprocessor", Prec.
AFIPS Conf, 46, 1977, PP. 637-644.

D. S. Wise, "Compact Layout of Banyan/FFT
Networks", CMU Conf, on VLSI systems a~d
Computations, Kung, Sproull and Steele (eds.),
Computer Science Press, Roekville Maryland,
1981, pp. 186-195.

42

