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Abstract
In a chip-multiprocessor (CMP) system, the DRAM system is

shared among cores. In a shared DRAM system, requests from a
thread can not only delay requests from other threads by causing
bank/bus/row-buffer conflicts but they can also destroy other threads’
DRAM-bank-level parallelism. Requests whose latencies would oth-
erwise have been overlapped could effectively become serialized. As a
result both fairness and system throughput degrade, and some threads
can starve for long time periods.

This paper proposes a fundamentally new approach to designing
a shared DRAM controller that provides quality of service to threads,
while also improving system throughput. Our parallelism-aware batch
scheduler (PAR-BS) design is based on two key ideas. First, PAR-
BS processes DRAM requests in batches to provide fairness and to
avoid starvation of requests. Second, to optimize system through-
put, PAR-BS employs a parallelism-aware DRAM scheduling policy
that aims to process requests from a thread in parallel in the DRAM
banks, thereby reducing the memory-related stall-time experienced by
the thread. PAR-BS seamlessly incorporates support for system-level
thread priorities and can provide different service levels, including
purely opportunistic service, to threads with different priorities.

We evaluate the design trade-offs involved in PAR-BS and compare
it to four previously proposed DRAM scheduler designs on 4-, 8-, and
16-core systems. Our evaluations show that, averaged over 100 4-core
workloads, PAR-BS improves fairness by 1.11X and system throughput
by 8.3% compared to the best previous scheduling technique, Stall-
Time Fair Memory (STFM) scheduling. Based on simple request pri-
oritization rules, PAR-BS is also simpler to implement than STFM.

1. Introduction
The DRAM memory system is a major shared resource among

multiple processing cores in a chip multiprocessor (CMP) system.
When accessing this shared resource, different threads running on dif-
ferent cores can delay each other because accesses from one thread
can cause additional DRAM bank conflicts, row-buffer conflicts, and
data/address bus conflicts to accesses from another thread. In addi-
tion, as we show in this paper, inter-thread interference can destroy the
bank-level access parallelism of individual threads. Memory requests
whose latencies would otherwise have been largely overlapped effec-
tively become serialized, which can significantly degrade a thread’s
performance. Moreover, some threads can be unfairly prioritized,
while other –perhaps more important– threads can be starved for long
time periods.

Such negative effects of uncontrolled inter-thread interference in
the DRAM memory system are crucial impediments to building vi-
able, scalable, and controllable CMP systems as they can result in 1)
low system performance and vulnerability to denial of service [22, 41],
2) unpredictable program performance, which renders performance
analysis, optimization, and isolation extremely difficult [28, 22, 25],
3) significant discomfort to the end user who naturally expects threads
with higher (equal) priorities to get higher (equal) shares of the system
performance. As the number of cores on a chip increases, the pressure
on the DRAM system will also increase and both the performance and
fairness provided by the DRAM system will become critical deter-
minants of the performance of future CMP platforms. Therefore, to
enable viable, scalable, and predictable CMP systems, fair and high-
performance memory access scheduling techniques that control and
minimize inter-thread interference are necessary [28, 22, 25].

In this paper, we propose a new approach to providing fair and
high-performance DRAM scheduling. Our scheduling algorithm,
called parallelism-aware batch scheduling (PAR-BS), is based on
two new key ideas: request batching and parallelism-aware DRAM
scheduling. First, PAR-BS operates by grouping a limited number of

DRAM requests into batches based on their arrival time and request-
ing threads. The requests from the oldest batch are prioritized and
therefore guaranteed to be serviced before other requests. As such,
PAR-BS is fair and starvation-free: it prevents any thread from being
starved in the DRAM system due to interference from other, poten-
tially aggressive threads. Second, within a batch of requests, PAR-BS
is parallelism-aware: it strives to preserve bank-level access paral-
lelism (i.e., the degree to which a thread’s DRAM requests are ser-
viced in parallel in different DRAM banks) of each thread in the pres-
ence of interference from other threads’ DRAM requests.1 It does so
by trying to group requests from a thread and service them concur-
rently (as long as they access different banks) using heuristic-based
prioritization rules. As such, our approach reduces the serialization of
a thread’s requests that would otherwise have been serviced in parallel
had the thread been running alone in the memory system.

We show that the request batching component of PAR-BS is a gen-
eral framework that provides fairness and starvation freedom in the
presence of inter-thread interference. Within a batch of DRAM re-
quests, any existing and future DRAM access scheduling algorithm
(e.g., those proposed in [44, 33, 32, 28, 25]) can be implemented.
However, our results show that using our proposed parallelism-aware
scheduling algorithm provides the best fairness as well as system
throughput. We describe how PAR-BS operates within a batch and
analyze the complex trade-offs involved in batching and parallelism-
aware scheduling in terms of fairness, DRAM throughput, row-buffer
locality exploitation, and individual threads’ bank-level access paral-
lelism. We also describe how the system software can control PAR-BS
to enforce thread priorities and change the level of desired fairness in
the DRAM system.

Our experiments compare PAR-BS qualitatively and quantitatively
to four previously proposed DRAM scheduling techniques, including
the recently-proposed QoS-aware Network Fair Queueing based [28]
(NFQ) and Stall-Time Fair [25] (STFM) memory access schedulers,
as well as the commonly used first-ready first-come-first-serve (FR-
FCFS) scheduler [44, 33]. None of these schedulers try to preserve
individual threads’ bank-level parallelism or strictly guarantee short-
term starvation freedom in the presence of inter-thread interference.
Our results on a very wide variety of workloads and CMP system con-
figurations show that PAR-BS provides the best fairness and system
throughput.
Contributions: We make the following contributions in this paper:

• We show that inter-thread interference can destroy bank-level par-
allelism of individual threads, leading to significant degradation
in system throughput. We introduce a novel parallelism-aware
DRAM scheduling policy that maintains the bank-level parallelism
of individual threads while also respecting row-buffer locality.

• We introduce the concept of request batching in shared DRAM
schedulers as a general framework to provide fairness/QoS across
threads and starvation freedom to DRAM requests. We show that
request batching is orthogonal to and can be employed with ex-
isting DRAM access scheduling algorithms, but it is most benefi-
cial when applied with parallelism-aware scheduling. We describe
how the system software can control the flexible fairness substrate
provided by request batching to enforce thread priorities and to
control the unfairness in the DRAM system.

1In this paper, we refer to the bank-level parallelism of a thread as intra-
thread bank-level parallelism. We use the terms bank-level parallelism and
bank-parallelism interchangeably. A quantifiable definition of bank-parallelism
is provided in Section 7.
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• We qualitatively and quantitatively compare our scheduler to four
previously proposed fairness- or throughput-oriented schedulers
and show that PAR-BS provides both the best fairness and the best
system throughput. Our proposal is also simpler to implement than
the best previously-proposed memory access scheduler, Stall-Time
Fair Memory Scheduler [25], in that it does not require complex
calculations, such as division.

2. Motivation
DRAM requests are very long latency operations that greatly im-

pact the performance of modern processors. When a load instruction
misses in the last-level on-chip cache and needs to access DRAM,
the processor cannot commit that (and any subsequent) instruction be-
cause instructions are committed in program order to support precise
exceptions [35]. The processor’s instruction window becomes full a
few cycles after a last-level cache miss [13, 24] and the processor
stalls until the miss is serviced by DRAM. Current processors try to
reduce the performance loss due to a DRAM access by servicing other
DRAM accesses in parallel with it. Techniques like out-of-order exe-
cution [40], non-blocking caches [15], and runahead execution [5, 23]
strive to overlap the latency of future DRAM accesses with the cur-
rent access so that the processor does not need to stall (long) for future
DRAM accesses. Instead, at an abstract level, the processor stalls once
for all overlapped accesses rather than stalling once for each access in
a serialized fashion [24]. The concept of generating and servicing mul-
tiple DRAM accesses in parallel is called Memory Level Parallelism
(MLP) [9].

The effectiveness of the aforementioned latency tolerance tech-
niques depends on whether or not the concurrent DRAM accesses are
actually serviced in parallel by different DRAM banks (i.e., whether
or not intra-thread bank-level parallelism is maintained). In a single-
core system,2 a thread has exclusive access to the DRAM banks, so
its concurrent DRAM accesses are serviced in parallel as long as they
are not to the same bank. This is illustrated in the simple, concep-
tual example in Figure 1.3 Request1’s (Req1) latency is hidden by the
latency of Request0 (Req0), effectively exposing only a single bank
access latency to the thread’s processing core. Once Req0 is serviced,
the core can commit Load 0 and thus enable the decode/execution of
future instructions. When Load 1 becomes the oldest instruction in the
window, its miss has already been serviced and therefore the processor
can continue computation without stalling.

Unfortunately, if multiple threads are generating memory requests
concurrently (e.g. in a CMP system), modern DRAM controllers
schedule the outstanding requests in a way that completely ignores the
inherent memory-level parallelism of threads. Instead, current DRAM
controllers exclusively seek to maximize the DRAM data through-
put, i.e., the number of DRAM requests serviced per second [44, 33,
32]. As we show in this paper, blindly maximizing the DRAM data
throughput does not minimize a thread’s stall-time (which directly
correlates with system throughput). Even though DRAM through-
put may be maximized, some threads can be stalled overly long if the
DRAM controller destroys their bank-level parallelism and serializes
their memory accesses instead of servicing them in parallel.

The example in Figure 2 illustrates how parallelism-unawareness
can result in suboptimal CMP system throughput and increased stall-
times. We assume two cores, each running a single thread, Thread
0 (T0) and Thread 1 (T1). Each thread has two concurrent DRAM
requests caused by consecutive independent load misses (Load 0 and
Load 1), and the requests go to two different DRAM banks. The fig-
ure shows 1) (top) how a current DRAM scheduler may destroy intra-
thread bank-parallelism, thereby increasing a thread’s stall-time, and

2We assume, for simplicity and without loss of generality, that a core can
execute one thread, and use the terms thread and core interchangeably. How-
ever, the ensuing discussion and our techniques are applicable to cores that can
execute multiple threads as well.

3For simplicity, this figure and subsequent figures abstract away many de-
tails of the DRAM system, such as the DRAM bus and timing constraints.
However, bank access latency often dominates the latency of DRAM re-
quests [3, 4], especially with a wide DRAM data bus.

2) (bottom) how a parallelism-aware scheduler can schedule the re-
quests more efficiently.

With a conventional parallelism-unaware DRAM scheduler (such
as any previously proposed scheduler [44, 33, 32, 28, 25]), the re-
quests can be serviced in their arrival order shown in Figure 2(top).
First, T0’s request to Bank 0 is serviced in parallel with T1’s request
to Bank 1. Later, T1’s request to Bank 0 is serviced in parallel with
T0’s request to Bank 1. This service order serializes each thread’s
concurrent requests and therefore exposes two bank access latencies
to each core. As shown in the execution timeline (top right), instead
of stalling once (i.e. for one bank access latency) for the two requests,
both cores stall twice. Core 0 first stalls for Load 0, and shortly there-
after also for Load 1. Core 1 stalls for its Load 0 for two bank access
latencies.

In contrast, a parallelism-aware scheduler services each thread’s
concurrent requests in parallel, resulting in the service order and ex-
ecution timeline shown in Figure 2(bottom). The scheduler preserves
bank-parallelism by first scheduling both of T0’s requests in parallel,
and then T1’s requests. This enables Core 0 to execute faster (shown
as “Saved cycles” in the figure) as it stalls for only one bank access
latency. Core 1’s stall time remains unchanged: although its second
request (T1-Req1) is serviced later than with a conventional scheduler,
T1-Req0 still hides T1-Req1’s latency.

The crucial observation is that parallelism-aware request schedul-
ing improves overall system throughput because one core now exe-
cutes much faster: the average core stall time is 1.5 bank access laten-
cies with the parallelism-aware scheduler (bottom) whereas it is 2 with
the conventional scheduler (top).4 While this example shows only two
cores for simplicity, the destruction of intra-thread bank-parallelism
becomes worse as more cores share the DRAM system.

Our goal: Our goal in this paper is to design a fair, QoS-aware
memory scheduler that provides high system throughput. Based on the
observation that inter-thread interference destroys the bank-level par-
allelism of the threads running concurrently on a CMP and therefore
degrades system throughput, we incorporate parallelism-awareness
into the design of our fair and high-performance memory access
scheduler. To this end, we develop the key notions of request batch-
ing and parallelism-aware request prioritization, which we describe
in detail in Section 4.

3. Background on DRAM Memory Controllers
This section gives a brief description of how modern SDRAM sys-

tems and controllers operate. The DRAM system is presented at a level
of abstraction that is sufficient to understand the terminology and key
concepts of this paper. For a detailed description, we refer the reader
to [33, 4, 25].

A modern SDRAM chip consists of multiple DRAM banks to al-
low multiple outstanding memory accesses to proceed in parallel if
they require data from different banks. Each DRAM bank is a two-
dimensional array, consisting of columns and rows. Rows typically
store data in consecutive memory locations and are of 1-2KB in size.
The data in a bank can be accessed only from the row-buffer, which
can contain at most one row. A bank contains a single row-buffer. The
amount of time it takes to service a DRAM request depends on the
status of the row-buffer and falls into three categories:

• Row hit: The request is to the row that is currently open in the
row-buffer. The DRAM controller needs to issue only a read or
write command to the DRAM bank, resulting in a bank access
latency of tCL (See Table 2).

• Row closed: There is no open row in the row-buffer. The DRAM
controller needs to first issue an activate command to open the re-
quired row, then a read/write command, resulting in a bank access
latency of tRCD + tCL.

4Notice that the system throughput improvement would be the same if the
DRAM scheduler first serviced Core 1’s requests in parallel, then Core 0’s re-
quests. In that case, Core 1 would only stall for a single bank access latency
while Core 0’s stall time would remain the same as with a conventional sched-
uler. Similarly, system throughput would also improve if T1-Req0 was to Bank
1 and T1-Req1 was to Bank 0.
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Figure 2. Conceptual example showing the importance of including parallelism-awareness in DRAM scheduling decisions

• Row conflict: The request is to a row different from the one cur-
rently in the row-buffer. The DRAM controller needs to first close
the row by issuing a precharge command, then open the required
row (activate), and then issue a read/write command. These ac-
cesses incur the highest bank access latency of tRP +tRCD +tCL.

A DRAM controller consists of a memory request buffer that
buffers the memory requests (and their data) while they are waiting to
be serviced and a (possibly two-level) scheduler that selects the next
request to be serviced [33, 28, 25]. When selecting the next request to
be serviced, the scheduler considers the state of the DRAM banks and
the DRAM buses as well as the state of the request. A DRAM com-
mand for a request can be scheduled only if its scheduling does not
cause any resource (bank and address/data/command bus) conflicts
and does not violate any DRAM timing constraints. Such a DRAM
command is said to be ready.

Because of the large disparity in the latency incurred by a row-
hit access and a row-conflict/closed access, state-of-the-art DRAM
controllers employ scheduling techniques that prioritize row-hit re-
quests over other requests, including younger ones. A modern memory
controller employs the FR-FCFS (first-ready first-come-first-serve)
scheduling policy [44, 33, 32], which prioritizes ready DRAM com-
mands from 1) row-hit requests over others and 2) row-hit status be-
ing equal, older requests over younger ones. Such a scheduling pol-
icy aims to minimize the average service latency of DRAM requests
and thus maximize the data throughput obtained from the DRAM. For
single-threaded systems, the FR-FCFS policy was shown to provide
the best average performance [33, 32], significantly better than the
simpler FCFS policy, which simply schedules all requests according
to their arrival order, regardless of the row-buffer state.

When multiple threads share the DRAM system, the FR-FCFS
scheduling policy tends to unfairly prioritize threads with high row-
buffer locality (i.e. row-buffer hit rate) over those with relatively
low row-buffer locality due to the row-hit-first prioritization rule. It
also tends to unfairly prioritize memory-intensive threads over non-
intensive ones due to the oldest-first prioritization rule.5 As a result,
even though FR-FCFS achieves high DRAM data throughput, it may

5A thread is more memory-intensive than another if it spends more cycles
per instruction waiting for DRAM requests. See Section 7 for more.

starve requests/threads for long time periods, causing unfairness and
relatively low overall system throughput [28, 22, 25].

Previous research [28, 22, 25] experimentally demonstrated the un-
fairness of FR-FCFS and proposed new scheduling policies that are
fairer and that provide QoS to different threads. Nesbit et al. [28] ap-
plied Network Fair-Queueing (NFQ) techniques to DRAM controllers
in order to divide the DRAM bandwidth among multiple threads
sharing the DRAM system. Mutlu and Moscibroda [25] proposed a
stall-time fair memory scheduler (STFM) that aims to equalize the
slowdowns experienced by threads as compared to when each one is
run alone. None of these previous scheduling policies take into ac-
count intra-thread bank-parallelism, which—as seen in Section 2—
can significantly degrade system performance when requests of differ-
ent threads interfere in the DRAM system.

4. Parallelism-Aware Batch Scheduling
Overview: Our proposed DRAM scheduling algorithm is designed

to provide 1) a configurable substrate for fairness and QoS and 2)
high CMP system throughput by incorporating parallelism-awareness
into scheduling decisions. To achieve these goals, Parallelism-Aware
Batch Scheduling (PAR-BS) consists of two components. The first
component is a request batching (BS), or simply batching, compo-
nent that groups a number of outstanding DRAM requests into a batch
and ensures that all requests belonging to the current batch are ser-
viced before the next batch is formed. Batching not only ensures fair-
ness but also provides a convenient granularity (i.e., a batch) within
which possibly thread-unfair but high-performance DRAM command
scheduling optimizations can be performed. The second component of
our proposal, parallelism-aware within-batch scheduling (PAR) aims
to reduce the average stall time of threads within a batch (and hence
increase CMP throughput) by trying to service each thread’s requests
in parallel in DRAM banks.

After describing the two components separately, we discuss ad-
vantages/disadvantages of our proposal compared to existing DRAM
schedulers and present possible alternative design choices in Sec-
tions 4.3 and 4.4, respectively.

4.1. Request Batching
The idea of batching is to consecutively group outstanding requests

in the memory request buffer into larger units called batches. The
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DRAM scheduler avoids request re-ordering across batches by pri-
oritizing requests belonging to the current batch over other requests.
Once all requests of a batch are serviced (i.e., when the batch is fin-
ished), a new batch is formed consisting of outstanding requests in
the memory request buffer that were not included in the last batch.
By thus grouping requests into larger units according to their arrival
time, batching—in contrast to FR-FCFS and other existing schemes—
prevents request starvation at a very fine granularity and enforces
steady and fair progress across all threads. At the same time, the for-
mation of batches allows for the flexibility to re-order requests within
a batch in order to maximally exploit row-buffer locality and bank-
parallelism without significantly disturbing thread-fairness.

The batching component (BS) of PAR-BS works as follows. Each
request in the memory request buffer has an associated bit indicating
whether the request belongs to the current batch. If the request belongs
to the current batch, this bit is set, and we call the request marked. BS
forms batches using the rules shown in Rule 1.

Rule 1 PAR-BS Scheduler: Batch Formation
1: Forming a new batch: A new batch is formed when there are no

marked requests left in the memory request buffer, i.e., when all
requests from the previous batch have been completely serviced.

2: Marking: When forming a new batch, BS marks up to
Marking-Cap outstanding requests per bank for each thread;
these requests form the new batch.

Marking-Cap is a system parameter that limits how many re-
quests issued by a thread for a certain bank can be part of a batch.
For instance, if Marking-Cap is 5 and a thread has 7 outstanding
requests for a bank, PAR-BS marks only the 5 oldest among them. If
no Marking-Cap is set, all outstanding requests are marked when a
new batch is formed.

PAR-BS always prioritizes marked requests (i.e., requests belong-
ing to the current batch) over non-marked requests in a given bank.
On the other hand, PAR-BS neither wastes bandwidth nor unnecessar-
ily delays requests: if there are no marked requests to a given bank,
outstanding non-marked requests are scheduled to that bank. To se-
lect among two marked or two non-marked requests, any existing or
new DRAM scheduling algorithm (e.g., FR-FCFS) can be employed.
In PAR-BS, this “within-batch” scheduling component is PAR, which
we describe next.

4.2. Parallelism-Aware Within-batch Scheduling
Batching naturally provides a convenient granularity (i.e., the

batch) within which a scheduler can optimize scheduling decisions
to obtain high performance. There are two main objectives that this
optimization should strive for. It should simultaneously maximize 1)
row-buffer locality and 2) intra-thread bank-parallelism within a batch.
The first objective is important because if a high row-hit rate is main-
tained within a batch, bank accesses incur smaller latencies on aver-
age, which increases the throughput of the DRAM system. The second
objective is similarly important because scheduling multiple requests
from a thread to different banks in parallel effectively reduces that
thread’s experienced stall-time. Unfortunately, it is generally difficult
to simultaneously achieve these objectives—e.g. FR-FCFS sacrifices
parallelism in lieu of row-buffer locality.6

Our within-batch scheduling algorithm, PAR, uses the request pri-
oritization rules shown in Rule 2 to exploit both row-buffer locality
and bank parallelism. Within a batch, row-hit requests are prioritized.
This increases row buffer locality and ensures that any rows that were
left open by the previous batch’s requests are made the best possible
use of in the next batch. Second, requests from threads with higher
rank are prioritized over those from threads with lower rank to in-
crease bank-level parallelism, as explained in detail below. Finally, all
else being equal, an older request is prioritized over a younger one.

Thread Ranking: PAR-BS uses a rank-based thread prioritization
scheme within a batch to maximize the intra-thread bank-parallelism

6In fact, several combinatorial formalizations of this optimization problem
can be shown to be NP-complete and hence no efficient algorithmic solutions
are expected to exist.

Rule 2 PAR-BS Scheduler: Request Prioritization
1: BS—Marked-requests-first: Marked ready requests are priori-

tized over requests that are not marked.
2: RH—Row-hit-first: Row-hit requests are prioritized over row-

conflict/closed requests.
3: RANK—Higher-rank-first: Requests from threads with higher-

rank are prioritized over requests from lower-ranked threads.
4: FCFS—Oldest-first: Older requests are prioritized over younger

requests.

while maintaining row-buffer locality. When a new batch is formed,
the DRAM scheduler computes a ranking among all threads that have
requests in the batch. While the batch is processed, the computed
ranking remains the same and requests from higher-ranked threads
are prioritized over those from lower-ranked threads. The effect of
ranking-based scheduling is that different threads are prioritized in the
same order across all banks and thus, each thread’s requests are more
likely to be serviced in parallel by all banks.

How to Rank Threads Within a Batch: Although conceptually
any ranking-based scheme enhances within-batch intra-thread bank-
parallelism, the specific ranking procedure has a significant impact on
CMP throughput and fairness.

A good ranking scheme must effectively differentiate between
memory-intensive and non-intensive threads (and threads with high
bank-parallelism). If a non-intensive thread with few requests is
ranked lower than an intensive thread, its requests may be overly de-
layed within a batch. As explained in [25], a fair DRAM scheduler
should equalize the DRAM-related slowdown of each thread compared
to when the thread is running alone on the same memory system. As
a non-intensive thread or a thread with high bank-parallelism inher-
ently has a low DRAM-related stall-time when running alone, delay-
ing its requests within a batch results in a much higher slowdown than
it would for an intensive thread, whose DRAM-related stall-time is
already high even when running alone. To avoid this unfairness (and
loss of system throughput as explained below), our ranking scheme is
based on the shortest job first principle [36]: it ranks the non-intensive
threads higher than the intensive ones.

Besides fairness, the key rationale behind the shortest job first
principle is that it tends to reduce the average batch-completion time
of threads within a batch.7 A thread’s batch-completion time is the
time between the beginning of a batch and the time the thread’s last
marked request from the batch is serviced. It directly corresponds to
the thread’s memory-related stall-time within a batch. By reducing
the average batch-completion time, shortest job first scheduling im-
proves overall system throughput as the threads stall less for DRAM
requests, on average, thereby making faster progress in the execution
of their instruction streams.

Concretely, PAR-BS uses the Max-Total ranking scheme, shown in
Rule 3, to compute each thread’s rank within a batch.

Rule 3 PAR-BS Scheduler: Thread Ranking
1: Max rule: For each thread, the scheduler finds the maximum

number of marked requests to any given bank, called max-bank-
load. A thread with a lower max-bank-load is ranked higher than
a thread with a higher max-bank-load.

2: Tie-breaker Total rule: For each thread, the scheduler keeps
track of the total number of marked requests, called total-load. If
threads are ranked the same based on the Max rule, a thread with a
lower total-load is ranked higher than a thread with a higher total-
load. Any remaining ties are broken randomly.

The maximum number of outstanding requests to any bank cor-
relates with the “shortness of the job,” i.e., with the minimal mem-
ory latency that is required to serve all requests from a thread if they
were processed completely in parallel. A highly-ranked thread has few

7In the classic single-machine job-scheduling problem and many of its gen-
eralizations, shortest-job-first scheduling is optimal in that it minimizes the av-
erage job completion time [36].

66



(a) Arrival order (and FCFS schedule) (b) FR-FCFS schedule (c) PAR-BS schedule
FCFS schedule batch-completion (stall) times FR-FCFS schedule batch-completion (stall) times PAR-BS schedule batch-completion (stall) times

Thread 1 Thread 2 Thread 3 Thread 4 AVG Thread 1 Thread 2 Thread 3 Thread 4 AVG Thread 1 Thread 2 Thread 3 Thread 4 AVG
4 4 5 7 5 5.5 3 4.5 4.5 4.375 1 2 4 5.5 3.125

Figure 3. A simplified abstraction of scheduling within a batch containing requests from 4 threads. Rectangles represent marked requests from different threads;
bottom-most requests are the oldest requests for the bank. Those requests that affect or result in row-hits are marked with the row number they access; if two
requests to the same row are serviced consecutively, the second request is a row-hit with smaller access latency. The first request to each bank is assumed to be a
row-conflict.

marked requests going to the same bank and hence can be finished fast.
By prioritizing requests from such high-ranked threads within a batch,
PAR-BS ensures that non-intensive threads or threads with high bank-
parallelism make fast progress and are not delayed unnecessarily long.

Example: Figure 3 shows an example that provides insight into
why our proposed within-batch prioritization scheme preserves intra-
thread bank-parallelism and improves system throughput. The fig-
ure abstracts away many details of DRAM scheduling8 but provides
a framework for understanding the parallelism and locality trade-offs.
We assume a latency unit of 1 for row-conflict requests and 0.5 for
row-hit requests. Figure 3(a) depicts the arrival order of requests in
each bank, which is equivalent to their service order with an FCFS
scheduler. FCFS neither exploits locality nor preserves intra-thread
bank-parallelism and therefore results in the largest average com-
pletion time of the four threads (5 latency units). FR-FCFS maxi-
mizes row-buffer hit rates by reordering row-hit requests over others,
but as shown in Figure 3(b), it does not preserve intra-thread bank-
parallelism. For example, although Thread 1 has only three requests
that are all intended for different banks, FR-FCFS services all three
requests sequentially. Depending on the history of memory requests,
the schedule shown in Figure 3(b) for FR-FCFS is also a possible ex-
ecution scenario when using the QoS-aware NFQ [28] or STFM [25]
schedulers since those schedulers are unaware of intra-thread bank-
parallelism.

Figure 3(c) shows how PAR operates within a batch. Thread 1 has
at most one request per bank (resulting in the lowest max-bank-load
of 1) and is therefore ranked highest in this batch. Both Threads 2
and 3 have a max-bank-load of two, but since Thread 2 has fewer total
number of requests, it is ranked above Thread 3. Thread 4 is ranked
the lowest because it has a max-bank-load of 5. As Thread 1 is ranked
highest, its three requests are scheduled perfectly in parallel, before
other requests. Similarly, Thread 2’s requests are scheduled as much in
parallel as possible. As a result, PAR maximizes the bank-parallelism
of non-intensive threads and finishes their requests as quickly as pos-
sible, allowing the corresponding cores to make fast progress. Com-
pared to FR-FCFS or FCFS, PAR significantly speeds up Threads 1,
2, and 3 while not substantially slowing down Thread 4. The average
completion time is reduced to 3.125 latency units.

Notice that in addition to good bank-parallelism, our proposal
achieves as good a row-buffer locality as FR-FCFS within a batch,
because within a batch PAR-BS always prioritizes marked row-hit re-
quests over row-conflict requests.9

8Such as DRAM data/address/command bus contention and complex inter-
actions between timing constraints.

9However, this might not be the case across batches. PAR-BS can reduce
locality at batch boundaries because marked requests are prioritized over row-
hit requests. This locality reduction depends on how large Marking-Cap is.
Section 8.3 evaluates the trade-offs related to Marking-Cap.

4.3. Advantages, Disadvantages, Trade-offs
Request Batching component of our proposal has the following

major advantages:
• Fairness and Starvation Avoidance: Batching guarantees the ab-

sence of short-term or long-term starvation: every thread can make
progress in every batch, regardless of the memory access patterns
of other threads.10 The number of requests from a thread sched-
uled before requests of another thread is strictly bounded with the
size of a batch. Apart from FCFS, no existing scheduler provides
a similar notion of starvation avoidance. In FR-FCFS, a memory-
intensive thread with excellent row-buffer locality can capture a
bank for a long time, if it can issue a large number of row-hit re-
quests to the same bank in succession. Depending on the history
of access patterns, short-term starvation is also possible in NFQ
and STFM, especially due to the idleness and bank access balance
problems [25] associated with NFQ and inaccurate slowdown es-
timates in STFM [25]. In PAR-BS, memory-intensive threads are
unable to delay requests from non-intensive ones for a long time.

• Substrate for Exploiting Bank Parallelism: Batching enables
the use of highly efficient within-batch scheduling policies (such as
PAR). Without batches (or any similar notion of groups of requests
in time), devising a parallelism-aware scheduler is difficult as it is
unclear within what context bank-parallelism should be optimized.

• Flexibility and Simple Implementation: While most beneficial
in combination with PAR, the idea of batching can be used in com-
bination with any existing or future DRAM command scheduling
policy. Batching thus constitutes a simple and flexible framework
that can be used to enhance the fairness of existing scheduling al-
gorithms. We explore the performance and fairness of using FCFS
and FR-FCFS policies within a batch in Section 8.3.3.

A possible disadvantage of our scheme is that it requires careful
determination of Marking-Cap. If Marking-Cap is large, PAR-
BS could suffer from similar unfairness problems as FR-FCFS, al-
though not to the same extent. If a non-memory-intensive thread is-
sues a request that just misses the formation of a new batch, the re-
quest has to wait until all requests from the current batch to the same
bank are serviced, which slows down the non-intensive thread. On the
other hand, a small Marking-Cap can slow down memory-intensive
threads, since at most Marking-Cap requests per thread and per
bank are included in a batch, the remaining ones being postponed
to the next batch. There is a second important downside to having
small batches: the lower the Marking-Cap, the lower the row-buffer
hit rate of threads with high inherent row-buffer locality. Across a
batch boundary, a marked row-conflict request is prioritized over an
unmarked row-hit request. The smaller the batches (the smaller the
Marking-Cap), the more frequently a stream of row-hit accesses

10Starvation freedom of “batched (or grouped) scheduling” was proven for-
mally within the context of disk scheduling [7].
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can be broken in this way, which increases the access time of requests.
Section 8.3.1 analyzes in detail the fairness and performance trade-offs
of various Marking-Cap settings.

Parallelism-Aware Within Batch Scheduling simultaneously
achieves a high degree of bank-parallelism and row-buffer locality,
as described in the previous section. No other DRAM scheduling
scheme we know of optimizes for intra-thread bank-parallelism. Con-
sistent with the general machine scheduling theory [36], using the
Max-Total ranking scheme to prioritize threads with fewer requests
reduces the average stall time of threads within a batch. While this
“shortest-job-first” principle may appear to unfairly penalize memory-
intensive threads, our experimental evaluations in Section 8 show that
this effect is not significant. There are two reasons: 1) the overly-
ing batching scheme ensures a high degree of fairness, 2) delaying
a memory intensive thread results in a relatively smaller slowdown
since the inherent DRAM-related stall-time of an intensive thread is
higher. Within a batch, a scheduler should therefore freely optimize
for reduced stall-times by finishing threads with few and bank-parallel
requests as quickly as possible.

4.4. Design Alternatives
We have experimented with a variety of novel, alternative batch-

ing and within-batch scheduling schemes. We briefly describe these
schemes for completeness. Our evaluations in Section 8 show that av-
eraged over a large and varied set of workload mixes, these alternative
designs perform worse than our PAR-BS scheme.

The batching method in PAR-BS can be referred to as full batch-
ing because it requires that a batch of requests be completed in full
before the next batch is started. There are alternative ways to perform
batching.

Time-Based Static Batching: In this approach, outstanding re-
quests are marked periodically using a static time interval, regardless
of whether or not the previous batch is completed. The scheme is char-
acterized by a system parameter Batch-Duration that describes at
what time interval a new batch is formed. At the outset of a new batch,
unmarked requests are marked subject to the Marking-Cap, while
requests that are already marked from the previous batch remain so. In
comparison to PAR-BS, this batching approach does not provide strict
starvation-avoidance guarantees and can lead to significant unfairness
as we show in Section 8.3.2.

Empty-Slot (Eslot) Batching: If in PAR-BS, a request arrives in
the DRAM system slightly after a new batch was formed, it may be
delayed until the beginning of a new batch, causing a large stall time
especially for a non-intensive thread. Empty-slot batching attempts to
alleviate this problem by allowing requests to be added to the current
batch if less than Marking-Cap requests from that thread for the
specific bank were marked so far in the batch. In other words, if at
the time a new batch is formed, a thread does not utilize its entire
allotted share of marked requests (i.e. has “empty slots”) within the
batch, it is allowed to add late-coming requests to the batch until the
Marking-Cap threshold is met.

Alternative Within-Batch Scheduling Policies: Within a batch,
many different alternative request/command prioritization techniques
can be employed. Aside from Max-Total ranking, we have also eval-
uated Total-Max (where the order of the Max rule and Total rule is
reversed), random, and round-robin ranking schemes. Furthermore,
we have evaluated using FCFS and FR-FCFS within a batch –without
any ranking– to isolate the effect of parallelism-awareness in our pro-
posal. Section 8.3.3 describes the trade-offs involved with alternative
within-batch scheduling techniques.

5. Incorporating System-Level Thread Priorities
We have so far described PAR-BS assuming that all threads have

equal priority and, in terms of fairness, should experience equal
DRAM-related slowdowns when run together. The system software
(the operating system or virtual machine monitor), however, would
likely want to assign priorities to threads to convey that some threads
are more/less important than others. PAR-BS seamlessly incorporates
the notion of thread priorities to provide support for the system soft-
ware. The priority of each thread is conveyed to PAR-BS in terms of
priority-levels 1, 2, 3, . . ., where level 1 indicates the most important

thread (highest priority) and a larger number indicates a lower prior-
ity. Equal-priority threads should be slowed down equally [25], but the
lower a thread’s priority, the more tolerable its slowdown. We adjust
PAR-BS in two ways to incorporate thread priorities.

• Priority-Based Marking: Requests from a thread with priority
X are marked only every Xth batch. For example, requests from
highest priority threads with level 1 are marked every batch, re-
quests from threads with level 2 are marked every other batch, and
so forth. The batching mechanism otherwise remains the same,
i.e., a new batch is formed whenever there are no marked requests
in the buffer.

• Priority-Based Within-Batch Scheduling: An additional rule
is added to the within-batch request prioritization rules shown in
Rule 2. Between rules 1.BS---Marked-requests-first
and 2.RH---Row-hit-first, we add the new rule
PRIORITY---Higher-priority-threads-first.
That is, given the choice between two marked or two unmarked
requests, PAR-BS prioritizes the request from the thread with
higher priority. Between requests of equal-priority threads, other
request prioritization rules remain the same.

The effect of these two changes to PAR-BS is that higher-priority
threads are naturally scheduled faster: they are marked more fre-
quently and thus take part in more batches, and they are prioritized
over other requests within a batch.

Purely Opportunistic Service: In addition to the integer-based
priority-levels, PAR-BS provides one particular priority-level, L, that
indicates the lowest-priority threads. Requests from such threads are
never marked and they are assigned the lowest priority among un-
marked requests. Consequently, requests from threads at level L are
scheduled purely opportunistically—only scheduled if the memory
system is free—to minimize their disturbance on other threads.

Finally, we provide the system software with the ability to set
Marking-Cap, which serves as a lever to determine how much un-
fairness exists in the system (see Section 8.3.1).

6. Implementation and Hardware Cost
PAR-BS requires the implementation of batching (Rule 1) and the

request prioritization policy described in Section 4.2 (Rules 2 and 3).
Modern FR-FCFS based controllers already implement prioritization
policies. Each DRAM request is assigned a priority and the DRAM
command belonging to the highest priority request is scheduled among
all ready commands. PAR-BS extends the priority of each DRAM re-
quest using two additional pieces of information: 1) whether or not the
request is marked, and 2) the rank of the thread the request belongs to
(using Max-Total ranking). To keep track of this additional informa-
tion, the scheduler requires the additional state shown in Table 1. As-
suming an 8-core CMP, 128-entry request buffer and 8 DRAM banks,
the extra hardware state, including Thread-ID’s, required to implement
PAR-BS (beyond FR-FCFS) is 1412 bits.

The counters ReqsInBankPerThread and ReqsPerThread
are incremented/decremented when a new request enters/leaves the
memory request buffer. When a marked request is fully serviced,
the DRAM controller decrements TotalMarkedRequests. When
TotalMarkedRequests reaches zero, the controller starts a new
batch by 1) marking the oldest Marking-Cap requests per bank from
each thread, 2) computing the new Max-Total ranking of threads us-
ing the ReqsInBankPerThread and ReqsPerThread registers.
Thus, the additional logic required by PAR-BS consists of logic that
1) marks requests (marking logic), 2) determines thread ranking (rank-
ing logic), and 3) computes request priorities based on marked-status
and thread rank (prioritization logic). Both marking and ranking logic
are utilized only when a new batch is formed and implemented using
priority encoders that take as input the relevant information in each
case. Prioritization logic takes as input the marked status, row-hit sta-
tus, thread rank, and request ID of a request to form a single priority
value (see Figure 4) for each request every DRAM cycle.

Notice that none of this logic is on the critical path of the processor
because an on-chip DRAM controller runs at a higher frequency than
DRAM and needs to make a scheduling decision only every DRAM
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Register Description and Purpose Size (additional bits)

Per-request registers
Marked Whether or not the request is marked 1
Priority The priority of the request including marked status, row-hit status, thread rank, and request ID log2 NumThreads (3) See Figure 4
Thread − ID ID of the thread that generated the request log2 NumThreads (3)
Per-thread per-bank registers to compute Max rule in Max-Total ranking
ReqsInBankPerT hread Number of requests from this thread to this bank log2 RequestBufferSize (7)

Per-thread registers to compute Total rule in Max-Total ranking
ReqsP erThread Number of total requests from this thread in the request buffer log2 RequestBufferSize (7)

Individual registers
TotalMarkedRequests Number of marked requests in the request buffer (used to determine when to mark requests) log2 RequestBufferSize (7)
Marking − Cap Stores the system-configurable Marking-Cap value 5

Table 1. Additional state required for a possible PAR-BS implementation

cycle. Similar prioritization policies have been implemented in in-
struction schedulers, which are on the critical path. If needed, the
marking/ranking logic can take multiple cycles since marking/ranking
is done only when a new batch is formed.

PAR-BS is simpler to im-
Thread−rank (log2NumThreads bits)

Marked (1 bit) − already in req buffer

Row−hit? (1−bit) − already used in FR−FCFS

Request−ID (already in FR−FCFS)

Figure 4. Sample priority value assigned to
each request. Thread-rank is the only addi-
tional storage required by PAR-BS since all
other fields are either required by FR-FCFS
or stored with the request.

plement than the previous-best
scheduler STFM, which re-
quires significant logic, includ-
ing dividers, to estimate thread
slowdowns [25]. In contrast to
STFM, PAR-BS is based only
on simple prioritization rules
that depend on request counts
and therefore does not require
complex arithmetic operations.

7. Experimental Methodology
We evaluate our proposal using a cycle-accurate x86 CMP sim-

ulator. The functional front-end of the simulator is based on
Pin [17] and iDNA [1]. We model the memory system in detail,
faithfully capturing bandwidth limitations, contention, and enforcing
bank/port/channel/bus conflicts. Table 2 shows the major DRAM and
processor parameters. We scale DRAM bandwidth with the number
of cores. Our extended technical report also evaluates varying system
parameters [26].

We use the SPEC CPU2006 benchmarks and two Windows desktop
applications (Matlab and an xml parsing application) for evaluation.11

Each benchmark was compiled using gcc 4.1.2 with -O3 optimizations
and run for 150 million instructions chosen from a representative exe-
cution phase [29].

We classify the benchmarks into eight categories based on their
memory intensiveness (low or high), row-buffer locality (low or high),
and bank-level parallelism (low or high). We define bank-level paral-
lelism (BLP) as the average number of requests being serviced in the
DRAM banks when there is at least one request being serviced in the
DRAM banks. This definition follows the memory-level parallelism
(MLP) definition of Chou et al. [2]. We characterize a thread based on
the average stall time per DRAM request (AST/req) metric, which is
computed by dividing the number of cycles in which the thread cannot
commit instructions because the oldest instruction is a miss to DRAM
by the total number of DRAM load requests generated by the thread.12

Table 3 shows the category and memory system characteristics of the
benchmarks when they run alone in one core of the baseline 4-core
CMP. Note that benchmarks with high levels of BLP also have rela-
tively low AST/req. In all figures, benchmarks are ordered based on
their category in Table 3.

We evaluate combinations of multiprogrammed workloads running
on 4, 8, and 16-core CMPs. For 4-core simulations, we evaluated
100 different combinations, each of which was formed by pseudo-
randomly selecting a benchmark from each category such that dif-
ferent category combinations are evaluated. For 8-core simulations,
we evaluated 16 different combinations; and for 16-core, 12 different

11410.bwaves, 416.gamess, and 434.zeusmp are not included because we
were not able to collect representative traces for them.

12AST/req is similar to the average cost of an L2 cache miss, described by
Qureshi et al. [30], except AST/req is based on processor stall time rather than
L2 miss latency.

combinations. Space limitations prevent us from listing all evaluated
combinations, but we try to show as many results with representative
individual combinations as possible in Section 8.

7.1. Evaluation Metrics
We measure fairness using the unfairness index proposed in [25,

8].13 This is the ratio between the maximum memory-related slow-
down and the minimum memory-related slowdown among all threads
sharing the DRAM system. The memory related slowdown of a thread
i is the memory stall time per instruction it experiences when running
together with other threads divided by the memory stall time per in-
struction it experiences when running alone on the same system:

MemSlowdowni =
MCPIshared

i

MCPIalone
i

, Unfairness =
maxi MemSlowdowni

minj MemSlowdownj

We measure system throughput using Weighted-Speedup [37] and
Hmean-Speedup [18], which balances fairness and throughput [18]:

W. Speedup =
X

i

IPCshared
i

IPCalone
i

, H. Speedup =
NumThreads

P
i

1
IPCshared

i
/IPCalone

i

7.2. Parameters of Evaluated Schemes
Our baseline controller uses the FR-FCFS scheduling policy. All

evaluated schedulers prioritize DRAM read requests over DRAM
write requests because read requests can directly block forward
progress in processing cores and are therefore more performance crit-
ical. Unless otherwise stated, we use PAR-BS with a Marking-Cap
of 5 in our experiments. When comparing PAR-BS to other sched-
ulers, we use the following parameters. STFM: We set α = 1.10 and
IntervalLength = 224 as proposed by Mutlu and Moscibroda [25].
NFQ: We use Nesbit et al.’s best scheme (FQ-VFTF) [28], including
its priority inversion prevention optimization with a tRAS threshold.

8. Experimental Results
8.1. Results on 4-core Systems

We first analyze the fairness and throughput of PAR-BS in compar-
ison to previously proposed DRAM scheduling techniques using three
case studies on 4-core systems that highlight the typical behavior of
different scheduling algorithms. Aggregate results over 100 workloads
are provided in Section 8.1.4.

8.1.1. Case Study I: Memory-intensive workload This
workload includes four memory-intensive benchmarks, one with very
high bank-level parallelism (mcf). Figure 5(left) shows the memory
slowdown of each benchmark with different memory schedulers. Fig-
ure 5(right) compares the five different schedulers in terms of system
throughput.

• FR-FCFS and FCFS: The commonly-used FR-FCFS scheduling
policy is very unfair, slowing down the three less-intensive bench-
marks significantly more than libquantum because of libquan-
tum’s very high row-buffer hit rate (98.4%) and memory inten-
siveness. Such unfairness results in the lowest system through-
put as cores running the three less-intensive programs make very
slow progress. FCFS improves fairness over FR-FCFS because
it prevents libquantum’s row-buffer hit requests from being con-
tinuously prioritized over other threads’ requests. Nonetheless,
FCFS still unfairly prioritizes memory-intensive libquantum and

13Gabor et al.’s fairness metric [8] is essentially the inverse of Mutlu and
Moscibroda’s unfairness index [25].
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Processor pipeline 4 GHz processor, 128-entry instruction window (64-entry issue queue, 64-entry store queue), 12-stage pipeline
Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation
L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte block size, 2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 64-byte block size, 12-cycle latency, 32 MSHRs
DRAM controller (on-chip) FR-FCFS; 128-entry request buffer, 64-entry write data buffer, reads prioritized over writes, XOR-based address-to-bank mapping [6, 42]
DRAM chip parameters Micron DDR2-800 timing parameters (see [21]), tCL=15ns, tRCD=15ns, tRP =15ns, BL/2=10ns; 8 banks, 2K-byte row-buffer per bank
DIMM configuration single-rank, 8 DRAM chips put together on a DIMM (dual in-line memory module) to provide a 64-bit wide channel to DRAM
Round-trip L2 miss latency For a 64-byte cache line, uncontended: row-buffer hit: 40ns (160 cycles), closed: 60ns (240 cycles), conflict: 80ns (320 cycles)
Cores and DRAM bandwidth DRAM channels scaled with cores: 1, 2, 4 parallel lock-step channels for 4, 8, 16 cores (1 channel has 6.4 GB/s peak bandwidth)

Table 2. Baseline CMP and memory system configuration
# Benchmark Type MCPI L2 MPKI RB hit rate BLP AST/req Category # Benchmark Type MCPI L2 MPKI RB hit rate BLP AST/req Category

1 437.leslie3d FP 7.30 51.52 62.8% 1.90 139 7 (111) 15 453.povray FP 0.00 0.03 79.9% 1.75 123 3
2 450.soplex FP 6.18 47.58 78.8% 1.81 125 7 16 464.h264ref INT 0.48 2.65 76.5% 1.29 161 2 (010)
3 470.lbm FP 3.57 43.59 61.1% 3.37 77 7 17 445.gobmk INT 0.11 0.60 61.1% 1.46 162 2
4 482.sphinx3 FP 3.05 24.89 75.0% 1.89 117 7 18 447.dealII FP 0.07 0.41 90.3% 1.21 133 2
5 matlab DSK 15.4 78.36 93.7% 1.08 192 6 (110) 19 444.namd FP 0.06 0.33 86.6% 1.27 160 2
6 462.libquantum INT 9.10 50.00 98.4% 1.10 181 6 20 481.wrf FP 0.05 0.28 83.6% 1.20 164 2
7 433.milc FP 4.65 32.48 86.4% 1.51 139 6 21 454.calculix FP 0.04 0.19 75.9% 1.30 157 2
8 xml-parser DSK 2.92 18.23 95.3% 1.32 158 6 22 400.perlbench INT 0.02 0.13 75.4% 1.69 128 2
9 429.mcf INT 6.45 98.68 41.5% 4.75 64 5 (101) 23 471.omnetpp INT 1.96 22.15 26.7% 3.78 86 1 (001)
10 459.GemsFDTD FP 4.08 29.95 20.4% 2.40 126 5 24 401.bzip2 INT 0.49 3.56 52.0% 2.05 127 1
11 483.xalancbmk INT 2.80 23.52 59.8% 2.27 113 5 25 473.astar INT 1.82 9.25 50.2% 1.45 177 0 (000)
12 436.cactusADM FP 2.78 11.68 6.75% 1.60 219 4 (100) 26 456.hmmer INT 1.50 5.67 33.8% 1.26 231 0
13 403.gcc INT 0.05 0.37 63.9% 1.87 127 3 (011) 27 435.gromacs FP 0.18 0.68 58.2% 1.04 220 0
14 465.tonto FP 0.02 0.13 70.7% 1.92 108 3 28 458.sjeng INT 0.10 0.41 16.8% 1.53 192 0

Table 3. Benchmark characteristics. MCPI: Memory Cycles Per Instruction (cycles spent waiting for memory divided by number of instructions), L2 MPKI: L2 Misses per 1000
Instructions, RB Hit Rate: Row-buffer hit rate, BLP: bank-level parallelism, AST/req: Average stall-time per DRAM request, Categories are determined based on MCPI (1:High,
0:Low), RB hit rate (1:High, 0:Low), and BLP (1:High, 0:Low)
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Figure 5. A memory intensive 4-core workload: memory slowdowns and unfairness (left), system throughput (right)

mcf as their requests are more likely to be older than other threads’
requests. Since the fairness and throughput characteristics of
both FR-FCFS and FCFS were analyzed in detail in previous re-
search [25], we concentrate our analysis primarily on the other
scheduling algorithms.

• NFQ slightly improves fairness over FCFS, although it overly
slows down mcf (by 3.15X). Mcf has very high bank-parallelism
when run alone. NFQ’s scheduling policy is to balance the re-
quests from different threads in each bank, without any coordina-
tion among banks. As the other threads have bursty access patterns
in some banks, NFQ prioritizes their requests over mcf’s requests
in those banks during bursts (this is in part due to the idleness prob-
lem inherent in NFQ’s design, as described in [25, 31]). There-
fore, NFQ destroys mcf’s bank-parallelism: in some banks mcf’s
requests are unhindered by requests from other threads, while in
other banks, requests from the bursty threads are prioritized. Mcf’s
requests in these banks are delayed, although they could have been
serviced in parallel with its other requests. We found that mcf’s
BLP of 4.75 when run alone reduces to only 2.05 with NFQ and
its average stall-time per DRAM access (AST/req) increases from
64 to 193 processor cycles.

• STFM results in better fairness and throughput than all previ-
ous policies. However, it also penalizes (slows down) mcf sig-
nificantly, by 2.77X. This is due to two reasons. First, STFM
tries to provide fairness by estimating the memory-slowdown of
each thread and prioritizing requests from the threads that are
slowed down the most. STFM penalizes mcf because its heuris-
tics to estimate mcf’s inherent bank-parallelism are not always ac-
curate [25] and hence, it underestimates mcf’s slowdown. Second,
like NFQ, STFM is not parallelism-aware: it does not try to service
requests from a thread in parallel. Instead, it prioritizes requests
from threads that it estimates to have incurred the highest memory-
slowdowns—in this case, libquantum and GemsFDTD. These
threads’ requests often take precedence over mcf’s requests, in-
creasing mcf’s AST/req from 64 to 174 cycles.

• PAR-BS provides both the best fairness and system through-
put. It reduces unfairness from 1.42 (STFM) to 1.07, and im-

proves weighted-speedup by 4.4% and hmean-speedup by 8.4%
over STFM. The Request batching component of PAR-BS fairly
distributes memory-slowdowns by effectively containing libquan-
tum’s impact on other threads. We found that request batching is
more effective and robust in providing fairness than both NFQ’s
and STFM’s techniques because it is not vulnerable to 1) the idle-
ness and bank access balance problems of the NFQ approach [25],
2) incorrect estimation of thread slowdowns in the STFM ap-
proach. Parallelism-aware scheduling within a batch allows PAR-
BS to better exploit mcf’s bank-parallelism, keeping its AST/req
at 146 cycles, lower than NFQ and STFM. Consequently, PAR-
BS slows down mcf (by 2.17X) less than NFQ (3.15X) and STFM
(2.77X).

8.1.2. Case Study II: Non-intensive workload Figure 6 shows
unfairness and throughput on a workload including three non-intensive
benchmarks and a single intensive one. Only one application (om-
netpp) has high bank-parallelism (3.78), which results in an average
stall-time per DRAM access of 86 cycles when omnetpp is run alone.

PAR-BS is the only scheduler that does not significantly penalize
the thread with high bank-parallelism (omnetpp). NFQ and STFM
reduce unfairness compared to FR-FCFS because they successfully
mitigate the problems caused by FR-FCFS’ rigid row-hit-first policy.
However, neither NFQ nor STFM can recover omnetpp’s loss in bank-
parallelism and both slow down this thread the most. In fact, NFQ
is even more unfair than FCFS because its earliest-virtual-deadline-
first scheme prioritizes h264ref’s (and to a lesser degree also hmmer’s)
bursty requests over omnetpp’s requests in the banks they concurrently
access [25]. This causes omnetpp’s accesses that would otherwise
proceed in parallel to get out-of-sync and become serialized, which
degrades omnetpp’s performance. The processor stalls for the bank
access latency of each access rather than amortizing this latency by
overlapping the latencies of multiple outstanding accesses. The result
is an AST/req of 256 cycles for omnetpp. While STFM reduces this
measure to 182 cycles, it still overly slows down omnetpp as it fails to
optimize omnetpp’s bank-parallelism and underestimates this thread’s
slowdown. In contrast, the parallelism-aware PAR-BS reduces om-
netpp’s AST/req down to 150 cycles.
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Figure 6. A non-memory-intensive 4-core workload: memory slowdowns and unfairness (left), system throughput (right)
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Figure 7. A 4-core workload where unfairness is not a problem: memory slowdowns and unfairness (left), system throughput (right)
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Figure 8. Unfairness (left) and system throughput (right) averaged (using geometric mean) over all 100 workloads run in the 4-core system
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Figure 9. A mixed 8-core workload: memory slowdowns and unfairness (left), system throughput (right)

PAR-BS outperforms all existing schemes, achieving the best fair-
ness while also improving weighted-speedup and hmean-speedup by
3.1% and 5.2% over STFM, respectively. In contrast to the other
schemes, it is the least memory-intensive thread (h264ref) that is
slowed down the most by PAR-BS, but this thread’s slowdown is
nonetheless smaller than with the other schedulers. Some of h264ref’s
less-frequent requests are likely to miss the formation of a batch, in
which case they are not serviced until the batch completes. However,
this does not result in a large slowdown because 1) batches are quick
to process due to the small Marking-Cap of 5; we found that the av-
erage batch is completed in 1269 cycles, 2) even if h264ref’s requests
are not marked, they are still serviced if there is no marked request
for the required bank, 3) because h264ref’s requests are infrequent,
they are prioritized within a batch due to our Max-Total thread rank-
ing scheme; thus even if a request misses a batch it will be serviced
first in the next batch.
8.1.3. Case Study III: Memory-intensive benchmark with
high bank-parallelism running with copies of itself Our last
case study is intended to explicitly demonstrate the parallelism be-
havior of the PAR-BS scheduler. For this, we minimize the variance
among threads and run four identical copies of lbm together on a
CMP. As expected, all schedulers are perfectly fair in this case (Fig-
ure 7(left)), but they differ significantly in their memory-slowdown
and hence system throughput. FCFS drastically slows down each copy
of lbm compared to FR-FCFS because it does not explicitly exploit
row-buffer locality. NFQ’s performance is even worse because it not
only limits the row-buffer locality that can be exploited by the memory
controller (using the priority-inversion optimization in [28]) but also
frequently interleaves requests from different copies of lbm to a bank
to keep the virtual deadline of each lbm copy in balance. This destroys
the row-buffer hit rate of each lbm copy, reducing it from 61% to only
31%, and therefore reduces system throughput by 29.7%. STFM pro-
vides the same throughput as FR-FCFS because it never switches to a
fairness-oriented scheduling policy as it correctly estimates the unfair-
ness in the system to be 1.

PAR-BS achieves the best system throughput by servicing each
lbm’s concurrent requests in parallel, reducing the average stall-time a
DRAM access inflicts upon a thread (from 222 (FR-FCFS and STFM)
and 322 (NFQ) to 199 cycles). Therefore, PAR-BS improves both
weighted- and hmean-speedup by 8.6%. Hence, making the DRAM
scheduler parallelism-aware improves system throughput even in a
uniform application mix where unfairness is not a problem.

8.1.4. 4-Core Experiments: Average Results Figure 8(left)
compares the unfairness of the five schedulers across 10 other diverse
workloads as well as averaged over all the 100 examined workloads.
Figure 8(right) shows the average system throughput across 100 work-
loads. PAR-BS provides both the best fairness and the best through-
put. Unfairness is reduced from 1.36 (STFM) to 1.22. At the same
time, system throughput is improved by 4.4% (weighted-speedup) and
by 8.3% (hmean-speedup) compared to the best previously-proposed
scheduling scheme (STFM).

8.2. PAR-BS on 8-Core and 16-Core Systems
The DRAM system will become a bigger QoS and performance

bottleneck as the number of cores sharing it increases. We briefly ex-
amine the effectiveness of PAR-BS on 8-core and 16-core systems.
Figure 9 shows an 8-core workload consisting of 3 memory-intensive
and 5 non-intensive applications. Mcf is the only program with very
high inherent bank-parallelism. All previous schedulers consistently
slow down mcf (by at least 3.5X) because they fail to control the se-
rialization of mcf’s concurrent DRAM accesses due to interference
from the other seven applications.14 On the other hand, PAR-BS pre-
serves mcf’s bank-parallelism, reducing its slowdown to 2.8X (and its
AST/req from 330 (NFQ) and 221 (STFM) to only 173 cycles). As a
result, PAR-BS provides both the best fairness and system throughput.

Figure 10 provides unfairness and throughput results on the 16-
core system for five sample workloads as well as averaged over all 12
workloads. PAR-BS reduces unfairness from 1.81 (STFM) to 1.63,

14The likelihood that mcf’s concurrent requests are serialized increases when
7 other threads are running together with it instead of 3.

71
71



0
1
2
3
4
5
6
7
8
9

10
11
12

U
nf

ai
rn

es
s

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

1,5,6,9
13-22,27,28

9,13-22,24-28 intensive16 middle16 non-intensive16 GMEAN 0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p FR-FCFS

FCFS
NFQ
STFM
PAR-BS

Weighted Hmean(x10)
Figure 10. Unfairness (left) and system throughput (right) averaged (using geometric mean) over all 12 workloads run in the 16-core system

4-core system 8-core system 16-core system
Unf. Weighted Hmean-sp AST/req WC lat. Unf. Weighted-sp Hmean-sp AST/req WC lat. Unf. Weighted-sp Hmean-sp AST/req WC lat.

FR-FCFS 3.12 1.70 0.43 374 18481 4.10 1.99 0.29 605 34655 4.99 3.62 2.93 968 35117
FCFS 1.64 1.53 0.45 364 13728 2.23 1.77 0.28 633 20114 3.06 3.23 2.69 964 36549
NFQ 1.56 1.73 0.47 346 19801 2.45 2.04 0.31 525 59117 3.74 3.75 2.93 774 88732
STFM 1.36 1.79 0.52 301 20305 1.41 2.11 0.34 484 57764 1.81 3.85 3.33 712 86577
PAR-BS 1.22 1.87 0.57 281 13866 1.31 2.20 0.37 457 25614 1.63 3.97 3.50 676 41115
∆ vs. STFM 1.11X 4.4% 8.3% 7.1% 1.46X 1.08X 4.3% 6.1% 5.9% 2.26X 1.11X 3.2% 5.1% 5.3% 2.11X

Table 4. STFM vs. others: unfairness (Unf.), throughput (weighted/hmean-speedup), AST/req, and worst-case request latency (WC lat.) averaged over all workloads
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Figure 11. Effect of Marking-Cap on unfairness and throughput (left); slowdowns for Case Study I (middle) and Case Study II (right)

while improving weighted-speedup by 3.2% and hmean-speedup by
5.1% compared to STFM.

Summary: Table 4 summarizes our evaluation by comparing the
geometric-mean of unfairness and system-throughput of PAR-BS to
the previous schemes. PAR-BS provides the lowest average stall time
per request, which indicates that it effectively reduces the average cost
of a DRAM request on performance. Also, PAR-BS provides signif-
icantly lower worst-case request latency than other QoS-aware tech-
niques. We found that both NFQ and STFM can delay requests from
particular threads for a very long time in order to enforce fairness.15 In
contrast, the batching component of PAR-BS achieves fairness while
bounding the amount of time a thread’s requests can be delayed. PAR-
BS consistently provides better fairness and throughput than the best
previous technique (STFM) for all examined systems. We conclude
that PAR-BS is very effective in providing the best fairness and the
highest system performance in 4-, 8-, and 16-core systems.

8.3. Analysis
8.3.1. Effect of Marking-Cap Marking-Cap determines the
duration of a batch by changing the number of requests that are marked
when a new batch is formed. Varying this parameter affects PAR-BS’s
fairness and throughput properties because it changes 1) the amount
of row-buffer locality exploited, 2) the amount of delay unmarked re-
quests experience, and 3) the degree of bank-level parallelism that can
be exploited.

Figure 11(left) shows the effect of varying Marking-Cap from
1 to 20 and not using Marking-Cap at all (no-c) on unfairness and
throughput averaged over the 100 workloads on the 4-core system.
When Marking-Cap is smallest, system throughput is at its lowest
because the resulting batches are too small. For example, with a cap
of 1, a thread can have at most 1 request per bank in a batch. Such a
small batch size significantly reduces our scheduler’s ability to 1) ex-
ploit row-buffer locality and 2) find concurrent accesses from threads
with high bank-parallelism. If, in a bank, Thread A has 5 outstanding
requests to one row, and Thread B has 5 requests to another row, a
cap of 1 results in the interleaving of Thread A and B’s requests be-
cause only 1 request to the bank can finish from each thread in a batch.
This interleaving results in a row-conflict for each access and there-
fore significantly increases the latency experienced by each thread. In
contrast, with a Marking-Cap of 5, PAR-BS would service A’s 5

15For example, STFM delays requests from threads that are estimated to be
slowed down much less than others. Similarly, NFQ delays requests of a thread
to a bank, if the thread had used that bank very intensively for a long time and
accumulated a large virtual deadline.

requests first and B’s 5 requests next with all accesses except for the
first from each thread being row-hits. A small cap also results in poor
fairness because it penalizes threads with high row-buffer locality (e.g.
libquantum and matlab in Figure 11(middle) and (left)).

As Marking-Cap increases, unfairness decreases and system
throughput increases, until a certain point beyond which unfairness
increases due to two reasons. First, a large cap allows memory-
intensive threads to insert more requests into a batch and thus de-
lays non-intensive threads whose requests more frequently “miss” the
formation of a batch. As such, a large cap penalizes less memory-
intensive threads as shown in memory slowdowns for GemsFDTD and
xalancbmk in Figure 11(middle) and for omnetpp and hmmer in Fig-
ure 11(right). Second, because PAR-BS prioritizes threads with high
row buffer locality within a batch, a large cap exacerbates the delay of
threads with low row-buffer locality within a batch.

According to Figure 11(left), a Marking-Cap of 5 provides the
best average system throughput (both weighted-speedup and hmean-
speedup) while providing very good fairness. Therefore, we use a
Marking-Cap of 5 in our experiments. Note that it is possible to
improve our mechanism by making the Marking-Cap adaptive.

8.3.2. Effect of Batching Choice Figure 12(left) compares the
unfairness and throughput of static batching with various choices for
BatchDuration (varied from 400 to 25600 cycles), eslot batching,
and full-batching as used in PAR-BS, which were described in Sec-
tion 4.4. Figure 12(middle) and (right) show the effect of the batching
choice on the threads’ memory-slowdowns in two case studies. On
average, full batching provides the best fairness and throughput.

Static batching is unfair if BatchDuration is too small (e.g.
400 or 800 cycles). Because most requests in the request buffer be-
come marked with a small BatchDuration, the scheme prioritizes
memory-intensive threads with high row-buffer hit rates. Therefore, a
small BatchDuration effectively eliminates request batching and
degenerates to a row-hit-first, rank-first, oldest-first prioritization pol-
icy, which (similar to FR-FCFS) penalizes less-intensive threads with
low row-buffer locality, as shown in Figure 12(middle) and (right).
Conversely, if BatchDuration is too large, most requests in the
buffer are unmarked. This also effectively eliminates request batching
and behaves similarly to FR-FCFS. The sweet-spot in static batch-
ing is with a BatchDuration of 3200 cycles but this does not
provide as good performance or fairness as full batching since it is
rigid/unadaptive and prone to starvation.

Eslot batching reduces the probability of penalizing non-intensive
threads. Unfortunately, as shown in Figure 12(middle) and (right),
it penalizes memory-intensive threads too much by allowing requests
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Figure 12. Effect of batching choice on unfairness and throughput (left); slowdowns for Case Study I (middle) and Case Study II (right)
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Figure 13. Effect of within-batch scheduling policy on unfairness and throughput (left); slowdowns for 4 copies of lbm (middle) and matlab (right)
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from less intensive ones into a current batch, which reduces the row-
buffer hit rate of intensive threads. While this can result in system
throughput improvement in some cases (e.g. for Case Study II in Fig-
ure 12(right) – not shown in the figure), full batching provides better
average fairness and system throughput. We conclude that full batch-
ing is the most effective batching policy for PAR-BS.

8.3.3. Effect of Parallelism Awareness and Different
Within-Batch Scheduling Schemes Figure 13(left) explores the
effect of changing the within-batch ranking scheme or removing it al-
together and simply using FR-FCFS or FCFS to prioritize among com-
mands within a batch. In addition, we study three alternative within-
batch ranking schemes, two of which do not adhere to the shortest-
job-first principle: the random ranking scheme assigns random ranks
to threads when a batch is formed; the round-robin scheme alternates
the rank of each thread in a round-robin fashion in consecutive batches.

Figure 13(left) shows these alternative non-shortest-job-first
within-batch scheduling techniques significantly degrade both fairness
and system throughput because they increase the average completion
time of threads. Specifically, changing the ranking scheme from Max-
Total or Total-Max (which perform similarly) to a random or round-
robin ranking scheme reduces weighted-speedup/hmean-speedup by
respectively 5.7% and 9.8%. Using no ranking (i.e., FR-FCFS or
FCFS) within a batch completely eliminates parallelism-awareness
from our proposal while keeping the request batching component in-
tact. The result is a decrease in both fairness and throughput. Using the
FR-FCFS policy within a batch results in a weighted-speedup/hmean-
speedup loss of 4.7% and 10.7% compared to PAR-BS. As expected,
FCFS provides better fairness than FR-FCFS but significantly worse
throughput.

We conclude that parallelism-awareness is a key component of
our proposal. However, even without parallelism-awareness, the
concept of request-batching itself results in designs that are almost
competitive with the best previously-proposed scheduler, STFM. As
Figure 13(left) shows, round-robin ranking within a batch achieves
slightly worse fairness and only 2.1%/1.5% smaller weighted-
speedup/hmean-speedup than STFM.

Figure 13(mid. and right) shows that the throughput improvement
due to parallelism-aware prioritization is significant when threads have
high inherent bank-level parallelism (4 copies of lbm), but negligible
when threads have low parallelism (4 copies of matlab). We conclude

that the parallelism-awareness component of our proposal is indepen-
dent of the fairness component and it can be used to improve solely
system throughput even when fairness is not a problem.

8.4. Evaluation of Support for Thread Priorities
We evaluated PAR-BS’s support for thread priorities in a variety

of scenarios and present two representative case studies to highlight
its effectiveness. Figure 14(left) shows the memory slowdowns of 4
lbm programs with different weights (for NFQ and STFM) and corre-
sponding priorities (for PAR-BS). Two programs have a priority of 1
(corresponding to a weight of 8 in NFQ/STFM) and two have priori-
ties of 2 and 8. While all three schedulers respect the relative priori-
ties of threads, PAR-BS is much more efficient: it results in the lowest
slowdown for the highest-priority programs because it preserves their
bank-parallelism. Lbm with priority 1 experiences a slowdown of 2.09
and 2.15 with NFQ and STFM, but only 1.88 with PAR-BS. In addi-
tion, we found that PAR-BS provides higher system throughput even
for low-priority programs (e.g. the lowest-priority lbm has a much
smaller slowdown with PAR-BS than with other schemes).

Figure 14(right) presents a scenario in which omnetpp is the most
important thread to the user whereas the other three co-scheduled
threads are not important. Therefore, the system software designates
the other threads as “opportunistic,” i.e. they should be serviced only
when there is available bandwidth. As explained in Section 5, PAR-BS
easily accommodates this notion of “opportunistic service” by never
including these threads’ requests in a batch. For NFQ and STFM,
there is no notion of “opportunistic service,” so we approximated it
by assigning a very large weight (8192) to the high-priority omnetpp
and very small weights (1) to low-priority threads.16 PAR-BS provides
much higher throughput to the high-priority thread. Omnetpp’s slow-
down is only 1.04 with PAR-BS whereas it is 1.14 with STFM and
1.19 with NFQ. Hence, from both examples, we conclude that PAR-
BS treats higher-priority applications better than alternate approaches
for enforcing thread priorities/weights in the DRAM controller.

16Note that such a large range of weights might be difficult to implement
in NFQ or STFM hardware, whereas PAR-BS’s ability to handle opportunistic
threads is very easy to implement: it simply consists of not marking the requests
of opportunistic threads.
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9. Related Work
Fair and Quality-of-Service Aware DRAM Controllers: Fair and
QoS-aware DRAM controller design in shared memory systems has
received increasing attention in the last two years. We already pro-
vided extensive qualitative and quantitative comparisons to two very
recently proposed DRAM controllers that aim to provide QoS, Nesbit
et al.’s network-fair-queueing (NFQ) based scheduler [28] and Mutlu
and Moscibroda’s stall-time fair memory (STFM) scheduler [25].
Rafique et al. [31] proposed an improvement to the NFQ scheme
by employing start-time fair queueing, which provides better fair-
ness than virtual finish-time fair queueing. As explained in [25],
while fair queueing is a good fairness abstraction for stateless network
wires without any parallelism (i.e., banks), it is not directly applica-
ble to DRAM systems because it does not take into account row-buffer
state and bank-parallelism, two critical determinants of DRAM perfor-
mance. In comparison, our design provides not only fairness, QoS, and
starvation freedom but also significantly improves system throughput
via better intra-thread overlapping of DRAM accesses.

Iyer et al. [11] sketch a design that allows requests from only higher
priority threads to bypass other requests in the memory controller.
However, their solution does not provide fairness to equal-priority
threads. Several DRAM controllers [19, 16] achieve hard real-time
guarantees at the cost of a reduction in throughput and flexibility that
is unacceptable in high-performance general-purpose systems.
Batching: The general concept of “batching” has been used in disk
scheduling [7, 39, 12] to prevent starvation of I/O requests. We apply a
similar concept, request batching, in our PAR-BS design and evaluate
the trade-offs associated with batching in DRAM controllers. How-
ever, the locality, bandwidth, parallelism trade-offs in DRAM mem-
ory are very different from those in sequential-access disk drives since
disk drives do not have 1) a banked structure or 2) row-buffers.
Parallelism Awareness: The concept of memory-level parallelism
awareness was exploited in processor caches to improve the cache re-
placement policy [30]. The authors observed that cache misses that
are likely to be serviced in parallel with other misses are less costly
on processor performance than misses that occur in isolation. They
proposed a replacement policy that tries to keep costly blocks in the
cache. Our proposal is orthogonal: it proactively tries to improve the
probability that cache misses from a given thread will be serviced in
parallel and can 1) be used together with and 2) improve the effective-
ness of MLP-aware cache replacement.
DRAM Throughput Optimizations: Zuravleff and Robinson [44]
proposed an FR-FCFS-like scheduler that aims to maximize DRAM
throughput. A number of papers examined the effect of different mem-
ory controller policies and DRAM throughput optimizations in multi-
processor/multithreaded [27, 43] and single-threaded systems [33, 20,
32, 10, 34]. These techniques do not consider fairness or intra-thread
bank-parallelism.
Fairness in On-Chip Resources: Proposed techniques for fair shar-
ing of CMP caches (e.g., [38, 14]) and multithreaded processor re-
sources (e.g., [37, 18, 8]) are complementary to our work and can be
used in conjunction with PAR-BS.

10. Conclusion
We introduced a novel, comprehensive solution to both high-

performance and QoS-aware DRAM scheduler design. Compared
to existing DRAM schedulers, our parallelism-aware batch scheduler
(PAR-BS) significantly improves both fairness and system through-
put in systems where DRAM is a shared resource among multiple
threads. Our technique combines two orthogonal ideas: 1) it provides
thread-fairness and better prevents short-term and long-term starva-
tion through the use of request batching and 2) within a batch, it
explicitly reduces average thread stall times via a parallelism-aware
DRAM scheduling policy that improves intra-thread bank-level paral-
lelism, using the shortest job first scheduling principle. While effec-
tive at improving both fairness and system performance, PAR-BS is
also configurable and simple to implement. Our future work will fo-
cus on formally analyzing the parallelism, locality, and fairness prop-
erties of PAR-BS to further refine the employed request prioritization
heuristics.
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